zig/src/type.zig
2021-09-25 17:54:52 -07:00

3950 lines
136 KiB
Zig

const std = @import("std");
const Value = @import("value.zig").Value;
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const Target = std.Target;
const Module = @import("Module.zig");
const log = std.log.scoped(.Type);
const file_struct = @This();
/// This is the raw data, with no bookkeeping, no memory awareness, no de-duplication.
/// It's important for this type to be small.
/// Types are not de-duplicated, which helps with multi-threading since it obviates the requirement
/// of obtaining a lock on a global type table, as well as making the
/// garbage collection bookkeeping simpler.
/// This union takes advantage of the fact that the first page of memory
/// is unmapped, giving us 4096 possible enum tags that have no payload.
pub const Type = extern union {
/// If the tag value is less than Tag.no_payload_count, then no pointer
/// dereference is needed.
tag_if_small_enough: Tag,
ptr_otherwise: *Payload,
pub fn zigTypeTag(ty: Type) std.builtin.TypeId {
return ty.zigTypeTagOrPoison() catch unreachable;
}
pub fn zigTypeTagOrPoison(ty: Type) error{GenericPoison}!std.builtin.TypeId {
switch (ty.tag()) {
.generic_poison => return error.GenericPoison,
.u1,
.u8,
.i8,
.u16,
.i16,
.u32,
.i32,
.u64,
.i64,
.u128,
.i128,
.usize,
.isize,
.c_short,
.c_ushort,
.c_int,
.c_uint,
.c_long,
.c_ulong,
.c_longlong,
.c_ulonglong,
.int_signed,
.int_unsigned,
=> return .Int,
.f16,
.f32,
.f64,
.f128,
.c_longdouble,
=> return .Float,
.c_void, .@"opaque" => return .Opaque,
.bool => return .Bool,
.void => return .Void,
.type => return .Type,
.error_set, .error_set_single, .anyerror, .error_set_inferred => return .ErrorSet,
.comptime_int => return .ComptimeInt,
.comptime_float => return .ComptimeFloat,
.noreturn => return .NoReturn,
.@"null" => return .Null,
.@"undefined" => return .Undefined,
.fn_noreturn_no_args => return .Fn,
.fn_void_no_args => return .Fn,
.fn_naked_noreturn_no_args => return .Fn,
.fn_ccc_void_no_args => return .Fn,
.function => return .Fn,
.array,
.array_u8_sentinel_0,
.array_u8,
.array_sentinel,
=> return .Array,
.vector => return .Vector,
.single_const_pointer_to_comptime_int,
.const_slice_u8,
.single_const_pointer,
.single_mut_pointer,
.many_const_pointer,
.many_mut_pointer,
.c_const_pointer,
.c_mut_pointer,
.const_slice,
.mut_slice,
.pointer,
.inferred_alloc_const,
.inferred_alloc_mut,
.manyptr_u8,
.manyptr_const_u8,
=> return .Pointer,
.optional,
.optional_single_const_pointer,
.optional_single_mut_pointer,
=> return .Optional,
.enum_literal => return .EnumLiteral,
.anyerror_void_error_union, .error_union => return .ErrorUnion,
.anyframe_T, .@"anyframe" => return .AnyFrame,
.empty_struct,
.empty_struct_literal,
.@"struct",
.call_options,
.export_options,
.extern_options,
=> return .Struct,
.enum_full,
.enum_nonexhaustive,
.enum_simple,
.atomic_order,
.atomic_rmw_op,
.calling_convention,
.address_space,
.float_mode,
.reduce_op,
=> return .Enum,
.@"union",
.union_tagged,
.type_info,
=> return .Union,
.var_args_param => unreachable, // can be any type
}
}
pub fn isSelfComparable(ty: Type, is_equality_cmp: bool) bool {
return switch (ty.zigTypeTag()) {
.Int,
.Float,
.ComptimeFloat,
.ComptimeInt,
.Vector, // TODO some vectors require is_equality_cmp==true
=> true,
.Bool,
.Type,
.Void,
.ErrorSet,
.Fn,
.BoundFn,
.Opaque,
.AnyFrame,
.Enum,
.EnumLiteral,
=> is_equality_cmp,
.NoReturn,
.Array,
.Struct,
.Undefined,
.Null,
.ErrorUnion,
.Union,
.Frame,
=> false,
.Pointer => is_equality_cmp or ty.isCPtr(),
.Optional => is_equality_cmp and ty.isPtrLikeOptional(),
};
}
pub fn initTag(comptime small_tag: Tag) Type {
comptime assert(@enumToInt(small_tag) < Tag.no_payload_count);
return .{ .tag_if_small_enough = small_tag };
}
pub fn initPayload(payload: *Payload) Type {
assert(@enumToInt(payload.tag) >= Tag.no_payload_count);
return .{ .ptr_otherwise = payload };
}
pub fn tag(self: Type) Tag {
if (@enumToInt(self.tag_if_small_enough) < Tag.no_payload_count) {
return self.tag_if_small_enough;
} else {
return self.ptr_otherwise.tag;
}
}
/// Prefer `castTag` to this.
pub fn cast(self: Type, comptime T: type) ?*T {
if (@hasField(T, "base_tag")) {
return self.castTag(T.base_tag);
}
if (@enumToInt(self.tag_if_small_enough) < Tag.no_payload_count) {
return null;
}
inline for (@typeInfo(Tag).Enum.fields) |field| {
if (field.value < Tag.no_payload_count)
continue;
const t = @intToEnum(Tag, field.value);
if (self.ptr_otherwise.tag == t) {
if (T == t.Type()) {
return @fieldParentPtr(T, "base", self.ptr_otherwise);
}
return null;
}
}
unreachable;
}
pub fn castTag(self: Type, comptime t: Tag) ?*t.Type() {
if (@enumToInt(self.tag_if_small_enough) < Tag.no_payload_count)
return null;
if (self.ptr_otherwise.tag == t)
return @fieldParentPtr(t.Type(), "base", self.ptr_otherwise);
return null;
}
pub fn castPointer(self: Type) ?*Payload.ElemType {
return switch (self.tag()) {
.single_const_pointer,
.single_mut_pointer,
.many_const_pointer,
.many_mut_pointer,
.c_const_pointer,
.c_mut_pointer,
.const_slice,
.mut_slice,
.optional_single_const_pointer,
.optional_single_mut_pointer,
.manyptr_u8,
.manyptr_const_u8,
=> self.cast(Payload.ElemType),
.inferred_alloc_const => unreachable,
.inferred_alloc_mut => unreachable,
else => null,
};
}
pub fn ptrIsMutable(ty: Type) bool {
return switch (ty.tag()) {
.single_const_pointer_to_comptime_int,
.const_slice_u8,
.single_const_pointer,
.many_const_pointer,
.manyptr_const_u8,
.c_const_pointer,
.const_slice,
=> false,
.single_mut_pointer,
.many_mut_pointer,
.manyptr_u8,
.c_mut_pointer,
.mut_slice,
=> true,
.pointer => ty.castTag(.pointer).?.data.mutable,
else => unreachable,
};
}
pub const ArrayInfo = struct { elem_type: Type, sentinel: ?Value = null, len: u64 };
pub fn arrayInfo(self: Type) ArrayInfo {
return .{
.len = self.arrayLen(),
.sentinel = self.sentinel(),
.elem_type = self.elemType(),
};
}
pub fn ptrInfo(self: Type) Payload.Pointer {
switch (self.tag()) {
.single_const_pointer_to_comptime_int => return .{ .data = .{
.pointee_type = Type.initTag(.comptime_int),
.sentinel = null,
.@"align" = 0,
.@"addrspace" = .generic,
.bit_offset = 0,
.host_size = 0,
.@"allowzero" = false,
.mutable = false,
.@"volatile" = false,
.size = .One,
} },
.const_slice_u8 => return .{ .data = .{
.pointee_type = Type.initTag(.u8),
.sentinel = null,
.@"align" = 0,
.@"addrspace" = .generic,
.bit_offset = 0,
.host_size = 0,
.@"allowzero" = false,
.mutable = false,
.@"volatile" = false,
.size = .Slice,
} },
.single_const_pointer => return .{ .data = .{
.pointee_type = self.castPointer().?.data,
.sentinel = null,
.@"align" = 0,
.@"addrspace" = .generic,
.bit_offset = 0,
.host_size = 0,
.@"allowzero" = false,
.mutable = false,
.@"volatile" = false,
.size = .One,
} },
.single_mut_pointer => return .{ .data = .{
.pointee_type = self.castPointer().?.data,
.sentinel = null,
.@"align" = 0,
.@"addrspace" = .generic,
.bit_offset = 0,
.host_size = 0,
.@"allowzero" = false,
.mutable = true,
.@"volatile" = false,
.size = .One,
} },
.many_const_pointer => return .{ .data = .{
.pointee_type = self.castPointer().?.data,
.sentinel = null,
.@"align" = 0,
.@"addrspace" = .generic,
.bit_offset = 0,
.host_size = 0,
.@"allowzero" = false,
.mutable = false,
.@"volatile" = false,
.size = .Many,
} },
.manyptr_const_u8 => return .{ .data = .{
.pointee_type = Type.initTag(.u8),
.sentinel = null,
.@"align" = 0,
.@"addrspace" = .generic,
.bit_offset = 0,
.host_size = 0,
.@"allowzero" = false,
.mutable = false,
.@"volatile" = false,
.size = .Many,
} },
.many_mut_pointer => return .{ .data = .{
.pointee_type = self.castPointer().?.data,
.sentinel = null,
.@"align" = 0,
.@"addrspace" = .generic,
.bit_offset = 0,
.host_size = 0,
.@"allowzero" = false,
.mutable = true,
.@"volatile" = false,
.size = .Many,
} },
.manyptr_u8 => return .{ .data = .{
.pointee_type = Type.initTag(.u8),
.sentinel = null,
.@"align" = 0,
.@"addrspace" = .generic,
.bit_offset = 0,
.host_size = 0,
.@"allowzero" = false,
.mutable = true,
.@"volatile" = false,
.size = .Many,
} },
.c_const_pointer => return .{ .data = .{
.pointee_type = self.castPointer().?.data,
.sentinel = null,
.@"align" = 0,
.@"addrspace" = .generic,
.bit_offset = 0,
.host_size = 0,
.@"allowzero" = false,
.mutable = false,
.@"volatile" = false,
.size = .C,
} },
.c_mut_pointer => return .{ .data = .{
.pointee_type = self.castPointer().?.data,
.sentinel = null,
.@"align" = 0,
.@"addrspace" = .generic,
.bit_offset = 0,
.host_size = 0,
.@"allowzero" = false,
.mutable = true,
.@"volatile" = false,
.size = .C,
} },
.const_slice => return .{ .data = .{
.pointee_type = self.castPointer().?.data,
.sentinel = null,
.@"align" = 0,
.@"addrspace" = .generic,
.bit_offset = 0,
.host_size = 0,
.@"allowzero" = false,
.mutable = false,
.@"volatile" = false,
.size = .Slice,
} },
.mut_slice => return .{ .data = .{
.pointee_type = self.castPointer().?.data,
.sentinel = null,
.@"align" = 0,
.@"addrspace" = .generic,
.bit_offset = 0,
.host_size = 0,
.@"allowzero" = false,
.mutable = true,
.@"volatile" = false,
.size = .Slice,
} },
.pointer => return self.castTag(.pointer).?.*,
else => unreachable,
}
}
pub fn eql(a: Type, b: Type) bool {
// As a shortcut, if the small tags / addresses match, we're done.
if (a.tag_if_small_enough == b.tag_if_small_enough)
return true;
const zig_tag_a = a.zigTypeTag();
const zig_tag_b = b.zigTypeTag();
if (zig_tag_a != zig_tag_b)
return false;
switch (zig_tag_a) {
.EnumLiteral => return true,
.Type => return true,
.Void => return true,
.Bool => return true,
.NoReturn => return true,
.ComptimeFloat => return true,
.ComptimeInt => return true,
.Undefined => return true,
.Null => return true,
.AnyFrame => {
return a.elemType().eql(b.elemType());
},
.Pointer => {
const info_a = a.ptrInfo().data;
const info_b = b.ptrInfo().data;
if (!info_a.pointee_type.eql(info_b.pointee_type))
return false;
if (info_a.size != info_b.size)
return false;
if (info_a.mutable != info_b.mutable)
return false;
if (info_a.@"volatile" != info_b.@"volatile")
return false;
if (info_a.@"allowzero" != info_b.@"allowzero")
return false;
if (info_a.bit_offset != info_b.bit_offset)
return false;
if (info_a.host_size != info_b.host_size)
return false;
if (info_a.@"addrspace" != info_b.@"addrspace")
return false;
const sentinel_a = info_a.sentinel;
const sentinel_b = info_b.sentinel;
if (sentinel_a) |sa| {
if (sentinel_b) |sb| {
if (!sa.eql(sb, info_a.pointee_type))
return false;
} else {
return false;
}
} else {
if (sentinel_b != null)
return false;
}
return true;
},
.Int => {
// Detect that e.g. u64 != usize, even if the bits match on a particular target.
const a_is_named_int = a.isNamedInt();
const b_is_named_int = b.isNamedInt();
if (a_is_named_int != b_is_named_int)
return false;
if (a_is_named_int)
return a.tag() == b.tag();
// Remaining cases are arbitrary sized integers.
// The target will not be branched upon, because we handled target-dependent cases above.
const info_a = a.intInfo(@as(Target, undefined));
const info_b = b.intInfo(@as(Target, undefined));
return info_a.signedness == info_b.signedness and info_a.bits == info_b.bits;
},
.Array, .Vector => {
if (a.arrayLen() != b.arrayLen())
return false;
const elem_ty = a.elemType();
if (!elem_ty.eql(b.elemType()))
return false;
const sentinel_a = a.sentinel();
const sentinel_b = b.sentinel();
if (sentinel_a) |sa| {
if (sentinel_b) |sb| {
return sa.eql(sb, elem_ty);
} else {
return false;
}
} else {
return sentinel_b == null;
}
},
.Fn => {
if (!a.fnReturnType().eql(b.fnReturnType()))
return false;
if (a.fnCallingConvention() != b.fnCallingConvention())
return false;
const a_param_len = a.fnParamLen();
const b_param_len = b.fnParamLen();
if (a_param_len != b_param_len)
return false;
var i: usize = 0;
while (i < a_param_len) : (i += 1) {
if (!a.fnParamType(i).eql(b.fnParamType(i)))
return false;
}
if (a.fnIsVarArgs() != b.fnIsVarArgs())
return false;
return true;
},
.Optional => {
var buf_a: Payload.ElemType = undefined;
var buf_b: Payload.ElemType = undefined;
return a.optionalChild(&buf_a).eql(b.optionalChild(&buf_b));
},
.Struct => {
if (a.castTag(.@"struct")) |a_payload| {
if (b.castTag(.@"struct")) |b_payload| {
return a_payload.data == b_payload.data;
}
}
return a.tag() == b.tag();
},
.Enum => {
if (a.cast(Payload.EnumFull)) |a_payload| {
if (b.cast(Payload.EnumFull)) |b_payload| {
return a_payload.data == b_payload.data;
}
}
if (a.cast(Payload.EnumSimple)) |a_payload| {
if (b.cast(Payload.EnumSimple)) |b_payload| {
return a_payload.data == b_payload.data;
}
}
return a.tag() == b.tag();
},
.Union => {
if (a.cast(Payload.Union)) |a_payload| {
if (b.cast(Payload.Union)) |b_payload| {
return a_payload.data == b_payload.data;
}
}
return a.tag() == b.tag();
},
.ErrorUnion => {
const a_data = a.castTag(.error_union).?.data;
const b_data = b.castTag(.error_union).?.data;
return a_data.error_set.eql(b_data.error_set) and a_data.payload.eql(b_data.payload);
},
.ErrorSet => {
if (a.tag() == .anyerror and b.tag() == .anyerror) {
return true;
}
if (a.tag() == .error_set and b.tag() == .error_set) {
return a.castTag(.error_set).?.data.owner_decl == b.castTag(.error_set).?.data.owner_decl;
}
if (a.tag() == .error_set_inferred and b.tag() == .error_set_inferred) {
return a.castTag(.error_set_inferred).?.data.func == b.castTag(.error_set_inferred).?.data.func;
}
if (a.tag() == .error_set_single and b.tag() == .error_set_single) {
const a_data = a.castTag(.error_set_single).?.data;
const b_data = b.castTag(.error_set_single).?.data;
return std.mem.eql(u8, a_data, b_data);
}
return false;
},
.Float => return a.tag() == b.tag(),
.Opaque,
.BoundFn,
.Frame,
=> std.debug.panic("TODO implement Type equality comparison of {} and {}", .{ a, b }),
}
}
pub fn hash(self: Type) u64 {
var hasher = std.hash.Wyhash.init(0);
self.hashWithHasher(&hasher);
return hasher.final();
}
pub fn hashWithHasher(self: Type, hasher: *std.hash.Wyhash) void {
const zig_type_tag = self.zigTypeTag();
std.hash.autoHash(hasher, zig_type_tag);
switch (zig_type_tag) {
.Type,
.Void,
.Bool,
.NoReturn,
.ComptimeFloat,
.ComptimeInt,
.Undefined,
.Null,
=> {}, // The zig type tag is all that is needed to distinguish.
.Pointer => {
// TODO implement more pointer type hashing
},
.Int => {
// Detect that e.g. u64 != usize, even if the bits match on a particular target.
if (self.isNamedInt()) {
std.hash.autoHash(hasher, self.tag());
} else {
// Remaining cases are arbitrary sized integers.
// The target will not be branched upon, because we handled target-dependent cases above.
const info = self.intInfo(@as(Target, undefined));
std.hash.autoHash(hasher, info.signedness);
std.hash.autoHash(hasher, info.bits);
}
},
.Array, .Vector => {
std.hash.autoHash(hasher, self.arrayLen());
std.hash.autoHash(hasher, self.elemType().hash());
// TODO hash array sentinel
},
.Fn => {
std.hash.autoHash(hasher, self.fnReturnType().hash());
std.hash.autoHash(hasher, self.fnCallingConvention());
const params_len = self.fnParamLen();
std.hash.autoHash(hasher, params_len);
var i: usize = 0;
while (i < params_len) : (i += 1) {
std.hash.autoHash(hasher, self.fnParamType(i).hash());
}
std.hash.autoHash(hasher, self.fnIsVarArgs());
},
.Optional => {
var buf: Payload.ElemType = undefined;
std.hash.autoHash(hasher, self.optionalChild(&buf).hash());
},
.Float,
.Struct,
.ErrorUnion,
.ErrorSet,
.Enum,
.Union,
.BoundFn,
.Opaque,
.Frame,
.AnyFrame,
.EnumLiteral,
=> {
// TODO implement more type hashing
},
}
}
pub const HashContext64 = struct {
pub fn hash(self: @This(), t: Type) u64 {
_ = self;
return t.hash();
}
pub fn eql(self: @This(), a: Type, b: Type) bool {
_ = self;
return a.eql(b);
}
};
pub const HashContext32 = struct {
pub fn hash(self: @This(), t: Type) u32 {
_ = self;
return @truncate(u32, t.hash());
}
pub fn eql(self: @This(), a: Type, b: Type) bool {
_ = self;
return a.eql(b);
}
};
pub fn copy(self: Type, allocator: *Allocator) error{OutOfMemory}!Type {
if (@enumToInt(self.tag_if_small_enough) < Tag.no_payload_count) {
return Type{ .tag_if_small_enough = self.tag_if_small_enough };
} else switch (self.ptr_otherwise.tag) {
.u1,
.u8,
.i8,
.u16,
.i16,
.u32,
.i32,
.u64,
.i64,
.u128,
.i128,
.usize,
.isize,
.c_short,
.c_ushort,
.c_int,
.c_uint,
.c_long,
.c_ulong,
.c_longlong,
.c_ulonglong,
.c_longdouble,
.c_void,
.f16,
.f32,
.f64,
.f128,
.bool,
.void,
.type,
.anyerror,
.comptime_int,
.comptime_float,
.noreturn,
.@"null",
.@"undefined",
.fn_noreturn_no_args,
.fn_void_no_args,
.fn_naked_noreturn_no_args,
.fn_ccc_void_no_args,
.single_const_pointer_to_comptime_int,
.const_slice_u8,
.enum_literal,
.anyerror_void_error_union,
.inferred_alloc_const,
.inferred_alloc_mut,
.var_args_param,
.empty_struct_literal,
.manyptr_u8,
.manyptr_const_u8,
.atomic_order,
.atomic_rmw_op,
.calling_convention,
.address_space,
.float_mode,
.reduce_op,
.call_options,
.export_options,
.extern_options,
.type_info,
.@"anyframe",
.generic_poison,
=> unreachable,
.array_u8,
.array_u8_sentinel_0,
=> return self.copyPayloadShallow(allocator, Payload.Len),
.single_const_pointer,
.single_mut_pointer,
.many_const_pointer,
.many_mut_pointer,
.c_const_pointer,
.c_mut_pointer,
.const_slice,
.mut_slice,
.optional,
.optional_single_mut_pointer,
.optional_single_const_pointer,
.anyframe_T,
=> {
const payload = self.cast(Payload.ElemType).?;
const new_payload = try allocator.create(Payload.ElemType);
new_payload.* = .{
.base = .{ .tag = payload.base.tag },
.data = try payload.data.copy(allocator),
};
return Type{ .ptr_otherwise = &new_payload.base };
},
.int_signed,
.int_unsigned,
=> return self.copyPayloadShallow(allocator, Payload.Bits),
.vector => {
const payload = self.castTag(.vector).?.data;
return Tag.vector.create(allocator, .{
.len = payload.len,
.elem_type = try payload.elem_type.copy(allocator),
});
},
.array => {
const payload = self.castTag(.array).?.data;
return Tag.array.create(allocator, .{
.len = payload.len,
.elem_type = try payload.elem_type.copy(allocator),
});
},
.array_sentinel => {
const payload = self.castTag(.array_sentinel).?.data;
return Tag.array_sentinel.create(allocator, .{
.len = payload.len,
.sentinel = try payload.sentinel.copy(allocator),
.elem_type = try payload.elem_type.copy(allocator),
});
},
.function => {
const payload = self.castTag(.function).?.data;
const param_types = try allocator.alloc(Type, payload.param_types.len);
for (payload.param_types) |param_type, i| {
param_types[i] = try param_type.copy(allocator);
}
const other_comptime_params = payload.comptime_params[0..payload.param_types.len];
const comptime_params = try allocator.dupe(bool, other_comptime_params);
return Tag.function.create(allocator, .{
.return_type = try payload.return_type.copy(allocator),
.param_types = param_types,
.cc = payload.cc,
.is_var_args = payload.is_var_args,
.is_generic = payload.is_generic,
.comptime_params = comptime_params.ptr,
});
},
.pointer => {
const payload = self.castTag(.pointer).?.data;
const sent: ?Value = if (payload.sentinel) |some|
try some.copy(allocator)
else
null;
return Tag.pointer.create(allocator, .{
.pointee_type = try payload.pointee_type.copy(allocator),
.sentinel = sent,
.@"align" = payload.@"align",
.@"addrspace" = payload.@"addrspace",
.bit_offset = payload.bit_offset,
.host_size = payload.host_size,
.@"allowzero" = payload.@"allowzero",
.mutable = payload.mutable,
.@"volatile" = payload.@"volatile",
.size = payload.size,
});
},
.error_union => {
const payload = self.castTag(.error_union).?.data;
return Tag.error_union.create(allocator, .{
.error_set = try payload.error_set.copy(allocator),
.payload = try payload.payload.copy(allocator),
});
},
.error_set => return self.copyPayloadShallow(allocator, Payload.ErrorSet),
.error_set_inferred => return self.copyPayloadShallow(allocator, Payload.ErrorSetInferred),
.error_set_single => return self.copyPayloadShallow(allocator, Payload.Name),
.empty_struct => return self.copyPayloadShallow(allocator, Payload.ContainerScope),
.@"struct" => return self.copyPayloadShallow(allocator, Payload.Struct),
.@"union", .union_tagged => return self.copyPayloadShallow(allocator, Payload.Union),
.enum_simple => return self.copyPayloadShallow(allocator, Payload.EnumSimple),
.enum_full, .enum_nonexhaustive => return self.copyPayloadShallow(allocator, Payload.EnumFull),
.@"opaque" => return self.copyPayloadShallow(allocator, Payload.Opaque),
}
}
fn copyPayloadShallow(self: Type, allocator: *Allocator, comptime T: type) error{OutOfMemory}!Type {
const payload = self.cast(T).?;
const new_payload = try allocator.create(T);
new_payload.* = payload.*;
return Type{ .ptr_otherwise = &new_payload.base };
}
pub fn format(
start_type: Type,
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
writer: anytype,
) @TypeOf(writer).Error!void {
_ = options;
comptime assert(fmt.len == 0);
var ty = start_type;
while (true) {
const t = ty.tag();
switch (t) {
.u1,
.u8,
.i8,
.u16,
.i16,
.u32,
.i32,
.u64,
.i64,
.u128,
.i128,
.usize,
.isize,
.c_short,
.c_ushort,
.c_int,
.c_uint,
.c_long,
.c_ulong,
.c_longlong,
.c_ulonglong,
.c_longdouble,
.c_void,
.f16,
.f32,
.f64,
.f128,
.bool,
.void,
.type,
.anyerror,
.@"anyframe",
.comptime_int,
.comptime_float,
.noreturn,
.var_args_param,
=> return writer.writeAll(@tagName(t)),
.enum_literal => return writer.writeAll("@Type(.EnumLiteral)"),
.@"null" => return writer.writeAll("@Type(.Null)"),
.@"undefined" => return writer.writeAll("@Type(.Undefined)"),
.empty_struct, .empty_struct_literal => return writer.writeAll("struct {}"),
.@"struct" => {
const struct_obj = ty.castTag(.@"struct").?.data;
return struct_obj.owner_decl.renderFullyQualifiedName(writer);
},
.@"union", .union_tagged => {
const union_obj = ty.cast(Payload.Union).?.data;
return union_obj.owner_decl.renderFullyQualifiedName(writer);
},
.enum_full, .enum_nonexhaustive => {
const enum_full = ty.cast(Payload.EnumFull).?.data;
return enum_full.owner_decl.renderFullyQualifiedName(writer);
},
.enum_simple => {
const enum_simple = ty.castTag(.enum_simple).?.data;
return enum_simple.owner_decl.renderFullyQualifiedName(writer);
},
.@"opaque" => {
// TODO use declaration name
return writer.writeAll("opaque {}");
},
.anyerror_void_error_union => return writer.writeAll("anyerror!void"),
.const_slice_u8 => return writer.writeAll("[]const u8"),
.fn_noreturn_no_args => return writer.writeAll("fn() noreturn"),
.fn_void_no_args => return writer.writeAll("fn() void"),
.fn_naked_noreturn_no_args => return writer.writeAll("fn() callconv(.Naked) noreturn"),
.fn_ccc_void_no_args => return writer.writeAll("fn() callconv(.C) void"),
.single_const_pointer_to_comptime_int => return writer.writeAll("*const comptime_int"),
.manyptr_u8 => return writer.writeAll("[*]u8"),
.manyptr_const_u8 => return writer.writeAll("[*]const u8"),
.atomic_order => return writer.writeAll("std.builtin.AtomicOrder"),
.atomic_rmw_op => return writer.writeAll("std.builtin.AtomicRmwOp"),
.calling_convention => return writer.writeAll("std.builtin.CallingConvention"),
.address_space => return writer.writeAll("std.builtin.AddressSpace"),
.float_mode => return writer.writeAll("std.builtin.FloatMode"),
.reduce_op => return writer.writeAll("std.builtin.ReduceOp"),
.call_options => return writer.writeAll("std.builtin.CallOptions"),
.export_options => return writer.writeAll("std.builtin.ExportOptions"),
.extern_options => return writer.writeAll("std.builtin.ExternOptions"),
.type_info => return writer.writeAll("std.builtin.TypeInfo"),
.function => {
const payload = ty.castTag(.function).?.data;
try writer.writeAll("fn(");
for (payload.param_types) |param_type, i| {
if (i != 0) try writer.writeAll(", ");
try param_type.format("", .{}, writer);
}
if (payload.is_var_args) {
if (payload.param_types.len != 0) {
try writer.writeAll(", ");
}
try writer.writeAll("...");
}
try writer.writeAll(") callconv(.");
try writer.writeAll(@tagName(payload.cc));
try writer.writeAll(") ");
ty = payload.return_type;
continue;
},
.anyframe_T => {
const return_type = ty.castTag(.anyframe_T).?.data;
try writer.print("anyframe->", .{});
ty = return_type;
continue;
},
.array_u8 => {
const len = ty.castTag(.array_u8).?.data;
return writer.print("[{d}]u8", .{len});
},
.array_u8_sentinel_0 => {
const len = ty.castTag(.array_u8_sentinel_0).?.data;
return writer.print("[{d}:0]u8", .{len});
},
.vector => {
const payload = ty.castTag(.vector).?.data;
try writer.print("@Vector({d}, ", .{payload.len});
try payload.elem_type.format("", .{}, writer);
return writer.writeAll(")");
},
.array => {
const payload = ty.castTag(.array).?.data;
try writer.print("[{d}]", .{payload.len});
ty = payload.elem_type;
continue;
},
.array_sentinel => {
const payload = ty.castTag(.array_sentinel).?.data;
try writer.print("[{d}:{}]", .{ payload.len, payload.sentinel });
ty = payload.elem_type;
continue;
},
.single_const_pointer => {
const pointee_type = ty.castTag(.single_const_pointer).?.data;
try writer.writeAll("*const ");
ty = pointee_type;
continue;
},
.single_mut_pointer => {
const pointee_type = ty.castTag(.single_mut_pointer).?.data;
try writer.writeAll("*");
ty = pointee_type;
continue;
},
.many_const_pointer => {
const pointee_type = ty.castTag(.many_const_pointer).?.data;
try writer.writeAll("[*]const ");
ty = pointee_type;
continue;
},
.many_mut_pointer => {
const pointee_type = ty.castTag(.many_mut_pointer).?.data;
try writer.writeAll("[*]");
ty = pointee_type;
continue;
},
.c_const_pointer => {
const pointee_type = ty.castTag(.c_const_pointer).?.data;
try writer.writeAll("[*c]const ");
ty = pointee_type;
continue;
},
.c_mut_pointer => {
const pointee_type = ty.castTag(.c_mut_pointer).?.data;
try writer.writeAll("[*c]");
ty = pointee_type;
continue;
},
.const_slice => {
const pointee_type = ty.castTag(.const_slice).?.data;
try writer.writeAll("[]const ");
ty = pointee_type;
continue;
},
.mut_slice => {
const pointee_type = ty.castTag(.mut_slice).?.data;
try writer.writeAll("[]");
ty = pointee_type;
continue;
},
.int_signed => {
const bits = ty.castTag(.int_signed).?.data;
return writer.print("i{d}", .{bits});
},
.int_unsigned => {
const bits = ty.castTag(.int_unsigned).?.data;
return writer.print("u{d}", .{bits});
},
.optional => {
const child_type = ty.castTag(.optional).?.data;
try writer.writeByte('?');
ty = child_type;
continue;
},
.optional_single_const_pointer => {
const pointee_type = ty.castTag(.optional_single_const_pointer).?.data;
try writer.writeAll("?*const ");
ty = pointee_type;
continue;
},
.optional_single_mut_pointer => {
const pointee_type = ty.castTag(.optional_single_mut_pointer).?.data;
try writer.writeAll("?*");
ty = pointee_type;
continue;
},
.pointer => {
const payload = ty.castTag(.pointer).?.data;
if (payload.sentinel) |some| switch (payload.size) {
.One, .C => unreachable,
.Many => try writer.print("[*:{}]", .{some}),
.Slice => try writer.print("[:{}]", .{some}),
} else switch (payload.size) {
.One => try writer.writeAll("*"),
.Many => try writer.writeAll("[*]"),
.C => try writer.writeAll("[*c]"),
.Slice => try writer.writeAll("[]"),
}
if (payload.@"align" != 0) {
try writer.print("align({d}", .{payload.@"align"});
if (payload.bit_offset != 0) {
try writer.print(":{d}:{d}", .{ payload.bit_offset, payload.host_size });
}
try writer.writeAll(") ");
}
if (payload.@"addrspace" != .generic) {
try writer.print("addrspace(.{s}) ", .{@tagName(payload.@"addrspace")});
}
if (!payload.mutable) try writer.writeAll("const ");
if (payload.@"volatile") try writer.writeAll("volatile ");
if (payload.@"allowzero") try writer.writeAll("allowzero ");
ty = payload.pointee_type;
continue;
},
.error_union => {
const payload = ty.castTag(.error_union).?.data;
try payload.error_set.format("", .{}, writer);
try writer.writeAll("!");
ty = payload.payload;
continue;
},
.error_set => {
const error_set = ty.castTag(.error_set).?.data;
return writer.writeAll(std.mem.spanZ(error_set.owner_decl.name));
},
.error_set_inferred => {
const func = ty.castTag(.error_set_inferred).?.data.func;
return writer.print("(inferred error set of {s})", .{func.owner_decl.name});
},
.error_set_single => {
const name = ty.castTag(.error_set_single).?.data;
return writer.print("error{{{s}}}", .{name});
},
.inferred_alloc_const => return writer.writeAll("(inferred_alloc_const)"),
.inferred_alloc_mut => return writer.writeAll("(inferred_alloc_mut)"),
.generic_poison => return writer.writeAll("(generic poison)"),
}
unreachable;
}
}
/// Anything that reports hasCodeGenBits() false returns false here as well.
/// `generic_poison` will return false.
pub fn requiresComptime(ty: Type) bool {
return switch (ty.tag()) {
.u1,
.u8,
.i8,
.u16,
.i16,
.u32,
.i32,
.u64,
.i64,
.u128,
.i128,
.usize,
.isize,
.c_short,
.c_ushort,
.c_int,
.c_uint,
.c_long,
.c_ulong,
.c_longlong,
.c_ulonglong,
.c_longdouble,
.f16,
.f32,
.f64,
.f128,
.c_void,
.bool,
.void,
.anyerror,
.noreturn,
.@"anyframe",
.@"null",
.@"undefined",
.atomic_order,
.atomic_rmw_op,
.calling_convention,
.address_space,
.float_mode,
.reduce_op,
.call_options,
.export_options,
.extern_options,
.manyptr_u8,
.manyptr_const_u8,
.fn_noreturn_no_args,
.fn_void_no_args,
.fn_naked_noreturn_no_args,
.fn_ccc_void_no_args,
.single_const_pointer_to_comptime_int,
.const_slice_u8,
.anyerror_void_error_union,
.empty_struct_literal,
.function,
.empty_struct,
.error_set,
.error_set_single,
.error_set_inferred,
.@"opaque",
.generic_poison,
=> false,
.type,
.comptime_int,
.comptime_float,
.enum_literal,
.type_info,
=> true,
.var_args_param => unreachable,
.inferred_alloc_mut => unreachable,
.inferred_alloc_const => unreachable,
.array_u8,
.array_u8_sentinel_0,
.array,
.array_sentinel,
.vector,
.pointer,
.single_const_pointer,
.single_mut_pointer,
.many_const_pointer,
.many_mut_pointer,
.c_const_pointer,
.c_mut_pointer,
.const_slice,
.mut_slice,
.int_signed,
.int_unsigned,
.optional,
.optional_single_mut_pointer,
.optional_single_const_pointer,
.error_union,
.anyframe_T,
.@"struct",
.@"union",
.union_tagged,
.enum_simple,
.enum_full,
.enum_nonexhaustive,
=> false, // TODO some of these should be `true` depending on their child types
};
}
pub fn toValue(self: Type, allocator: *Allocator) Allocator.Error!Value {
switch (self.tag()) {
.u1 => return Value.initTag(.u1_type),
.u8 => return Value.initTag(.u8_type),
.i8 => return Value.initTag(.i8_type),
.u16 => return Value.initTag(.u16_type),
.i16 => return Value.initTag(.i16_type),
.u32 => return Value.initTag(.u32_type),
.i32 => return Value.initTag(.i32_type),
.u64 => return Value.initTag(.u64_type),
.i64 => return Value.initTag(.i64_type),
.usize => return Value.initTag(.usize_type),
.isize => return Value.initTag(.isize_type),
.c_short => return Value.initTag(.c_short_type),
.c_ushort => return Value.initTag(.c_ushort_type),
.c_int => return Value.initTag(.c_int_type),
.c_uint => return Value.initTag(.c_uint_type),
.c_long => return Value.initTag(.c_long_type),
.c_ulong => return Value.initTag(.c_ulong_type),
.c_longlong => return Value.initTag(.c_longlong_type),
.c_ulonglong => return Value.initTag(.c_ulonglong_type),
.c_longdouble => return Value.initTag(.c_longdouble_type),
.c_void => return Value.initTag(.c_void_type),
.f16 => return Value.initTag(.f16_type),
.f32 => return Value.initTag(.f32_type),
.f64 => return Value.initTag(.f64_type),
.f128 => return Value.initTag(.f128_type),
.bool => return Value.initTag(.bool_type),
.void => return Value.initTag(.void_type),
.type => return Value.initTag(.type_type),
.anyerror => return Value.initTag(.anyerror_type),
.@"anyframe" => return Value.initTag(.anyframe_type),
.comptime_int => return Value.initTag(.comptime_int_type),
.comptime_float => return Value.initTag(.comptime_float_type),
.noreturn => return Value.initTag(.noreturn_type),
.@"null" => return Value.initTag(.null_type),
.@"undefined" => return Value.initTag(.undefined_type),
.fn_noreturn_no_args => return Value.initTag(.fn_noreturn_no_args_type),
.fn_void_no_args => return Value.initTag(.fn_void_no_args_type),
.fn_naked_noreturn_no_args => return Value.initTag(.fn_naked_noreturn_no_args_type),
.fn_ccc_void_no_args => return Value.initTag(.fn_ccc_void_no_args_type),
.single_const_pointer_to_comptime_int => return Value.initTag(.single_const_pointer_to_comptime_int_type),
.const_slice_u8 => return Value.initTag(.const_slice_u8_type),
.enum_literal => return Value.initTag(.enum_literal_type),
.manyptr_u8 => return Value.initTag(.manyptr_u8_type),
.manyptr_const_u8 => return Value.initTag(.manyptr_const_u8_type),
.atomic_order => return Value.initTag(.atomic_order_type),
.atomic_rmw_op => return Value.initTag(.atomic_rmw_op_type),
.calling_convention => return Value.initTag(.calling_convention_type),
.address_space => return Value.initTag(.address_space_type),
.float_mode => return Value.initTag(.float_mode_type),
.reduce_op => return Value.initTag(.reduce_op_type),
.call_options => return Value.initTag(.call_options_type),
.export_options => return Value.initTag(.export_options_type),
.extern_options => return Value.initTag(.extern_options_type),
.type_info => return Value.initTag(.type_info_type),
.inferred_alloc_const => unreachable,
.inferred_alloc_mut => unreachable,
else => return Value.Tag.ty.create(allocator, self),
}
}
/// For structs and unions, if the type does not have their fields resolved
/// this will return `false`.
pub fn hasCodeGenBits(self: Type) bool {
return switch (self.tag()) {
.u1,
.u8,
.i8,
.u16,
.i16,
.u32,
.i32,
.u64,
.i64,
.u128,
.i128,
.usize,
.isize,
.c_short,
.c_ushort,
.c_int,
.c_uint,
.c_long,
.c_ulong,
.c_longlong,
.c_ulonglong,
.c_longdouble,
.f16,
.f32,
.f64,
.f128,
.bool,
.anyerror,
.single_const_pointer_to_comptime_int,
.const_slice_u8,
.array_u8_sentinel_0,
.optional,
.optional_single_mut_pointer,
.optional_single_const_pointer,
.anyerror_void_error_union,
.error_set,
.error_set_single,
.error_set_inferred,
.manyptr_u8,
.manyptr_const_u8,
.atomic_order,
.atomic_rmw_op,
.calling_convention,
.address_space,
.float_mode,
.reduce_op,
.call_options,
.export_options,
.extern_options,
.@"anyframe",
.anyframe_T,
=> true,
.function => !self.castTag(.function).?.data.is_generic,
.fn_noreturn_no_args,
.fn_void_no_args,
.fn_naked_noreturn_no_args,
.fn_ccc_void_no_args,
=> true,
.@"struct" => {
const struct_obj = self.castTag(.@"struct").?.data;
if (struct_obj.known_has_bits) {
return true;
}
for (struct_obj.fields.values()) |value| {
if (value.ty.hasCodeGenBits())
return true;
} else {
return false;
}
},
.enum_full => {
const enum_full = self.castTag(.enum_full).?.data;
return enum_full.fields.count() >= 2;
},
.enum_simple => {
const enum_simple = self.castTag(.enum_simple).?.data;
return enum_simple.fields.count() >= 2;
},
.enum_nonexhaustive => {
var buffer: Payload.Bits = undefined;
const int_tag_ty = self.intTagType(&buffer);
return int_tag_ty.hasCodeGenBits();
},
.@"union" => {
const union_obj = self.castTag(.@"union").?.data;
for (union_obj.fields.values()) |value| {
if (value.ty.hasCodeGenBits())
return true;
} else {
return false;
}
},
.union_tagged => {
const union_obj = self.castTag(.@"union").?.data;
if (union_obj.tag_ty.hasCodeGenBits()) {
return true;
}
for (union_obj.fields.values()) |value| {
if (value.ty.hasCodeGenBits())
return true;
} else {
return false;
}
},
// TODO lazy types
.array, .vector => self.elemType().hasCodeGenBits() and self.arrayLen() != 0,
.array_u8 => self.arrayLen() != 0,
.array_sentinel, .single_const_pointer, .single_mut_pointer, .many_const_pointer, .many_mut_pointer, .c_const_pointer, .c_mut_pointer, .const_slice, .mut_slice, .pointer => self.elemType().hasCodeGenBits(),
.int_signed, .int_unsigned => self.cast(Payload.Bits).?.data != 0,
.error_union => {
const payload = self.castTag(.error_union).?.data;
return payload.error_set.hasCodeGenBits() or payload.payload.hasCodeGenBits();
},
.c_void,
.void,
.type,
.comptime_int,
.comptime_float,
.noreturn,
.@"null",
.@"undefined",
.enum_literal,
.empty_struct,
.empty_struct_literal,
.@"opaque",
.type_info,
=> false,
.inferred_alloc_const => unreachable,
.inferred_alloc_mut => unreachable,
.var_args_param => unreachable,
.generic_poison => unreachable,
};
}
pub fn isNoReturn(self: Type) bool {
const definitely_correct_result = self.zigTypeTag() == .NoReturn;
const fast_result = self.tag_if_small_enough == Tag.noreturn;
assert(fast_result == definitely_correct_result);
return fast_result;
}
pub fn ptrAlignment(self: Type, target: Target) u32 {
switch (self.tag()) {
.single_const_pointer,
.single_mut_pointer,
.many_const_pointer,
.many_mut_pointer,
.c_const_pointer,
.c_mut_pointer,
.const_slice,
.mut_slice,
.optional_single_const_pointer,
.optional_single_mut_pointer,
=> return self.cast(Payload.ElemType).?.data.abiAlignment(target),
.manyptr_u8,
.manyptr_const_u8,
.const_slice_u8,
=> return 1,
.pointer => {
const ptr_info = self.castTag(.pointer).?.data;
if (ptr_info.@"align" != 0) {
return ptr_info.@"align";
} else {
return ptr_info.pointee_type.abiAlignment(target);
}
},
else => unreachable,
}
}
pub fn ptrAddressSpace(self: Type) std.builtin.AddressSpace {
return switch (self.tag()) {
.single_const_pointer_to_comptime_int,
.const_slice_u8,
.single_const_pointer,
.single_mut_pointer,
.many_const_pointer,
.many_mut_pointer,
.c_const_pointer,
.c_mut_pointer,
.const_slice,
.mut_slice,
.inferred_alloc_const,
.inferred_alloc_mut,
.manyptr_u8,
.manyptr_const_u8,
=> .generic,
.pointer => self.castTag(.pointer).?.data.@"addrspace",
else => unreachable,
};
}
/// Asserts that hasCodeGenBits() is true.
pub fn abiAlignment(self: Type, target: Target) u32 {
return switch (self.tag()) {
.u1,
.u8,
.i8,
.bool,
.array_u8_sentinel_0,
.array_u8,
.atomic_order,
.atomic_rmw_op,
.calling_convention,
.address_space,
.float_mode,
.reduce_op,
.call_options,
.export_options,
.extern_options,
=> return 1,
.fn_noreturn_no_args, // represents machine code; not a pointer
.fn_void_no_args, // represents machine code; not a pointer
.fn_naked_noreturn_no_args, // represents machine code; not a pointer
.fn_ccc_void_no_args, // represents machine code; not a pointer
.function, // represents machine code; not a pointer
=> return switch (target.cpu.arch) {
.arm, .armeb => 4,
.aarch64, .aarch64_32, .aarch64_be => 4,
.riscv64 => 2,
else => 1,
},
.i16, .u16 => return 2,
.i32, .u32 => return 4,
.i64, .u64 => return 8,
.u128, .i128 => return 16,
.isize,
.usize,
.single_const_pointer_to_comptime_int,
.const_slice_u8,
.single_const_pointer,
.single_mut_pointer,
.many_const_pointer,
.many_mut_pointer,
.c_const_pointer,
.c_mut_pointer,
.const_slice,
.mut_slice,
.optional_single_const_pointer,
.optional_single_mut_pointer,
.pointer,
.manyptr_u8,
.manyptr_const_u8,
.@"anyframe",
.anyframe_T,
=> return @divExact(target.cpu.arch.ptrBitWidth(), 8),
.c_short => return @divExact(CType.short.sizeInBits(target), 8),
.c_ushort => return @divExact(CType.ushort.sizeInBits(target), 8),
.c_int => return @divExact(CType.int.sizeInBits(target), 8),
.c_uint => return @divExact(CType.uint.sizeInBits(target), 8),
.c_long => return @divExact(CType.long.sizeInBits(target), 8),
.c_ulong => return @divExact(CType.ulong.sizeInBits(target), 8),
.c_longlong => return @divExact(CType.longlong.sizeInBits(target), 8),
.c_ulonglong => return @divExact(CType.ulonglong.sizeInBits(target), 8),
.f16 => return 2,
.f32 => return 4,
.f64 => return 8,
.f128 => return 16,
.c_longdouble => return 16,
.error_set,
.error_set_single,
.anyerror_void_error_union,
.anyerror,
.error_set_inferred,
=> return 2, // TODO revisit this when we have the concept of the error tag type
.array, .array_sentinel => return self.elemType().abiAlignment(target),
// TODO audit this - is there any more complicated logic to determine
// ABI alignment of vectors?
.vector => return 16,
.int_signed, .int_unsigned => {
const bits: u16 = self.cast(Payload.Bits).?.data;
if (bits <= 8) return 1;
if (bits <= 16) return 2;
if (bits <= 32) return 4;
if (bits <= 64) return 8;
return 16;
},
.optional => {
var buf: Payload.ElemType = undefined;
const child_type = self.optionalChild(&buf);
if (!child_type.hasCodeGenBits()) return 1;
if (child_type.zigTypeTag() == .Pointer and !child_type.isCPtr())
return @divExact(target.cpu.arch.ptrBitWidth(), 8);
return child_type.abiAlignment(target);
},
.error_union => {
const payload = self.castTag(.error_union).?.data;
if (!payload.error_set.hasCodeGenBits()) {
return payload.payload.abiAlignment(target);
} else if (!payload.payload.hasCodeGenBits()) {
return payload.error_set.abiAlignment(target);
}
return std.math.max(
payload.payload.abiAlignment(target),
payload.error_set.abiAlignment(target),
);
},
.@"struct" => {
// TODO take into account field alignment
// also make this possible to fail, and lazy
// I think we need to move all the functions from type.zig which can
// fail into Sema.
// Probably will need to introduce multi-stage struct resolution just
// like we have in stage1.
const struct_obj = self.castTag(.@"struct").?.data;
var biggest: u32 = 0;
for (struct_obj.fields.values()) |field| {
if (!field.ty.hasCodeGenBits()) continue;
const field_align = field.ty.abiAlignment(target);
if (field_align > biggest) {
return field_align;
}
}
assert(biggest != 0);
return biggest;
},
.enum_full, .enum_nonexhaustive, .enum_simple => {
var buffer: Payload.Bits = undefined;
const int_tag_ty = self.intTagType(&buffer);
return int_tag_ty.abiAlignment(target);
},
.union_tagged => {
const union_obj = self.castTag(.union_tagged).?.data;
var biggest: u32 = union_obj.tag_ty.abiAlignment(target);
for (union_obj.fields.values()) |field| {
if (!field.ty.hasCodeGenBits()) continue;
const field_align = field.ty.abiAlignment(target);
if (field_align > biggest) {
biggest = field_align;
}
}
assert(biggest != 0);
return biggest;
},
.@"union" => {
const union_obj = self.castTag(.@"union").?.data;
var biggest: u32 = 0;
for (union_obj.fields.values()) |field| {
if (!field.ty.hasCodeGenBits()) continue;
const field_align = field.ty.abiAlignment(target);
if (field_align > biggest) {
biggest = field_align;
}
}
assert(biggest != 0);
return biggest;
},
.c_void,
.void,
.type,
.comptime_int,
.comptime_float,
.noreturn,
.@"null",
.@"undefined",
.enum_literal,
.empty_struct,
.empty_struct_literal,
.inferred_alloc_const,
.inferred_alloc_mut,
.@"opaque",
.var_args_param,
.type_info,
=> unreachable,
.generic_poison => unreachable,
};
}
/// Asserts the type has the ABI size already resolved.
pub fn abiSize(self: Type, target: Target) u64 {
return switch (self.tag()) {
.fn_noreturn_no_args => unreachable, // represents machine code; not a pointer
.fn_void_no_args => unreachable, // represents machine code; not a pointer
.fn_naked_noreturn_no_args => unreachable, // represents machine code; not a pointer
.fn_ccc_void_no_args => unreachable, // represents machine code; not a pointer
.function => unreachable, // represents machine code; not a pointer
.c_void => unreachable,
.void => unreachable,
.type => unreachable,
.comptime_int => unreachable,
.comptime_float => unreachable,
.noreturn => unreachable,
.@"null" => unreachable,
.@"undefined" => unreachable,
.enum_literal => unreachable,
.single_const_pointer_to_comptime_int => unreachable,
.empty_struct => unreachable,
.empty_struct_literal => unreachable,
.inferred_alloc_const => unreachable,
.inferred_alloc_mut => unreachable,
.@"opaque" => unreachable,
.var_args_param => unreachable,
.generic_poison => unreachable,
.type_info => unreachable,
.@"struct" => {
const s = self.castTag(.@"struct").?.data;
assert(s.status == .have_layout);
const is_packed = s.layout == .Packed;
if (is_packed) @panic("TODO packed structs");
var size: u64 = 0;
for (s.fields.values()) |field| {
const field_align = a: {
if (field.abi_align.tag() == .abi_align_default) {
break :a field.ty.abiAlignment(target);
} else {
break :a field.abi_align.toUnsignedInt();
}
};
size = std.mem.alignForwardGeneric(u64, size, field_align);
size += field.ty.abiSize(target);
}
return size;
},
.enum_simple, .enum_full, .enum_nonexhaustive => {
var buffer: Payload.Bits = undefined;
const int_tag_ty = self.intTagType(&buffer);
return int_tag_ty.abiSize(target);
},
.@"union", .union_tagged => {
@panic("TODO abiSize unions");
},
.u1,
.u8,
.i8,
.bool,
.atomic_order,
.atomic_rmw_op,
.calling_convention,
.address_space,
.float_mode,
.reduce_op,
.call_options,
.export_options,
.extern_options,
=> return 1,
.array_u8 => self.castTag(.array_u8).?.data,
.array_u8_sentinel_0 => self.castTag(.array_u8_sentinel_0).?.data + 1,
.array, .vector => {
const payload = self.cast(Payload.Array).?.data;
const elem_size = std.math.max(payload.elem_type.abiAlignment(target), payload.elem_type.abiSize(target));
return payload.len * elem_size;
},
.array_sentinel => {
const payload = self.castTag(.array_sentinel).?.data;
const elem_size = std.math.max(
payload.elem_type.abiAlignment(target),
payload.elem_type.abiSize(target),
);
return (payload.len + 1) * elem_size;
},
.i16, .u16 => return 2,
.i32, .u32 => return 4,
.i64, .u64 => return 8,
.u128, .i128 => return 16,
.isize,
.usize,
.@"anyframe",
.anyframe_T,
=> return @divExact(target.cpu.arch.ptrBitWidth(), 8),
.const_slice,
.mut_slice,
=> {
if (self.elemType().hasCodeGenBits()) return @divExact(target.cpu.arch.ptrBitWidth(), 8) * 2;
return @divExact(target.cpu.arch.ptrBitWidth(), 8);
},
.const_slice_u8 => return @divExact(target.cpu.arch.ptrBitWidth(), 8) * 2,
.optional_single_const_pointer,
.optional_single_mut_pointer,
=> {
if (!self.elemType().hasCodeGenBits()) return 1;
return @divExact(target.cpu.arch.ptrBitWidth(), 8);
},
.single_const_pointer,
.single_mut_pointer,
.many_const_pointer,
.many_mut_pointer,
.c_const_pointer,
.c_mut_pointer,
.pointer,
=> {
if (!self.elemType().hasCodeGenBits()) return 0;
return @divExact(target.cpu.arch.ptrBitWidth(), 8);
},
.manyptr_u8,
.manyptr_const_u8,
=> return @divExact(target.cpu.arch.ptrBitWidth(), 8),
.c_short => return @divExact(CType.short.sizeInBits(target), 8),
.c_ushort => return @divExact(CType.ushort.sizeInBits(target), 8),
.c_int => return @divExact(CType.int.sizeInBits(target), 8),
.c_uint => return @divExact(CType.uint.sizeInBits(target), 8),
.c_long => return @divExact(CType.long.sizeInBits(target), 8),
.c_ulong => return @divExact(CType.ulong.sizeInBits(target), 8),
.c_longlong => return @divExact(CType.longlong.sizeInBits(target), 8),
.c_ulonglong => return @divExact(CType.ulonglong.sizeInBits(target), 8),
.f16 => return 2,
.f32 => return 4,
.f64 => return 8,
.f128 => return 16,
.c_longdouble => return 16,
.error_set,
.error_set_single,
.anyerror_void_error_union,
.anyerror,
.error_set_inferred,
=> return 2, // TODO revisit this when we have the concept of the error tag type
.int_signed, .int_unsigned => {
const bits: u16 = self.cast(Payload.Bits).?.data;
if (bits == 0) return 0;
return std.math.ceilPowerOfTwoPromote(u16, (bits + 7) / 8);
},
.optional => {
var buf: Payload.ElemType = undefined;
const child_type = self.optionalChild(&buf);
if (!child_type.hasCodeGenBits()) return 1;
if (child_type.zigTypeTag() == .Pointer and !child_type.isCPtr())
return @divExact(target.cpu.arch.ptrBitWidth(), 8);
// Optional types are represented as a struct with the child type as the first
// field and a boolean as the second. Since the child type's abi alignment is
// guaranteed to be >= that of bool's (1 byte) the added size is exactly equal
// to the child type's ABI alignment.
return child_type.abiAlignment(target) + child_type.abiSize(target);
},
.error_union => {
const payload = self.castTag(.error_union).?.data;
if (!payload.error_set.hasCodeGenBits() and !payload.payload.hasCodeGenBits()) {
return 0;
} else if (!payload.error_set.hasCodeGenBits()) {
return payload.payload.abiSize(target);
} else if (!payload.payload.hasCodeGenBits()) {
return payload.error_set.abiSize(target);
}
std.debug.panic("TODO abiSize error union {}", .{self});
},
};
}
/// Asserts the type has the bit size already resolved.
pub fn bitSize(self: Type, target: Target) u64 {
return switch (self.tag()) {
.fn_noreturn_no_args => unreachable, // represents machine code; not a pointer
.fn_void_no_args => unreachable, // represents machine code; not a pointer
.fn_naked_noreturn_no_args => unreachable, // represents machine code; not a pointer
.fn_ccc_void_no_args => unreachable, // represents machine code; not a pointer
.function => unreachable, // represents machine code; not a pointer
.c_void => unreachable,
.void => unreachable,
.type => unreachable,
.comptime_int => unreachable,
.comptime_float => unreachable,
.noreturn => unreachable,
.@"null" => unreachable,
.@"undefined" => unreachable,
.enum_literal => unreachable,
.single_const_pointer_to_comptime_int => unreachable,
.empty_struct => unreachable,
.empty_struct_literal => unreachable,
.inferred_alloc_const => unreachable,
.inferred_alloc_mut => unreachable,
.@"opaque" => unreachable,
.var_args_param => unreachable,
.generic_poison => unreachable,
.@"struct" => {
@panic("TODO bitSize struct");
},
.enum_simple, .enum_full, .enum_nonexhaustive => {
var buffer: Payload.Bits = undefined;
const int_tag_ty = self.intTagType(&buffer);
return int_tag_ty.bitSize(target);
},
.@"union", .union_tagged => {
@panic("TODO bitSize unions");
},
.u8, .i8 => 8,
.bool, .u1 => 1,
.vector => {
const payload = self.castTag(.vector).?.data;
const elem_bit_size = payload.elem_type.bitSize(target);
return elem_bit_size * payload.len;
},
.array_u8 => 8 * self.castTag(.array_u8).?.data,
.array_u8_sentinel_0 => 8 * (self.castTag(.array_u8_sentinel_0).?.data + 1),
.array => {
const payload = self.castTag(.array).?.data;
const elem_size = std.math.max(payload.elem_type.abiAlignment(target), payload.elem_type.abiSize(target));
if (elem_size == 0 or payload.len == 0)
return 0;
return (payload.len - 1) * 8 * elem_size + payload.elem_type.bitSize(target);
},
.array_sentinel => {
const payload = self.castTag(.array_sentinel).?.data;
const elem_size = std.math.max(
payload.elem_type.abiAlignment(target),
payload.elem_type.abiSize(target),
);
return payload.len * 8 * elem_size + payload.elem_type.bitSize(target);
},
.i16, .u16, .f16 => 16,
.i32, .u32, .f32 => 32,
.i64, .u64, .f64 => 64,
.u128, .i128, .f128 => 128,
.isize,
.usize,
.@"anyframe",
.anyframe_T,
=> target.cpu.arch.ptrBitWidth(),
.const_slice,
.mut_slice,
=> {
if (self.elemType().hasCodeGenBits()) {
return target.cpu.arch.ptrBitWidth() * 2;
} else {
return target.cpu.arch.ptrBitWidth();
}
},
.const_slice_u8 => target.cpu.arch.ptrBitWidth() * 2,
.optional_single_const_pointer,
.optional_single_mut_pointer,
=> {
if (self.elemType().hasCodeGenBits()) {
return target.cpu.arch.ptrBitWidth();
} else {
return 1;
}
},
.single_const_pointer,
.single_mut_pointer,
.many_const_pointer,
.many_mut_pointer,
.c_const_pointer,
.c_mut_pointer,
.pointer,
=> {
if (self.elemType().hasCodeGenBits()) {
return target.cpu.arch.ptrBitWidth();
} else {
return 0;
}
},
.manyptr_u8,
.manyptr_const_u8,
=> return target.cpu.arch.ptrBitWidth(),
.c_short => return CType.short.sizeInBits(target),
.c_ushort => return CType.ushort.sizeInBits(target),
.c_int => return CType.int.sizeInBits(target),
.c_uint => return CType.uint.sizeInBits(target),
.c_long => return CType.long.sizeInBits(target),
.c_ulong => return CType.ulong.sizeInBits(target),
.c_longlong => return CType.longlong.sizeInBits(target),
.c_ulonglong => return CType.ulonglong.sizeInBits(target),
.c_longdouble => 128,
.error_set,
.error_set_single,
.anyerror_void_error_union,
.anyerror,
.error_set_inferred,
=> return 16, // TODO revisit this when we have the concept of the error tag type
.int_signed, .int_unsigned => self.cast(Payload.Bits).?.data,
.optional => {
var buf: Payload.ElemType = undefined;
const child_type = self.optionalChild(&buf);
if (!child_type.hasCodeGenBits()) return 8;
if (child_type.zigTypeTag() == .Pointer and !child_type.isCPtr())
return target.cpu.arch.ptrBitWidth();
// Optional types are represented as a struct with the child type as the first
// field and a boolean as the second. Since the child type's abi alignment is
// guaranteed to be >= that of bool's (1 byte) the added size is exactly equal
// to the child type's ABI alignment.
return child_type.bitSize(target) + 1;
},
.error_union => {
const payload = self.castTag(.error_union).?.data;
if (!payload.error_set.hasCodeGenBits() and !payload.payload.hasCodeGenBits()) {
return 0;
} else if (!payload.error_set.hasCodeGenBits()) {
return payload.payload.bitSize(target);
} else if (!payload.payload.hasCodeGenBits()) {
return payload.error_set.bitSize(target);
}
@panic("TODO bitSize error union");
},
.atomic_order,
.atomic_rmw_op,
.calling_convention,
.address_space,
.float_mode,
.reduce_op,
.call_options,
.export_options,
.extern_options,
.type_info,
=> @panic("TODO at some point we gotta resolve builtin types"),
};
}
/// Asserts the type is an enum.
pub fn intTagType(self: Type, buffer: *Payload.Bits) Type {
switch (self.tag()) {
.enum_full, .enum_nonexhaustive => return self.cast(Payload.EnumFull).?.data.tag_ty,
.enum_simple => {
const enum_simple = self.castTag(.enum_simple).?.data;
const bits = std.math.log2_int_ceil(usize, enum_simple.fields.count());
buffer.* = .{
.base = .{ .tag = .int_unsigned },
.data = bits,
};
return Type.initPayload(&buffer.base);
},
else => unreachable,
}
}
pub fn isSinglePointer(self: Type) bool {
return switch (self.tag()) {
.single_const_pointer,
.single_mut_pointer,
.single_const_pointer_to_comptime_int,
.inferred_alloc_const,
.inferred_alloc_mut,
=> true,
.pointer => self.castTag(.pointer).?.data.size == .One,
else => false,
};
}
/// Asserts the `Type` is a pointer.
pub fn ptrSize(self: Type) std.builtin.TypeInfo.Pointer.Size {
return switch (self.tag()) {
.const_slice,
.mut_slice,
.const_slice_u8,
=> .Slice,
.many_const_pointer,
.many_mut_pointer,
.manyptr_u8,
.manyptr_const_u8,
=> .Many,
.c_const_pointer,
.c_mut_pointer,
=> .C,
.single_const_pointer,
.single_mut_pointer,
.single_const_pointer_to_comptime_int,
.inferred_alloc_const,
.inferred_alloc_mut,
=> .One,
.pointer => self.castTag(.pointer).?.data.size,
else => unreachable,
};
}
pub fn isSlice(self: Type) bool {
return switch (self.tag()) {
.const_slice,
.mut_slice,
.const_slice_u8,
=> true,
.pointer => self.castTag(.pointer).?.data.size == .Slice,
else => false,
};
}
pub const SlicePtrFieldTypeBuffer = union {
elem_type: Payload.ElemType,
pointer: Payload.Pointer,
};
pub fn slicePtrFieldType(self: Type, buffer: *SlicePtrFieldTypeBuffer) Type {
switch (self.tag()) {
.const_slice_u8 => return Type.initTag(.manyptr_const_u8),
.const_slice => {
const elem_type = self.castTag(.const_slice).?.data;
buffer.* = .{
.elem_type = .{
.base = .{ .tag = .many_const_pointer },
.data = elem_type,
},
};
return Type.initPayload(&buffer.elem_type.base);
},
.mut_slice => {
const elem_type = self.castTag(.mut_slice).?.data;
buffer.* = .{
.elem_type = .{
.base = .{ .tag = .many_mut_pointer },
.data = elem_type,
},
};
return Type.initPayload(&buffer.elem_type.base);
},
.pointer => {
const payload = self.castTag(.pointer).?.data;
assert(payload.size == .Slice);
if (payload.sentinel != null or
payload.@"align" != 0 or
payload.@"addrspace" != .generic or
payload.bit_offset != 0 or
payload.host_size != 0 or
payload.@"allowzero" or
payload.@"volatile")
{
buffer.* = .{
.pointer = .{
.data = .{
.pointee_type = payload.pointee_type,
.sentinel = payload.sentinel,
.@"align" = payload.@"align",
.@"addrspace" = payload.@"addrspace",
.bit_offset = payload.bit_offset,
.host_size = payload.host_size,
.@"allowzero" = payload.@"allowzero",
.mutable = payload.mutable,
.@"volatile" = payload.@"volatile",
.size = .Many,
},
},
};
return Type.initPayload(&buffer.pointer.base);
} else if (payload.mutable) {
buffer.* = .{
.elem_type = .{
.base = .{ .tag = .many_mut_pointer },
.data = payload.pointee_type,
},
};
return Type.initPayload(&buffer.elem_type.base);
} else {
buffer.* = .{
.elem_type = .{
.base = .{ .tag = .many_const_pointer },
.data = payload.pointee_type,
},
};
return Type.initPayload(&buffer.elem_type.base);
}
},
else => unreachable,
}
}
pub fn isConstPtr(self: Type) bool {
return switch (self.tag()) {
.single_const_pointer,
.many_const_pointer,
.c_const_pointer,
.single_const_pointer_to_comptime_int,
.const_slice_u8,
.const_slice,
.manyptr_const_u8,
=> true,
.pointer => !self.castTag(.pointer).?.data.mutable,
else => false,
};
}
pub fn isVolatilePtr(self: Type) bool {
return switch (self.tag()) {
.pointer => {
const payload = self.castTag(.pointer).?.data;
return payload.@"volatile";
},
else => false,
};
}
pub fn isAllowzeroPtr(self: Type) bool {
return switch (self.tag()) {
.pointer => {
const payload = self.castTag(.pointer).?.data;
return payload.@"allowzero";
},
else => false,
};
}
pub fn isCPtr(self: Type) bool {
return switch (self.tag()) {
.c_const_pointer,
.c_mut_pointer,
=> return true,
.pointer => self.castTag(.pointer).?.data.size == .C,
else => return false,
};
}
pub fn isPtrAtRuntime(self: Type) bool {
switch (self.tag()) {
.c_const_pointer,
.c_mut_pointer,
.many_const_pointer,
.many_mut_pointer,
.manyptr_const_u8,
.manyptr_u8,
.optional_single_const_pointer,
.optional_single_mut_pointer,
.single_const_pointer,
.single_const_pointer_to_comptime_int,
.single_mut_pointer,
=> return true,
.pointer => switch (self.castTag(.pointer).?.data.size) {
.Slice => return false,
.One, .Many, .C => return true,
},
.optional => {
var buf: Payload.ElemType = undefined;
const child_type = self.optionalChild(&buf);
// optionals of zero sized pointers behave like bools
if (!child_type.hasCodeGenBits()) return false;
if (child_type.zigTypeTag() != .Pointer) return false;
const info = child_type.ptrInfo().data;
switch (info.size) {
.Slice, .C => return false,
.Many, .One => return !info.@"allowzero",
}
},
else => return false,
}
}
/// Asserts that the type is an optional
pub fn isPtrLikeOptional(self: Type) bool {
switch (self.tag()) {
.optional_single_const_pointer,
.optional_single_mut_pointer,
=> return true,
.optional => {
var buf: Payload.ElemType = undefined;
const child_type = self.optionalChild(&buf);
// optionals of zero sized pointers behave like bools
if (!child_type.hasCodeGenBits()) return false;
if (child_type.zigTypeTag() != .Pointer) return false;
const info = child_type.ptrInfo().data;
switch (info.size) {
.Slice, .C => return false,
.Many, .One => return !info.@"allowzero",
}
},
else => unreachable,
}
}
/// Returns if type can be used for a runtime variable
pub fn isValidVarType(self: Type, is_extern: bool) bool {
var ty = self;
while (true) switch (ty.zigTypeTag()) {
.Bool,
.Int,
.Float,
.ErrorSet,
.Enum,
.Frame,
.AnyFrame,
=> return true,
.Opaque => return is_extern,
.BoundFn,
.ComptimeFloat,
.ComptimeInt,
.EnumLiteral,
.NoReturn,
.Type,
.Void,
.Undefined,
.Null,
=> return false,
.Optional => {
var buf: Payload.ElemType = undefined;
return ty.optionalChild(&buf).isValidVarType(is_extern);
},
.Pointer, .Array, .Vector => ty = ty.elemType(),
.ErrorUnion => ty = ty.errorUnionPayload(),
.Fn => @panic("TODO fn isValidVarType"),
.Struct => {
// TODO this is not always correct; introduce lazy value mechanism
// and here we need to force a resolve of "type requires comptime".
return true;
},
.Union => @panic("TODO union isValidVarType"),
};
}
pub fn childType(ty: Type) Type {
return switch (ty.tag()) {
.vector => ty.castTag(.vector).?.data.elem_type,
.array => ty.castTag(.array).?.data.elem_type,
.array_sentinel => ty.castTag(.array_sentinel).?.data.elem_type,
.single_const_pointer,
.single_mut_pointer,
.many_const_pointer,
.many_mut_pointer,
.c_const_pointer,
.c_mut_pointer,
.const_slice,
.mut_slice,
=> ty.castPointer().?.data,
.array_u8,
.array_u8_sentinel_0,
.const_slice_u8,
.manyptr_u8,
.manyptr_const_u8,
=> Type.initTag(.u8),
.single_const_pointer_to_comptime_int => Type.initTag(.comptime_int),
.pointer => ty.castTag(.pointer).?.data.pointee_type,
else => unreachable,
};
}
/// Asserts the type is a pointer or array type.
/// TODO this is deprecated in favor of `childType`.
pub const elemType = childType;
/// For *[N]T, returns T.
/// For ?*T, returns T.
/// For ?*[N]T, returns T.
/// For ?[*]T, returns T.
/// For *T, returns T.
/// For [*]T, returns T.
pub fn elemType2(ty: Type) Type {
return switch (ty.tag()) {
.vector => ty.castTag(.vector).?.data.elem_type,
.array => ty.castTag(.array).?.data.elem_type,
.array_sentinel => ty.castTag(.array_sentinel).?.data.elem_type,
.many_const_pointer,
.many_mut_pointer,
.c_const_pointer,
.c_mut_pointer,
.const_slice,
.mut_slice,
=> ty.castPointer().?.data,
.single_const_pointer,
.single_mut_pointer,
=> ty.castPointer().?.data.shallowElemType(),
.array_u8,
.array_u8_sentinel_0,
.const_slice_u8,
.manyptr_u8,
.manyptr_const_u8,
=> Type.initTag(.u8),
.single_const_pointer_to_comptime_int => Type.initTag(.comptime_int),
.pointer => {
const info = ty.castTag(.pointer).?.data;
const child_ty = info.pointee_type;
if (info.size == .One) {
return child_ty.shallowElemType();
} else {
return child_ty;
}
},
// TODO handle optionals
else => unreachable,
};
}
fn shallowElemType(child_ty: Type) Type {
return switch (child_ty.zigTypeTag()) {
.Array, .Vector => child_ty.childType(),
else => child_ty,
};
}
/// Asserts that the type is an optional.
/// Resulting `Type` will have inner memory referencing `buf`.
pub fn optionalChild(self: Type, buf: *Payload.ElemType) Type {
return switch (self.tag()) {
.optional => self.castTag(.optional).?.data,
.optional_single_mut_pointer => {
buf.* = .{
.base = .{ .tag = .single_mut_pointer },
.data = self.castPointer().?.data,
};
return Type.initPayload(&buf.base);
},
.optional_single_const_pointer => {
buf.* = .{
.base = .{ .tag = .single_const_pointer },
.data = self.castPointer().?.data,
};
return Type.initPayload(&buf.base);
},
else => unreachable,
};
}
/// Asserts that the type is an optional.
/// Same as `optionalChild` but allocates the buffer if needed.
pub fn optionalChildAlloc(self: Type, allocator: *Allocator) !Type {
switch (self.tag()) {
.optional => return self.castTag(.optional).?.data,
.optional_single_mut_pointer => {
return Tag.single_mut_pointer.create(allocator, self.castPointer().?.data);
},
.optional_single_const_pointer => {
return Tag.single_const_pointer.create(allocator, self.castPointer().?.data);
},
else => unreachable,
}
}
/// Asserts that the type is an error union.
pub fn errorUnionPayload(self: Type) Type {
return switch (self.tag()) {
.anyerror_void_error_union => Type.initTag(.void),
.error_union => self.castTag(.error_union).?.data.payload,
else => unreachable,
};
}
pub fn errorUnionSet(self: Type) Type {
return switch (self.tag()) {
.anyerror_void_error_union => Type.initTag(.anyerror),
.error_union => self.castTag(.error_union).?.data.error_set,
else => unreachable,
};
}
/// Asserts the type is an array or vector.
pub fn arrayLen(self: Type) u64 {
return switch (self.tag()) {
.vector => self.castTag(.vector).?.data.len,
.array => self.castTag(.array).?.data.len,
.array_sentinel => self.castTag(.array_sentinel).?.data.len,
.array_u8 => self.castTag(.array_u8).?.data,
.array_u8_sentinel_0 => self.castTag(.array_u8_sentinel_0).?.data,
else => unreachable,
};
}
/// Asserts the type is an array, pointer or vector.
pub fn sentinel(self: Type) ?Value {
return switch (self.tag()) {
.single_const_pointer,
.single_mut_pointer,
.many_const_pointer,
.many_mut_pointer,
.c_const_pointer,
.c_mut_pointer,
.single_const_pointer_to_comptime_int,
.vector,
.array,
.array_u8,
.manyptr_u8,
.manyptr_const_u8,
=> return null,
.pointer => return self.castTag(.pointer).?.data.sentinel,
.array_sentinel => return self.castTag(.array_sentinel).?.data.sentinel,
.array_u8_sentinel_0 => return Value.initTag(.zero),
else => unreachable,
};
}
/// Returns true if and only if the type is a fixed-width integer.
pub fn isInt(self: Type) bool {
return self.isSignedInt() or self.isUnsignedInt();
}
/// Returns true if and only if the type is a fixed-width, signed integer.
pub fn isSignedInt(self: Type) bool {
return switch (self.tag()) {
.int_signed,
.i8,
.isize,
.c_short,
.c_int,
.c_long,
.c_longlong,
.i16,
.i32,
.i64,
.i128,
=> true,
else => false,
};
}
/// Returns true if and only if the type is a fixed-width, unsigned integer.
pub fn isUnsignedInt(self: Type) bool {
return switch (self.tag()) {
.int_unsigned,
.usize,
.c_ushort,
.c_uint,
.c_ulong,
.c_ulonglong,
.u1,
.u8,
.u16,
.u32,
.u64,
.u128,
=> true,
else => false,
};
}
/// Asserts the type is an integer.
pub fn intInfo(self: Type, target: Target) struct { signedness: std.builtin.Signedness, bits: u16 } {
return switch (self.tag()) {
.int_unsigned => .{
.signedness = .unsigned,
.bits = self.castTag(.int_unsigned).?.data,
},
.int_signed => .{
.signedness = .signed,
.bits = self.castTag(.int_signed).?.data,
},
.u1 => .{ .signedness = .unsigned, .bits = 1 },
.u8 => .{ .signedness = .unsigned, .bits = 8 },
.i8 => .{ .signedness = .signed, .bits = 8 },
.u16 => .{ .signedness = .unsigned, .bits = 16 },
.i16 => .{ .signedness = .signed, .bits = 16 },
.u32 => .{ .signedness = .unsigned, .bits = 32 },
.i32 => .{ .signedness = .signed, .bits = 32 },
.u64 => .{ .signedness = .unsigned, .bits = 64 },
.i64 => .{ .signedness = .signed, .bits = 64 },
.u128 => .{ .signedness = .unsigned, .bits = 128 },
.i128 => .{ .signedness = .signed, .bits = 128 },
.usize => .{ .signedness = .unsigned, .bits = target.cpu.arch.ptrBitWidth() },
.isize => .{ .signedness = .signed, .bits = target.cpu.arch.ptrBitWidth() },
.c_short => .{ .signedness = .signed, .bits = CType.short.sizeInBits(target) },
.c_ushort => .{ .signedness = .unsigned, .bits = CType.ushort.sizeInBits(target) },
.c_int => .{ .signedness = .signed, .bits = CType.int.sizeInBits(target) },
.c_uint => .{ .signedness = .unsigned, .bits = CType.uint.sizeInBits(target) },
.c_long => .{ .signedness = .signed, .bits = CType.long.sizeInBits(target) },
.c_ulong => .{ .signedness = .unsigned, .bits = CType.ulong.sizeInBits(target) },
.c_longlong => .{ .signedness = .signed, .bits = CType.longlong.sizeInBits(target) },
.c_ulonglong => .{ .signedness = .unsigned, .bits = CType.ulonglong.sizeInBits(target) },
else => unreachable,
};
}
pub fn isNamedInt(self: Type) bool {
return switch (self.tag()) {
.usize,
.isize,
.c_short,
.c_ushort,
.c_int,
.c_uint,
.c_long,
.c_ulong,
.c_longlong,
.c_ulonglong,
=> true,
else => false,
};
}
/// Returns `false` for `comptime_float`.
pub fn isRuntimeFloat(self: Type) bool {
return switch (self.tag()) {
.f16,
.f32,
.f64,
.f128,
.c_longdouble,
=> true,
else => false,
};
}
/// Returns `true` for `comptime_float`.
pub fn isAnyFloat(self: Type) bool {
return switch (self.tag()) {
.f16,
.f32,
.f64,
.f128,
.c_longdouble,
.comptime_float,
=> true,
else => false,
};
}
/// Asserts the type is a fixed-size float or comptime_float.
/// Returns 128 for comptime_float types.
pub fn floatBits(self: Type, target: Target) u16 {
return switch (self.tag()) {
.f16 => 16,
.f32 => 32,
.f64 => 64,
.f128, .comptime_float => 128,
.c_longdouble => CType.longdouble.sizeInBits(target),
else => unreachable,
};
}
/// Asserts the type is a function.
pub fn fnParamLen(self: Type) usize {
return switch (self.tag()) {
.fn_noreturn_no_args => 0,
.fn_void_no_args => 0,
.fn_naked_noreturn_no_args => 0,
.fn_ccc_void_no_args => 0,
.function => self.castTag(.function).?.data.param_types.len,
else => unreachable,
};
}
/// Asserts the type is a function. The length of the slice must be at least the length
/// given by `fnParamLen`.
pub fn fnParamTypes(self: Type, types: []Type) void {
switch (self.tag()) {
.fn_noreturn_no_args => return,
.fn_void_no_args => return,
.fn_naked_noreturn_no_args => return,
.fn_ccc_void_no_args => return,
.function => {
const payload = self.castTag(.function).?.data;
std.mem.copy(Type, types, payload.param_types);
},
else => unreachable,
}
}
/// Asserts the type is a function.
pub fn fnParamType(self: Type, index: usize) Type {
switch (self.tag()) {
.function => {
const payload = self.castTag(.function).?.data;
return payload.param_types[index];
},
else => unreachable,
}
}
/// Asserts the type is a function.
pub fn fnReturnType(self: Type) Type {
return switch (self.tag()) {
.fn_noreturn_no_args => Type.initTag(.noreturn),
.fn_naked_noreturn_no_args => Type.initTag(.noreturn),
.fn_void_no_args,
.fn_ccc_void_no_args,
=> Type.initTag(.void),
.function => self.castTag(.function).?.data.return_type,
else => unreachable,
};
}
/// Asserts the type is a function.
pub fn fnCallingConvention(self: Type) std.builtin.CallingConvention {
return switch (self.tag()) {
.fn_noreturn_no_args => .Unspecified,
.fn_void_no_args => .Unspecified,
.fn_naked_noreturn_no_args => .Naked,
.fn_ccc_void_no_args => .C,
.function => self.castTag(.function).?.data.cc,
else => unreachable,
};
}
/// Asserts the type is a function.
pub fn fnIsVarArgs(self: Type) bool {
return switch (self.tag()) {
.fn_noreturn_no_args => false,
.fn_void_no_args => false,
.fn_naked_noreturn_no_args => false,
.fn_ccc_void_no_args => false,
.function => self.castTag(.function).?.data.is_var_args,
else => unreachable,
};
}
pub fn fnInfo(ty: Type) Payload.Function.Data {
return switch (ty.tag()) {
.fn_noreturn_no_args => .{
.param_types = &.{},
.comptime_params = undefined,
.return_type = initTag(.noreturn),
.cc = .Unspecified,
.is_var_args = false,
.is_generic = false,
},
.fn_void_no_args => .{
.param_types = &.{},
.comptime_params = undefined,
.return_type = initTag(.void),
.cc = .Unspecified,
.is_var_args = false,
.is_generic = false,
},
.fn_naked_noreturn_no_args => .{
.param_types = &.{},
.comptime_params = undefined,
.return_type = initTag(.noreturn),
.cc = .Naked,
.is_var_args = false,
.is_generic = false,
},
.fn_ccc_void_no_args => .{
.param_types = &.{},
.comptime_params = undefined,
.return_type = initTag(.void),
.cc = .C,
.is_var_args = false,
.is_generic = false,
},
.function => ty.castTag(.function).?.data,
else => unreachable,
};
}
pub fn isNumeric(self: Type) bool {
return switch (self.tag()) {
.f16,
.f32,
.f64,
.f128,
.c_longdouble,
.comptime_int,
.comptime_float,
.u1,
.u8,
.i8,
.u16,
.i16,
.u32,
.i32,
.u64,
.i64,
.u128,
.i128,
.usize,
.isize,
.c_short,
.c_ushort,
.c_int,
.c_uint,
.c_long,
.c_ulong,
.c_longlong,
.c_ulonglong,
.int_unsigned,
.int_signed,
=> true,
else => false,
};
}
/// During semantic analysis, instead call `Sema.typeHasOnePossibleValue` which
/// resolves field types rather than asserting they are already resolved.
pub fn onePossibleValue(starting_type: Type) ?Value {
var ty = starting_type;
while (true) switch (ty.tag()) {
.f16,
.f32,
.f64,
.f128,
.c_longdouble,
.comptime_int,
.comptime_float,
.u1,
.u8,
.i8,
.u16,
.i16,
.u32,
.i32,
.u64,
.i64,
.u128,
.i128,
.usize,
.isize,
.c_short,
.c_ushort,
.c_int,
.c_uint,
.c_long,
.c_ulong,
.c_longlong,
.c_ulonglong,
.bool,
.type,
.anyerror,
.fn_noreturn_no_args,
.fn_void_no_args,
.fn_naked_noreturn_no_args,
.fn_ccc_void_no_args,
.function,
.single_const_pointer_to_comptime_int,
.array_sentinel,
.array_u8_sentinel_0,
.const_slice_u8,
.const_slice,
.mut_slice,
.c_void,
.optional,
.optional_single_mut_pointer,
.optional_single_const_pointer,
.enum_literal,
.anyerror_void_error_union,
.error_union,
.error_set,
.error_set_single,
.error_set_inferred,
.@"opaque",
.var_args_param,
.manyptr_u8,
.manyptr_const_u8,
.atomic_order,
.atomic_rmw_op,
.calling_convention,
.address_space,
.float_mode,
.reduce_op,
.call_options,
.export_options,
.extern_options,
.type_info,
.@"anyframe",
.anyframe_T,
.many_const_pointer,
.many_mut_pointer,
.c_const_pointer,
.c_mut_pointer,
.single_const_pointer,
.single_mut_pointer,
.pointer,
=> return null,
.@"struct" => {
const s = ty.castTag(.@"struct").?.data;
assert(s.haveFieldTypes());
for (s.fields.values()) |field| {
if (field.ty.onePossibleValue() == null) {
return null;
}
}
return Value.initTag(.empty_struct_value);
},
.enum_full => {
const enum_full = ty.castTag(.enum_full).?.data;
if (enum_full.fields.count() == 1) {
return enum_full.values.keys()[0];
} else {
return null;
}
},
.enum_simple => {
const enum_simple = ty.castTag(.enum_simple).?.data;
if (enum_simple.fields.count() == 1) {
return Value.initTag(.zero);
} else {
return null;
}
},
.enum_nonexhaustive => ty = ty.castTag(.enum_nonexhaustive).?.data.tag_ty,
.@"union" => {
return null; // TODO
},
.union_tagged => {
return null; // TODO
},
.empty_struct, .empty_struct_literal => return Value.initTag(.empty_struct_value),
.void => return Value.initTag(.void_value),
.noreturn => return Value.initTag(.unreachable_value),
.@"null" => return Value.initTag(.null_value),
.@"undefined" => return Value.initTag(.undef),
.int_unsigned, .int_signed => {
if (ty.cast(Payload.Bits).?.data == 0) {
return Value.initTag(.zero);
} else {
return null;
}
},
.vector, .array, .array_u8 => {
if (ty.arrayLen() == 0)
return Value.initTag(.empty_array);
ty = ty.elemType();
continue;
},
.inferred_alloc_const => unreachable,
.inferred_alloc_mut => unreachable,
.generic_poison => unreachable,
};
}
pub fn isIndexable(ty: Type) bool {
return switch (ty.zigTypeTag()) {
.Array, .Vector => true,
.Pointer => switch (ty.ptrSize()) {
.Slice, .Many, .C => true,
.One => ty.elemType().zigTypeTag() == .Array,
},
else => false, // TODO tuples are indexable
};
}
/// Returns null if the type has no namespace.
pub fn getNamespace(self: Type) ?*Module.Scope.Namespace {
return switch (self.tag()) {
.@"struct" => &self.castTag(.@"struct").?.data.namespace,
.enum_full => &self.castTag(.enum_full).?.data.namespace,
.enum_nonexhaustive => &self.castTag(.enum_nonexhaustive).?.data.namespace,
.empty_struct => self.castTag(.empty_struct).?.data,
.@"opaque" => &self.castTag(.@"opaque").?.data,
.@"union" => &self.castTag(.@"union").?.data.namespace,
.union_tagged => &self.castTag(.union_tagged).?.data.namespace,
else => null,
};
}
/// Asserts that self.zigTypeTag() == .Int.
pub fn minInt(self: Type, arena: *Allocator, target: Target) !Value {
assert(self.zigTypeTag() == .Int);
const info = self.intInfo(target);
if (info.signedness == .unsigned) {
return Value.initTag(.zero);
}
if ((info.bits - 1) <= std.math.maxInt(u6)) {
const n: i64 = -(@as(i64, 1) << @truncate(u6, info.bits - 1));
return Value.Tag.int_i64.create(arena, n);
}
var res = try std.math.big.int.Managed.initSet(arena, 1);
try res.shiftLeft(res, info.bits - 1);
res.negate();
const res_const = res.toConst();
if (res_const.positive) {
return Value.Tag.int_big_positive.create(arena, res_const.limbs);
} else {
return Value.Tag.int_big_negative.create(arena, res_const.limbs);
}
}
/// Asserts that self.zigTypeTag() == .Int.
pub fn maxInt(self: Type, arena: *Allocator, target: Target) !Value {
assert(self.zigTypeTag() == .Int);
const info = self.intInfo(target);
if (info.signedness == .signed and (info.bits - 1) <= std.math.maxInt(u6)) {
const n: i64 = (@as(i64, 1) << @truncate(u6, info.bits - 1)) - 1;
return Value.Tag.int_i64.create(arena, n);
} else if (info.signedness == .signed and info.bits <= std.math.maxInt(u6)) {
const n: u64 = (@as(u64, 1) << @truncate(u6, info.bits)) - 1;
return Value.Tag.int_u64.create(arena, n);
}
var res = try std.math.big.int.Managed.initSet(arena, 1);
try res.shiftLeft(res, info.bits - @boolToInt(info.signedness == .signed));
const one = std.math.big.int.Const{
.limbs = &[_]std.math.big.Limb{1},
.positive = true,
};
res.sub(res.toConst(), one) catch unreachable;
const res_const = res.toConst();
if (res_const.positive) {
return Value.Tag.int_big_positive.create(arena, res_const.limbs);
} else {
return Value.Tag.int_big_negative.create(arena, res_const.limbs);
}
}
/// Returns the integer tag type of the enum.
pub fn enumTagType(ty: Type, buffer: *Payload.Bits) Type {
switch (ty.tag()) {
.enum_full, .enum_nonexhaustive => {
const enum_full = ty.cast(Payload.EnumFull).?.data;
return enum_full.tag_ty;
},
.enum_simple => {
const enum_simple = ty.castTag(.enum_simple).?.data;
buffer.* = .{
.base = .{ .tag = .int_unsigned },
.data = std.math.log2_int_ceil(usize, enum_simple.fields.count()),
};
return Type.initPayload(&buffer.base);
},
.atomic_order,
.atomic_rmw_op,
.calling_convention,
.float_mode,
.reduce_op,
.call_options,
.export_options,
.extern_options,
=> @panic("TODO resolve std.builtin types"),
else => unreachable,
}
}
pub fn isNonexhaustiveEnum(ty: Type) bool {
return switch (ty.tag()) {
.enum_nonexhaustive => true,
else => false,
};
}
pub fn enumFieldCount(ty: Type) usize {
switch (ty.tag()) {
.enum_full, .enum_nonexhaustive => {
const enum_full = ty.cast(Payload.EnumFull).?.data;
return enum_full.fields.count();
},
.enum_simple => {
const enum_simple = ty.castTag(.enum_simple).?.data;
return enum_simple.fields.count();
},
.atomic_order,
.atomic_rmw_op,
.calling_convention,
.address_space,
.float_mode,
.reduce_op,
.call_options,
.export_options,
.extern_options,
=> @panic("TODO resolve std.builtin types"),
else => unreachable,
}
}
pub fn enumFieldName(ty: Type, field_index: usize) []const u8 {
switch (ty.tag()) {
.enum_full, .enum_nonexhaustive => {
const enum_full = ty.cast(Payload.EnumFull).?.data;
return enum_full.fields.keys()[field_index];
},
.enum_simple => {
const enum_simple = ty.castTag(.enum_simple).?.data;
return enum_simple.fields.keys()[field_index];
},
.atomic_order,
.atomic_rmw_op,
.calling_convention,
.address_space,
.float_mode,
.reduce_op,
.call_options,
.export_options,
.extern_options,
=> @panic("TODO resolve std.builtin types"),
else => unreachable,
}
}
pub fn enumFieldIndex(ty: Type, field_name: []const u8) ?usize {
switch (ty.tag()) {
.enum_full, .enum_nonexhaustive => {
const enum_full = ty.cast(Payload.EnumFull).?.data;
return enum_full.fields.getIndex(field_name);
},
.enum_simple => {
const enum_simple = ty.castTag(.enum_simple).?.data;
return enum_simple.fields.getIndex(field_name);
},
.atomic_order,
.atomic_rmw_op,
.calling_convention,
.address_space,
.float_mode,
.reduce_op,
.call_options,
.export_options,
.extern_options,
=> @panic("TODO resolve std.builtin types"),
else => unreachable,
}
}
/// Asserts `ty` is an enum. `enum_tag` can either be `enum_field_index` or
/// an integer which represents the enum value. Returns the field index in
/// declaration order, or `null` if `enum_tag` does not match any field.
pub fn enumTagFieldIndex(ty: Type, enum_tag: Value) ?usize {
if (enum_tag.castTag(.enum_field_index)) |payload| {
return @as(usize, payload.data);
}
const S = struct {
fn fieldWithRange(int_ty: Type, int_val: Value, end: usize) ?usize {
if (int_val.compareWithZero(.lt)) return null;
var end_payload: Value.Payload.U64 = .{
.base = .{ .tag = .int_u64 },
.data = end,
};
const end_val = Value.initPayload(&end_payload.base);
if (int_val.compare(.gte, end_val, int_ty)) return null;
return @intCast(usize, int_val.toUnsignedInt());
}
};
switch (ty.tag()) {
.enum_full, .enum_nonexhaustive => {
const enum_full = ty.cast(Payload.EnumFull).?.data;
const tag_ty = enum_full.tag_ty;
if (enum_full.values.count() == 0) {
return S.fieldWithRange(tag_ty, enum_tag, enum_full.fields.count());
} else {
return enum_full.values.getIndexContext(enum_tag, .{ .ty = tag_ty });
}
},
.enum_simple => {
const enum_simple = ty.castTag(.enum_simple).?.data;
const fields_len = enum_simple.fields.count();
const bits = std.math.log2_int_ceil(usize, fields_len);
var buffer: Payload.Bits = .{
.base = .{ .tag = .int_unsigned },
.data = bits,
};
const tag_ty = Type.initPayload(&buffer.base);
return S.fieldWithRange(tag_ty, enum_tag, fields_len);
},
.atomic_order,
.atomic_rmw_op,
.calling_convention,
.address_space,
.float_mode,
.reduce_op,
.call_options,
.export_options,
.extern_options,
=> @panic("TODO resolve std.builtin types"),
else => unreachable,
}
}
pub fn structFieldCount(ty: Type) usize {
switch (ty.tag()) {
.@"struct" => {
const struct_obj = ty.castTag(.@"struct").?.data;
return struct_obj.fields.count();
},
else => unreachable,
}
}
pub fn structFieldType(ty: Type, index: usize) Type {
switch (ty.tag()) {
.@"struct" => {
const struct_obj = ty.castTag(.@"struct").?.data;
return struct_obj.fields.values()[index].ty;
},
else => unreachable,
}
}
pub fn declSrcLoc(ty: Type) Module.SrcLoc {
switch (ty.tag()) {
.enum_full, .enum_nonexhaustive => {
const enum_full = ty.cast(Payload.EnumFull).?.data;
return enum_full.srcLoc();
},
.enum_simple => {
const enum_simple = ty.castTag(.enum_simple).?.data;
return enum_simple.srcLoc();
},
.@"struct" => {
const struct_obj = ty.castTag(.@"struct").?.data;
return struct_obj.srcLoc();
},
.error_set => {
const error_set = ty.castTag(.error_set).?.data;
return error_set.srcLoc();
},
.@"union", .union_tagged => {
const union_obj = ty.cast(Payload.Union).?.data;
return union_obj.srcLoc();
},
.atomic_order,
.atomic_rmw_op,
.calling_convention,
.address_space,
.float_mode,
.reduce_op,
.call_options,
.export_options,
.extern_options,
.type_info,
=> @panic("TODO resolve std.builtin types"),
else => unreachable,
}
}
pub fn getOwnerDecl(ty: Type) *Module.Decl {
switch (ty.tag()) {
.enum_full, .enum_nonexhaustive => {
const enum_full = ty.cast(Payload.EnumFull).?.data;
return enum_full.owner_decl;
},
.enum_simple => {
const enum_simple = ty.castTag(.enum_simple).?.data;
return enum_simple.owner_decl;
},
.@"struct" => {
const struct_obj = ty.castTag(.@"struct").?.data;
return struct_obj.owner_decl;
},
.error_set => {
const error_set = ty.castTag(.error_set).?.data;
return error_set.owner_decl;
},
.@"union", .union_tagged => {
const union_obj = ty.cast(Payload.Union).?.data;
return union_obj.owner_decl;
},
.@"opaque" => @panic("TODO"),
.atomic_order,
.atomic_rmw_op,
.calling_convention,
.address_space,
.float_mode,
.reduce_op,
.call_options,
.export_options,
.extern_options,
.type_info,
=> @panic("TODO resolve std.builtin types"),
else => unreachable,
}
}
/// Asserts the type is an enum.
pub fn enumHasInt(ty: Type, int: Value, target: Target) bool {
const S = struct {
fn intInRange(tag_ty: Type, int_val: Value, end: usize) bool {
if (int_val.compareWithZero(.lt)) return false;
var end_payload: Value.Payload.U64 = .{
.base = .{ .tag = .int_u64 },
.data = end,
};
const end_val = Value.initPayload(&end_payload.base);
if (int_val.compare(.gte, end_val, tag_ty)) return false;
return true;
}
};
switch (ty.tag()) {
.enum_nonexhaustive => return int.intFitsInType(ty, target),
.enum_full => {
const enum_full = ty.castTag(.enum_full).?.data;
const tag_ty = enum_full.tag_ty;
if (enum_full.values.count() == 0) {
return S.intInRange(tag_ty, int, enum_full.fields.count());
} else {
return enum_full.values.containsContext(int, .{ .ty = tag_ty });
}
},
.enum_simple => {
const enum_simple = ty.castTag(.enum_simple).?.data;
const fields_len = enum_simple.fields.count();
const bits = std.math.log2_int_ceil(usize, fields_len);
var buffer: Payload.Bits = .{
.base = .{ .tag = .int_unsigned },
.data = bits,
};
const tag_ty = Type.initPayload(&buffer.base);
return S.intInRange(tag_ty, int, fields_len);
},
.atomic_order,
.atomic_rmw_op,
.calling_convention,
.address_space,
.float_mode,
.reduce_op,
.call_options,
.export_options,
.extern_options,
=> @panic("TODO resolve std.builtin types"),
else => unreachable,
}
}
/// This enum does not directly correspond to `std.builtin.TypeId` because
/// it has extra enum tags in it, as a way of using less memory. For example,
/// even though Zig recognizes `*align(10) i32` and `*i32` both as Pointer types
/// but with different alignment values, in this data structure they are represented
/// with different enum tags, because the the former requires more payload data than the latter.
/// See `zigTypeTag` for the function that corresponds to `std.builtin.TypeId`.
pub const Tag = enum(usize) {
// The first section of this enum are tags that require no payload.
u1,
u8,
i8,
u16,
i16,
u32,
i32,
u64,
i64,
u128,
i128,
usize,
isize,
c_short,
c_ushort,
c_int,
c_uint,
c_long,
c_ulong,
c_longlong,
c_ulonglong,
c_longdouble,
f16,
f32,
f64,
f128,
c_void,
bool,
void,
type,
anyerror,
comptime_int,
comptime_float,
noreturn,
@"anyframe",
@"null",
@"undefined",
enum_literal,
atomic_order,
atomic_rmw_op,
calling_convention,
address_space,
float_mode,
reduce_op,
call_options,
export_options,
extern_options,
type_info,
manyptr_u8,
manyptr_const_u8,
fn_noreturn_no_args,
fn_void_no_args,
fn_naked_noreturn_no_args,
fn_ccc_void_no_args,
single_const_pointer_to_comptime_int,
const_slice_u8,
anyerror_void_error_union,
generic_poison,
/// This is a special type for variadic parameters of a function call.
/// Casts to it will validate that the type can be passed to a c calling convention function.
var_args_param,
/// Same as `empty_struct` except it has an empty namespace.
empty_struct_literal,
/// This is a special value that tracks a set of types that have been stored
/// to an inferred allocation. It does not support most of the normal type queries.
/// However it does respond to `isConstPtr`, `ptrSize`, `zigTypeTag`, etc.
inferred_alloc_mut,
/// Same as `inferred_alloc_mut` but the local is `var` not `const`.
inferred_alloc_const, // See last_no_payload_tag below.
// After this, the tag requires a payload.
array_u8,
array_u8_sentinel_0,
array,
array_sentinel,
vector,
pointer,
single_const_pointer,
single_mut_pointer,
many_const_pointer,
many_mut_pointer,
c_const_pointer,
c_mut_pointer,
const_slice,
mut_slice,
int_signed,
int_unsigned,
function,
optional,
optional_single_mut_pointer,
optional_single_const_pointer,
error_union,
anyframe_T,
error_set,
error_set_single,
/// The type is the inferred error set of a specific function.
error_set_inferred,
empty_struct,
@"opaque",
@"struct",
@"union",
union_tagged,
enum_simple,
enum_full,
enum_nonexhaustive,
pub const last_no_payload_tag = Tag.inferred_alloc_const;
pub const no_payload_count = @enumToInt(last_no_payload_tag) + 1;
pub fn Type(comptime t: Tag) type {
return switch (t) {
.u1,
.u8,
.i8,
.u16,
.i16,
.u32,
.i32,
.u64,
.i64,
.u128,
.i128,
.usize,
.isize,
.c_short,
.c_ushort,
.c_int,
.c_uint,
.c_long,
.c_ulong,
.c_longlong,
.c_ulonglong,
.c_longdouble,
.f16,
.f32,
.f64,
.f128,
.c_void,
.bool,
.void,
.type,
.anyerror,
.comptime_int,
.comptime_float,
.noreturn,
.enum_literal,
.@"null",
.@"undefined",
.fn_noreturn_no_args,
.fn_void_no_args,
.fn_naked_noreturn_no_args,
.fn_ccc_void_no_args,
.single_const_pointer_to_comptime_int,
.anyerror_void_error_union,
.const_slice_u8,
.generic_poison,
.inferred_alloc_const,
.inferred_alloc_mut,
.var_args_param,
.empty_struct_literal,
.manyptr_u8,
.manyptr_const_u8,
.atomic_order,
.atomic_rmw_op,
.calling_convention,
.address_space,
.float_mode,
.reduce_op,
.call_options,
.export_options,
.extern_options,
.type_info,
.@"anyframe",
=> @compileError("Type Tag " ++ @tagName(t) ++ " has no payload"),
.array_u8,
.array_u8_sentinel_0,
=> Payload.Len,
.single_const_pointer,
.single_mut_pointer,
.many_const_pointer,
.many_mut_pointer,
.c_const_pointer,
.c_mut_pointer,
.const_slice,
.mut_slice,
.optional,
.optional_single_mut_pointer,
.optional_single_const_pointer,
.anyframe_T,
=> Payload.ElemType,
.int_signed,
.int_unsigned,
=> Payload.Bits,
.error_set => Payload.ErrorSet,
.error_set_inferred => Payload.ErrorSetInferred,
.array, .vector => Payload.Array,
.array_sentinel => Payload.ArraySentinel,
.pointer => Payload.Pointer,
.function => Payload.Function,
.error_union => Payload.ErrorUnion,
.error_set_single => Payload.Name,
.@"opaque" => Payload.Opaque,
.@"struct" => Payload.Struct,
.@"union", .union_tagged => Payload.Union,
.enum_full, .enum_nonexhaustive => Payload.EnumFull,
.enum_simple => Payload.EnumSimple,
.empty_struct => Payload.ContainerScope,
};
}
pub fn init(comptime t: Tag) file_struct.Type {
comptime std.debug.assert(@enumToInt(t) < Tag.no_payload_count);
return .{ .tag_if_small_enough = t };
}
pub fn create(comptime t: Tag, ally: *Allocator, data: Data(t)) error{OutOfMemory}!file_struct.Type {
const ptr = try ally.create(t.Type());
ptr.* = .{
.base = .{ .tag = t },
.data = data,
};
return file_struct.Type{ .ptr_otherwise = &ptr.base };
}
pub fn Data(comptime t: Tag) type {
return std.meta.fieldInfo(t.Type(), .data).field_type;
}
};
/// The sub-types are named after what fields they contain.
pub const Payload = struct {
tag: Tag,
pub const Len = struct {
base: Payload,
data: u64,
};
pub const Array = struct {
base: Payload,
data: struct {
len: u64,
elem_type: Type,
},
};
pub const ArraySentinel = struct {
pub const base_tag = Tag.array_sentinel;
base: Payload = Payload{ .tag = base_tag },
data: struct {
len: u64,
sentinel: Value,
elem_type: Type,
},
};
pub const ElemType = struct {
base: Payload,
data: Type,
};
pub const Bits = struct {
base: Payload,
data: u16,
};
pub const Function = struct {
pub const base_tag = Tag.function;
base: Payload = Payload{ .tag = base_tag },
data: Data,
// TODO look into optimizing this memory to take fewer bytes
pub const Data = struct {
param_types: []Type,
comptime_params: [*]bool,
return_type: Type,
cc: std.builtin.CallingConvention,
is_var_args: bool,
is_generic: bool,
pub fn paramIsComptime(self: @This(), i: usize) bool {
if (!self.is_generic) return false;
assert(i < self.param_types.len);
return self.comptime_params[i];
}
};
};
pub const ErrorSet = struct {
pub const base_tag = Tag.error_set;
base: Payload = Payload{ .tag = base_tag },
data: *Module.ErrorSet,
};
pub const ErrorSetInferred = struct {
pub const base_tag = Tag.error_set_inferred;
base: Payload = Payload{ .tag = base_tag },
data: struct {
func: *Module.Fn,
map: std.StringHashMapUnmanaged(void),
},
};
pub const Pointer = struct {
pub const base_tag = Tag.pointer;
base: Payload = Payload{ .tag = base_tag },
data: struct {
pointee_type: Type,
sentinel: ?Value,
/// If zero use pointee_type.AbiAlign()
@"align": u32,
@"addrspace": std.builtin.AddressSpace,
bit_offset: u16,
host_size: u16,
@"allowzero": bool,
mutable: bool,
@"volatile": bool,
size: std.builtin.TypeInfo.Pointer.Size,
},
};
pub const ErrorUnion = struct {
pub const base_tag = Tag.error_union;
base: Payload = Payload{ .tag = base_tag },
data: struct {
error_set: Type,
payload: Type,
},
};
pub const Decl = struct {
base: Payload,
data: *Module.Decl,
};
pub const Name = struct {
base: Payload,
/// memory is owned by `Module`
data: []const u8,
};
/// Mostly used for namespace like structs with zero fields.
/// Most commonly used for files.
pub const ContainerScope = struct {
base: Payload,
data: *Module.Scope.Namespace,
};
pub const Opaque = struct {
base: Payload = .{ .tag = .@"opaque" },
data: Module.Scope.Namespace,
};
pub const Struct = struct {
base: Payload = .{ .tag = .@"struct" },
data: *Module.Struct,
};
pub const Union = struct {
base: Payload,
data: *Module.Union,
};
pub const EnumFull = struct {
base: Payload,
data: *Module.EnumFull,
};
pub const EnumSimple = struct {
base: Payload = .{ .tag = .enum_simple },
data: *Module.EnumSimple,
};
};
};
pub const CType = enum {
short,
ushort,
int,
uint,
long,
ulong,
longlong,
ulonglong,
longdouble,
pub fn sizeInBits(self: CType, target: Target) u16 {
switch (target.os.tag) {
.freestanding, .other => switch (target.cpu.arch) {
.msp430 => switch (self) {
.short,
.ushort,
.int,
.uint,
=> return 16,
.long,
.ulong,
=> return 32,
.longlong,
.ulonglong,
=> return 64,
.longdouble => @panic("TODO figure out what kind of float `long double` is on this target"),
},
else => switch (self) {
.short,
.ushort,
=> return 16,
.int,
.uint,
=> return 32,
.long,
.ulong,
=> return target.cpu.arch.ptrBitWidth(),
.longlong,
.ulonglong,
=> return 64,
.longdouble => @panic("TODO figure out what kind of float `long double` is on this target"),
},
},
.linux,
.macos,
.freebsd,
.netbsd,
.dragonfly,
.openbsd,
.wasi,
.emscripten,
.plan9,
.solaris,
=> switch (self) {
.short,
.ushort,
=> return 16,
.int,
.uint,
=> return 32,
.long,
.ulong,
=> return target.cpu.arch.ptrBitWidth(),
.longlong,
.ulonglong,
=> return 64,
.longdouble => @panic("TODO figure out what kind of float `long double` is on this target"),
},
.windows, .uefi => switch (self) {
.short,
.ushort,
=> return 16,
.int,
.uint,
.long,
.ulong,
=> return 32,
.longlong,
.ulonglong,
=> return 64,
.longdouble => @panic("TODO figure out what kind of float `long double` is on this target"),
},
.ios => switch (self) {
.short,
.ushort,
=> return 16,
.int,
.uint,
=> return 32,
.long,
.ulong,
.longlong,
.ulonglong,
=> return 64,
.longdouble => @panic("TODO figure out what kind of float `long double` is on this target"),
},
.ananas,
.cloudabi,
.fuchsia,
.kfreebsd,
.lv2,
.zos,
.haiku,
.minix,
.rtems,
.nacl,
.aix,
.cuda,
.nvcl,
.amdhsa,
.ps4,
.elfiamcu,
.tvos,
.watchos,
.mesa3d,
.contiki,
.amdpal,
.hermit,
.hurd,
.opencl,
.glsl450,
.vulkan,
=> @panic("TODO specify the C integer and float type sizes for this OS"),
}
}
};