zig/lib/std/math/complex/ldexp.zig
expikr 0c70d9c714 use Peer Type Resolution for standalone complex fn
use peer type resolution

Update complex.zig

Revert "use peer type resolution"

This reverts commit 1bc681ca5b.

Revert "Update pow.zig"

This reverts commit 5487e8d3159f832b5a0bf29a06bd12575182464f.

Update pow.zig

Revert "Update pow.zig"

This reverts commit 521153d1ef.

Update pow.zig
2024-01-14 18:09:17 -08:00

84 lines
2.7 KiB
Zig

// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/complex/__cexpf.c
// https://git.musl-libc.org/cgit/musl/tree/src/complex/__cexp.c
const std = @import("../../std.zig");
const debug = std.debug;
const math = std.math;
const testing = std.testing;
const cmath = math.complex;
const Complex = cmath.Complex;
/// Returns exp(z) scaled to avoid overflow.
pub fn ldexp_cexp(z: anytype, expt: i32) Complex(@TypeOf(z.re, z.im)) {
const T = @TypeOf(z.re, z.im);
return switch (T) {
f32 => ldexp_cexp32(z, expt),
f64 => ldexp_cexp64(z, expt),
else => unreachable,
};
}
fn frexp_exp32(x: f32, expt: *i32) f32 {
const k = 235; // reduction constant
const kln2 = 162.88958740; // k * ln2
const exp_x = @exp(x - kln2);
const hx = @as(u32, @bitCast(exp_x));
// TODO zig should allow this cast implicitly because it should know the value is in range
expt.* = @as(i32, @intCast(hx >> 23)) - (0x7f + 127) + k;
return @as(f32, @bitCast((hx & 0x7fffff) | ((0x7f + 127) << 23)));
}
fn ldexp_cexp32(z: Complex(f32), expt: i32) Complex(f32) {
var ex_expt: i32 = undefined;
const exp_x = frexp_exp32(z.re, &ex_expt);
const exptf = expt + ex_expt;
const half_expt1 = @divTrunc(exptf, 2);
const scale1 = @as(f32, @bitCast((0x7f + half_expt1) << 23));
const half_expt2 = exptf - half_expt1;
const scale2 = @as(f32, @bitCast((0x7f + half_expt2) << 23));
return Complex(f32).init(
@cos(z.im) * exp_x * scale1 * scale2,
@sin(z.im) * exp_x * scale1 * scale2,
);
}
fn frexp_exp64(x: f64, expt: *i32) f64 {
const k = 1799; // reduction constant
const kln2 = 1246.97177782734161156; // k * ln2
const exp_x = @exp(x - kln2);
const fx = @as(u64, @bitCast(exp_x));
const hx = @as(u32, @intCast(fx >> 32));
const lx = @as(u32, @truncate(fx));
expt.* = @as(i32, @intCast(hx >> 20)) - (0x3ff + 1023) + k;
const high_word = (hx & 0xfffff) | ((0x3ff + 1023) << 20);
return @as(f64, @bitCast((@as(u64, high_word) << 32) | lx));
}
fn ldexp_cexp64(z: Complex(f64), expt: i32) Complex(f64) {
var ex_expt: i32 = undefined;
const exp_x = frexp_exp64(z.re, &ex_expt);
const exptf = @as(i64, expt + ex_expt);
const half_expt1 = @divTrunc(exptf, 2);
const scale1 = @as(f64, @bitCast((0x3ff + half_expt1) << (20 + 32)));
const half_expt2 = exptf - half_expt1;
const scale2 = @as(f64, @bitCast((0x3ff + half_expt2) << (20 + 32)));
return Complex(f64).init(
@cos(z.im) * exp_x * scale1 * scale2,
@sin(z.im) * exp_x * scale1 * scale2,
);
}