zig/test/compile_errors.zig
mlugg 09a57583a4
compiler: preserve result type information through address-of operator
This commit introduces the new `ref_coerced_ty` result type into AstGen.
This represents a expression which we want to treat as an lvalue, and
the pointer will be coerced to a given type.

This change gives known result types to many expressions, in particular
struct and array initializations. This allows certain casts to work
which previously required explicitly specifying types via `@as`. It also
eliminates our dependence on anonymous struct types for expressions of
the form `&.{ ... }` - this paves the way for #16865, and also results
in less Sema magic happening for such initializations, also leading to
potentially better runtime code.

As part of these changes, this commit also implements #17194 by
disallowing RLS on explicitly-typed struct and array initializations.
Apologies for linking these changes - it seemed rather pointless to try
and separate them, since they both make big changes to struct and array
initializations in AstGen. The rationale for this change can be found in
the proposal - in essence, performing RLS whilst maintaining the
semantics of the intermediary type is a very difficult problem to solve.

This allowed the problematic `coerce_result_ptr` ZIR instruction to be
completely eliminated, which in turn also simplified the logic for
inferred allocations in Sema - thanks to this, we almost break even on
line count!

In doing this, the ZIR instructions surrounding these initializations
have been restructured - some have been added and removed, and others
renamed for clarity (and their semantics changed slightly). In order to
optimize ZIR tag count, the `struct_init_anon_ref` and
`array_init_anon_ref` instructions have been removed in favour of using
`ref` on a standard anonymous value initialization, since these
instructions are now virtually never used.

Lastly, it's worth noting that this commit introduces a slightly strange
source of generic poison types: in the expression `@as(*anyopaque, &x)`,
the sub-expression `x` has a generic poison result type, despite no
generic code being involved. This turns out to be a logical choice,
because we don't know the result type for `x`, and the generic poison
type represents precisely this case, providing the semantics we need.

Resolves: #16512
Resolves: #17194
2023-09-23 22:01:08 +01:00

220 lines
7 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const Cases = @import("src/Cases.zig");
pub fn addCases(ctx: *Cases) !void {
{
const case = ctx.obj("multiline error messages", .{});
case.addError(
\\comptime {
\\ @compileError("hello\nworld");
\\}
, &[_][]const u8{
\\:2:5: error: hello
\\ world
});
case.addError(
\\comptime {
\\ @compileError(
\\ \\
\\ \\hello!
\\ \\I'm a multiline error message.
\\ \\I hope to be very useful!
\\ \\
\\ \\also I will leave this trailing newline here if you don't mind
\\ \\
\\ );
\\}
, &[_][]const u8{
\\:2:5: error:
\\ hello!
\\ I'm a multiline error message.
\\ I hope to be very useful!
\\
\\ also I will leave this trailing newline here if you don't mind
\\
});
}
{
const case = ctx.obj("isolated carriage return in multiline string literal", .{});
case.addError("const foo = \\\\\test\r\r rogue carriage return\n;", &[_][]const u8{
":1:19: error: expected ';' after declaration",
":1:20: note: invalid byte: '\\r'",
});
}
{
const case = ctx.obj("missing semicolon at EOF", .{});
case.addError(
\\const foo = 1
, &[_][]const u8{
\\:1:14: error: expected ';' after declaration
});
}
{
const case = ctx.obj("argument causes error", .{});
case.addError(
\\pub export fn entry() void {
\\ var lib: @import("b.zig").ElfDynLib = undefined;
\\ _ = lib.lookup(fn () void);
\\}
, &[_][]const u8{
":3:12: error: unable to resolve comptime value",
":3:12: note: argument to function being called at comptime must be comptime-known",
":2:55: note: expression is evaluated at comptime because the generic function was instantiated with a comptime-only return type",
});
case.addSourceFile("b.zig",
\\pub const ElfDynLib = struct {
\\ pub fn lookup(self: *ElfDynLib, comptime T: type) ?T {
\\ _ = self;
\\ return undefined;
\\ }
\\};
);
}
{
const case = ctx.obj("astgen failure in file struct", .{});
case.addError(
\\pub export fn entry() void {
\\ _ = (@sizeOf(@import("b.zig")));
\\}
, &[_][]const u8{
":1:1: error: expected type expression, found '+'",
});
case.addSourceFile("b.zig",
\\+
);
}
{
const case = ctx.obj("invalid store to comptime field", .{});
case.addError(
\\const a = @import("a.zig");
\\
\\export fn entry() void {
\\ _ = a.S.foo(a.S{ .foo = 2, .bar = 2 });
\\}
, &[_][]const u8{
":4:23: error: value stored in comptime field does not match the default value of the field",
":2:25: note: default value set here",
});
case.addSourceFile("a.zig",
\\pub const S = struct {
\\ comptime foo: u32 = 1,
\\ bar: u32,
\\ pub fn foo(x: @This()) void {
\\ _ = x;
\\ }
\\};
);
}
{
const case = ctx.obj("file in multiple modules", .{});
case.addDepModule("foo", "foo.zig");
case.addError(
\\comptime {
\\ _ = @import("foo");
\\ _ = @import("foo.zig");
\\}
, &[_][]const u8{
":1:1: error: file exists in multiple modules",
":1:1: note: root of module root.foo",
":3:17: note: imported from module root",
});
case.addSourceFile("foo.zig",
\\const dummy = 0;
);
}
{
const case = ctx.obj("wrong same named struct", .{});
case.addError(
\\const a = @import("a.zig");
\\const b = @import("b.zig");
\\
\\export fn entry() void {
\\ var a1: a.Foo = undefined;
\\ bar(&a1);
\\}
\\
\\fn bar(_: *b.Foo) void {}
, &[_][]const u8{
":6:9: error: expected type '*b.Foo', found '*a.Foo'",
":6:9: note: pointer type child 'a.Foo' cannot cast into pointer type child 'b.Foo'",
":1:17: note: struct declared here",
":1:17: note: struct declared here",
":9:11: note: parameter type declared here",
});
case.addSourceFile("a.zig",
\\pub const Foo = struct {
\\ x: i32,
\\};
);
case.addSourceFile("b.zig",
\\pub const Foo = struct {
\\ z: f64,
\\};
);
}
{
const case = ctx.obj("non-printable invalid character", .{});
case.addError("\xff\xfe" ++
\\export fn foo() bool {
\\ return true;
\\}
, &[_][]const u8{
":1:1: error: expected type expression, found 'invalid bytes'",
":1:1: note: invalid byte: '\\xff'",
});
}
{
const case = ctx.obj("imported generic method call with invalid param", .{});
case.addError(
\\pub const import = @import("import.zig");
\\
\\export fn callComptimeBoolFunctionWithRuntimeBool(x: bool) void {
\\ import.comptimeBoolFunction(x);
\\}
\\
\\export fn callComptimeAnytypeFunctionWithRuntimeBool(x: bool) void {
\\ import.comptimeAnytypeFunction(x);
\\}
\\
\\export fn callAnytypeFunctionWithRuntimeComptimeOnlyType(x: u32) void {
\\ const S = struct { x: u32, y: type };
\\ import.anytypeFunction(S{ .x = x, .y = u32 });
\\}
, &[_][]const u8{
":4:33: error: runtime-known argument passed to comptime parameter",
":1:38: note: declared comptime here",
":8:36: error: runtime-known argument passed to comptime parameter",
":2:41: note: declared comptime here",
":13:32: error: unable to resolve comptime value",
":13:32: note: initializer of comptime only struct must be comptime-known",
});
case.addSourceFile("import.zig",
\\pub fn comptimeBoolFunction(comptime _: bool) void {}
\\pub fn comptimeAnytypeFunction(comptime _: anytype) void {}
\\pub fn anytypeFunction(_: anytype) void {}
);
}
}