zig/lib/std/zig/c_translation/helpers.zig

405 lines
16 KiB
Zig

const std = @import("std");
/// "Usual arithmetic conversions" from C11 standard 6.3.1.8
pub fn ArithmeticConversion(comptime A: type, comptime B: type) type {
if (A == c_longdouble or B == c_longdouble) return c_longdouble;
if (A == f80 or B == f80) return f80;
if (A == f64 or B == f64) return f64;
if (A == f32 or B == f32) return f32;
const A_Promoted = PromotedIntType(A);
const B_Promoted = PromotedIntType(B);
comptime {
std.debug.assert(integerRank(A_Promoted) >= integerRank(c_int));
std.debug.assert(integerRank(B_Promoted) >= integerRank(c_int));
}
if (A_Promoted == B_Promoted) return A_Promoted;
const a_signed = @typeInfo(A_Promoted).int.signedness == .signed;
const b_signed = @typeInfo(B_Promoted).int.signedness == .signed;
if (a_signed == b_signed) {
return if (integerRank(A_Promoted) > integerRank(B_Promoted)) A_Promoted else B_Promoted;
}
const SignedType = if (a_signed) A_Promoted else B_Promoted;
const UnsignedType = if (!a_signed) A_Promoted else B_Promoted;
if (integerRank(UnsignedType) >= integerRank(SignedType)) return UnsignedType;
if (std.math.maxInt(SignedType) >= std.math.maxInt(UnsignedType)) return SignedType;
return ToUnsigned(SignedType);
}
/// Integer promotion described in C11 6.3.1.1.2
fn PromotedIntType(comptime T: type) type {
return switch (T) {
bool, c_short => c_int,
c_ushort => if (@sizeOf(c_ushort) == @sizeOf(c_int)) c_uint else c_int,
c_int, c_uint, c_long, c_ulong, c_longlong, c_ulonglong => T,
else => switch (@typeInfo(T)) {
.comptime_int => @compileError("Cannot promote `" ++ @typeName(T) ++ "`; a fixed-size number type is required"),
// promote to c_int if it can represent all values of T
.int => |int_info| if (int_info.bits < @bitSizeOf(c_int))
c_int
// otherwise, restore the original C type
else if (int_info.bits == @bitSizeOf(c_int))
if (int_info.signedness == .unsigned) c_uint else c_int
else if (int_info.bits <= @bitSizeOf(c_long))
if (int_info.signedness == .unsigned) c_ulong else c_long
else if (int_info.bits <= @bitSizeOf(c_longlong))
if (int_info.signedness == .unsigned) c_ulonglong else c_longlong
else
@compileError("Cannot promote `" ++ @typeName(T) ++ "`; a C ABI type is required"),
else => @compileError("Attempted to promote invalid type `" ++ @typeName(T) ++ "`"),
},
};
}
/// C11 6.3.1.1.1
fn integerRank(comptime T: type) u8 {
return switch (T) {
bool => 0,
u8, i8 => 1,
c_short, c_ushort => 2,
c_int, c_uint => 3,
c_long, c_ulong => 4,
c_longlong, c_ulonglong => 5,
else => @compileError("integer rank not supported for `" ++ @typeName(T) ++ "`"),
};
}
fn ToUnsigned(comptime T: type) type {
return switch (T) {
c_int => c_uint,
c_long => c_ulong,
c_longlong => c_ulonglong,
else => @compileError("Cannot convert `" ++ @typeName(T) ++ "` to unsigned"),
};
}
/// Constructs a [*c] pointer with the const and volatile annotations
/// from Self for pointing to a C flexible array of Element.
pub fn FlexibleArrayType(comptime Self: type, comptime Element: type) type {
return switch (@typeInfo(Self)) {
.pointer => |ptr| @Pointer(.c, .{
.@"const" = ptr.is_const,
.@"volatile" = ptr.is_volatile,
}, Element, null),
else => |info| @compileError("Invalid self type \"" ++ @tagName(info) ++ "\" for flexible array getter: " ++ @typeName(Self)),
};
}
/// Promote the type of an integer literal until it fits as C would.
pub fn promoteIntLiteral(
comptime SuffixType: type,
comptime number: comptime_int,
comptime base: CIntLiteralBase,
) PromoteIntLiteralReturnType(SuffixType, number, base) {
return number;
}
const CIntLiteralBase = enum { decimal, octal, hex };
fn PromoteIntLiteralReturnType(comptime SuffixType: type, comptime number: comptime_int, comptime base: CIntLiteralBase) type {
const signed_decimal = [_]type{ c_int, c_long, c_longlong, c_ulonglong };
const signed_oct_hex = [_]type{ c_int, c_uint, c_long, c_ulong, c_longlong, c_ulonglong };
const unsigned = [_]type{ c_uint, c_ulong, c_ulonglong };
const list: []const type = if (@typeInfo(SuffixType).int.signedness == .unsigned)
&unsigned
else if (base == .decimal)
&signed_decimal
else
&signed_oct_hex;
var pos = std.mem.findScalar(type, list, SuffixType).?;
while (pos < list.len) : (pos += 1) {
if (number >= std.math.minInt(list[pos]) and number <= std.math.maxInt(list[pos])) {
return list[pos];
}
}
@compileError("Integer literal is too large");
}
/// Convert from clang __builtin_shufflevector index to Zig @shuffle index
/// clang requires __builtin_shufflevector index arguments to be integer constants.
/// negative values for `this_index` indicate "don't care".
/// clang enforces that `this_index` is less than the total number of vector elements
/// See https://ziglang.org/documentation/master/#shuffle
/// See https://clang.llvm.org/docs/LanguageExtensions.html#langext-builtin-shufflevector
pub fn shuffleVectorIndex(comptime this_index: c_int, comptime source_vector_len: usize) i32 {
const positive_index = std.math.cast(usize, this_index) orelse return undefined;
if (positive_index < source_vector_len) return @as(i32, @intCast(this_index));
const b_index = positive_index - source_vector_len;
return ~@as(i32, @intCast(b_index));
}
/// C `%` operator for signed integers
/// C standard states: "If the quotient a/b is representable, the expression (a/b)*b + a%b shall equal a"
/// The quotient is not representable if denominator is zero, or if numerator is the minimum integer for
/// the type and denominator is -1. C has undefined behavior for those two cases; this function has safety
/// checked undefined behavior
pub fn signedRemainder(numerator: anytype, denominator: anytype) @TypeOf(numerator, denominator) {
std.debug.assert(@typeInfo(@TypeOf(numerator, denominator)).int.signedness == .signed);
if (denominator > 0) return @rem(numerator, denominator);
return numerator - @divTrunc(numerator, denominator) * denominator;
}
/// Given a type and value, cast the value to the type as c would.
pub fn cast(comptime DestType: type, target: anytype) DestType {
// this function should behave like transCCast in translate-c, except it's for macros
const SourceType = @TypeOf(target);
switch (@typeInfo(DestType)) {
.@"fn" => return castToPtr(*const DestType, SourceType, target),
.pointer => return castToPtr(DestType, SourceType, target),
.optional => |dest_opt| {
if (@typeInfo(dest_opt.child) == .pointer) {
return castToPtr(DestType, SourceType, target);
} else if (@typeInfo(dest_opt.child) == .@"fn") {
return castToPtr(?*const dest_opt.child, SourceType, target);
}
},
.int => {
switch (@typeInfo(SourceType)) {
.pointer => {
return castInt(DestType, @intFromPtr(target));
},
.optional => |opt| {
if (@typeInfo(opt.child) == .pointer) {
return castInt(DestType, @intFromPtr(target));
}
},
.int => {
return castInt(DestType, target);
},
.@"fn" => {
return castInt(DestType, @intFromPtr(&target));
},
.bool => {
return @intFromBool(target);
},
else => {},
}
},
.float => {
switch (@typeInfo(SourceType)) {
.int => return @as(DestType, @floatFromInt(target)),
.float => return @as(DestType, @floatCast(target)),
.bool => return @as(DestType, @floatFromInt(@intFromBool(target))),
else => {},
}
},
.@"union" => |info| {
inline for (info.fields) |field| {
if (field.type == SourceType) return @unionInit(DestType, field.name, target);
}
@compileError("cast to union type '" ++ @typeName(DestType) ++ "' from type '" ++ @typeName(SourceType) ++ "' which is not present in union");
},
.bool => return cast(usize, target) != 0,
else => {},
}
return @as(DestType, target);
}
fn castInt(comptime DestType: type, target: anytype) DestType {
const dest = @typeInfo(DestType).int;
const source = @typeInfo(@TypeOf(target)).int;
const Int = @Int(source.signedness, dest.bits);
if (dest.bits < source.bits)
return @as(DestType, @bitCast(@as(Int, @truncate(target))))
else
return @as(DestType, @bitCast(@as(Int, target)));
}
fn castPtr(comptime DestType: type, target: anytype) DestType {
return @ptrCast(@alignCast(@constCast(@volatileCast(target))));
}
fn castToPtr(comptime DestType: type, comptime SourceType: type, target: anytype) DestType {
switch (@typeInfo(SourceType)) {
.int => {
return @as(DestType, @ptrFromInt(castInt(usize, target)));
},
.comptime_int => {
if (target < 0)
return @as(DestType, @ptrFromInt(@as(usize, @bitCast(@as(isize, @intCast(target))))))
else
return @as(DestType, @ptrFromInt(@as(usize, @intCast(target))));
},
.pointer => {
return castPtr(DestType, target);
},
.@"fn" => {
return castPtr(DestType, &target);
},
.optional => |target_opt| {
if (@typeInfo(target_opt.child) == .pointer) {
return castPtr(DestType, target);
}
},
else => {},
}
return @as(DestType, target);
}
/// Given a value returns its size as C's sizeof operator would.
pub fn sizeof(target: anytype) usize {
const T: type = if (@TypeOf(target) == type) target else @TypeOf(target);
switch (@typeInfo(T)) {
.float, .int, .@"struct", .@"union", .array, .bool, .vector => return @sizeOf(T),
.@"fn" => {
// sizeof(main) in C returns 1
return 1;
},
.null => return @sizeOf(*anyopaque),
.void => {
// Note: sizeof(void) is 1 on clang/gcc and 0 on MSVC.
return 1;
},
.@"opaque" => {
if (T == anyopaque) {
// Note: sizeof(void) is 1 on clang/gcc and 0 on MSVC.
return 1;
} else {
@compileError("Cannot use C sizeof on opaque type " ++ @typeName(T));
}
},
.optional => |opt| {
if (@typeInfo(opt.child) == .pointer) {
return sizeof(opt.child);
} else {
@compileError("Cannot use C sizeof on non-pointer optional " ++ @typeName(T));
}
},
.pointer => |ptr| {
if (ptr.size == .slice) {
@compileError("Cannot use C sizeof on slice type " ++ @typeName(T));
}
// for strings, sizeof("a") returns 2.
// normal pointer decay scenarios from C are handled
// in the .array case above, but strings remain literals
// and are therefore always pointers, so they need to be
// specially handled here.
if (ptr.size == .one and ptr.is_const and @typeInfo(ptr.child) == .array) {
const array_info = @typeInfo(ptr.child).array;
if ((array_info.child == u8 or array_info.child == u16) and array_info.sentinel() == 0) {
// length of the string plus one for the null terminator.
return (array_info.len + 1) * @sizeOf(array_info.child);
}
}
// When zero sized pointers are removed, this case will no
// longer be reachable and can be deleted.
if (@sizeOf(T) == 0) {
return @sizeOf(*anyopaque);
}
return @sizeOf(T);
},
.comptime_float => return @sizeOf(f64), // TODO c_double #3999
.comptime_int => {
// TODO to get the correct result we have to translate
// `1073741824 * 4` as `int(1073741824) *% int(4)` since
// sizeof(1073741824 * 4) != sizeof(4294967296).
// TODO test if target fits in int, long or long long
return @sizeOf(c_int);
},
else => @compileError("__helpers.sizeof does not support type " ++ @typeName(T)),
}
}
pub fn div(a: anytype, b: anytype) ArithmeticConversion(@TypeOf(a), @TypeOf(b)) {
const ResType = ArithmeticConversion(@TypeOf(a), @TypeOf(b));
const a_casted = cast(ResType, a);
const b_casted = cast(ResType, b);
switch (@typeInfo(ResType)) {
.float => return a_casted / b_casted,
.int => return @divTrunc(a_casted, b_casted),
else => unreachable,
}
}
pub fn rem(a: anytype, b: anytype) ArithmeticConversion(@TypeOf(a), @TypeOf(b)) {
const ResType = ArithmeticConversion(@TypeOf(a), @TypeOf(b));
const a_casted = cast(ResType, a);
const b_casted = cast(ResType, b);
switch (@typeInfo(ResType)) {
.int => {
if (@typeInfo(ResType).int.signedness == .signed) {
return signedRemainder(a_casted, b_casted);
} else {
return a_casted % b_casted;
}
},
else => unreachable,
}
}
/// A 2-argument function-like macro defined as #define FOO(A, B) (A)(B)
/// could be either: cast B to A, or call A with the value B.
pub fn CAST_OR_CALL(a: anytype, b: anytype) switch (@typeInfo(@TypeOf(a))) {
.type => a,
.@"fn" => |fn_info| fn_info.return_type orelse void,
else => |info| @compileError("Unexpected argument type: " ++ @tagName(info)),
} {
switch (@typeInfo(@TypeOf(a))) {
.type => return cast(a, b),
.@"fn" => return a(b),
else => unreachable, // return type will be a compile error otherwise
}
}
pub inline fn DISCARD(x: anytype) void {
_ = x;
}
pub fn F_SUFFIX(comptime f: comptime_float) f32 {
return @as(f32, f);
}
fn L_SUFFIX_ReturnType(comptime number: anytype) type {
switch (@typeInfo(@TypeOf(number))) {
.int, .comptime_int => return @TypeOf(promoteIntLiteral(c_long, number, .decimal)),
.float, .comptime_float => return c_longdouble,
else => @compileError("Invalid value for L suffix"),
}
}
pub fn L_SUFFIX(comptime number: anytype) L_SUFFIX_ReturnType(number) {
switch (@typeInfo(@TypeOf(number))) {
.int, .comptime_int => return promoteIntLiteral(c_long, number, .decimal),
.float, .comptime_float => @compileError("TODO: c_longdouble initialization from comptime_float not supported"),
else => @compileError("Invalid value for L suffix"),
}
}
pub fn LL_SUFFIX(comptime n: comptime_int) @TypeOf(promoteIntLiteral(c_longlong, n, .decimal)) {
return promoteIntLiteral(c_longlong, n, .decimal);
}
pub fn U_SUFFIX(comptime n: comptime_int) @TypeOf(promoteIntLiteral(c_uint, n, .decimal)) {
return promoteIntLiteral(c_uint, n, .decimal);
}
pub fn UL_SUFFIX(comptime n: comptime_int) @TypeOf(promoteIntLiteral(c_ulong, n, .decimal)) {
return promoteIntLiteral(c_ulong, n, .decimal);
}
pub fn ULL_SUFFIX(comptime n: comptime_int) @TypeOf(promoteIntLiteral(c_ulonglong, n, .decimal)) {
return promoteIntLiteral(c_ulonglong, n, .decimal);
}
pub fn WL_CONTAINER_OF(ptr: anytype, sample: anytype, comptime member: []const u8) @TypeOf(sample) {
return @fieldParentPtr(member, ptr);
}