zig/deps/aro/build/GenerateDef.zig
Andrew Kelley 142471fcc4 zig build system: change target, compilation, and module APIs
Introduce the concept of "target query" and "resolved target". A target
query is what the user specifies, with some things left to default. A
resolved target has the default things discovered and populated.
In the future, std.zig.CrossTarget will be rename to std.Target.Query.
Introduces `std.Build.resolveTargetQuery` to get from one to the other.

The concept of `main_mod_path` is gone, no longer supported. You have to
put the root source file at the module root now.

* remove deprecated API
* update build.zig for the breaking API changes in this branch
* move std.Build.Step.Compile.BuildId to std.zig.BuildId
* add more options to std.Build.ExecutableOptions, std.Build.ObjectOptions,
  std.Build.SharedLibraryOptions, std.Build.StaticLibraryOptions, and
  std.Build.TestOptions.
* remove `std.Build.constructCMacro`. There is no use for this API.
* deprecate `std.Build.Step.Compile.defineCMacro`. Instead,
  `std.Build.Module.addCMacro` is provided.
  - remove `std.Build.Step.Compile.defineCMacroRaw`.
* deprecate `std.Build.Step.Compile.linkFrameworkNeeded`
  - use `std.Build.Module.linkFramework`
* deprecate `std.Build.Step.Compile.linkFrameworkWeak`
  - use `std.Build.Module.linkFramework`
* move more logic into `std.Build.Module`
* allow `target` and `optimize` to be `null` when creating a Module.
  Along with other fields, those unspecified options will be inherited
  from parent `Module` when inserted into an import table.
* the `target` field of `addExecutable` is now required. pass `b.host`
  to get the host target.
2024-01-01 17:51:18 -07:00

683 lines
25 KiB
Zig
Vendored

const std = @import("std");
const Step = std.Build.Step;
const Allocator = std.mem.Allocator;
const GeneratedFile = std.Build.GeneratedFile;
const GenerateDef = @This();
step: Step,
path: []const u8,
name: []const u8,
kind: Options.Kind,
generated_file: GeneratedFile,
pub const base_id: Step.Id = .custom;
pub const Options = struct {
name: []const u8,
src_prefix: []const u8 = "src/aro",
kind: Kind = .dafsa,
pub const Kind = enum { dafsa, named };
};
pub fn create(owner: *std.Build, options: Options) std.Build.Module.Import {
const self = owner.allocator.create(GenerateDef) catch @panic("OOM");
const path = owner.pathJoin(&.{ options.src_prefix, options.name });
const name = owner.fmt("GenerateDef {s}", .{options.name});
self.* = .{
.step = Step.init(.{
.id = base_id,
.name = name,
.owner = owner,
.makeFn = make,
}),
.path = path,
.name = options.name,
.kind = options.kind,
.generated_file = .{ .step = &self.step },
};
const module = self.step.owner.createModule(.{
.root_source_file = .{ .generated = &self.generated_file },
});
return .{
.module = module,
.name = self.name,
};
}
fn make(step: *Step, prog_node: *std.Progress.Node) !void {
_ = prog_node;
const b = step.owner;
const self = @fieldParentPtr(GenerateDef, "step", step);
const arena = b.allocator;
var man = b.cache.obtain();
defer man.deinit();
// Random bytes to make GenerateDef unique. Refresh this with new
// random bytes when GenerateDef implementation is modified in a
// non-backwards-compatible way.
man.hash.add(@as(u32, 0xDCC14144));
const contents = try b.build_root.handle.readFileAlloc(arena, self.path, std.math.maxInt(u32));
man.hash.addBytes(contents);
const out_name = b.fmt("{s}.zig", .{std.fs.path.stem(self.path)});
if (try step.cacheHit(&man)) {
const digest = man.final();
self.generated_file.path = try b.cache_root.join(arena, &.{
"o", &digest, out_name,
});
return;
}
const digest = man.final();
const sub_path = try std.fs.path.join(arena, &.{ "o", &digest, out_name });
const sub_path_dirname = std.fs.path.dirname(sub_path).?;
b.cache_root.handle.makePath(sub_path_dirname) catch |err| {
return step.fail("unable to make path '{}{s}': {s}", .{
b.cache_root, sub_path_dirname, @errorName(err),
});
};
const output = try self.generate(contents);
b.cache_root.handle.writeFile(sub_path, output) catch |err| {
return step.fail("unable to write file '{}{s}': {s}", .{
b.cache_root, sub_path, @errorName(err),
});
};
self.generated_file.path = try b.cache_root.join(arena, &.{sub_path});
try man.writeManifest();
}
const Value = struct {
name: []const u8,
properties: []const []const u8,
};
fn generate(self: *GenerateDef, input: []const u8) ![]const u8 {
const arena = self.step.owner.allocator;
var values = std.StringArrayHashMap([]const []const u8).init(arena);
defer values.deinit();
var properties = std.ArrayList([]const u8).init(arena);
defer properties.deinit();
var headers = std.ArrayList([]const u8).init(arena);
defer headers.deinit();
var value_name: ?[]const u8 = null;
var it = std.mem.tokenizeAny(u8, input, "\r\n");
while (it.next()) |line_untrimmed| {
const line = std.mem.trim(u8, line_untrimmed, " \t");
if (line.len == 0 or line[0] == '#') continue;
if (std.mem.startsWith(u8, line, "const ") or std.mem.startsWith(u8, line, "pub const ")) {
try headers.append(line);
continue;
}
if (line[0] == '.') {
if (value_name == null) {
return self.step.fail("property not attached to a value:\n\"{s}\"", .{line});
}
try properties.append(line);
continue;
}
if (value_name) |name| {
const old = try values.fetchPut(name, try properties.toOwnedSlice());
if (old != null) return self.step.fail("duplicate value \"{s}\"", .{name});
}
value_name = line;
}
if (value_name) |name| {
const old = try values.fetchPut(name, try properties.toOwnedSlice());
if (old != null) return self.step.fail("duplicate value \"{s}\"", .{name});
}
{
const sorted_list = try arena.dupe([]const u8, values.keys());
defer arena.free(sorted_list);
std.mem.sort([]const u8, sorted_list, {}, struct {
pub fn lessThan(_: void, a: []const u8, b: []const u8) bool {
return std.mem.lessThan(u8, a, b);
}
}.lessThan);
var longest_name: usize = 0;
var shortest_name: usize = std.math.maxInt(usize);
var builder = try DafsaBuilder.init(arena);
defer builder.deinit();
for (sorted_list) |name| {
try builder.insert(name);
longest_name = @max(name.len, longest_name);
shortest_name = @min(name.len, shortest_name);
}
try builder.finish();
builder.calcNumbers();
// As a sanity check, confirm that the minimal perfect hashing doesn't
// have any collisions
{
var index_set = std.AutoHashMap(usize, void).init(arena);
defer index_set.deinit();
for (values.keys()) |name| {
const index = builder.getUniqueIndex(name).?;
const result = try index_set.getOrPut(index);
if (result.found_existing) {
return self.step.fail("clobbered {}, name={s}\n", .{ index, name });
}
}
}
var out_buf = std.ArrayList(u8).init(arena);
defer out_buf.deinit();
const writer = out_buf.writer();
try writer.print(
\\//! Autogenerated by GenerateDef from {s}, do not edit
\\
\\const std = @import("std");
\\
\\pub fn with(comptime Properties: type) type {{
\\return struct {{
\\
, .{self.path});
for (headers.items) |line| {
try writer.print("{s}\n", .{line});
}
if (self.kind == .named) {
try writer.writeAll("pub const Tag = enum {\n");
for (values.keys()) |property| {
try writer.print(" {s},\n", .{std.zig.fmtId(property)});
}
try writer.writeAll(
\\
\\ pub fn property(tag: Tag) Properties {
\\ return named_data[@intFromEnum(tag)];
\\ }
\\
\\ const named_data = [_]Properties{
\\
);
for (values.values()) |val_props| {
try writer.writeAll(" .{");
for (val_props, 0..) |val_prop, j| {
if (j != 0) try writer.writeByte(',');
try writer.writeByte(' ');
try writer.writeAll(val_prop);
}
try writer.writeAll(" },\n");
}
try writer.writeAll(
\\ };
\\};
\\};
\\}
\\
);
return out_buf.toOwnedSlice();
}
var values_array = try arena.alloc(Value, values.count());
defer arena.free(values_array);
for (values.keys(), values.values()) |name, props| {
const unique_index = builder.getUniqueIndex(name).?;
const data_index = unique_index - 1;
values_array[data_index] = .{ .name = name, .properties = props };
}
try writer.writeAll(
\\
\\tag: Tag,
\\properties: Properties,
\\
\\/// Integer starting at 0 derived from the unique index,
\\/// corresponds with the data array index.
\\pub const Tag = enum(u16) { _ };
\\
\\const Self = @This();
\\
\\pub fn fromName(name: []const u8) ?@This() {
\\ const data_index = tagFromName(name) orelse return null;
\\ return data[@intFromEnum(data_index)];
\\}
\\
\\pub fn tagFromName(name: []const u8) ?Tag {
\\ const unique_index = uniqueIndex(name) orelse return null;
\\ return @enumFromInt(unique_index - 1);
\\}
\\
\\pub fn fromTag(tag: Tag) @This() {
\\ return data[@intFromEnum(tag)];
\\}
\\
\\pub fn nameFromTagIntoBuf(tag: Tag, name_buf: []u8) []u8 {
\\ std.debug.assert(name_buf.len >= longest_name);
\\ const unique_index = @intFromEnum(tag) + 1;
\\ return nameFromUniqueIndex(unique_index, name_buf);
\\}
\\
\\pub fn nameFromTag(tag: Tag) NameBuf {
\\ var name_buf: NameBuf = undefined;
\\ const unique_index = @intFromEnum(tag) + 1;
\\ const name = nameFromUniqueIndex(unique_index, &name_buf.buf);
\\ name_buf.len = @intCast(name.len);
\\ return name_buf;
\\}
\\
\\pub const NameBuf = struct {
\\ buf: [longest_name]u8 = undefined,
\\ len: std.math.IntFittingRange(0, longest_name),
\\
\\ pub fn span(self: *const NameBuf) []const u8 {
\\ return self.buf[0..self.len];
\\ }
\\};
\\
\\pub fn exists(name: []const u8) bool {
\\ if (name.len < shortest_name or name.len > longest_name) return false;
\\
\\ var index: u16 = 0;
\\ for (name) |c| {
\\ index = findInList(dafsa[index].child_index, c) orelse return false;
\\ }
\\ return dafsa[index].end_of_word;
\\}
\\
\\
);
try writer.print("pub const shortest_name = {};\n", .{shortest_name});
try writer.print("pub const longest_name = {};\n\n", .{longest_name});
try writer.writeAll(
\\/// Search siblings of `first_child_index` for the `char`
\\/// If found, returns the index of the node within the `dafsa` array.
\\/// Otherwise, returns `null`.
\\pub fn findInList(first_child_index: u16, char: u8) ?u16 {
\\ var index = first_child_index;
\\ while (true) {
\\ if (dafsa[index].char == char) return index;
\\ if (dafsa[index].end_of_list) return null;
\\ index += 1;
\\ }
\\ unreachable;
\\}
\\
\\/// Returns a unique (minimal perfect hash) index (starting at 1) for the `name`,
\\/// or null if the name was not found.
\\pub fn uniqueIndex(name: []const u8) ?u16 {
\\ if (name.len < shortest_name or name.len > longest_name) return null;
\\
\\ var index: u16 = 0;
\\ var node_index: u16 = 0;
\\
\\ for (name) |c| {
\\ const child_index = findInList(dafsa[node_index].child_index, c) orelse return null;
\\ var sibling_index = dafsa[node_index].child_index;
\\ while (true) {
\\ const sibling_c = dafsa[sibling_index].char;
\\ std.debug.assert(sibling_c != 0);
\\ if (sibling_c < c) {
\\ index += dafsa[sibling_index].number;
\\ }
\\ if (dafsa[sibling_index].end_of_list) break;
\\ sibling_index += 1;
\\ }
\\ node_index = child_index;
\\ if (dafsa[node_index].end_of_word) index += 1;
\\ }
\\
\\ if (!dafsa[node_index].end_of_word) return null;
\\
\\ return index;
\\}
\\
\\/// Returns a slice of `buf` with the name associated with the given `index`.
\\/// This function should only be called with an `index` that
\\/// is already known to exist within the `dafsa`, e.g. an index
\\/// returned from `uniqueIndex`.
\\pub fn nameFromUniqueIndex(index: u16, buf: []u8) []u8 {
\\ std.debug.assert(index >= 1 and index <= data.len);
\\
\\ var node_index: u16 = 0;
\\ var count: u16 = index;
\\ var fbs = std.io.fixedBufferStream(buf);
\\ const w = fbs.writer();
\\
\\ while (true) {
\\ var sibling_index = dafsa[node_index].child_index;
\\ while (true) {
\\ if (dafsa[sibling_index].number > 0 and dafsa[sibling_index].number < count) {
\\ count -= dafsa[sibling_index].number;
\\ } else {
\\ w.writeByte(dafsa[sibling_index].char) catch unreachable;
\\ node_index = sibling_index;
\\ if (dafsa[node_index].end_of_word) {
\\ count -= 1;
\\ }
\\ break;
\\ }
\\
\\ if (dafsa[sibling_index].end_of_list) break;
\\ sibling_index += 1;
\\ }
\\ if (count == 0) break;
\\ }
\\
\\ return fbs.getWritten();
\\}
\\
\\
);
try writer.writeAll(
\\/// We're 1 bit shy of being able to fit this in a u32:
\\/// - char only contains 0-9, a-z, A-Z, and _, so it could use a enum(u6) with a way to convert <-> u8
\\/// (note: this would have a performance cost that may make the u32 not worth it)
\\/// - number has a max value of > 2047 and < 4095 (the first _ node has the largest number),
\\/// so it could fit into a u12
\\/// - child_index currently has a max of > 4095 and < 8191, so it could fit into a u13
\\///
\\/// with the end_of_word/end_of_list 2 bools, that makes 33 bits total
\\const Node = packed struct(u64) {
\\ char: u8,
\\ /// Nodes are numbered with "an integer which gives the number of words that
\\ /// would be accepted by the automaton starting from that state." This numbering
\\ /// allows calculating "a one-to-one correspondence between the integers 1 to L
\\ /// (L is the number of words accepted by the automaton) and the words themselves."
\\ ///
\\ /// Essentially, this allows us to have a minimal perfect hashing scheme such that
\\ /// it's possible to store & lookup the properties of each builtin using a separate array.
\\ number: u16,
\\ /// If true, this node is the end of a valid builtin.
\\ /// Note: This does not necessarily mean that this node does not have child nodes.
\\ end_of_word: bool,
\\ /// If true, this node is the end of a sibling list.
\\ /// If false, then (index + 1) will contain the next sibling.
\\ end_of_list: bool,
\\ /// Padding bits to get to u64, unsure if there's some way to use these to improve something.
\\ _extra: u22 = 0,
\\ /// Index of the first child of this node.
\\ child_index: u16,
\\};
\\
\\
);
try builder.writeDafsa(writer);
try writeData(writer, values_array);
try writer.writeAll(
\\};
\\}
\\
);
return out_buf.toOwnedSlice();
}
}
fn writeData(writer: anytype, values: []const Value) !void {
try writer.writeAll("pub const data = blk: {\n");
try writer.print(" @setEvalBranchQuota({});\n", .{values.len});
try writer.writeAll(" break :blk [_]@This(){\n");
for (values, 0..) |value, i| {
try writer.print(" // {s}\n", .{value.name});
try writer.print(" .{{ .tag = @enumFromInt({}), .properties = .{{", .{i});
for (value.properties, 0..) |property, j| {
if (j != 0) try writer.writeByte(',');
try writer.writeByte(' ');
try writer.writeAll(property);
}
if (value.properties.len != 0) try writer.writeByte(' ');
try writer.writeAll("} },\n");
}
try writer.writeAll(" };\n");
try writer.writeAll("};\n");
}
const DafsaBuilder = struct {
root: *Node,
arena: std.heap.ArenaAllocator.State,
allocator: Allocator,
unchecked_nodes: std.ArrayListUnmanaged(UncheckedNode),
minimized_nodes: std.HashMapUnmanaged(*Node, *Node, Node.DuplicateContext, std.hash_map.default_max_load_percentage),
previous_word_buf: [128]u8 = undefined,
previous_word: []u8 = &[_]u8{},
const UncheckedNode = struct {
parent: *Node,
char: u8,
child: *Node,
};
pub fn init(allocator: Allocator) !DafsaBuilder {
var arena = std.heap.ArenaAllocator.init(allocator);
errdefer arena.deinit();
const root = try arena.allocator().create(Node);
root.* = .{};
return DafsaBuilder{
.root = root,
.allocator = allocator,
.arena = arena.state,
.unchecked_nodes = .{},
.minimized_nodes = .{},
};
}
pub fn deinit(self: *DafsaBuilder) void {
self.arena.promote(self.allocator).deinit();
self.unchecked_nodes.deinit(self.allocator);
self.minimized_nodes.deinit(self.allocator);
self.* = undefined;
}
const Node = struct {
children: [256]?*Node = [_]?*Node{null} ** 256,
is_terminal: bool = false,
number: usize = 0,
const DuplicateContext = struct {
pub fn hash(ctx: @This(), key: *Node) u64 {
_ = ctx;
var hasher = std.hash.Wyhash.init(0);
std.hash.autoHash(&hasher, key.children);
std.hash.autoHash(&hasher, key.is_terminal);
return hasher.final();
}
pub fn eql(ctx: @This(), a: *Node, b: *Node) bool {
_ = ctx;
return a.is_terminal == b.is_terminal and std.mem.eql(?*Node, &a.children, &b.children);
}
};
pub fn calcNumbers(self: *Node) void {
self.number = @intFromBool(self.is_terminal);
for (self.children) |maybe_child| {
const child = maybe_child orelse continue;
// A node's number is the sum of the
// numbers of its immediate child nodes.
child.calcNumbers();
self.number += child.number;
}
}
pub fn numDirectChildren(self: *const Node) u8 {
var num: u8 = 0;
for (self.children) |child| {
if (child != null) num += 1;
}
return num;
}
};
pub fn insert(self: *DafsaBuilder, str: []const u8) !void {
if (std.mem.order(u8, str, self.previous_word) == .lt) {
@panic("insertion order must be sorted");
}
var common_prefix_len: usize = 0;
for (0..@min(str.len, self.previous_word.len)) |i| {
if (str[i] != self.previous_word[i]) break;
common_prefix_len += 1;
}
try self.minimize(common_prefix_len);
var node = if (self.unchecked_nodes.items.len == 0)
self.root
else
self.unchecked_nodes.getLast().child;
for (str[common_prefix_len..]) |c| {
std.debug.assert(node.children[c] == null);
var arena = self.arena.promote(self.allocator);
const child = try arena.allocator().create(Node);
self.arena = arena.state;
child.* = .{};
node.children[c] = child;
try self.unchecked_nodes.append(self.allocator, .{
.parent = node,
.char = c,
.child = child,
});
node = node.children[c].?;
}
node.is_terminal = true;
self.previous_word = self.previous_word_buf[0..str.len];
@memcpy(self.previous_word, str);
}
pub fn minimize(self: *DafsaBuilder, down_to: usize) !void {
if (self.unchecked_nodes.items.len == 0) return;
while (self.unchecked_nodes.items.len > down_to) {
const unchecked_node = self.unchecked_nodes.pop();
if (self.minimized_nodes.getPtr(unchecked_node.child)) |child| {
unchecked_node.parent.children[unchecked_node.char] = child.*;
} else {
try self.minimized_nodes.put(self.allocator, unchecked_node.child, unchecked_node.child);
}
}
}
pub fn finish(self: *DafsaBuilder) !void {
try self.minimize(0);
}
fn nodeCount(self: *const DafsaBuilder) usize {
return self.minimized_nodes.count();
}
fn edgeCount(self: *const DafsaBuilder) usize {
var count: usize = 0;
var it = self.minimized_nodes.iterator();
while (it.next()) |entry| {
for (entry.key_ptr.*.children) |child| {
if (child != null) count += 1;
}
}
return count;
}
fn contains(self: *const DafsaBuilder, str: []const u8) bool {
var node = self.root;
for (str) |c| {
node = node.children[c] orelse return false;
}
return node.is_terminal;
}
fn calcNumbers(self: *const DafsaBuilder) void {
self.root.calcNumbers();
}
fn getUniqueIndex(self: *const DafsaBuilder, str: []const u8) ?usize {
var index: usize = 0;
var node = self.root;
for (str) |c| {
const child = node.children[c] orelse return null;
for (node.children, 0..) |sibling, sibling_c| {
if (sibling == null) continue;
if (sibling_c < c) {
index += sibling.?.number;
}
}
node = child;
if (node.is_terminal) index += 1;
}
return index;
}
fn writeDafsa(self: *const DafsaBuilder, writer: anytype) !void {
try writer.writeAll("const dafsa = [_]Node{\n");
// write root
try writer.writeAll(" .{ .char = 0, .end_of_word = false, .end_of_list = true, .number = 0, .child_index = 1 },\n");
var queue = std.ArrayList(*Node).init(self.allocator);
defer queue.deinit();
var child_indexes = std.AutoHashMap(*Node, usize).init(self.allocator);
defer child_indexes.deinit();
try child_indexes.ensureTotalCapacity(@intCast(self.edgeCount()));
var first_available_index: usize = self.root.numDirectChildren() + 1;
first_available_index = try writeDafsaChildren(self.root, writer, &queue, &child_indexes, first_available_index);
while (queue.items.len > 0) {
// TODO: something with better time complexity
const node = queue.orderedRemove(0);
first_available_index = try writeDafsaChildren(node, writer, &queue, &child_indexes, first_available_index);
}
try writer.writeAll("};\n");
}
fn writeDafsaChildren(
node: *Node,
writer: anytype,
queue: *std.ArrayList(*Node),
child_indexes: *std.AutoHashMap(*Node, usize),
first_available_index: usize,
) !usize {
var cur_available_index = first_available_index;
const num_children = node.numDirectChildren();
var child_i: usize = 0;
for (node.children, 0..) |maybe_child, c_usize| {
const child = maybe_child orelse continue;
const c: u8 = @intCast(c_usize);
const is_last_child = child_i == num_children - 1;
if (!child_indexes.contains(child)) {
const child_num_children = child.numDirectChildren();
if (child_num_children > 0) {
child_indexes.putAssumeCapacityNoClobber(child, cur_available_index);
cur_available_index += child_num_children;
}
try queue.append(child);
}
try writer.print(
" .{{ .char = '{c}', .end_of_word = {}, .end_of_list = {}, .number = {}, .child_index = {} }},\n",
.{ c, child.is_terminal, is_last_child, child.number, child_indexes.get(child) orelse 0 },
);
child_i += 1;
}
return cur_available_index;
}
};