zig/lib/std/crypto/25519/edwards25519.zig
Andrew Kelley e7b18a7ce6 std.crypto: remove inline from most functions
To quote the language reference,

It is generally better to let the compiler decide when to inline a
function, except for these scenarios:

* To change how many stack frames are in the call stack, for debugging
  purposes.
* To force comptime-ness of the arguments to propagate to the return
  value of the function, as in the above example.
* Real world performance measurements demand it. Don't guess!

Note that inline actually restricts what the compiler is allowed to do.
This can harm binary size, compilation speed, and even runtime
performance.

`zig run lib/std/crypto/benchmark.zig -OReleaseFast`
[-before-] vs {+after+}

              md5:        [-990-]        {+998+} MiB/s
             sha1:       [-1144-]       {+1140+} MiB/s
           sha256:       [-2267-]       {+2275+} MiB/s
           sha512:        [-762-]        {+767+} MiB/s
         sha3-256:        [-680-]        {+683+} MiB/s
         sha3-512:        [-362-]        {+363+} MiB/s
        shake-128:        [-835-]        {+839+} MiB/s
        shake-256:        [-680-]        {+681+} MiB/s
   turboshake-128:       [-1567-]       {+1570+} MiB/s
   turboshake-256:       [-1276-]       {+1282+} MiB/s
          blake2s:        [-778-]        {+789+} MiB/s
          blake2b:       [-1071-]       {+1086+} MiB/s
           blake3:       [-1148-]       {+1137+} MiB/s
            ghash:      [-10044-]      {+10033+} MiB/s
          polyval:       [-9726-]      {+10033+} MiB/s
         poly1305:       [-2486-]       {+2703+} MiB/s
         hmac-md5:        [-991-]        {+998+} MiB/s
        hmac-sha1:       [-1134-]       {+1137+} MiB/s
      hmac-sha256:       [-2265-]       {+2288+} MiB/s
      hmac-sha512:        [-765-]        {+764+} MiB/s
      siphash-2-4:       [-4410-]       {+4438+} MiB/s
      siphash-1-3:       [-7144-]       {+7225+} MiB/s
   siphash128-2-4:       [-4397-]       {+4449+} MiB/s
   siphash128-1-3:       [-7281-]       {+7374+} MiB/s
  aegis-128x4 mac:      [-73385-]      {+74523+} MiB/s
  aegis-256x4 mac:      [-30160-]      {+30539+} MiB/s
  aegis-128x2 mac:      [-66662-]      {+67267+} MiB/s
  aegis-256x2 mac:      [-16812-]      {+16806+} MiB/s
   aegis-128l mac:      [-33876-]      {+34055+} MiB/s
    aegis-256 mac:       [-8993-]       {+9087+} MiB/s
         aes-cmac:       2036 MiB/s
           x25519:      [-20670-]      {+16844+} exchanges/s
          ed25519:      [-29763-]      {+29576+} signatures/s
       ecdsa-p256:       [-4762-]       {+4900+} signatures/s
       ecdsa-p384:       [-1465-]       {+1500+} signatures/s
  ecdsa-secp256k1:       [-5643-]       {+5769+} signatures/s
          ed25519:      [-21926-]      {+21721+} verifications/s
          ed25519:      [-51200-]      {+50880+} verifications/s (batch)
 chacha20Poly1305:       [-1189-]       {+1109+} MiB/s
xchacha20Poly1305:       [-1196-]       {+1107+} MiB/s
 xchacha8Poly1305:       [-1466-]       {+1555+} MiB/s
 xsalsa20Poly1305:        [-660-]        {+620+} MiB/s
      aegis-128x4:      [-76389-]      {+78181+} MiB/s
      aegis-128x2:      [-53946-]      {+53495+} MiB/s
       aegis-128l:      [-27219-]      {+25621+} MiB/s
      aegis-256x4:      [-49351-]      {+49542+} MiB/s
      aegis-256x2:      [-32390-]      {+32366+} MiB/s
        aegis-256:       [-8881-]       {+8944+} MiB/s
       aes128-gcm:       [-6095-]       {+6205+} MiB/s
       aes256-gcm:       [-5306-]       {+5427+} MiB/s
       aes128-ocb:       [-8529-]      {+13974+} MiB/s
       aes256-ocb:       [-7241-]       {+9442+} MiB/s
        isapa128a:        [-204-]        {+214+} MiB/s
    aes128-single:  [-133857882-]  {+134170944+} ops/s
    aes256-single:   [-96306962-]   {+96408639+} ops/s
         aes128-8: [-1083210101-] {+1073727253+} ops/s
         aes256-8:  [-762042466-]  {+767091778+} ops/s
           bcrypt:      0.009 s/ops
           scrypt:      [-0.018-]      {+0.017+} s/ops
           argon2:      [-0.037-]      {+0.060+} s/ops
      kyber512d00:     [-206057-]     {+205779+} encaps/s
      kyber768d00:     [-156074-]     {+150711+} encaps/s
     kyber1024d00:     [-116626-]     {+115469+} encaps/s
      kyber512d00:     [-181149-]     {+182046+} decaps/s
      kyber768d00:     [-136965-]     {+135676+} decaps/s
     kyber1024d00:     [-101307-]     {+100643+} decaps/s
      kyber512d00:     [-123624-]     {+123375+} keygen/s
      kyber768d00:      [-69465-]      {+70828+} keygen/s
     kyber1024d00:      [-43117-]      {+43208+} keygen/s
2025-07-13 18:26:13 +02:00

638 lines
25 KiB
Zig

const std = @import("std");
const crypto = std.crypto;
const debug = std.debug;
const fmt = std.fmt;
const mem = std.mem;
const EncodingError = crypto.errors.EncodingError;
const IdentityElementError = crypto.errors.IdentityElementError;
const NonCanonicalError = crypto.errors.NonCanonicalError;
const NotSquareError = crypto.errors.NotSquareError;
const WeakPublicKeyError = crypto.errors.WeakPublicKeyError;
const UnexpectedSubgroupError = crypto.errors.UnexpectedSubgroupError;
/// Group operations over Edwards25519.
pub const Edwards25519 = struct {
/// The underlying prime field.
pub const Fe = @import("field.zig").Fe;
/// Field arithmetic mod the order of the main subgroup.
pub const scalar = @import("scalar.zig");
/// Length in bytes of a compressed representation of a point.
pub const encoded_length: usize = 32;
x: Fe,
y: Fe,
z: Fe,
t: Fe,
is_base: bool = false,
/// Decode an Edwards25519 point from its compressed (Y+sign) coordinates.
pub fn fromBytes(s: [encoded_length]u8) EncodingError!Edwards25519 {
const z = Fe.one;
const y = Fe.fromBytes(s);
var u = y.sq();
var v = u.mul(Fe.edwards25519d);
u = u.sub(z);
v = v.add(z);
var x = u.mul(v).pow2523().mul(u);
const vxx = x.sq().mul(v);
const has_m_root = vxx.sub(u).isZero();
const has_p_root = vxx.add(u).isZero();
if ((@intFromBool(has_m_root) | @intFromBool(has_p_root)) == 0) { // best-effort to avoid two conditional branches
return error.InvalidEncoding;
}
x.cMov(x.mul(Fe.sqrtm1), 1 - @intFromBool(has_m_root));
x.cMov(x.neg(), @intFromBool(x.isNegative()) ^ (s[31] >> 7));
const t = x.mul(y);
return Edwards25519{ .x = x, .y = y, .z = z, .t = t };
}
/// Encode an Edwards25519 point.
pub fn toBytes(p: Edwards25519) [encoded_length]u8 {
const zi = p.z.invert();
var s = p.y.mul(zi).toBytes();
s[31] ^= @as(u8, @intFromBool(p.x.mul(zi).isNegative())) << 7;
return s;
}
/// Check that the encoding of a point is canonical.
pub fn rejectNonCanonical(s: [32]u8) NonCanonicalError!void {
return Fe.rejectNonCanonical(s, true);
}
/// The edwards25519 base point.
pub const basePoint = Edwards25519{
.x = Fe{ .limbs = .{ 1738742601995546, 1146398526822698, 2070867633025821, 562264141797630, 587772402128613 } },
.y = Fe{ .limbs = .{ 1801439850948184, 1351079888211148, 450359962737049, 900719925474099, 1801439850948198 } },
.z = Fe.one,
.t = Fe{ .limbs = .{ 1841354044333475, 16398895984059, 755974180946558, 900171276175154, 1821297809914039 } },
.is_base = true,
};
pub const identityElement = Edwards25519{ .x = Fe.zero, .y = Fe.one, .z = Fe.one, .t = Fe.zero };
/// Reject the neutral element.
pub fn rejectIdentity(p: Edwards25519) IdentityElementError!void {
if (p.x.isZero()) {
return error.IdentityElement;
}
}
/// Reject a point if it is not in the prime order subgroup generated by the standard base point.
///
/// If the point is not in the main subgroup:
///
/// - `WeakPublicKeyError` is returned if the point belongs to a low-order subgroup.
/// - `UnexpectedSubgroupError` is returned otherwise.
pub fn rejectUnexpectedSubgroup(p: Edwards25519) (WeakPublicKeyError || UnexpectedSubgroupError)!void {
try p.rejectLowOrder();
// Multiply p by the order of subgroup - This is a prime order group, so the result should be the neutral element.
const _10 = p.dbl();
const _11 = p.add(_10);
const _100 = p.add(_11);
const _110 = _10.add(_100);
const _1000 = _10.add(_110);
const _1011 = _11.add(_1000);
const _10000 = _1000.dbl();
const _100000 = _10000.dbl();
const _100110 = _110.add(_100000);
const _1000000 = _100000.dbl();
const _1010000 = _10000.add(_1000000);
const _1010011 = _11.add(_1010000);
const _1100011 = _10000.add(_1010011);
const _1100111 = _100.add(_1100011);
const _1101011 = _100.add(_1100111);
const _10010011 = _1000000.add(_1010011);
const _10010111 = _100.add(_10010011);
const _10111101 = _100110.add(_10010111);
const _11010011 = _1000000.add(_10010011);
const _11100111 = _1010000.add(_10010111);
const _11101101 = _110.add(_11100111);
const _11110101 = _1000.add(_11101101);
const q = ((_11110101.add(((((_1101011.add(((((_10.add(((_1011.add(_11110101)).shift(126)
.add(_1010011)).shift(9).add(_11110101))).shift(7).add(_1100111)).shift(9).add(_11110101).shift(11)
.add(_10111101)).shift(8).add(_11100111)).shift(9))).shift(6).add(_1011)).shift(14).add(_10010011).shift(10)
.add(_1100011)).shift(9).add(_10010111)).shift(10))).shift(8).add(_11010011)).shift(8).add(_11101101);
q.rejectIdentity() catch return;
return error.UnexpectedSubgroup;
}
/// Multiply a point by the cofactor
pub fn clearCofactor(p: Edwards25519) Edwards25519 {
return p.dbl().dbl().dbl();
}
/// Check that the point does not generate a low-order group.
/// Return a `WeakPublicKey` error if it does.
pub fn rejectLowOrder(p: Edwards25519) WeakPublicKeyError!void {
const zi = p.z.invert();
const x = p.x.mul(zi);
const y = p.y.mul(zi);
const x_neg = x.neg();
const iy = Fe.sqrtm1.mul(y);
if (x.isZero() or y.isZero() or iy.equivalent(x) or iy.equivalent(x_neg)) {
return error.WeakPublicKey;
}
}
/// Flip the sign of the X coordinate.
pub fn neg(p: Edwards25519) Edwards25519 {
return .{ .x = p.x.neg(), .y = p.y, .z = p.z, .t = p.t.neg() };
}
/// Double an Edwards25519 point.
pub fn dbl(p: Edwards25519) Edwards25519 {
const t0 = p.x.add(p.y).sq();
var x = p.x.sq();
var z = p.y.sq();
const y = z.add(x);
z = z.sub(x);
x = t0.sub(y);
const t = p.z.sq2().sub(z);
return .{
.x = x.mul(t),
.y = y.mul(z),
.z = z.mul(t),
.t = x.mul(y),
};
}
/// Add two Edwards25519 points.
pub fn add(p: Edwards25519, q: Edwards25519) Edwards25519 {
const a = p.y.sub(p.x).mul(q.y.sub(q.x));
const b = p.x.add(p.y).mul(q.x.add(q.y));
const c = p.t.mul(q.t).mul(Fe.edwards25519d2);
var d = p.z.mul(q.z);
d = d.add(d);
const x = b.sub(a);
const y = b.add(a);
const z = d.add(c);
const t = d.sub(c);
return .{
.x = x.mul(t),
.y = y.mul(z),
.z = z.mul(t),
.t = x.mul(y),
};
}
/// Subtract two Edwards25519 points.
pub fn sub(p: Edwards25519, q: Edwards25519) Edwards25519 {
return p.add(q.neg());
}
/// Double a point `n` times.
fn shift(p: Edwards25519, n: comptime_int) Edwards25519 {
var q = p;
for (0..n) |_| q = q.dbl();
return q;
}
fn cMov(p: *Edwards25519, a: Edwards25519, c: u64) void {
p.x.cMov(a.x, c);
p.y.cMov(a.y, c);
p.z.cMov(a.z, c);
p.t.cMov(a.t, c);
}
fn pcSelect(comptime n: usize, pc: *const [n]Edwards25519, b: u8) Edwards25519 {
var t = Edwards25519.identityElement;
comptime var i: u8 = 1;
inline while (i < pc.len) : (i += 1) {
t.cMov(pc[i], ((@as(usize, b ^ i) -% 1) >> 8) & 1);
}
return t;
}
fn slide(s: [32]u8) [2 * 32]i8 {
const reduced = if ((s[s.len - 1] & 0x80) == 0) s else scalar.reduce(s);
var e: [2 * 32]i8 = undefined;
for (reduced, 0..) |x, i| {
e[i * 2 + 0] = @as(i8, @as(u4, @truncate(x)));
e[i * 2 + 1] = @as(i8, @as(u4, @truncate(x >> 4)));
}
// Now, e[0..63] is between 0 and 15, e[63] is between 0 and 7
var carry: i8 = 0;
for (e[0..63]) |*x| {
x.* += carry;
carry = (x.* + 8) >> 4;
x.* -= carry * 16;
}
e[63] += carry;
// Now, e[*] is between -8 and 8, including e[63]
return e;
}
// Scalar multiplication with a 4-bit window and the first 8 multiples.
// This requires the scalar to be converted to non-adjacent form.
// Based on real-world benchmarks, we only use this for multi-scalar multiplication.
// NAF could be useful to half the size of precomputation tables, but we intentionally
// avoid these to keep the standard library lightweight.
fn pcMul(pc: *const [9]Edwards25519, s: [32]u8, comptime vartime: bool) IdentityElementError!Edwards25519 {
std.debug.assert(vartime);
const e = slide(s);
var q = Edwards25519.identityElement;
var pos: usize = 2 * 32 - 1;
while (true) : (pos -= 1) {
const slot = e[pos];
if (slot > 0) {
q = q.add(pc[@as(usize, @intCast(slot))]);
} else if (slot < 0) {
q = q.sub(pc[@as(usize, @intCast(-slot))]);
}
if (pos == 0) break;
q = q.dbl().dbl().dbl().dbl();
}
try q.rejectIdentity();
return q;
}
// Scalar multiplication with a 4-bit window and the first 15 multiples.
fn pcMul16(pc: *const [16]Edwards25519, s: [32]u8, comptime vartime: bool) IdentityElementError!Edwards25519 {
var q = Edwards25519.identityElement;
var pos: usize = 252;
while (true) : (pos -= 4) {
const slot: u4 = @truncate((s[pos >> 3] >> @as(u3, @truncate(pos))));
if (vartime) {
if (slot != 0) {
q = q.add(pc[slot]);
}
} else {
q = q.add(pcSelect(16, pc, slot));
}
if (pos == 0) break;
q = q.dbl().dbl().dbl().dbl();
}
try q.rejectIdentity();
return q;
}
fn precompute(p: Edwards25519, comptime count: usize) [1 + count]Edwards25519 {
var pc: [1 + count]Edwards25519 = undefined;
pc[0] = Edwards25519.identityElement;
pc[1] = p;
var i: usize = 2;
while (i <= count) : (i += 1) {
pc[i] = if (i % 2 == 0) pc[i / 2].dbl() else pc[i - 1].add(p);
}
return pc;
}
const basePointPc = pc: {
@setEvalBranchQuota(10000);
break :pc precompute(Edwards25519.basePoint, 15);
};
/// Multiply an Edwards25519 point by a scalar without clamping it.
/// Return error.WeakPublicKey if the base generates a small-order group,
/// and error.IdentityElement if the result is the identity element.
pub fn mul(p: Edwards25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
const pc = if (p.is_base) basePointPc else pc: {
const xpc = precompute(p, 15);
xpc[4].rejectIdentity() catch return error.WeakPublicKey;
break :pc xpc;
};
return pcMul16(&pc, s, false);
}
/// Multiply an Edwards25519 point by a *PUBLIC* scalar *IN VARIABLE TIME*
/// This can be used for signature verification.
pub fn mulPublic(p: Edwards25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
if (p.is_base) {
return pcMul16(&basePointPc, s, true);
} else {
const pc = precompute(p, 8);
pc[4].rejectIdentity() catch return error.WeakPublicKey;
return pcMul(&pc, s, true);
}
}
/// Double-base multiplication of public parameters - Compute (p1*s1)+(p2*s2) *IN VARIABLE TIME*
/// This can be used for signature verification.
pub fn mulDoubleBasePublic(p1: Edwards25519, s1: [32]u8, p2: Edwards25519, s2: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
var pc1_array: [9]Edwards25519 = undefined;
const pc1 = if (p1.is_base) basePointPc[0..9] else pc: {
pc1_array = precompute(p1, 8);
pc1_array[4].rejectIdentity() catch return error.WeakPublicKey;
break :pc &pc1_array;
};
var pc2_array: [9]Edwards25519 = undefined;
const pc2 = if (p2.is_base) basePointPc[0..9] else pc: {
pc2_array = precompute(p2, 8);
pc2_array[4].rejectIdentity() catch return error.WeakPublicKey;
break :pc &pc2_array;
};
const e1 = slide(s1);
const e2 = slide(s2);
var q = Edwards25519.identityElement;
var pos: usize = 2 * 32 - 1;
while (true) : (pos -= 1) {
const slot1 = e1[pos];
if (slot1 > 0) {
q = q.add(pc1[@as(usize, @intCast(slot1))]);
} else if (slot1 < 0) {
q = q.sub(pc1[@as(usize, @intCast(-slot1))]);
}
const slot2 = e2[pos];
if (slot2 > 0) {
q = q.add(pc2[@as(usize, @intCast(slot2))]);
} else if (slot2 < 0) {
q = q.sub(pc2[@as(usize, @intCast(-slot2))]);
}
if (pos == 0) break;
q = q.dbl().dbl().dbl().dbl();
}
try q.rejectIdentity();
return q;
}
/// Multiscalar multiplication *IN VARIABLE TIME* for public data
/// Computes ps0*ss0 + ps1*ss1 + ps2*ss2... faster than doing many of these operations individually
pub fn mulMulti(comptime count: usize, ps: [count]Edwards25519, ss: [count][32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
var pcs: [count][9]Edwards25519 = undefined;
var bpc: [9]Edwards25519 = undefined;
@memcpy(&bpc, basePointPc[0..bpc.len]);
for (ps, 0..) |p, i| {
if (p.is_base) {
pcs[i] = bpc;
} else {
pcs[i] = precompute(p, 8);
pcs[i][4].rejectIdentity() catch return error.WeakPublicKey;
}
}
var es: [count][2 * 32]i8 = undefined;
for (ss, 0..) |s, i| {
es[i] = slide(s);
}
var q = Edwards25519.identityElement;
var pos: usize = 2 * 32 - 1;
while (true) : (pos -= 1) {
for (es, 0..) |e, i| {
const slot = e[pos];
if (slot > 0) {
q = q.add(pcs[i][@as(usize, @intCast(slot))]);
} else if (slot < 0) {
q = q.sub(pcs[i][@as(usize, @intCast(-slot))]);
}
}
if (pos == 0) break;
q = q.dbl().dbl().dbl().dbl();
}
try q.rejectIdentity();
return q;
}
/// Multiply an Edwards25519 point by a scalar after "clamping" it.
/// Clamping forces the scalar to be a multiple of the cofactor in
/// order to prevent small subgroups attacks.
/// This is strongly recommended for DH operations.
/// Return error.WeakPublicKey if the resulting point is
/// the identity element.
pub fn clampedMul(p: Edwards25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
var t: [32]u8 = s;
scalar.clamp(&t);
return mul(p, t);
}
// montgomery -- recover y = sqrt(x^3 + A*x^2 + x)
fn xmontToYmont(x: Fe) NotSquareError!Fe {
var x2 = x.sq();
const x3 = x.mul(x2);
x2 = x2.mul32(Fe.edwards25519a_32);
return x.add(x2).add(x3).sqrt();
}
// montgomery affine coordinates to edwards extended coordinates
fn montToEd(x: Fe, y: Fe) Edwards25519 {
const x_plus_one = x.add(Fe.one);
const x_minus_one = x.sub(Fe.one);
const x_plus_one_y_inv = x_plus_one.mul(y).invert(); // 1/((x+1)*y)
// xed = sqrt(-A-2)*x/y
const xed = x.mul(Fe.edwards25519sqrtam2).mul(x_plus_one_y_inv).mul(x_plus_one);
// yed = (x-1)/(x+1) or 1 if the denominator is 0
var yed = x_plus_one_y_inv.mul(y).mul(x_minus_one);
yed.cMov(Fe.one, @intFromBool(x_plus_one_y_inv.isZero()));
return Edwards25519{
.x = xed,
.y = yed,
.z = Fe.one,
.t = xed.mul(yed),
};
}
/// Elligator2 map - Returns Montgomery affine coordinates
pub fn elligator2(r: Fe) struct { x: Fe, y: Fe, not_square: bool } {
const rr2 = r.sq2().add(Fe.one).invert();
var x = rr2.mul32(Fe.edwards25519a_32).neg(); // x=x1
var x2 = x.sq();
const x3 = x2.mul(x);
x2 = x2.mul32(Fe.edwards25519a_32); // x2 = A*x1^2
const gx1 = x3.add(x).add(x2); // gx1 = x1^3 + A*x1^2 + x1
const not_square = !gx1.isSquare();
// gx1 not a square => x = -x1-A
x.cMov(x.neg(), @intFromBool(not_square));
x2 = Fe.zero;
x2.cMov(Fe.edwards25519a, @intFromBool(not_square));
x = x.sub(x2);
// We have y = sqrt(gx1) or sqrt(gx2) with gx2 = gx1*(A+x1)/(-x1)
// but it is about as fast to just recompute y from the curve equation.
const y = xmontToYmont(x) catch unreachable;
return .{ .x = x, .y = y, .not_square = not_square };
}
/// Map a 64-bit hash into an Edwards25519 point
pub fn fromHash(h: [64]u8) Edwards25519 {
const fe_f = Fe.fromBytes64(h);
var elr = elligator2(fe_f);
const y_sign = !elr.not_square;
const y_neg = elr.y.neg();
elr.y.cMov(y_neg, @intFromBool(elr.y.isNegative()) ^ @intFromBool(y_sign));
return montToEd(elr.x, elr.y).clearCofactor();
}
fn stringToPoints(comptime n: usize, ctx: []const u8, s: []const u8) [n]Edwards25519 {
debug.assert(n <= 2);
const H = crypto.hash.sha2.Sha512;
const h_l: usize = 48;
var xctx = ctx;
var hctx: [H.digest_length]u8 = undefined;
if (ctx.len > 0xff) {
var st = H.init(.{});
st.update("H2C-OVERSIZE-DST-");
st.update(ctx);
st.final(&hctx);
xctx = hctx[0..];
}
const empty_block = [_]u8{0} ** H.block_length;
var t = [3]u8{ 0, n * h_l, 0 };
var xctx_len_u8 = [1]u8{@as(u8, @intCast(xctx.len))};
var st = H.init(.{});
st.update(empty_block[0..]);
st.update(s);
st.update(t[0..]);
st.update(xctx);
st.update(xctx_len_u8[0..]);
var u_0: [H.digest_length]u8 = undefined;
st.final(&u_0);
var u: [n * H.digest_length]u8 = undefined;
var i: usize = 0;
while (i < n * H.digest_length) : (i += H.digest_length) {
u[i..][0..H.digest_length].* = u_0;
var j: usize = 0;
while (i > 0 and j < H.digest_length) : (j += 1) {
u[i + j] ^= u[i + j - H.digest_length];
}
t[2] += 1;
st = H.init(.{});
st.update(u[i..][0..H.digest_length]);
st.update(t[2..3]);
st.update(xctx);
st.update(xctx_len_u8[0..]);
st.final(u[i..][0..H.digest_length]);
}
var px: [n]Edwards25519 = undefined;
i = 0;
while (i < n) : (i += 1) {
@memset(u_0[0 .. H.digest_length - h_l], 0);
u_0[H.digest_length - h_l ..][0..h_l].* = u[i * h_l ..][0..h_l].*;
px[i] = fromHash(u_0);
}
return px;
}
/// Hash a context `ctx` and a string `s` into an Edwards25519 point
///
/// This function implements the edwards25519_XMD:SHA-512_ELL2_RO_ and edwards25519_XMD:SHA-512_ELL2_NU_
/// methods from the "Hashing to Elliptic Curves" standard document.
///
/// Although not strictly required by the standard, it is recommended to avoid NUL characters in
/// the context in order to be compatible with other implementations.
pub fn fromString(comptime random_oracle: bool, ctx: []const u8, s: []const u8) Edwards25519 {
if (random_oracle) {
const px = stringToPoints(2, ctx, s);
return px[0].add(px[1]);
} else {
return stringToPoints(1, ctx, s)[0];
}
}
/// Map a 32 bit uniform bit string into an edwards25519 point
pub fn fromUniform(r: [32]u8) Edwards25519 {
var s = r;
const x_sign = s[31] >> 7;
s[31] &= 0x7f;
const elr = elligator2(Fe.fromBytes(s));
var p = montToEd(elr.x, elr.y);
const p_neg = p.neg();
p.cMov(p_neg, @intFromBool(p.x.isNegative()) ^ x_sign);
return p.clearCofactor();
}
};
const htest = @import("../test.zig");
test "packing/unpacking" {
const s = [_]u8{170} ++ [_]u8{0} ** 31;
var b = Edwards25519.basePoint;
const pk = try b.mul(s);
var buf: [128]u8 = undefined;
try std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{X}", .{&pk.toBytes()}), "074BC7E0FCBD587FDBC0969444245FADC562809C8F6E97E949AF62484B5B81A6");
const small_order_ss: [7][32]u8 = .{
.{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0 (order 4)
},
.{
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 1 (order 1)
},
.{
0x26, 0xe8, 0x95, 0x8f, 0xc2, 0xb2, 0x27, 0xb0, 0x45, 0xc3, 0xf4, 0x89, 0xf2, 0xef, 0x98, 0xf0, 0xd5, 0xdf, 0xac, 0x05, 0xd3, 0xc6, 0x33, 0x39, 0xb1, 0x38, 0x02, 0x88, 0x6d, 0x53, 0xfc, 0x05, // 270738550114484064931822528722565878893680426757531351946374360975030340202(order 8)
},
.{
0xc7, 0x17, 0x6a, 0x70, 0x3d, 0x4d, 0xd8, 0x4f, 0xba, 0x3c, 0x0b, 0x76, 0x0d, 0x10, 0x67, 0x0f, 0x2a, 0x20, 0x53, 0xfa, 0x2c, 0x39, 0xcc, 0xc6, 0x4e, 0xc7, 0xfd, 0x77, 0x92, 0xac, 0x03, 0x7a, // 55188659117513257062467267217118295137698188065244968500265048394206261417927 (order 8)
},
.{
0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, // p-1 (order 2)
},
.{
0xed, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, // p (=0, order 4)
},
.{
0xee, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, // p+1 (=1, order 1)
},
};
for (small_order_ss) |small_order_s| {
const small_p = try Edwards25519.fromBytes(small_order_s);
try std.testing.expectError(error.WeakPublicKey, small_p.mul(s));
}
}
test "point addition/subtraction" {
var s1: [32]u8 = undefined;
var s2: [32]u8 = undefined;
crypto.random.bytes(&s1);
crypto.random.bytes(&s2);
const p = try Edwards25519.basePoint.clampedMul(s1);
const q = try Edwards25519.basePoint.clampedMul(s2);
const r = p.add(q).add(q).sub(q).sub(q);
try r.rejectIdentity();
try std.testing.expectError(error.IdentityElement, r.sub(p).rejectIdentity());
try std.testing.expectError(error.IdentityElement, p.sub(p).rejectIdentity());
try std.testing.expectError(error.IdentityElement, p.sub(q).add(q).sub(p).rejectIdentity());
}
test "uniform-to-point" {
var r = [32]u8{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 };
var p = Edwards25519.fromUniform(r);
try htest.assertEqual("0691eee3cf70a0056df6bfa03120635636581b5c4ea571dfc680f78c7e0b4137", p.toBytes()[0..]);
r[31] = 0xff;
p = Edwards25519.fromUniform(r);
try htest.assertEqual("f70718e68ef42d90ca1d936bb2d7e159be6c01d8095d39bd70487c82fe5c973a", p.toBytes()[0..]);
}
// Test vectors from draft-irtf-cfrg-hash-to-curve-12
test "hash-to-curve operation" {
var p = Edwards25519.fromString(true, "QUUX-V01-CS02-with-edwards25519_XMD:SHA-512_ELL2_RO_", "abc");
try htest.assertEqual("31558a26887f23fb8218f143e69d5f0af2e7831130bd5b432ef23883b895839a", p.toBytes()[0..]);
p = Edwards25519.fromString(false, "QUUX-V01-CS02-with-edwards25519_XMD:SHA-512_ELL2_NU_", "abc");
try htest.assertEqual("42fa27c8f5a1ae0aa38bb59d5938e5145622ba5dedd11d11736fa2f9502d7367", p.toBytes()[0..]);
}
test "implicit reduction of invalid scalars" {
const s = [_]u8{0} ** 31 ++ [_]u8{255};
const p1 = try Edwards25519.basePoint.mulPublic(s);
const p2 = try Edwards25519.basePoint.mul(s);
const p3 = try p1.mulPublic(s);
const p4 = try p1.mul(s);
try std.testing.expectEqualSlices(u8, p1.toBytes()[0..], p2.toBytes()[0..]);
try std.testing.expectEqualSlices(u8, p3.toBytes()[0..], p4.toBytes()[0..]);
try htest.assertEqual("339f189ecc5fbebe9895345c72dc07bda6e615f8a40e768441b6f529cd6c671a", p1.toBytes()[0..]);
try htest.assertEqual("a501e4c595a3686d8bee7058c7e6af7fd237f945c47546910e37e0e79b1bafb0", p3.toBytes()[0..]);
}
test "subgroup check" {
for (0..100) |_| {
var p = Edwards25519.basePoint;
const s = Edwards25519.scalar.random();
p = try p.mulPublic(s);
try p.rejectUnexpectedSubgroup();
}
var bogus: [Edwards25519.encoded_length]u8 = undefined;
_ = try std.fmt.hexToBytes(&bogus, "4dc95e3c28d78c48a60531525e6327e259b7ba0d2f5c81b694052c766a14b625");
const p = try Edwards25519.fromBytes(bogus);
try std.testing.expectError(error.UnexpectedSubgroup, p.rejectUnexpectedSubgroup());
}