zig/lib/std/crypto/ghash_polyval.zig
Andrew Kelley e7b18a7ce6 std.crypto: remove inline from most functions
To quote the language reference,

It is generally better to let the compiler decide when to inline a
function, except for these scenarios:

* To change how many stack frames are in the call stack, for debugging
  purposes.
* To force comptime-ness of the arguments to propagate to the return
  value of the function, as in the above example.
* Real world performance measurements demand it. Don't guess!

Note that inline actually restricts what the compiler is allowed to do.
This can harm binary size, compilation speed, and even runtime
performance.

`zig run lib/std/crypto/benchmark.zig -OReleaseFast`
[-before-] vs {+after+}

              md5:        [-990-]        {+998+} MiB/s
             sha1:       [-1144-]       {+1140+} MiB/s
           sha256:       [-2267-]       {+2275+} MiB/s
           sha512:        [-762-]        {+767+} MiB/s
         sha3-256:        [-680-]        {+683+} MiB/s
         sha3-512:        [-362-]        {+363+} MiB/s
        shake-128:        [-835-]        {+839+} MiB/s
        shake-256:        [-680-]        {+681+} MiB/s
   turboshake-128:       [-1567-]       {+1570+} MiB/s
   turboshake-256:       [-1276-]       {+1282+} MiB/s
          blake2s:        [-778-]        {+789+} MiB/s
          blake2b:       [-1071-]       {+1086+} MiB/s
           blake3:       [-1148-]       {+1137+} MiB/s
            ghash:      [-10044-]      {+10033+} MiB/s
          polyval:       [-9726-]      {+10033+} MiB/s
         poly1305:       [-2486-]       {+2703+} MiB/s
         hmac-md5:        [-991-]        {+998+} MiB/s
        hmac-sha1:       [-1134-]       {+1137+} MiB/s
      hmac-sha256:       [-2265-]       {+2288+} MiB/s
      hmac-sha512:        [-765-]        {+764+} MiB/s
      siphash-2-4:       [-4410-]       {+4438+} MiB/s
      siphash-1-3:       [-7144-]       {+7225+} MiB/s
   siphash128-2-4:       [-4397-]       {+4449+} MiB/s
   siphash128-1-3:       [-7281-]       {+7374+} MiB/s
  aegis-128x4 mac:      [-73385-]      {+74523+} MiB/s
  aegis-256x4 mac:      [-30160-]      {+30539+} MiB/s
  aegis-128x2 mac:      [-66662-]      {+67267+} MiB/s
  aegis-256x2 mac:      [-16812-]      {+16806+} MiB/s
   aegis-128l mac:      [-33876-]      {+34055+} MiB/s
    aegis-256 mac:       [-8993-]       {+9087+} MiB/s
         aes-cmac:       2036 MiB/s
           x25519:      [-20670-]      {+16844+} exchanges/s
          ed25519:      [-29763-]      {+29576+} signatures/s
       ecdsa-p256:       [-4762-]       {+4900+} signatures/s
       ecdsa-p384:       [-1465-]       {+1500+} signatures/s
  ecdsa-secp256k1:       [-5643-]       {+5769+} signatures/s
          ed25519:      [-21926-]      {+21721+} verifications/s
          ed25519:      [-51200-]      {+50880+} verifications/s (batch)
 chacha20Poly1305:       [-1189-]       {+1109+} MiB/s
xchacha20Poly1305:       [-1196-]       {+1107+} MiB/s
 xchacha8Poly1305:       [-1466-]       {+1555+} MiB/s
 xsalsa20Poly1305:        [-660-]        {+620+} MiB/s
      aegis-128x4:      [-76389-]      {+78181+} MiB/s
      aegis-128x2:      [-53946-]      {+53495+} MiB/s
       aegis-128l:      [-27219-]      {+25621+} MiB/s
      aegis-256x4:      [-49351-]      {+49542+} MiB/s
      aegis-256x2:      [-32390-]      {+32366+} MiB/s
        aegis-256:       [-8881-]       {+8944+} MiB/s
       aes128-gcm:       [-6095-]       {+6205+} MiB/s
       aes256-gcm:       [-5306-]       {+5427+} MiB/s
       aes128-ocb:       [-8529-]      {+13974+} MiB/s
       aes256-ocb:       [-7241-]       {+9442+} MiB/s
        isapa128a:        [-204-]        {+214+} MiB/s
    aes128-single:  [-133857882-]  {+134170944+} ops/s
    aes256-single:   [-96306962-]   {+96408639+} ops/s
         aes128-8: [-1083210101-] {+1073727253+} ops/s
         aes256-8:  [-762042466-]  {+767091778+} ops/s
           bcrypt:      0.009 s/ops
           scrypt:      [-0.018-]      {+0.017+} s/ops
           argon2:      [-0.037-]      {+0.060+} s/ops
      kyber512d00:     [-206057-]     {+205779+} encaps/s
      kyber768d00:     [-156074-]     {+150711+} encaps/s
     kyber1024d00:     [-116626-]     {+115469+} encaps/s
      kyber512d00:     [-181149-]     {+182046+} decaps/s
      kyber768d00:     [-136965-]     {+135676+} decaps/s
     kyber1024d00:     [-101307-]     {+100643+} decaps/s
      kyber512d00:     [-123624-]     {+123375+} keygen/s
      kyber768d00:      [-69465-]      {+70828+} keygen/s
     kyber1024d00:      [-43117-]      {+43208+} keygen/s
2025-07-13 18:26:13 +02:00

484 lines
20 KiB
Zig

const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const math = std.math;
const mem = std.mem;
const Precomp = u128;
/// GHASH is a universal hash function that uses multiplication by a fixed
/// parameter within a Galois field.
///
/// It is not a general purpose hash function - The key must be secret, unpredictable and never reused.
///
/// GHASH is typically used to compute the authentication tag in the AES-GCM construction.
pub const Ghash = Hash(.big, true);
/// POLYVAL is a universal hash function that uses multiplication by a fixed
/// parameter within a Galois field.
///
/// It is not a general purpose hash function - The key must be secret, unpredictable and never reused.
///
/// POLYVAL is typically used to compute the authentication tag in the AES-GCM-SIV construction.
pub const Polyval = Hash(.little, false);
fn Hash(comptime endian: std.builtin.Endian, comptime shift_key: bool) type {
return struct {
const Self = @This();
pub const block_length: usize = 16;
pub const mac_length = 16;
pub const key_length = 16;
const pc_count = if (builtin.mode != .ReleaseSmall) 16 else 2;
const agg_4_threshold = 22;
const agg_8_threshold = 84;
const agg_16_threshold = 328;
// Before the Haswell architecture, the carryless multiplication instruction was
// extremely slow. Even with 128-bit operands, using Karatsuba multiplication was
// thus faster than a schoolbook multiplication.
// This is no longer the case -- Modern CPUs, including ARM-based ones, have a fast
// carryless multiplication instruction; using 4 multiplications is now faster than
// 3 multiplications with extra shifts and additions.
const mul_algorithm = if (builtin.cpu.arch == .x86) .karatsuba else .schoolbook;
hx: [pc_count]Precomp,
acc: u128 = 0,
leftover: usize = 0,
buf: [block_length]u8 align(16) = undefined,
/// Initialize the GHASH state with a key, and a minimum number of block count.
pub fn initForBlockCount(key: *const [key_length]u8, block_count: usize) Self {
var h = mem.readInt(u128, key[0..16], endian);
if (shift_key) {
// Shift the key by 1 bit to the left & reduce for GCM.
const carry = ((@as(u128, 0xc2) << 120) | 1) & (@as(u128, 0) -% (h >> 127));
h = (h << 1) ^ carry;
}
var hx: [pc_count]Precomp = undefined;
hx[0] = h;
hx[1] = reduce(clsq128(hx[0])); // h^2
if (builtin.mode != .ReleaseSmall) {
hx[2] = reduce(clmul128(hx[1], h)); // h^3
hx[3] = reduce(clsq128(hx[1])); // h^4 = h^2^2
if (block_count >= agg_8_threshold) {
hx[4] = reduce(clmul128(hx[3], h)); // h^5
hx[5] = reduce(clsq128(hx[2])); // h^6 = h^3^2
hx[6] = reduce(clmul128(hx[5], h)); // h^7
hx[7] = reduce(clsq128(hx[3])); // h^8 = h^4^2
}
if (block_count >= agg_16_threshold) {
var i: usize = 8;
while (i < 16) : (i += 2) {
hx[i] = reduce(clmul128(hx[i - 1], h));
hx[i + 1] = reduce(clsq128(hx[i / 2]));
}
}
}
return Self{ .hx = hx };
}
/// Initialize the GHASH state with a key.
pub fn init(key: *const [key_length]u8) Self {
return Self.initForBlockCount(key, math.maxInt(usize));
}
const Selector = enum { lo, hi, hi_lo };
// Carryless multiplication of two 64-bit integers for x86_64.
fn clmulPclmul(x: u128, y: u128, comptime half: Selector) u128 {
switch (half) {
.hi => {
const product = asm (
\\ vpclmulqdq $0x11, %[x], %[y], %[out]
: [out] "=x" (-> @Vector(2, u64)),
: [x] "x" (@as(@Vector(2, u64), @bitCast(x))),
[y] "x" (@as(@Vector(2, u64), @bitCast(y))),
);
return @as(u128, @bitCast(product));
},
.lo => {
const product = asm (
\\ vpclmulqdq $0x00, %[x], %[y], %[out]
: [out] "=x" (-> @Vector(2, u64)),
: [x] "x" (@as(@Vector(2, u64), @bitCast(x))),
[y] "x" (@as(@Vector(2, u64), @bitCast(y))),
);
return @as(u128, @bitCast(product));
},
.hi_lo => {
const product = asm (
\\ vpclmulqdq $0x10, %[x], %[y], %[out]
: [out] "=x" (-> @Vector(2, u64)),
: [x] "x" (@as(@Vector(2, u64), @bitCast(x))),
[y] "x" (@as(@Vector(2, u64), @bitCast(y))),
);
return @as(u128, @bitCast(product));
},
}
}
// Carryless multiplication of two 64-bit integers for ARM crypto.
fn clmulPmull(x: u128, y: u128, comptime half: Selector) u128 {
switch (half) {
.hi => {
const product = asm (
\\ pmull2 %[out].1q, %[x].2d, %[y].2d
: [out] "=w" (-> @Vector(2, u64)),
: [x] "w" (@as(@Vector(2, u64), @bitCast(x))),
[y] "w" (@as(@Vector(2, u64), @bitCast(y))),
);
return @as(u128, @bitCast(product));
},
.lo => {
const product = asm (
\\ pmull %[out].1q, %[x].1d, %[y].1d
: [out] "=w" (-> @Vector(2, u64)),
: [x] "w" (@as(@Vector(2, u64), @bitCast(x))),
[y] "w" (@as(@Vector(2, u64), @bitCast(y))),
);
return @as(u128, @bitCast(product));
},
.hi_lo => {
const product = asm (
\\ pmull %[out].1q, %[x].1d, %[y].1d
: [out] "=w" (-> @Vector(2, u64)),
: [x] "w" (@as(@Vector(2, u64), @bitCast(x >> 64))),
[y] "w" (@as(@Vector(2, u64), @bitCast(y))),
);
return @as(u128, @bitCast(product));
},
}
}
/// clmulSoft128_64 is faster on platforms with no native 128-bit registers.
const clmulSoft = switch (builtin.cpu.arch) {
.wasm32, .wasm64 => clmulSoft128_64,
else => if (std.simd.suggestVectorLength(u128) != null) clmulSoft128 else clmulSoft128_64,
};
// Software carryless multiplication of two 64-bit integers using native 128-bit registers.
fn clmulSoft128(x_: u128, y_: u128, comptime half: Selector) u128 {
const x = @as(u64, @truncate(if (half == .hi or half == .hi_lo) x_ >> 64 else x_));
const y = @as(u64, @truncate(if (half == .hi) y_ >> 64 else y_));
const x0 = x & 0x1111111111111110;
const x1 = x & 0x2222222222222220;
const x2 = x & 0x4444444444444440;
const x3 = x & 0x8888888888888880;
const y0 = y & 0x1111111111111111;
const y1 = y & 0x2222222222222222;
const y2 = y & 0x4444444444444444;
const y3 = y & 0x8888888888888888;
const z0 = (x0 * @as(u128, y0)) ^ (x1 * @as(u128, y3)) ^ (x2 * @as(u128, y2)) ^ (x3 * @as(u128, y1));
const z1 = (x0 * @as(u128, y1)) ^ (x1 * @as(u128, y0)) ^ (x2 * @as(u128, y3)) ^ (x3 * @as(u128, y2));
const z2 = (x0 * @as(u128, y2)) ^ (x1 * @as(u128, y1)) ^ (x2 * @as(u128, y0)) ^ (x3 * @as(u128, y3));
const z3 = (x0 * @as(u128, y3)) ^ (x1 * @as(u128, y2)) ^ (x2 * @as(u128, y1)) ^ (x3 * @as(u128, y0));
const x0_mask = @as(u64, 0) -% (x & 1);
const x1_mask = @as(u64, 0) -% ((x >> 1) & 1);
const x2_mask = @as(u64, 0) -% ((x >> 2) & 1);
const x3_mask = @as(u64, 0) -% ((x >> 3) & 1);
const extra = (x0_mask & y) ^ (@as(u128, x1_mask & y) << 1) ^
(@as(u128, x2_mask & y) << 2) ^ (@as(u128, x3_mask & y) << 3);
return (z0 & 0x11111111111111111111111111111111) ^
(z1 & 0x22222222222222222222222222222222) ^
(z2 & 0x44444444444444444444444444444444) ^
(z3 & 0x88888888888888888888888888888888) ^ extra;
}
// Software carryless multiplication of two 32-bit integers.
fn clmulSoft32(x: u32, y: u32) u64 {
const mulWide = math.mulWide;
const a0 = x & 0x11111111;
const a1 = x & 0x22222222;
const a2 = x & 0x44444444;
const a3 = x & 0x88888888;
const b0 = y & 0x11111111;
const b1 = y & 0x22222222;
const b2 = y & 0x44444444;
const b3 = y & 0x88888888;
const c0 = mulWide(u32, a0, b0) ^ mulWide(u32, a1, b3) ^ mulWide(u32, a2, b2) ^ mulWide(u32, a3, b1);
const c1 = mulWide(u32, a0, b1) ^ mulWide(u32, a1, b0) ^ mulWide(u32, a2, b3) ^ mulWide(u32, a3, b2);
const c2 = mulWide(u32, a0, b2) ^ mulWide(u32, a1, b1) ^ mulWide(u32, a2, b0) ^ mulWide(u32, a3, b3);
const c3 = mulWide(u32, a0, b3) ^ mulWide(u32, a1, b2) ^ mulWide(u32, a2, b1) ^ mulWide(u32, a3, b0);
return (c0 & 0x1111111111111111) | (c1 & 0x2222222222222222) | (c2 & 0x4444444444444444) | (c3 & 0x8888888888888888);
}
// Software carryless multiplication of two 128-bit integers using 64-bit registers.
fn clmulSoft128_64(x_: u128, y_: u128, comptime half: Selector) u128 {
const a = @as(u64, @truncate(if (half == .hi or half == .hi_lo) x_ >> 64 else x_));
const b = @as(u64, @truncate(if (half == .hi) y_ >> 64 else y_));
const a0 = @as(u32, @truncate(a));
const a1 = @as(u32, @truncate(a >> 32));
const b0 = @as(u32, @truncate(b));
const b1 = @as(u32, @truncate(b >> 32));
const lo = clmulSoft32(a0, b0);
const hi = clmulSoft32(a1, b1);
const mid = clmulSoft32(a0 ^ a1, b0 ^ b1) ^ lo ^ hi;
const res_lo = lo ^ (mid << 32);
const res_hi = hi ^ (mid >> 32);
return @as(u128, res_lo) | (@as(u128, res_hi) << 64);
}
const I256 = struct {
hi: u128,
lo: u128,
mid: u128,
};
fn xor256(x: *I256, y: I256) void {
x.* = I256{
.hi = x.hi ^ y.hi,
.lo = x.lo ^ y.lo,
.mid = x.mid ^ y.mid,
};
}
// Square a 128-bit integer in GF(2^128).
fn clsq128(x: u128) I256 {
return .{
.hi = clmul(x, x, .hi),
.lo = clmul(x, x, .lo),
.mid = 0,
};
}
// Multiply two 128-bit integers in GF(2^128).
fn clmul128(x: u128, y: u128) I256 {
if (mul_algorithm == .karatsuba) {
const x_hi = @as(u64, @truncate(x >> 64));
const y_hi = @as(u64, @truncate(y >> 64));
const r_lo = clmul(x, y, .lo);
const r_hi = clmul(x, y, .hi);
const r_mid = clmul(x ^ x_hi, y ^ y_hi, .lo) ^ r_lo ^ r_hi;
return .{
.hi = r_hi,
.lo = r_lo,
.mid = r_mid,
};
} else {
return .{
.hi = clmul(x, y, .hi),
.lo = clmul(x, y, .lo),
.mid = clmul(x, y, .hi_lo) ^ clmul(y, x, .hi_lo),
};
}
}
// Reduce a 256-bit representative of a polynomial modulo the irreducible polynomial x^128 + x^127 + x^126 + x^121 + 1.
// This is done using Shay Gueron's black magic demysticated here:
// https://blog.quarkslab.com/reversing-a-finite-field-multiplication-optimization.html
fn reduce(x: I256) u128 {
const hi = x.hi ^ (x.mid >> 64);
const lo = x.lo ^ (x.mid << 64);
const p64 = (((1 << 121) | (1 << 126) | (1 << 127)) >> 64);
const a = clmul(lo, p64, .lo);
const b = ((lo << 64) | (lo >> 64)) ^ a;
const c = clmul(b, p64, .lo);
const d = ((b << 64) | (b >> 64)) ^ c;
return d ^ hi;
}
const has_pclmul = builtin.cpu.has(.x86, .pclmul);
const has_avx = builtin.cpu.has(.x86, .avx);
const has_armaes = builtin.cpu.has(.aarch64, .aes);
// C backend doesn't currently support passing vectors to inline asm.
const clmul = if (builtin.cpu.arch == .x86_64 and builtin.zig_backend != .stage2_c and has_pclmul and has_avx) impl: {
break :impl clmulPclmul;
} else if (builtin.cpu.arch == .aarch64 and builtin.zig_backend != .stage2_c and has_armaes) impl: {
break :impl clmulPmull;
} else impl: {
break :impl clmulSoft;
};
// Process 16 byte blocks.
fn blocks(st: *Self, msg: []const u8) void {
assert(msg.len % 16 == 0); // GHASH blocks() expects full blocks
var acc = st.acc;
var i: usize = 0;
if (builtin.mode != .ReleaseSmall and msg.len >= agg_16_threshold * block_length) {
// 16-blocks aggregated reduction
while (i + 256 <= msg.len) : (i += 256) {
var u = clmul128(acc ^ mem.readInt(u128, msg[i..][0..16], endian), st.hx[15 - 0]);
comptime var j = 1;
inline while (j < 16) : (j += 1) {
xor256(&u, clmul128(mem.readInt(u128, msg[i..][j * 16 ..][0..16], endian), st.hx[15 - j]));
}
acc = reduce(u);
}
} else if (builtin.mode != .ReleaseSmall and msg.len >= agg_8_threshold * block_length) {
// 8-blocks aggregated reduction
while (i + 128 <= msg.len) : (i += 128) {
var u = clmul128(acc ^ mem.readInt(u128, msg[i..][0..16], endian), st.hx[7 - 0]);
comptime var j = 1;
inline while (j < 8) : (j += 1) {
xor256(&u, clmul128(mem.readInt(u128, msg[i..][j * 16 ..][0..16], endian), st.hx[7 - j]));
}
acc = reduce(u);
}
} else if (builtin.mode != .ReleaseSmall and msg.len >= agg_4_threshold * block_length) {
// 4-blocks aggregated reduction
while (i + 64 <= msg.len) : (i += 64) {
var u = clmul128(acc ^ mem.readInt(u128, msg[i..][0..16], endian), st.hx[3 - 0]);
comptime var j = 1;
inline while (j < 4) : (j += 1) {
xor256(&u, clmul128(mem.readInt(u128, msg[i..][j * 16 ..][0..16], endian), st.hx[3 - j]));
}
acc = reduce(u);
}
}
// 2-blocks aggregated reduction
while (i + 32 <= msg.len) : (i += 32) {
var u = clmul128(acc ^ mem.readInt(u128, msg[i..][0..16], endian), st.hx[1 - 0]);
comptime var j = 1;
inline while (j < 2) : (j += 1) {
xor256(&u, clmul128(mem.readInt(u128, msg[i..][j * 16 ..][0..16], endian), st.hx[1 - j]));
}
acc = reduce(u);
}
// remaining blocks
if (i < msg.len) {
const u = clmul128(acc ^ mem.readInt(u128, msg[i..][0..16], endian), st.hx[0]);
acc = reduce(u);
i += 16;
}
assert(i == msg.len);
st.acc = acc;
}
/// Absorb a message into the GHASH state.
pub fn update(st: *Self, m: []const u8) void {
var mb = m;
if (st.leftover > 0) {
const want = @min(block_length - st.leftover, mb.len);
const mc = mb[0..want];
for (mc, 0..) |x, i| {
st.buf[st.leftover + i] = x;
}
mb = mb[want..];
st.leftover += want;
if (st.leftover < block_length) {
return;
}
st.blocks(&st.buf);
st.leftover = 0;
}
if (mb.len >= block_length) {
const want = mb.len & ~(block_length - 1);
st.blocks(mb[0..want]);
mb = mb[want..];
}
if (mb.len > 0) {
for (mb, 0..) |x, i| {
st.buf[st.leftover + i] = x;
}
st.leftover += mb.len;
}
}
/// Zero-pad to align the next input to the first byte of a block
pub fn pad(st: *Self) void {
if (st.leftover == 0) {
return;
}
var i = st.leftover;
while (i < block_length) : (i += 1) {
st.buf[i] = 0;
}
st.blocks(&st.buf);
st.leftover = 0;
}
/// Compute the GHASH of the entire input.
pub fn final(st: *Self, out: *[mac_length]u8) void {
st.pad();
mem.writeInt(u128, out[0..16], st.acc, endian);
std.crypto.secureZero(u8, @as([*]u8, @ptrCast(st))[0..@sizeOf(Self)]);
}
/// Compute the GHASH of a message.
pub fn create(out: *[mac_length]u8, msg: []const u8, key: *const [key_length]u8) void {
var st = Self.init(key);
st.update(msg);
st.final(out);
}
};
}
const htest = @import("test.zig");
test "ghash" {
const key = [_]u8{0x42} ** 16;
const m = [_]u8{0x69} ** 256;
var st = Ghash.init(&key);
st.update(&m);
var out: [16]u8 = undefined;
st.final(&out);
try htest.assertEqual("889295fa746e8b174bf4ec80a65dea41", &out);
st = Ghash.init(&key);
st.update(m[0..100]);
st.update(m[100..]);
st.final(&out);
try htest.assertEqual("889295fa746e8b174bf4ec80a65dea41", &out);
}
test "ghash2" {
var key: [16]u8 = undefined;
var i: usize = 0;
while (i < key.len) : (i += 1) {
key[i] = @as(u8, @intCast(i * 15 + 1));
}
const tvs = [_]struct { len: usize, hash: [:0]const u8 }{
.{ .len = 5263, .hash = "b9395f37c131cd403a327ccf82ec016a" },
.{ .len = 1361, .hash = "8c24cb3664e9a36e32ddef0c8178ab33" },
.{ .len = 1344, .hash = "015d7243b52d62eee8be33a66a9658cc" },
.{ .len = 1000, .hash = "56e148799944193f351f2014ef9dec9d" },
.{ .len = 512, .hash = "ca4882ce40d37546185c57709d17d1ca" },
.{ .len = 128, .hash = "d36dc3aac16cfe21a75cd5562d598c1c" },
.{ .len = 111, .hash = "6e2bea99700fd19cf1694e7b56543320" },
.{ .len = 80, .hash = "aa28f4092a7cca155f3de279cf21aa17" },
.{ .len = 16, .hash = "9d7eb5ed121a52a4b0996e4ec9b98911" },
.{ .len = 1, .hash = "968a203e5c7a98b6d4f3112f4d6b89a7" },
.{ .len = 0, .hash = "00000000000000000000000000000000" },
};
inline for (tvs) |tv| {
var m: [tv.len]u8 = undefined;
i = 0;
while (i < m.len) : (i += 1) {
m[i] = @as(u8, @truncate(i % 254 + 1));
}
var st = Ghash.init(&key);
st.update(&m);
var out: [16]u8 = undefined;
st.final(&out);
try htest.assertEqual(tv.hash, &out);
}
}
test "polyval" {
const key = [_]u8{0x42} ** 16;
const m = [_]u8{0x69} ** 256;
var st = Polyval.init(&key);
st.update(&m);
var out: [16]u8 = undefined;
st.final(&out);
try htest.assertEqual("0713c82b170eef25c8955ddf72c85ccb", &out);
st = Polyval.init(&key);
st.update(m[0..100]);
st.update(m[100..]);
st.final(&out);
try htest.assertEqual("0713c82b170eef25c8955ddf72c85ccb", &out);
}