mirror of
https://codeberg.org/ziglang/zig.git
synced 2025-12-06 22:04:21 +00:00
119 lines
4.5 KiB
Zig
119 lines
4.5 KiB
Zig
const std = @import("std");
|
|
const math = std.math;
|
|
const common = @import("common.zig");
|
|
const BiasedFp = common.BiasedFp;
|
|
const Decimal = @import("decimal.zig").Decimal;
|
|
const mantissaType = common.mantissaType;
|
|
|
|
const max_shift = 60;
|
|
const num_powers = 19;
|
|
const powers = [_]u8{ 0, 3, 6, 9, 13, 16, 19, 23, 26, 29, 33, 36, 39, 43, 46, 49, 53, 56, 59 };
|
|
|
|
pub fn getShift(n: usize) usize {
|
|
return if (n < num_powers) powers[n] else max_shift;
|
|
}
|
|
|
|
/// Parse the significant digits and biased, binary exponent of a float.
|
|
///
|
|
/// This is a fallback algorithm that uses a big-integer representation
|
|
/// of the float, and therefore is considerably slower than faster
|
|
/// approximations. However, it will always determine how to round
|
|
/// the significant digits to the nearest machine float, allowing
|
|
/// use to handle near half-way cases.
|
|
///
|
|
/// Near half-way cases are halfway between two consecutive machine floats.
|
|
/// For example, the float `16777217.0` has a bitwise representation of
|
|
/// `100000000000000000000000 1`. Rounding to a single-precision float,
|
|
/// the trailing `1` is truncated. Using round-nearest, tie-even, any
|
|
/// value above `16777217.0` must be rounded up to `16777218.0`, while
|
|
/// any value before or equal to `16777217.0` must be rounded down
|
|
/// to `16777216.0`. These near-halfway conversions therefore may require
|
|
/// a large number of digits to unambiguously determine how to round.
|
|
///
|
|
/// The algorithms described here are based on "Processing Long Numbers Quickly",
|
|
/// available here: <https://arxiv.org/pdf/2101.11408.pdf#section.11>.
|
|
///
|
|
/// Note that this function needs a lot of stack space and is marked
|
|
/// cold to hint against inlining into the caller.
|
|
pub fn convertSlow(comptime T: type, s: []const u8) BiasedFp(T) {
|
|
@branchHint(.cold);
|
|
|
|
const MantissaT = mantissaType(T);
|
|
const min_exponent = -(1 << (math.floatExponentBits(T) - 1)) + 1;
|
|
const infinite_power = (1 << math.floatExponentBits(T)) - 1;
|
|
const fractional_bits = math.floatFractionalBits(T);
|
|
|
|
var d = Decimal(T).parse(s); // no need to recheck underscores
|
|
if (d.num_digits == 0 or d.decimal_point < Decimal(T).min_exponent) {
|
|
return BiasedFp(T).zero();
|
|
} else if (d.decimal_point >= Decimal(T).max_exponent) {
|
|
return BiasedFp(T).inf(T);
|
|
}
|
|
|
|
var exp2: i32 = 0;
|
|
// Shift right toward (1/2 .. 1]
|
|
while (d.decimal_point > 0) {
|
|
const n = @as(usize, @intCast(d.decimal_point));
|
|
const shift = getShift(n);
|
|
d.rightShift(shift);
|
|
if (d.decimal_point < -Decimal(T).decimal_point_range) {
|
|
return BiasedFp(T).zero();
|
|
}
|
|
exp2 += @as(i32, @intCast(shift));
|
|
}
|
|
// Shift left toward (1/2 .. 1]
|
|
while (d.decimal_point <= 0) {
|
|
const shift = blk: {
|
|
if (d.decimal_point == 0) {
|
|
break :blk switch (d.digits[0]) {
|
|
5...9 => break,
|
|
0, 1 => @as(usize, 2),
|
|
else => 1,
|
|
};
|
|
} else {
|
|
const n = @as(usize, @intCast(-d.decimal_point));
|
|
break :blk getShift(n);
|
|
}
|
|
};
|
|
d.leftShift(shift);
|
|
if (d.decimal_point > Decimal(T).decimal_point_range) {
|
|
return BiasedFp(T).inf(T);
|
|
}
|
|
exp2 -= @as(i32, @intCast(shift));
|
|
}
|
|
// We are now in the range [1/2 .. 1] but the binary format uses [1 .. 2]
|
|
exp2 -= 1;
|
|
while (min_exponent + 1 > exp2) {
|
|
var n = @as(usize, @intCast((min_exponent + 1) - exp2));
|
|
if (n > max_shift) {
|
|
n = max_shift;
|
|
}
|
|
d.rightShift(n);
|
|
exp2 += @as(i32, @intCast(n));
|
|
}
|
|
if (exp2 - min_exponent >= infinite_power) {
|
|
return BiasedFp(T).inf(T);
|
|
}
|
|
|
|
// Shift the decimal to the hidden bit, and then round the value
|
|
// to get the high mantissa+1 bits.
|
|
d.leftShift(fractional_bits + 1);
|
|
var mantissa = d.round();
|
|
if (mantissa >= (@as(MantissaT, 1) << (fractional_bits + 1))) {
|
|
// Rounding up overflowed to the carry bit, need to
|
|
// shift back to the hidden bit.
|
|
d.rightShift(1);
|
|
exp2 += 1;
|
|
mantissa = d.round();
|
|
if ((exp2 - min_exponent) >= infinite_power) {
|
|
return BiasedFp(T).inf(T);
|
|
}
|
|
}
|
|
var power2 = exp2 - min_exponent;
|
|
if (mantissa < (@as(MantissaT, 1) << fractional_bits)) {
|
|
power2 -= 1;
|
|
}
|
|
// Zero out all the bits above the mantissa bits.
|
|
mantissa &= (@as(MantissaT, 1) << math.floatMantissaBits(T)) - 1;
|
|
return .{ .f = mantissa, .e = power2 };
|
|
}
|