zig/src/codegen/wasm/CodeGen.zig
Matthew Lugg 69f39868b4
Air.Legalize: revert to loops for scalarizations
I had tried unrolling the loops to avoid requiring the
`vector_store_elem` instruction, but it's arguably a problem to generate
O(N) code for an operation on `@Vector(N, T)`. In addition, that
lowering emitted a lot of `.aggregate_init` instructions, which is
itself a quite difficult operation to codegen.

This requires reintroducing runtime vector indexing internally. However,
I've put it in a couple of instructions which are intended only for use
by `Air.Legalize`, named `legalize_vec_elem_val` (like `array_elem_val`,
but for indexing a vector with a runtime-known index) and
`legalize_vec_store_elem` (like the old `vector_store_elem`
instruction). These are explicitly documented as *not* being emitted by
Sema, so need only be implemented by backends if they actually use an
`Air.Legalize.Feature` which emits them (otherwise they can be marked as
`unreachable`).
2025-11-12 16:00:16 +00:00

7581 lines
294 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const testing = std.testing;
const mem = std.mem;
const log = std.log.scoped(.codegen);
const CodeGen = @This();
const codegen = @import("../../codegen.zig");
const Zcu = @import("../../Zcu.zig");
const InternPool = @import("../../InternPool.zig");
const Decl = Zcu.Decl;
const Type = @import("../../Type.zig");
const Value = @import("../../Value.zig");
const Compilation = @import("../../Compilation.zig");
const link = @import("../../link.zig");
const Air = @import("../../Air.zig");
const Mir = @import("Mir.zig");
const abi = @import("../../codegen/wasm/abi.zig");
const Alignment = InternPool.Alignment;
const errUnionPayloadOffset = codegen.errUnionPayloadOffset;
const errUnionErrorOffset = codegen.errUnionErrorOffset;
const target_util = @import("../../target.zig");
const libcFloatPrefix = target_util.libcFloatPrefix;
const libcFloatSuffix = target_util.libcFloatSuffix;
const compilerRtFloatAbbrev = target_util.compilerRtFloatAbbrev;
const compilerRtIntAbbrev = target_util.compilerRtIntAbbrev;
pub fn legalizeFeatures(_: *const std.Target) *const Air.Legalize.Features {
return comptime &.initMany(&.{
.expand_intcast_safe,
.expand_int_from_float_safe,
.expand_int_from_float_optimized_safe,
.expand_add_safe,
.expand_sub_safe,
.expand_mul_safe,
});
}
/// Reference to the function declaration the code
/// section belongs to
owner_nav: InternPool.Nav.Index,
/// Current block depth. Used to calculate the relative difference between a break
/// and block
block_depth: u32 = 0,
air: Air,
liveness: Air.Liveness,
gpa: mem.Allocator,
func_index: InternPool.Index,
/// Contains a list of current branches.
/// When we return from a branch, the branch will be popped from this list,
/// which means branches can only contain references from within its own branch,
/// or a branch higher (lower index) in the tree.
branches: std.ArrayListUnmanaged(Branch) = .empty,
/// Table to save `WValue`'s generated by an `Air.Inst`
// values: ValueTable,
/// Mapping from Air.Inst.Index to block ids
blocks: std.AutoArrayHashMapUnmanaged(Air.Inst.Index, struct {
label: u32,
value: WValue,
}) = .{},
/// Maps `loop` instructions to their label. `br` to here repeats the loop.
loops: std.AutoHashMapUnmanaged(Air.Inst.Index, u32) = .empty,
/// The index the next local generated will have
/// NOTE: arguments share the index with locals therefore the first variable
/// will have the index that comes after the last argument's index
local_index: u32,
/// The index of the current argument.
/// Used to track which argument is being referenced in `airArg`.
arg_index: u32 = 0,
/// List of simd128 immediates. Each value is stored as an array of bytes.
/// This list will only be populated for 128bit-simd values when the target features
/// are enabled also.
simd_immediates: std.ArrayListUnmanaged([16]u8) = .empty,
/// The Target we're emitting (used to call intInfo)
target: *const std.Target,
ptr_size: enum { wasm32, wasm64 },
pt: Zcu.PerThread,
/// List of MIR Instructions
mir_instructions: std.MultiArrayList(Mir.Inst),
/// Contains extra data for MIR
mir_extra: std.ArrayListUnmanaged(u32),
/// List of all locals' types generated throughout this declaration
/// used to emit locals count at start of 'code' section.
mir_locals: std.ArrayListUnmanaged(std.wasm.Valtype),
/// Set of all UAVs referenced by this function. Key is the UAV value, value is the alignment.
/// `.none` means naturally aligned. An explicit alignment is never less than the natural alignment.
mir_uavs: std.AutoArrayHashMapUnmanaged(InternPool.Index, Alignment),
/// Set of all functions whose address this function has taken and which therefore might be called
/// via a `call_indirect` function.
mir_indirect_function_set: std.AutoArrayHashMapUnmanaged(InternPool.Nav.Index, void),
/// Set of all function types used by this function. These must be interned by the linker.
mir_func_tys: std.AutoArrayHashMapUnmanaged(InternPool.Index, void),
/// The number of `error_name_table_ref` instructions emitted.
error_name_table_ref_count: u32,
/// When a function is executing, we store the the current stack pointer's value within this local.
/// This value is then used to restore the stack pointer to the original value at the return of the function.
initial_stack_value: WValue = .none,
/// The current stack pointer subtracted with the stack size. From this value, we will calculate
/// all offsets of the stack values.
bottom_stack_value: WValue = .none,
/// Arguments of this function declaration
/// This will be set after `resolveCallingConventionValues`
args: []WValue,
/// This will only be `.none` if the function returns void, or returns an immediate.
/// When it returns a pointer to the stack, the `.local` tag will be active and must be populated
/// before this function returns its execution to the caller.
return_value: WValue,
/// The size of the stack this function occupies. In the function prologue
/// we will move the stack pointer by this number, forward aligned with the `stack_alignment`.
stack_size: u32 = 0,
/// The stack alignment, which is 16 bytes by default. This is specified by the
/// tool-conventions: https://github.com/WebAssembly/tool-conventions/blob/main/BasicCABI.md
/// and also what the llvm backend will emit.
/// However, local variables or the usage of `incoming_stack_alignment` in a `CallingConvention` can overwrite this default.
stack_alignment: Alignment = .@"16",
// For each individual Wasm valtype we store a seperate free list which
// allows us to re-use locals that are no longer used. e.g. a temporary local.
/// A list of indexes which represents a local of valtype `i32`.
/// It is illegal to store a non-i32 valtype in this list.
free_locals_i32: std.ArrayListUnmanaged(u32) = .empty,
/// A list of indexes which represents a local of valtype `i64`.
/// It is illegal to store a non-i64 valtype in this list.
free_locals_i64: std.ArrayListUnmanaged(u32) = .empty,
/// A list of indexes which represents a local of valtype `f32`.
/// It is illegal to store a non-f32 valtype in this list.
free_locals_f32: std.ArrayListUnmanaged(u32) = .empty,
/// A list of indexes which represents a local of valtype `f64`.
/// It is illegal to store a non-f64 valtype in this list.
free_locals_f64: std.ArrayListUnmanaged(u32) = .empty,
/// A list of indexes which represents a local of valtype `v127`.
/// It is illegal to store a non-v128 valtype in this list.
free_locals_v128: std.ArrayListUnmanaged(u32) = .empty,
/// When in debug mode, this tracks if no `finishAir` was missed.
/// Forgetting to call `finishAir` will cause the result to not be
/// stored in our `values` map and therefore cause bugs.
air_bookkeeping: @TypeOf(bookkeeping_init) = bookkeeping_init,
/// Wasm Value, created when generating an instruction
const WValue = union(enum) {
/// `WValue` which has been freed and may no longer hold
/// any references.
dead: void,
/// May be referenced but is unused
none: void,
/// The value lives on top of the stack
stack: void,
/// Index of the local
local: struct {
/// Contains the index to the local
value: u32,
/// The amount of instructions referencing this `WValue`
references: u32,
},
/// An immediate 32bit value
imm32: u32,
/// An immediate 64bit value
imm64: u64,
/// Index into the list of simd128 immediates. This `WValue` is
/// only possible in very rare cases, therefore it would be
/// a waste of memory to store the value in a 128 bit integer.
imm128: u32,
/// A constant 32bit float value
float32: f32,
/// A constant 64bit float value
float64: f64,
nav_ref: struct {
nav_index: InternPool.Nav.Index,
offset: i32 = 0,
},
uav_ref: struct {
ip_index: InternPool.Index,
offset: i32 = 0,
orig_ptr_ty: InternPool.Index = .none,
},
/// Offset from the bottom of the virtual stack, with the offset
/// pointing to where the value lives.
stack_offset: struct {
/// Contains the actual value of the offset
value: u32,
/// The amount of instructions referencing this `WValue`
references: u32,
},
/// Returns the offset from the bottom of the stack. This is useful when
/// we use the load or store instruction to ensure we retrieve the value
/// from the correct position, rather than the value that lives at the
/// bottom of the stack. For instances where `WValue` is not `stack_value`
/// this will return 0, which allows us to simply call this function for all
/// loads and stores without requiring checks everywhere.
fn offset(value: WValue) u32 {
switch (value) {
.stack_offset => |stack_offset| return stack_offset.value,
.dead => unreachable,
else => return 0,
}
}
/// Promotes a `WValue` to a local when given value is on top of the stack.
/// When encountering a `local` or `stack_offset` this is essentially a no-op.
/// All other tags are illegal.
fn toLocal(value: WValue, gen: *CodeGen, ty: Type) InnerError!WValue {
switch (value) {
.stack => {
const new_local = try gen.allocLocal(ty);
try gen.addLocal(.local_set, new_local.local.value);
return new_local;
},
.local, .stack_offset => return value,
else => unreachable,
}
}
/// Marks a local as no longer being referenced and essentially allows
/// us to re-use it somewhere else within the function.
/// The valtype of the local is deducted by using the index of the given `WValue`.
fn free(value: *WValue, gen: *CodeGen) void {
if (value.* != .local) return;
const local_value = value.local.value;
const reserved = gen.args.len + @intFromBool(gen.return_value != .none);
if (local_value < reserved + 2) return; // reserved locals may never be re-used. Also accounts for 2 stack locals.
const index = local_value - reserved;
const valtype = gen.mir_locals.items[index];
switch (valtype) {
.i32 => gen.free_locals_i32.append(gen.gpa, local_value) catch return, // It's ok to fail any of those, a new local can be allocated instead
.i64 => gen.free_locals_i64.append(gen.gpa, local_value) catch return,
.f32 => gen.free_locals_f32.append(gen.gpa, local_value) catch return,
.f64 => gen.free_locals_f64.append(gen.gpa, local_value) catch return,
.v128 => gen.free_locals_v128.append(gen.gpa, local_value) catch return,
}
log.debug("freed local ({d}) of type {}", .{ local_value, valtype });
value.* = .dead;
}
};
const Op = enum {
@"unreachable",
nop,
block,
loop,
@"if",
@"else",
end,
br,
br_if,
br_table,
@"return",
call,
drop,
select,
global_get,
global_set,
load,
store,
memory_size,
memory_grow,
@"const",
eqz,
eq,
ne,
lt,
gt,
le,
ge,
clz,
ctz,
popcnt,
add,
sub,
mul,
div,
rem,
@"and",
@"or",
xor,
shl,
shr,
rotl,
rotr,
abs,
neg,
ceil,
floor,
trunc,
nearest,
sqrt,
min,
max,
copysign,
wrap,
convert,
demote,
promote,
reinterpret,
extend,
};
const OpcodeBuildArguments = struct {
/// First valtype in the opcode (usually represents the type of the output)
valtype1: ?std.wasm.Valtype = null,
/// The operation (e.g. call, unreachable, div, min, sqrt, etc.)
op: Op,
/// Width of the operation (e.g. 8 for i32_load8_s, 16 for i64_extend16_i32_s)
width: ?u8 = null,
/// Second valtype in the opcode name (usually represents the type of the input)
valtype2: ?std.wasm.Valtype = null,
/// Signedness of the op
signedness: ?std.builtin.Signedness = null,
};
/// TODO: deprecated, should be split up per tag.
fn buildOpcode(args: OpcodeBuildArguments) std.wasm.Opcode {
switch (args.op) {
.@"unreachable" => unreachable,
.nop => unreachable,
.block => unreachable,
.loop => unreachable,
.@"if" => unreachable,
.@"else" => unreachable,
.end => unreachable,
.br => unreachable,
.br_if => unreachable,
.br_table => unreachable,
.@"return" => unreachable,
.call => unreachable,
.drop => unreachable,
.select => unreachable,
.global_get => unreachable,
.global_set => unreachable,
.load => if (args.width) |width| switch (width) {
8 => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_load8_s else return .i32_load8_u,
.i64 => if (args.signedness.? == .signed) return .i64_load8_s else return .i64_load8_u,
.f32, .f64, .v128 => unreachable,
},
16 => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_load16_s else return .i32_load16_u,
.i64 => if (args.signedness.? == .signed) return .i64_load16_s else return .i64_load16_u,
.f32, .f64, .v128 => unreachable,
},
32 => switch (args.valtype1.?) {
.i64 => if (args.signedness.? == .signed) return .i64_load32_s else return .i64_load32_u,
.i32 => return .i32_load,
.f32 => return .f32_load,
.f64, .v128 => unreachable,
},
64 => switch (args.valtype1.?) {
.i64 => return .i64_load,
.f64 => return .f64_load,
else => unreachable,
},
else => unreachable,
} else switch (args.valtype1.?) {
.i32 => return .i32_load,
.i64 => return .i64_load,
.f32 => return .f32_load,
.f64 => return .f64_load,
.v128 => unreachable, // handled independently
},
.store => if (args.width) |width| {
switch (width) {
8 => switch (args.valtype1.?) {
.i32 => return .i32_store8,
.i64 => return .i64_store8,
.f32, .f64, .v128 => unreachable,
},
16 => switch (args.valtype1.?) {
.i32 => return .i32_store16,
.i64 => return .i64_store16,
.f32, .f64, .v128 => unreachable,
},
32 => switch (args.valtype1.?) {
.i64 => return .i64_store32,
.i32 => return .i32_store,
.f32 => return .f32_store,
.f64, .v128 => unreachable,
},
64 => switch (args.valtype1.?) {
.i64 => return .i64_store,
.f64 => return .f64_store,
else => unreachable,
},
else => unreachable,
}
} else {
switch (args.valtype1.?) {
.i32 => return .i32_store,
.i64 => return .i64_store,
.f32 => return .f32_store,
.f64 => return .f64_store,
.v128 => unreachable, // handled independently
}
},
.memory_size => return .memory_size,
.memory_grow => return .memory_grow,
.@"const" => switch (args.valtype1.?) {
.i32 => return .i32_const,
.i64 => return .i64_const,
.f32 => return .f32_const,
.f64 => return .f64_const,
.v128 => unreachable, // handled independently
},
.eqz => switch (args.valtype1.?) {
.i32 => return .i32_eqz,
.i64 => return .i64_eqz,
.f32, .f64, .v128 => unreachable,
},
.eq => switch (args.valtype1.?) {
.i32 => return .i32_eq,
.i64 => return .i64_eq,
.f32 => return .f32_eq,
.f64 => return .f64_eq,
.v128 => unreachable, // handled independently
},
.ne => switch (args.valtype1.?) {
.i32 => return .i32_ne,
.i64 => return .i64_ne,
.f32 => return .f32_ne,
.f64 => return .f64_ne,
.v128 => unreachable, // handled independently
},
.lt => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_lt_s else return .i32_lt_u,
.i64 => if (args.signedness.? == .signed) return .i64_lt_s else return .i64_lt_u,
.f32 => return .f32_lt,
.f64 => return .f64_lt,
.v128 => unreachable, // handled independently
},
.gt => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_gt_s else return .i32_gt_u,
.i64 => if (args.signedness.? == .signed) return .i64_gt_s else return .i64_gt_u,
.f32 => return .f32_gt,
.f64 => return .f64_gt,
.v128 => unreachable, // handled independently
},
.le => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_le_s else return .i32_le_u,
.i64 => if (args.signedness.? == .signed) return .i64_le_s else return .i64_le_u,
.f32 => return .f32_le,
.f64 => return .f64_le,
.v128 => unreachable, // handled independently
},
.ge => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_ge_s else return .i32_ge_u,
.i64 => if (args.signedness.? == .signed) return .i64_ge_s else return .i64_ge_u,
.f32 => return .f32_ge,
.f64 => return .f64_ge,
.v128 => unreachable, // handled independently
},
.clz => switch (args.valtype1.?) {
.i32 => return .i32_clz,
.i64 => return .i64_clz,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.ctz => switch (args.valtype1.?) {
.i32 => return .i32_ctz,
.i64 => return .i64_ctz,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.popcnt => switch (args.valtype1.?) {
.i32 => return .i32_popcnt,
.i64 => return .i64_popcnt,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.add => switch (args.valtype1.?) {
.i32 => return .i32_add,
.i64 => return .i64_add,
.f32 => return .f32_add,
.f64 => return .f64_add,
.v128 => unreachable, // handled independently
},
.sub => switch (args.valtype1.?) {
.i32 => return .i32_sub,
.i64 => return .i64_sub,
.f32 => return .f32_sub,
.f64 => return .f64_sub,
.v128 => unreachable, // handled independently
},
.mul => switch (args.valtype1.?) {
.i32 => return .i32_mul,
.i64 => return .i64_mul,
.f32 => return .f32_mul,
.f64 => return .f64_mul,
.v128 => unreachable, // handled independently
},
.div => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_div_s else return .i32_div_u,
.i64 => if (args.signedness.? == .signed) return .i64_div_s else return .i64_div_u,
.f32 => return .f32_div,
.f64 => return .f64_div,
.v128 => unreachable, // handled independently
},
.rem => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_rem_s else return .i32_rem_u,
.i64 => if (args.signedness.? == .signed) return .i64_rem_s else return .i64_rem_u,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.@"and" => switch (args.valtype1.?) {
.i32 => return .i32_and,
.i64 => return .i64_and,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.@"or" => switch (args.valtype1.?) {
.i32 => return .i32_or,
.i64 => return .i64_or,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.xor => switch (args.valtype1.?) {
.i32 => return .i32_xor,
.i64 => return .i64_xor,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.shl => switch (args.valtype1.?) {
.i32 => return .i32_shl,
.i64 => return .i64_shl,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.shr => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_shr_s else return .i32_shr_u,
.i64 => if (args.signedness.? == .signed) return .i64_shr_s else return .i64_shr_u,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.rotl => switch (args.valtype1.?) {
.i32 => return .i32_rotl,
.i64 => return .i64_rotl,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.rotr => switch (args.valtype1.?) {
.i32 => return .i32_rotr,
.i64 => return .i64_rotr,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.abs => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_abs,
.f64 => return .f64_abs,
.v128 => unreachable, // handled independently
},
.neg => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_neg,
.f64 => return .f64_neg,
.v128 => unreachable, // handled independently
},
.ceil => switch (args.valtype1.?) {
.i64 => unreachable,
.i32 => return .f32_ceil, // when valtype is f16, we store it in i32.
.f32 => return .f32_ceil,
.f64 => return .f64_ceil,
.v128 => unreachable, // handled independently
},
.floor => switch (args.valtype1.?) {
.i64 => unreachable,
.i32 => return .f32_floor, // when valtype is f16, we store it in i32.
.f32 => return .f32_floor,
.f64 => return .f64_floor,
.v128 => unreachable, // handled independently
},
.trunc => switch (args.valtype1.?) {
.i32 => if (args.valtype2) |valty| switch (valty) {
.i32 => unreachable,
.i64 => unreachable,
.f32 => if (args.signedness.? == .signed) return .i32_trunc_f32_s else return .i32_trunc_f32_u,
.f64 => if (args.signedness.? == .signed) return .i32_trunc_f64_s else return .i32_trunc_f64_u,
.v128 => unreachable, // handled independently
} else return .f32_trunc, // when no valtype2, it's an f16 instead which is stored in an i32.
.i64 => switch (args.valtype2.?) {
.i32 => unreachable,
.i64 => unreachable,
.f32 => if (args.signedness.? == .signed) return .i64_trunc_f32_s else return .i64_trunc_f32_u,
.f64 => if (args.signedness.? == .signed) return .i64_trunc_f64_s else return .i64_trunc_f64_u,
.v128 => unreachable, // handled independently
},
.f32 => return .f32_trunc,
.f64 => return .f64_trunc,
.v128 => unreachable, // handled independently
},
.nearest => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_nearest,
.f64 => return .f64_nearest,
.v128 => unreachable, // handled independently
},
.sqrt => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_sqrt,
.f64 => return .f64_sqrt,
.v128 => unreachable, // handled independently
},
.min => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_min,
.f64 => return .f64_min,
.v128 => unreachable, // handled independently
},
.max => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_max,
.f64 => return .f64_max,
.v128 => unreachable, // handled independently
},
.copysign => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_copysign,
.f64 => return .f64_copysign,
.v128 => unreachable, // handled independently
},
.wrap => switch (args.valtype1.?) {
.i32 => switch (args.valtype2.?) {
.i32 => unreachable,
.i64 => return .i32_wrap_i64,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.i64, .f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.convert => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => switch (args.valtype2.?) {
.i32 => if (args.signedness.? == .signed) return .f32_convert_i32_s else return .f32_convert_i32_u,
.i64 => if (args.signedness.? == .signed) return .f32_convert_i64_s else return .f32_convert_i64_u,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.f64 => switch (args.valtype2.?) {
.i32 => if (args.signedness.? == .signed) return .f64_convert_i32_s else return .f64_convert_i32_u,
.i64 => if (args.signedness.? == .signed) return .f64_convert_i64_s else return .f64_convert_i64_u,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.v128 => unreachable, // handled independently
},
.demote => if (args.valtype1.? == .f32 and args.valtype2.? == .f64) return .f32_demote_f64 else unreachable,
.promote => if (args.valtype1.? == .f64 and args.valtype2.? == .f32) return .f64_promote_f32 else unreachable,
.reinterpret => switch (args.valtype1.?) {
.i32 => if (args.valtype2.? == .f32) return .i32_reinterpret_f32 else unreachable,
.i64 => if (args.valtype2.? == .f64) return .i64_reinterpret_f64 else unreachable,
.f32 => if (args.valtype2.? == .i32) return .f32_reinterpret_i32 else unreachable,
.f64 => if (args.valtype2.? == .i64) return .f64_reinterpret_i64 else unreachable,
.v128 => unreachable, // handled independently
},
.extend => switch (args.valtype1.?) {
.i32 => switch (args.width.?) {
8 => if (args.signedness.? == .signed) return .i32_extend8_s else unreachable,
16 => if (args.signedness.? == .signed) return .i32_extend16_s else unreachable,
else => unreachable,
},
.i64 => switch (args.width.?) {
8 => if (args.signedness.? == .signed) return .i64_extend8_s else unreachable,
16 => if (args.signedness.? == .signed) return .i64_extend16_s else unreachable,
32 => if (args.signedness.? == .signed) return .i64_extend32_s else unreachable,
else => unreachable,
},
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
}
}
test "Wasm - buildOpcode" {
// Make sure buildOpcode is referenced, and test some examples
const i32_const = buildOpcode(.{ .op = .@"const", .valtype1 = .i32 });
const i64_extend32_s = buildOpcode(.{ .op = .extend, .valtype1 = .i64, .width = 32, .signedness = .signed });
const f64_reinterpret_i64 = buildOpcode(.{ .op = .reinterpret, .valtype1 = .f64, .valtype2 = .i64 });
try testing.expectEqual(@as(std.wasm.Opcode, .i32_const), i32_const);
try testing.expectEqual(@as(std.wasm.Opcode, .i64_extend32_s), i64_extend32_s);
try testing.expectEqual(@as(std.wasm.Opcode, .f64_reinterpret_i64), f64_reinterpret_i64);
}
/// Hashmap to store generated `WValue` for each `Air.Inst.Ref`
pub const ValueTable = std.AutoArrayHashMapUnmanaged(Air.Inst.Ref, WValue);
const bookkeeping_init = if (std.debug.runtime_safety) @as(usize, 0) else {};
const InnerError = error{
OutOfMemory,
/// An error occurred when trying to lower AIR to MIR.
CodegenFail,
/// Compiler implementation could not handle a large integer.
Overflow,
} || link.File.UpdateDebugInfoError;
pub fn deinit(cg: *CodeGen) void {
const gpa = cg.gpa;
for (cg.branches.items) |*branch| branch.deinit(gpa);
cg.branches.deinit(gpa);
cg.blocks.deinit(gpa);
cg.loops.deinit(gpa);
cg.simd_immediates.deinit(gpa);
cg.free_locals_i32.deinit(gpa);
cg.free_locals_i64.deinit(gpa);
cg.free_locals_f32.deinit(gpa);
cg.free_locals_f64.deinit(gpa);
cg.free_locals_v128.deinit(gpa);
cg.mir_instructions.deinit(gpa);
cg.mir_extra.deinit(gpa);
cg.mir_locals.deinit(gpa);
cg.mir_uavs.deinit(gpa);
cg.mir_indirect_function_set.deinit(gpa);
cg.mir_func_tys.deinit(gpa);
cg.* = undefined;
}
fn fail(cg: *CodeGen, comptime fmt: []const u8, args: anytype) error{ OutOfMemory, CodegenFail } {
const zcu = cg.pt.zcu;
const func = zcu.funcInfo(cg.func_index);
return zcu.codegenFail(func.owner_nav, fmt, args);
}
/// Resolves the `WValue` for the given instruction `inst`
/// When the given instruction has a `Value`, it returns a constant instead
fn resolveInst(cg: *CodeGen, ref: Air.Inst.Ref) InnerError!WValue {
var branch_index = cg.branches.items.len;
while (branch_index > 0) : (branch_index -= 1) {
const branch = cg.branches.items[branch_index - 1];
if (branch.values.get(ref)) |value| {
return value;
}
}
// when we did not find an existing instruction, it
// means we must generate it from a constant.
// We always store constants in the most outer branch as they must never
// be removed. The most outer branch is always at index 0.
const gop = try cg.branches.items[0].values.getOrPut(cg.gpa, ref);
assert(!gop.found_existing);
const pt = cg.pt;
const zcu = pt.zcu;
const val = (try cg.air.value(ref, pt)).?;
const ty = cg.typeOf(ref);
if (!ty.hasRuntimeBitsIgnoreComptime(zcu) and !ty.isInt(zcu) and !ty.isError(zcu)) {
gop.value_ptr.* = .none;
return .none;
}
// When we need to pass the value by reference (such as a struct), we will
// leverage `generateSymbol` to lower the constant to bytes and emit it
// to the 'rodata' section. We then return the index into the section as `WValue`.
//
// In the other cases, we will simply lower the constant to a value that fits
// into a single local (such as a pointer, integer, bool, etc).
const result: WValue = if (isByRef(ty, zcu, cg.target))
.{ .uav_ref = .{ .ip_index = val.toIntern() } }
else
try cg.lowerConstant(val, ty);
gop.value_ptr.* = result;
return result;
}
fn resolveValue(cg: *CodeGen, val: Value) InnerError!WValue {
const zcu = cg.pt.zcu;
const ty = val.typeOf(zcu);
return if (isByRef(ty, zcu, cg.target))
.{ .uav_ref = .{ .ip_index = val.toIntern() } }
else
try cg.lowerConstant(val, ty);
}
/// NOTE: if result == .stack, it will be stored in .local
fn finishAir(cg: *CodeGen, inst: Air.Inst.Index, result: WValue, operands: []const Air.Inst.Ref) InnerError!void {
assert(operands.len <= Air.Liveness.bpi - 1);
var tomb_bits = cg.liveness.getTombBits(inst);
for (operands) |operand| {
const dies = @as(u1, @truncate(tomb_bits)) != 0;
tomb_bits >>= 1;
if (!dies) continue;
processDeath(cg, operand);
}
// results of `none` can never be referenced.
if (result != .none) {
const trackable_result = if (result != .stack)
result
else
try result.toLocal(cg, cg.typeOfIndex(inst));
const branch = cg.currentBranch();
branch.values.putAssumeCapacityNoClobber(inst.toRef(), trackable_result);
}
if (std.debug.runtime_safety) {
cg.air_bookkeeping += 1;
}
}
const Branch = struct {
values: ValueTable = .{},
fn deinit(branch: *Branch, gpa: Allocator) void {
branch.values.deinit(gpa);
branch.* = undefined;
}
};
inline fn currentBranch(cg: *CodeGen) *Branch {
return &cg.branches.items[cg.branches.items.len - 1];
}
const BigTomb = struct {
gen: *CodeGen,
inst: Air.Inst.Index,
lbt: Air.Liveness.BigTomb,
fn feed(bt: *BigTomb, op_ref: Air.Inst.Ref) void {
const dies = bt.lbt.feed();
if (!dies) return;
// This will be a nop for interned constants.
processDeath(bt.gen, op_ref);
}
fn finishAir(bt: *BigTomb, result: WValue) void {
assert(result != .stack);
if (result != .none) {
bt.gen.currentBranch().values.putAssumeCapacityNoClobber(bt.inst.toRef(), result);
}
if (std.debug.runtime_safety) {
bt.gen.air_bookkeeping += 1;
}
}
};
fn iterateBigTomb(cg: *CodeGen, inst: Air.Inst.Index, operand_count: usize) !BigTomb {
try cg.currentBranch().values.ensureUnusedCapacity(cg.gpa, operand_count + 1);
return BigTomb{
.gen = cg,
.inst = inst,
.lbt = cg.liveness.iterateBigTomb(inst),
};
}
fn processDeath(cg: *CodeGen, ref: Air.Inst.Ref) void {
if (ref.toIndex() == null) return;
// Branches are currently only allowed to free locals allocated
// within their own branch.
// TODO: Upon branch consolidation free any locals if needed.
const value = cg.currentBranch().values.getPtr(ref) orelse return;
if (value.* != .local) return;
const reserved_indexes = cg.args.len + @intFromBool(cg.return_value != .none);
if (value.local.value < reserved_indexes) {
return; // function arguments can never be re-used
}
log.debug("Decreasing reference for ref: %{d}, using local '{d}'", .{ @intFromEnum(ref.toIndex().?), value.local.value });
value.local.references -= 1; // if this panics, a call to `reuseOperand` was forgotten by the developer
if (value.local.references == 0) {
value.free(cg);
}
}
fn addInst(cg: *CodeGen, inst: Mir.Inst) error{OutOfMemory}!void {
try cg.mir_instructions.append(cg.gpa, inst);
}
fn addTag(cg: *CodeGen, tag: Mir.Inst.Tag) error{OutOfMemory}!void {
try cg.addInst(.{ .tag = tag, .data = .{ .tag = {} } });
}
fn addExtended(cg: *CodeGen, opcode: std.wasm.MiscOpcode) error{OutOfMemory}!void {
const extra_index: u32 = @intCast(cg.mir_extra.items.len);
try cg.mir_extra.append(cg.gpa, @intFromEnum(opcode));
try cg.addInst(.{ .tag = .misc_prefix, .data = .{ .payload = extra_index } });
}
fn addLabel(cg: *CodeGen, tag: Mir.Inst.Tag, label: u32) error{OutOfMemory}!void {
try cg.addInst(.{ .tag = tag, .data = .{ .label = label } });
}
fn addLocal(cg: *CodeGen, tag: Mir.Inst.Tag, local: u32) error{OutOfMemory}!void {
try cg.addInst(.{ .tag = tag, .data = .{ .local = local } });
}
/// Accepts an unsigned 32bit integer rather than a signed integer to
/// prevent us from having to bitcast multiple times as most values
/// within codegen are represented as unsigned rather than signed.
fn addImm32(cg: *CodeGen, imm: u32) error{OutOfMemory}!void {
try cg.addInst(.{ .tag = .i32_const, .data = .{ .imm32 = @bitCast(imm) } });
}
/// Accepts an unsigned 64bit integer rather than a signed integer to
/// prevent us from having to bitcast multiple times as most values
/// within codegen are represented as unsigned rather than signed.
fn addImm64(cg: *CodeGen, imm: u64) error{OutOfMemory}!void {
const extra_index = try cg.addExtra(Mir.Imm64.init(imm));
try cg.addInst(.{ .tag = .i64_const, .data = .{ .payload = extra_index } });
}
/// Accepts the index into the list of 128bit-immediates
fn addImm128(cg: *CodeGen, index: u32) error{OutOfMemory}!void {
const simd_values = cg.simd_immediates.items[index];
const extra_index: u32 = @intCast(cg.mir_extra.items.len);
// tag + 128bit value
try cg.mir_extra.ensureUnusedCapacity(cg.gpa, 5);
cg.mir_extra.appendAssumeCapacity(@intFromEnum(std.wasm.SimdOpcode.v128_const));
cg.mir_extra.appendSliceAssumeCapacity(@alignCast(mem.bytesAsSlice(u32, &simd_values)));
try cg.addInst(.{ .tag = .simd_prefix, .data = .{ .payload = extra_index } });
}
fn addFloat64(cg: *CodeGen, float: f64) error{OutOfMemory}!void {
const extra_index = try cg.addExtra(Mir.Float64.init(float));
try cg.addInst(.{ .tag = .f64_const, .data = .{ .payload = extra_index } });
}
/// Inserts an instruction to load/store from/to wasm's linear memory dependent on the given `tag`.
fn addMemArg(cg: *CodeGen, tag: Mir.Inst.Tag, mem_arg: Mir.MemArg) error{OutOfMemory}!void {
const extra_index = try cg.addExtra(mem_arg);
try cg.addInst(.{ .tag = tag, .data = .{ .payload = extra_index } });
}
/// Inserts an instruction from the 'atomics' feature which accesses wasm's linear memory dependent on the
/// given `tag`.
fn addAtomicMemArg(cg: *CodeGen, tag: std.wasm.AtomicsOpcode, mem_arg: Mir.MemArg) error{OutOfMemory}!void {
const extra_index = try cg.addExtra(@as(struct { val: u32 }, .{ .val = @intFromEnum(tag) }));
_ = try cg.addExtra(mem_arg);
try cg.addInst(.{ .tag = .atomics_prefix, .data = .{ .payload = extra_index } });
}
/// Helper function to emit atomic mir opcodes.
fn addAtomicTag(cg: *CodeGen, tag: std.wasm.AtomicsOpcode) error{OutOfMemory}!void {
const extra_index = try cg.addExtra(@as(struct { val: u32 }, .{ .val = @intFromEnum(tag) }));
try cg.addInst(.{ .tag = .atomics_prefix, .data = .{ .payload = extra_index } });
}
/// Appends entries to `mir_extra` based on the type of `extra`.
/// Returns the index into `mir_extra`
fn addExtra(cg: *CodeGen, extra: anytype) error{OutOfMemory}!u32 {
const fields = std.meta.fields(@TypeOf(extra));
try cg.mir_extra.ensureUnusedCapacity(cg.gpa, fields.len);
return cg.addExtraAssumeCapacity(extra);
}
/// Appends entries to `mir_extra` based on the type of `extra`.
/// Returns the index into `mir_extra`
fn addExtraAssumeCapacity(cg: *CodeGen, extra: anytype) error{OutOfMemory}!u32 {
const fields = std.meta.fields(@TypeOf(extra));
const result: u32 = @intCast(cg.mir_extra.items.len);
inline for (fields) |field| {
cg.mir_extra.appendAssumeCapacity(switch (field.type) {
u32 => @field(extra, field.name),
i32 => @bitCast(@field(extra, field.name)),
InternPool.Index,
InternPool.Nav.Index,
=> @intFromEnum(@field(extra, field.name)),
else => |field_type| @compileError("Unsupported field type " ++ @typeName(field_type)),
});
}
return result;
}
/// For `std.builtin.CallingConvention.auto`.
pub fn typeToValtype(ty: Type, zcu: *const Zcu, target: *const std.Target) std.wasm.Valtype {
const ip = &zcu.intern_pool;
return switch (ty.zigTypeTag(zcu)) {
.float => switch (ty.floatBits(target)) {
16 => .i32, // stored/loaded as u16
32 => .f32,
64 => .f64,
80, 128 => .i32,
else => unreachable,
},
.int, .@"enum" => switch (ty.intInfo(zcu).bits) {
0...32 => .i32,
33...64 => .i64,
else => .i32,
},
.@"struct" => blk: {
if (zcu.typeToPackedStruct(ty)) |packed_struct| {
const backing_int_ty = Type.fromInterned(packed_struct.backingIntTypeUnordered(ip));
break :blk typeToValtype(backing_int_ty, zcu, target);
} else {
break :blk .i32;
}
},
.vector => switch (CodeGen.determineSimdStoreStrategy(ty, zcu, target)) {
.direct => .v128,
.unrolled => .i32,
},
.@"union" => switch (ty.containerLayout(zcu)) {
.@"packed" => switch (ty.bitSize(zcu)) {
0...32 => .i32,
33...64 => .i64,
else => .i32,
},
else => .i32,
},
else => .i32, // all represented as reference/immediate
};
}
/// Using a given `Type`, returns the corresponding wasm value type
/// Differently from `typeToValtype` this also allows `void` to create a block
/// with no return type
fn genBlockType(ty: Type, zcu: *const Zcu, target: *const std.Target) std.wasm.BlockType {
return switch (ty.ip_index) {
.void_type, .noreturn_type => .empty,
else => .fromValtype(typeToValtype(ty, zcu, target)),
};
}
/// Writes the bytecode depending on the given `WValue` in `val`
fn emitWValue(cg: *CodeGen, value: WValue) InnerError!void {
switch (value) {
.dead => unreachable, // reference to free'd `WValue` (missing reuseOperand?)
.none, .stack => {}, // no-op
.local => |idx| try cg.addLocal(.local_get, idx.value),
.imm32 => |val| try cg.addImm32(val),
.imm64 => |val| try cg.addImm64(val),
.imm128 => |val| try cg.addImm128(val),
.float32 => |val| try cg.addInst(.{ .tag = .f32_const, .data = .{ .float32 = val } }),
.float64 => |val| try cg.addFloat64(val),
.nav_ref => |nav_ref| {
const zcu = cg.pt.zcu;
const ip = &zcu.intern_pool;
if (ip.getNav(nav_ref.nav_index).isFn(ip)) {
assert(nav_ref.offset == 0);
try cg.mir_indirect_function_set.put(cg.gpa, nav_ref.nav_index, {});
try cg.addInst(.{ .tag = .func_ref, .data = .{ .nav_index = nav_ref.nav_index } });
} else if (nav_ref.offset == 0) {
try cg.addInst(.{ .tag = .nav_ref, .data = .{ .nav_index = nav_ref.nav_index } });
} else {
try cg.addInst(.{
.tag = .nav_ref_off,
.data = .{
.payload = try cg.addExtra(Mir.NavRefOff{
.nav_index = nav_ref.nav_index,
.offset = nav_ref.offset,
}),
},
});
}
},
.uav_ref => |uav| {
const zcu = cg.pt.zcu;
const ip = &zcu.intern_pool;
assert(!ip.isFunctionType(ip.typeOf(uav.ip_index)));
const gop = try cg.mir_uavs.getOrPut(cg.gpa, uav.ip_index);
const this_align: Alignment = a: {
if (uav.orig_ptr_ty == .none) break :a .none;
const ptr_type = ip.indexToKey(uav.orig_ptr_ty).ptr_type;
const this_align = ptr_type.flags.alignment;
if (this_align == .none) break :a .none;
const abi_align = Type.fromInterned(ptr_type.child).abiAlignment(zcu);
if (this_align.compare(.lte, abi_align)) break :a .none;
break :a this_align;
};
if (!gop.found_existing or
gop.value_ptr.* == .none or
(this_align != .none and this_align.compare(.gt, gop.value_ptr.*)))
{
gop.value_ptr.* = this_align;
}
if (uav.offset == 0) {
try cg.addInst(.{
.tag = .uav_ref,
.data = .{ .ip_index = uav.ip_index },
});
} else {
try cg.addInst(.{
.tag = .uav_ref_off,
.data = .{ .payload = try cg.addExtra(@as(Mir.UavRefOff, .{
.value = uav.ip_index,
.offset = uav.offset,
})) },
});
}
},
.stack_offset => try cg.addLocal(.local_get, cg.bottom_stack_value.local.value), // caller must ensure to address the offset
}
}
/// If given a local or stack-offset, increases the reference count by 1.
/// The old `WValue` found at instruction `ref` is then replaced by the
/// modified `WValue` and returned. When given a non-local or non-stack-offset,
/// returns the given `operand` itfunc instead.
fn reuseOperand(cg: *CodeGen, ref: Air.Inst.Ref, operand: WValue) WValue {
if (operand != .local and operand != .stack_offset) return operand;
var new_value = operand;
switch (new_value) {
.local => |*local| local.references += 1,
.stack_offset => |*stack_offset| stack_offset.references += 1,
else => unreachable,
}
const old_value = cg.getResolvedInst(ref);
old_value.* = new_value;
return new_value;
}
/// From a reference, returns its resolved `WValue`.
/// It's illegal to provide a `Air.Inst.Ref` that hasn't been resolved yet.
fn getResolvedInst(cg: *CodeGen, ref: Air.Inst.Ref) *WValue {
var index = cg.branches.items.len;
while (index > 0) : (index -= 1) {
const branch = cg.branches.items[index - 1];
if (branch.values.getPtr(ref)) |value| {
return value;
}
}
unreachable; // developer-error: This can only be called on resolved instructions. Use `resolveInst` instead.
}
/// Creates one locals for a given `Type`.
/// Returns a corresponding `Wvalue` with `local` as active tag
fn allocLocal(cg: *CodeGen, ty: Type) InnerError!WValue {
const zcu = cg.pt.zcu;
const valtype = typeToValtype(ty, zcu, cg.target);
const index_or_null = switch (valtype) {
.i32 => cg.free_locals_i32.pop(),
.i64 => cg.free_locals_i64.pop(),
.f32 => cg.free_locals_f32.pop(),
.f64 => cg.free_locals_f64.pop(),
.v128 => cg.free_locals_v128.pop(),
};
if (index_or_null) |index| {
log.debug("reusing local ({d}) of type {}", .{ index, valtype });
return .{ .local = .{ .value = index, .references = 1 } };
}
log.debug("new local of type {}", .{valtype});
return cg.ensureAllocLocal(ty);
}
/// Ensures a new local will be created. This is useful when it's useful
/// to use a zero-initialized local.
fn ensureAllocLocal(cg: *CodeGen, ty: Type) InnerError!WValue {
const zcu = cg.pt.zcu;
try cg.mir_locals.append(cg.gpa, typeToValtype(ty, zcu, cg.target));
const initial_index = cg.local_index;
cg.local_index += 1;
return .{ .local = .{ .value = initial_index, .references = 1 } };
}
pub const Error = error{
OutOfMemory,
/// Compiler was asked to operate on a number larger than supported.
Overflow,
/// Indicates the error is already stored in Zcu `failed_codegen`.
CodegenFail,
};
pub fn generate(
bin_file: *link.File,
pt: Zcu.PerThread,
src_loc: Zcu.LazySrcLoc,
func_index: InternPool.Index,
air: *const Air,
liveness: *const ?Air.Liveness,
) Error!Mir {
_ = src_loc;
_ = bin_file;
const zcu = pt.zcu;
const gpa = zcu.gpa;
const cg = zcu.funcInfo(func_index);
const file_scope = zcu.navFileScope(cg.owner_nav);
const target = &file_scope.mod.?.resolved_target.result;
const fn_ty = zcu.navValue(cg.owner_nav).typeOf(zcu);
const fn_info = zcu.typeToFunc(fn_ty).?;
const ret_ty: Type = .fromInterned(fn_info.return_type);
const any_returns = !firstParamSRet(fn_info.cc, ret_ty, zcu, target) and ret_ty.hasRuntimeBitsIgnoreComptime(zcu);
var cc_result = try resolveCallingConventionValues(zcu, fn_ty, target);
defer cc_result.deinit(gpa);
var code_gen: CodeGen = .{
.gpa = gpa,
.pt = pt,
.air = air.*,
.liveness = liveness.*.?,
.owner_nav = cg.owner_nav,
.target = target,
.ptr_size = switch (target.cpu.arch) {
.wasm32 => .wasm32,
.wasm64 => .wasm64,
else => unreachable,
},
.func_index = func_index,
.args = cc_result.args,
.return_value = cc_result.return_value,
.local_index = cc_result.local_index,
.mir_instructions = .empty,
.mir_extra = .empty,
.mir_locals = .empty,
.mir_uavs = .empty,
.mir_indirect_function_set = .empty,
.mir_func_tys = .empty,
.error_name_table_ref_count = 0,
};
defer code_gen.deinit();
try code_gen.mir_func_tys.putNoClobber(gpa, fn_ty.toIntern(), {});
return generateInner(&code_gen, any_returns) catch |err| switch (err) {
error.CodegenFail,
error.OutOfMemory,
error.Overflow,
=> |e| return e,
else => |e| return code_gen.fail("failed to generate function: {s}", .{@errorName(e)}),
};
}
fn generateInner(cg: *CodeGen, any_returns: bool) InnerError!Mir {
const zcu = cg.pt.zcu;
try cg.branches.append(cg.gpa, .{});
// clean up outer branch
defer {
var outer_branch = cg.branches.pop().?;
outer_branch.deinit(cg.gpa);
assert(cg.branches.items.len == 0); // missing branch merge
}
// Generate MIR for function body
try cg.genBody(cg.air.getMainBody());
// In case we have a return value, but the last instruction is a noreturn (such as a while loop)
// we emit an unreachable instruction to tell the stack validator that part will never be reached.
if (any_returns and cg.air.instructions.len > 0) {
const inst: Air.Inst.Index = @enumFromInt(cg.air.instructions.len - 1);
const last_inst_ty = cg.typeOfIndex(inst);
if (!last_inst_ty.hasRuntimeBitsIgnoreComptime(zcu) or last_inst_ty.isNoReturn(zcu)) {
try cg.addTag(.@"unreachable");
}
}
// End of function body
try cg.addTag(.end);
try cg.addTag(.dbg_epilogue_begin);
var mir: Mir = .{
.instructions = cg.mir_instructions.toOwnedSlice(),
.extra = &.{}, // fallible so assigned after errdefer
.locals = &.{}, // fallible so assigned after errdefer
.prologue = if (cg.initial_stack_value == .none) .none else .{
.sp_local = cg.initial_stack_value.local.value,
.flags = .{ .stack_alignment = cg.stack_alignment },
.stack_size = cg.stack_size,
.bottom_stack_local = cg.bottom_stack_value.local.value,
},
.uavs = cg.mir_uavs.move(),
.indirect_function_set = cg.mir_indirect_function_set.move(),
.func_tys = cg.mir_func_tys.move(),
.error_name_table_ref_count = cg.error_name_table_ref_count,
};
errdefer mir.deinit(cg.gpa);
mir.extra = try cg.mir_extra.toOwnedSlice(cg.gpa);
mir.locals = try cg.mir_locals.toOwnedSlice(cg.gpa);
return mir;
}
const CallWValues = struct {
args: []WValue,
return_value: WValue,
local_index: u32,
fn deinit(values: *CallWValues, gpa: Allocator) void {
gpa.free(values.args);
values.* = undefined;
}
};
fn resolveCallingConventionValues(
zcu: *const Zcu,
fn_ty: Type,
target: *const std.Target,
) Allocator.Error!CallWValues {
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const fn_info = zcu.typeToFunc(fn_ty).?;
const cc = fn_info.cc;
var result: CallWValues = .{
.args = &.{},
.return_value = .none,
.local_index = 0,
};
if (cc == .naked) return result;
var args = std.array_list.Managed(WValue).init(gpa);
defer args.deinit();
// Check if we store the result as a pointer to the stack rather than
// by value
if (firstParamSRet(fn_info.cc, Type.fromInterned(fn_info.return_type), zcu, target)) {
// the sret arg will be passed as first argument, therefore we
// set the `return_value` before allocating locals for regular args.
result.return_value = .{ .local = .{ .value = result.local_index, .references = 1 } };
result.local_index += 1;
}
switch (cc) {
.auto => {
for (fn_info.param_types.get(ip)) |ty| {
if (!Type.fromInterned(ty).hasRuntimeBitsIgnoreComptime(zcu)) {
continue;
}
try args.append(.{ .local = .{ .value = result.local_index, .references = 1 } });
result.local_index += 1;
}
},
.wasm_mvp => {
for (fn_info.param_types.get(ip)) |ty| {
if (!Type.fromInterned(ty).hasRuntimeBitsIgnoreComptime(zcu)) {
continue;
}
switch (abi.classifyType(.fromInterned(ty), zcu)) {
.direct => |scalar_ty| if (!abi.lowerAsDoubleI64(scalar_ty, zcu)) {
try args.append(.{ .local = .{ .value = result.local_index, .references = 1 } });
result.local_index += 1;
} else {
try args.append(.{ .local = .{ .value = result.local_index, .references = 1 } });
try args.append(.{ .local = .{ .value = result.local_index + 1, .references = 1 } });
result.local_index += 2;
},
.indirect => {
try args.append(.{ .local = .{ .value = result.local_index, .references = 1 } });
result.local_index += 1;
},
}
}
},
else => unreachable, // Frontend is responsible for emitting an error earlier.
}
result.args = try args.toOwnedSlice();
return result;
}
pub fn firstParamSRet(
cc: std.builtin.CallingConvention,
return_type: Type,
zcu: *const Zcu,
target: *const std.Target,
) bool {
if (!return_type.hasRuntimeBitsIgnoreComptime(zcu)) return false;
switch (cc) {
.@"inline" => unreachable,
.auto => return isByRef(return_type, zcu, target),
.wasm_mvp => switch (abi.classifyType(return_type, zcu)) {
.direct => |scalar_ty| return abi.lowerAsDoubleI64(scalar_ty, zcu),
.indirect => return true,
},
else => return false,
}
}
/// Lowers a Zig type and its value based on a given calling convention to ensure
/// it matches the ABI.
fn lowerArg(cg: *CodeGen, cc: std.builtin.CallingConvention, ty: Type, value: WValue) !void {
if (cc != .wasm_mvp) {
return cg.lowerToStack(value);
}
const zcu = cg.pt.zcu;
switch (abi.classifyType(ty, zcu)) {
.direct => |scalar_type| if (!abi.lowerAsDoubleI64(scalar_type, zcu)) {
if (!isByRef(ty, zcu, cg.target)) {
return cg.lowerToStack(value);
} else {
switch (value) {
.nav_ref, .stack_offset => _ = try cg.load(value, scalar_type, 0),
.dead => unreachable,
else => try cg.emitWValue(value),
}
}
} else {
assert(ty.abiSize(zcu) == 16);
// in this case we have an integer or float that must be lowered as 2 i64's.
try cg.emitWValue(value);
try cg.addMemArg(.i64_load, .{ .offset = value.offset(), .alignment = 8 });
try cg.emitWValue(value);
try cg.addMemArg(.i64_load, .{ .offset = value.offset() + 8, .alignment = 8 });
},
.indirect => return cg.lowerToStack(value),
}
}
/// Lowers a `WValue` to the stack. This means when the `value` results in
/// `.stack_offset` we calculate the pointer of this offset and use that.
/// The value is left on the stack, and not stored in any temporary.
fn lowerToStack(cg: *CodeGen, value: WValue) !void {
switch (value) {
.stack_offset => |offset| {
try cg.emitWValue(value);
if (offset.value > 0) {
switch (cg.ptr_size) {
.wasm32 => {
try cg.addImm32(offset.value);
try cg.addTag(.i32_add);
},
.wasm64 => {
try cg.addImm64(offset.value);
try cg.addTag(.i64_add);
},
}
}
},
else => try cg.emitWValue(value),
}
}
/// Creates a local for the initial stack value
/// Asserts `initial_stack_value` is `.none`
fn initializeStack(cg: *CodeGen) !void {
assert(cg.initial_stack_value == .none);
// Reserve a local to store the current stack pointer
// We can later use this local to set the stack pointer back to the value
// we have stored here.
cg.initial_stack_value = try cg.ensureAllocLocal(Type.usize);
// Also reserve a local to store the bottom stack value
cg.bottom_stack_value = try cg.ensureAllocLocal(Type.usize);
}
/// Reads the stack pointer from `Context.initial_stack_value` and writes it
/// to the global stack pointer variable
fn restoreStackPointer(cg: *CodeGen) !void {
// only restore the pointer if it was initialized
if (cg.initial_stack_value == .none) return;
// Get the original stack pointer's value
try cg.emitWValue(cg.initial_stack_value);
try cg.addTag(.global_set_sp);
}
/// From a given type, will create space on the virtual stack to store the value of such type.
/// This returns a `WValue` with its active tag set to `local`, containing the index to the local
/// that points to the position on the virtual stack. This function should be used instead of
/// moveStack unless a local was already created to store the pointer.
///
/// Asserts Type has codegenbits
fn allocStack(cg: *CodeGen, ty: Type) !WValue {
const pt = cg.pt;
const zcu = pt.zcu;
assert(ty.hasRuntimeBitsIgnoreComptime(zcu));
if (cg.initial_stack_value == .none) {
try cg.initializeStack();
}
const abi_size = std.math.cast(u32, ty.abiSize(zcu)) orelse {
return cg.fail("Type {f} with ABI size of {d} exceeds stack frame size", .{
ty.fmt(pt), ty.abiSize(zcu),
});
};
const abi_align = ty.abiAlignment(zcu);
cg.stack_alignment = cg.stack_alignment.max(abi_align);
const offset: u32 = @intCast(abi_align.forward(cg.stack_size));
defer cg.stack_size = offset + abi_size;
return .{ .stack_offset = .{ .value = offset, .references = 1 } };
}
/// From a given AIR instruction generates a pointer to the stack where
/// the value of its type will live.
/// This is different from allocStack where this will use the pointer's alignment
/// if it is set, to ensure the stack alignment will be set correctly.
fn allocStackPtr(cg: *CodeGen, inst: Air.Inst.Index) !WValue {
const pt = cg.pt;
const zcu = pt.zcu;
const ptr_ty = cg.typeOfIndex(inst);
const pointee_ty = ptr_ty.childType(zcu);
if (cg.initial_stack_value == .none) {
try cg.initializeStack();
}
if (!pointee_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
return cg.allocStack(Type.usize); // create a value containing just the stack pointer.
}
const abi_alignment = ptr_ty.ptrAlignment(zcu);
const abi_size = std.math.cast(u32, pointee_ty.abiSize(zcu)) orelse {
return cg.fail("Type {f} with ABI size of {d} exceeds stack frame size", .{
pointee_ty.fmt(pt), pointee_ty.abiSize(zcu),
});
};
cg.stack_alignment = cg.stack_alignment.max(abi_alignment);
const offset: u32 = @intCast(abi_alignment.forward(cg.stack_size));
defer cg.stack_size = offset + abi_size;
return .{ .stack_offset = .{ .value = offset, .references = 1 } };
}
/// From given zig bitsize, returns the wasm bitsize
fn toWasmBits(bits: u16) ?u16 {
return for ([_]u16{ 32, 64, 128 }) |wasm_bits| {
if (bits <= wasm_bits) return wasm_bits;
} else null;
}
/// Performs a copy of bytes for a given type. Copying all bytes
/// from rhs to lhs.
fn memcpy(cg: *CodeGen, dst: WValue, src: WValue, len: WValue) !void {
const len_known_neq_0 = switch (len) {
.imm32 => |val| if (val != 0) true else return,
.imm64 => |val| if (val != 0) true else return,
else => false,
};
// When bulk_memory is enabled, we lower it to wasm's memcpy instruction.
// If not, we lower it ourselves manually
if (cg.target.cpu.has(.wasm, .bulk_memory)) {
const len0_ok = cg.target.cpu.has(.wasm, .nontrapping_bulk_memory_len0);
const emit_check = !(len0_ok or len_known_neq_0);
if (emit_check) {
try cg.startBlock(.block, .empty);
// Even if `len` is zero, the spec requires an implementation to trap if `src + len` or
// `dst + len` are out of memory bounds. This can easily happen in Zig in a case such
// as:
//
// const dst: [*]u8 = undefined;
// const src: [*]u8 = undefined;
// var len: usize = runtime_zero();
// @memcpy(dst[0..len], src[0..len]);
//
// So explicitly avoid using `memory.copy` in the `len == 0` case. Lovely design.
try cg.emitWValue(len);
try cg.addTag(.i32_eqz);
try cg.addLabel(.br_if, 0);
}
try cg.lowerToStack(dst);
try cg.lowerToStack(src);
try cg.emitWValue(len);
try cg.addExtended(.memory_copy);
if (emit_check) {
try cg.endBlock();
}
return;
}
// when the length is comptime-known, rather than a runtime value, we can optimize the generated code by having
// the loop during codegen, rather than inserting a runtime loop into the binary.
switch (len) {
.imm32, .imm64 => blk: {
const length = switch (len) {
.imm32 => |val| val,
.imm64 => |val| val,
else => unreachable,
};
// if the size (length) is more than 32 bytes, we use a runtime loop instead to prevent
// binary size bloat.
if (length > 32) break :blk;
var offset: u32 = 0;
const lhs_base = dst.offset();
const rhs_base = src.offset();
while (offset < length) : (offset += 1) {
// get dst's address to store the result
try cg.emitWValue(dst);
// load byte from src's address
try cg.emitWValue(src);
switch (cg.ptr_size) {
.wasm32 => {
try cg.addMemArg(.i32_load8_u, .{ .offset = rhs_base + offset, .alignment = 1 });
try cg.addMemArg(.i32_store8, .{ .offset = lhs_base + offset, .alignment = 1 });
},
.wasm64 => {
try cg.addMemArg(.i64_load8_u, .{ .offset = rhs_base + offset, .alignment = 1 });
try cg.addMemArg(.i64_store8, .{ .offset = lhs_base + offset, .alignment = 1 });
},
}
}
return;
},
else => {},
}
// allocate a local for the offset, and set it to 0.
// This to ensure that inside loops we correctly re-set the counter.
var offset = try cg.allocLocal(Type.usize); // local for counter
defer offset.free(cg);
switch (cg.ptr_size) {
.wasm32 => try cg.addImm32(0),
.wasm64 => try cg.addImm64(0),
}
try cg.addLocal(.local_set, offset.local.value);
// outer block to jump to when loop is done
try cg.startBlock(.block, .empty);
try cg.startBlock(.loop, .empty);
// loop condition (offset == length -> break)
{
try cg.emitWValue(offset);
try cg.emitWValue(len);
switch (cg.ptr_size) {
.wasm32 => try cg.addTag(.i32_eq),
.wasm64 => try cg.addTag(.i64_eq),
}
try cg.addLabel(.br_if, 1); // jump out of loop into outer block (finished)
}
// get dst ptr
{
try cg.emitWValue(dst);
try cg.emitWValue(offset);
switch (cg.ptr_size) {
.wasm32 => try cg.addTag(.i32_add),
.wasm64 => try cg.addTag(.i64_add),
}
}
// get src value and also store in dst
{
try cg.emitWValue(src);
try cg.emitWValue(offset);
switch (cg.ptr_size) {
.wasm32 => {
try cg.addTag(.i32_add);
try cg.addMemArg(.i32_load8_u, .{ .offset = src.offset(), .alignment = 1 });
try cg.addMemArg(.i32_store8, .{ .offset = dst.offset(), .alignment = 1 });
},
.wasm64 => {
try cg.addTag(.i64_add);
try cg.addMemArg(.i64_load8_u, .{ .offset = src.offset(), .alignment = 1 });
try cg.addMemArg(.i64_store8, .{ .offset = dst.offset(), .alignment = 1 });
},
}
}
// increment loop counter
{
try cg.emitWValue(offset);
switch (cg.ptr_size) {
.wasm32 => {
try cg.addImm32(1);
try cg.addTag(.i32_add);
},
.wasm64 => {
try cg.addImm64(1);
try cg.addTag(.i64_add);
},
}
try cg.addLocal(.local_set, offset.local.value);
try cg.addLabel(.br, 0); // jump to start of loop
}
try cg.endBlock(); // close off loop block
try cg.endBlock(); // close off outer block
}
fn ptrSize(cg: *const CodeGen) u16 {
return @divExact(cg.target.ptrBitWidth(), 8);
}
/// For a given `Type`, will return true when the type will be passed
/// by reference, rather than by value
fn isByRef(ty: Type, zcu: *const Zcu, target: *const std.Target) bool {
const ip = &zcu.intern_pool;
switch (ty.zigTypeTag(zcu)) {
.type,
.comptime_int,
.comptime_float,
.enum_literal,
.undefined,
.null,
.@"opaque",
=> unreachable,
.noreturn,
.void,
.bool,
.error_set,
.@"fn",
.@"anyframe",
=> return false,
.array,
.frame,
=> return ty.hasRuntimeBitsIgnoreComptime(zcu),
.@"union" => {
if (zcu.typeToUnion(ty)) |union_obj| {
if (union_obj.flagsUnordered(ip).layout == .@"packed") {
return ty.abiSize(zcu) > 8;
}
}
return ty.hasRuntimeBitsIgnoreComptime(zcu);
},
.@"struct" => {
if (zcu.typeToPackedStruct(ty)) |packed_struct| {
return isByRef(Type.fromInterned(packed_struct.backingIntTypeUnordered(ip)), zcu, target);
}
return ty.hasRuntimeBitsIgnoreComptime(zcu);
},
.vector => return determineSimdStoreStrategy(ty, zcu, target) == .unrolled,
.int => return ty.intInfo(zcu).bits > 64,
.@"enum" => return ty.intInfo(zcu).bits > 64,
.float => return ty.floatBits(target) > 64,
.error_union => {
const pl_ty = ty.errorUnionPayload(zcu);
if (!pl_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
return false;
}
return true;
},
.optional => {
if (ty.isPtrLikeOptional(zcu)) return false;
const pl_type = ty.optionalChild(zcu);
if (pl_type.zigTypeTag(zcu) == .error_set) return false;
return pl_type.hasRuntimeBitsIgnoreComptime(zcu);
},
.pointer => {
// Slices act like struct and will be passed by reference
if (ty.isSlice(zcu)) return true;
return false;
},
}
}
const SimdStoreStrategy = enum {
direct,
unrolled,
};
/// For a given vector type, returns the `SimdStoreStrategy`.
/// This means when a given type is 128 bits and either the simd128 or relaxed-simd
/// features are enabled, the function will return `.direct`. This would allow to store
/// it using a instruction, rather than an unrolled version.
pub fn determineSimdStoreStrategy(ty: Type, zcu: *const Zcu, target: *const std.Target) SimdStoreStrategy {
assert(ty.zigTypeTag(zcu) == .vector);
if (ty.bitSize(zcu) != 128) return .unrolled;
if (target.cpu.has(.wasm, .relaxed_simd) or target.cpu.has(.wasm, .simd128)) {
return .direct;
}
return .unrolled;
}
/// Creates a new local for a pointer that points to memory with given offset.
/// This can be used to get a pointer to a struct field, error payload, etc.
/// By providing `modify` as action, it will modify the given `ptr_value` instead of making a new
/// local value to store the pointer. This allows for local re-use and improves binary size.
fn buildPointerOffset(cg: *CodeGen, ptr_value: WValue, offset: u64, action: enum { modify, new }) InnerError!WValue {
// do not perform arithmetic when offset is 0.
if (offset == 0 and ptr_value.offset() == 0 and action == .modify) return ptr_value;
const result_ptr: WValue = switch (action) {
.new => try cg.ensureAllocLocal(Type.usize),
.modify => ptr_value,
};
try cg.emitWValue(ptr_value);
if (offset + ptr_value.offset() > 0) {
switch (cg.ptr_size) {
.wasm32 => {
try cg.addImm32(@intCast(offset + ptr_value.offset()));
try cg.addTag(.i32_add);
},
.wasm64 => {
try cg.addImm64(offset + ptr_value.offset());
try cg.addTag(.i64_add);
},
}
}
try cg.addLocal(.local_set, result_ptr.local.value);
return result_ptr;
}
fn genInst(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const air_tags = cg.air.instructions.items(.tag);
return switch (air_tags[@intFromEnum(inst)]) {
// No "scalarize" legalizations are enabled, so these instructions never appear.
.legalize_vec_elem_val => unreachable,
.legalize_vec_store_elem => unreachable,
.inferred_alloc, .inferred_alloc_comptime => unreachable,
.add => cg.airBinOp(inst, .add),
.add_sat => cg.airSatBinOp(inst, .add),
.add_wrap => cg.airWrapBinOp(inst, .add),
.sub => cg.airBinOp(inst, .sub),
.sub_sat => cg.airSatBinOp(inst, .sub),
.sub_wrap => cg.airWrapBinOp(inst, .sub),
.mul => cg.airBinOp(inst, .mul),
.mul_sat => cg.airSatMul(inst),
.mul_wrap => cg.airWrapBinOp(inst, .mul),
.div_float, .div_exact => cg.airDiv(inst),
.div_trunc => cg.airDivTrunc(inst),
.div_floor => cg.airDivFloor(inst),
.bit_and => cg.airBinOp(inst, .@"and"),
.bit_or => cg.airBinOp(inst, .@"or"),
.bool_and => cg.airBinOp(inst, .@"and"),
.bool_or => cg.airBinOp(inst, .@"or"),
.rem => cg.airRem(inst),
.mod => cg.airMod(inst),
.shl => cg.airWrapBinOp(inst, .shl),
.shl_exact => cg.airBinOp(inst, .shl),
.shl_sat => cg.airShlSat(inst),
.shr, .shr_exact => cg.airBinOp(inst, .shr),
.xor => cg.airBinOp(inst, .xor),
.max => cg.airMaxMin(inst, .fmax, .gt),
.min => cg.airMaxMin(inst, .fmin, .lt),
.mul_add => cg.airMulAdd(inst),
.sqrt => cg.airUnaryFloatOp(inst, .sqrt),
.sin => cg.airUnaryFloatOp(inst, .sin),
.cos => cg.airUnaryFloatOp(inst, .cos),
.tan => cg.airUnaryFloatOp(inst, .tan),
.exp => cg.airUnaryFloatOp(inst, .exp),
.exp2 => cg.airUnaryFloatOp(inst, .exp2),
.log => cg.airUnaryFloatOp(inst, .log),
.log2 => cg.airUnaryFloatOp(inst, .log2),
.log10 => cg.airUnaryFloatOp(inst, .log10),
.floor => cg.airUnaryFloatOp(inst, .floor),
.ceil => cg.airUnaryFloatOp(inst, .ceil),
.round => cg.airUnaryFloatOp(inst, .round),
.trunc_float => cg.airUnaryFloatOp(inst, .trunc),
.neg => cg.airUnaryFloatOp(inst, .neg),
.abs => cg.airAbs(inst),
.add_with_overflow => cg.airAddSubWithOverflow(inst, .add),
.sub_with_overflow => cg.airAddSubWithOverflow(inst, .sub),
.shl_with_overflow => cg.airShlWithOverflow(inst),
.mul_with_overflow => cg.airMulWithOverflow(inst),
.clz => cg.airClz(inst),
.ctz => cg.airCtz(inst),
.cmp_eq => cg.airCmp(inst, .eq),
.cmp_gte => cg.airCmp(inst, .gte),
.cmp_gt => cg.airCmp(inst, .gt),
.cmp_lte => cg.airCmp(inst, .lte),
.cmp_lt => cg.airCmp(inst, .lt),
.cmp_neq => cg.airCmp(inst, .neq),
.cmp_vector => cg.airCmpVector(inst),
.cmp_lt_errors_len => cg.airCmpLtErrorsLen(inst),
.array_elem_val => cg.airArrayElemVal(inst),
.array_to_slice => cg.airArrayToSlice(inst),
.alloc => cg.airAlloc(inst),
.arg => cg.airArg(inst),
.bitcast => cg.airBitcast(inst),
.block => cg.airBlock(inst),
.trap => cg.airTrap(inst),
.breakpoint => cg.airBreakpoint(inst),
.br => cg.airBr(inst),
.repeat => cg.airRepeat(inst),
.switch_dispatch => cg.airSwitchDispatch(inst),
.cond_br => cg.airCondBr(inst),
.intcast => cg.airIntcast(inst),
.fptrunc => cg.airFptrunc(inst),
.fpext => cg.airFpext(inst),
.int_from_float => cg.airIntFromFloat(inst),
.float_from_int => cg.airFloatFromInt(inst),
.get_union_tag => cg.airGetUnionTag(inst),
.@"try" => cg.airTry(inst),
.try_cold => cg.airTry(inst),
.try_ptr => cg.airTryPtr(inst),
.try_ptr_cold => cg.airTryPtr(inst),
.dbg_stmt => cg.airDbgStmt(inst),
.dbg_empty_stmt => try cg.finishAir(inst, .none, &.{}),
.dbg_inline_block => cg.airDbgInlineBlock(inst),
.dbg_var_ptr => cg.airDbgVar(inst, .local_var, true),
.dbg_var_val => cg.airDbgVar(inst, .local_var, false),
.dbg_arg_inline => cg.airDbgVar(inst, .arg, false),
.call => cg.airCall(inst, .auto),
.call_always_tail => cg.airCall(inst, .always_tail),
.call_never_tail => cg.airCall(inst, .never_tail),
.call_never_inline => cg.airCall(inst, .never_inline),
.is_err => cg.airIsErr(inst, .i32_ne, .value),
.is_non_err => cg.airIsErr(inst, .i32_eq, .value),
.is_err_ptr => cg.airIsErr(inst, .i32_ne, .ptr),
.is_non_err_ptr => cg.airIsErr(inst, .i32_eq, .ptr),
.is_null => cg.airIsNull(inst, .i32_eq, .value),
.is_non_null => cg.airIsNull(inst, .i32_ne, .value),
.is_null_ptr => cg.airIsNull(inst, .i32_eq, .ptr),
.is_non_null_ptr => cg.airIsNull(inst, .i32_ne, .ptr),
.load => cg.airLoad(inst),
.loop => cg.airLoop(inst),
.memset => cg.airMemset(inst, false),
.memset_safe => cg.airMemset(inst, true),
.not => cg.airNot(inst),
.optional_payload => cg.airOptionalPayload(inst),
.optional_payload_ptr => cg.airOptionalPayloadPtr(inst),
.optional_payload_ptr_set => cg.airOptionalPayloadPtrSet(inst),
.ptr_add => cg.airPtrBinOp(inst, .add),
.ptr_sub => cg.airPtrBinOp(inst, .sub),
.ptr_elem_ptr => cg.airPtrElemPtr(inst),
.ptr_elem_val => cg.airPtrElemVal(inst),
.ret => cg.airRet(inst),
.ret_safe => cg.airRet(inst), // TODO
.ret_ptr => cg.airRetPtr(inst),
.ret_load => cg.airRetLoad(inst),
.splat => cg.airSplat(inst),
.select => cg.airSelect(inst),
.shuffle_one => cg.airShuffleOne(inst),
.shuffle_two => cg.airShuffleTwo(inst),
.reduce => cg.airReduce(inst),
.aggregate_init => cg.airAggregateInit(inst),
.union_init => cg.airUnionInit(inst),
.prefetch => cg.airPrefetch(inst),
.popcount => cg.airPopcount(inst),
.byte_swap => cg.airByteSwap(inst),
.bit_reverse => cg.airBitReverse(inst),
.slice => cg.airSlice(inst),
.slice_len => cg.airSliceLen(inst),
.slice_elem_val => cg.airSliceElemVal(inst),
.slice_elem_ptr => cg.airSliceElemPtr(inst),
.slice_ptr => cg.airSlicePtr(inst),
.ptr_slice_len_ptr => cg.airPtrSliceFieldPtr(inst, cg.ptrSize()),
.ptr_slice_ptr_ptr => cg.airPtrSliceFieldPtr(inst, 0),
.store => cg.airStore(inst, false),
.store_safe => cg.airStore(inst, true),
.set_union_tag => cg.airSetUnionTag(inst),
.struct_field_ptr => cg.airStructFieldPtr(inst),
.struct_field_ptr_index_0 => cg.airStructFieldPtrIndex(inst, 0),
.struct_field_ptr_index_1 => cg.airStructFieldPtrIndex(inst, 1),
.struct_field_ptr_index_2 => cg.airStructFieldPtrIndex(inst, 2),
.struct_field_ptr_index_3 => cg.airStructFieldPtrIndex(inst, 3),
.struct_field_val => cg.airStructFieldVal(inst),
.field_parent_ptr => cg.airFieldParentPtr(inst),
.switch_br => cg.airSwitchBr(inst, false),
.loop_switch_br => cg.airSwitchBr(inst, true),
.trunc => cg.airTrunc(inst),
.unreach => cg.airUnreachable(inst),
.wrap_optional => cg.airWrapOptional(inst),
.unwrap_errunion_payload => cg.airUnwrapErrUnionPayload(inst, false),
.unwrap_errunion_payload_ptr => cg.airUnwrapErrUnionPayload(inst, true),
.unwrap_errunion_err => cg.airUnwrapErrUnionError(inst, false),
.unwrap_errunion_err_ptr => cg.airUnwrapErrUnionError(inst, true),
.wrap_errunion_payload => cg.airWrapErrUnionPayload(inst),
.wrap_errunion_err => cg.airWrapErrUnionErr(inst),
.errunion_payload_ptr_set => cg.airErrUnionPayloadPtrSet(inst),
.error_name => cg.airErrorName(inst),
.wasm_memory_size => cg.airWasmMemorySize(inst),
.wasm_memory_grow => cg.airWasmMemoryGrow(inst),
.memcpy, .memmove => cg.airMemcpy(inst),
.ret_addr => cg.airRetAddr(inst),
.tag_name => cg.airTagName(inst),
.error_set_has_value => cg.airErrorSetHasValue(inst),
.frame_addr => cg.airFrameAddress(inst),
.runtime_nav_ptr => cg.airRuntimeNavPtr(inst),
.assembly,
.err_return_trace,
.set_err_return_trace,
.save_err_return_trace_index,
.is_named_enum_value,
.addrspace_cast,
.c_va_arg,
.c_va_copy,
.c_va_end,
.c_va_start,
=> |tag| return cg.fail("TODO: Implement wasm inst: {s}", .{@tagName(tag)}),
.atomic_load => cg.airAtomicLoad(inst),
.atomic_store_unordered,
.atomic_store_monotonic,
.atomic_store_release,
.atomic_store_seq_cst,
// in WebAssembly, all atomic instructions are sequentially ordered.
=> cg.airAtomicStore(inst),
.atomic_rmw => cg.airAtomicRmw(inst),
.cmpxchg_weak => cg.airCmpxchg(inst),
.cmpxchg_strong => cg.airCmpxchg(inst),
.add_optimized,
.sub_optimized,
.mul_optimized,
.div_float_optimized,
.div_trunc_optimized,
.div_floor_optimized,
.div_exact_optimized,
.rem_optimized,
.mod_optimized,
.neg_optimized,
.cmp_lt_optimized,
.cmp_lte_optimized,
.cmp_eq_optimized,
.cmp_gte_optimized,
.cmp_gt_optimized,
.cmp_neq_optimized,
.cmp_vector_optimized,
.reduce_optimized,
.int_from_float_optimized,
=> return cg.fail("TODO implement optimized float mode", .{}),
.add_safe,
.sub_safe,
.mul_safe,
.intcast_safe,
.int_from_float_safe,
.int_from_float_optimized_safe,
=> return cg.fail("TODO implement safety_checked_instructions", .{}),
.work_item_id,
.work_group_size,
.work_group_id,
=> unreachable,
};
}
fn genBody(cg: *CodeGen, body: []const Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ip = &zcu.intern_pool;
for (body) |inst| {
if (cg.liveness.isUnused(inst) and !cg.air.mustLower(inst, ip)) {
continue;
}
const old_bookkeeping_value = cg.air_bookkeeping;
try cg.currentBranch().values.ensureUnusedCapacity(cg.gpa, Air.Liveness.bpi);
try cg.genInst(inst);
if (std.debug.runtime_safety and cg.air_bookkeeping < old_bookkeeping_value + 1) {
std.debug.panic("Missing call to `finishAir` in AIR instruction %{d} ('{t}')", .{
inst,
cg.air.instructions.items(.tag)[@intFromEnum(inst)],
});
}
}
}
fn airRet(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const un_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try cg.resolveInst(un_op);
const fn_info = zcu.typeToFunc(zcu.navValue(cg.owner_nav).typeOf(zcu)).?;
const ret_ty = Type.fromInterned(fn_info.return_type);
// result must be stored in the stack and we return a pointer
// to the stack instead
if (cg.return_value != .none) {
try cg.store(cg.return_value, operand, ret_ty, 0);
} else if (fn_info.cc == .wasm_mvp and ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
switch (abi.classifyType(ret_ty, zcu)) {
.direct => |scalar_type| {
assert(!abi.lowerAsDoubleI64(scalar_type, zcu));
if (!isByRef(ret_ty, zcu, cg.target)) {
try cg.emitWValue(operand);
} else {
_ = try cg.load(operand, scalar_type, 0);
}
},
.indirect => unreachable,
}
} else {
if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu) and ret_ty.isError(zcu)) {
try cg.addImm32(0);
} else {
try cg.emitWValue(operand);
}
}
try cg.restoreStackPointer();
try cg.addTag(.@"return");
return cg.finishAir(inst, .none, &.{un_op});
}
fn airRetPtr(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const child_type = cg.typeOfIndex(inst).childType(zcu);
const result = result: {
if (!child_type.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) {
break :result try cg.allocStack(Type.usize); // create pointer to void
}
const fn_info = zcu.typeToFunc(zcu.navValue(cg.owner_nav).typeOf(zcu)).?;
if (firstParamSRet(fn_info.cc, Type.fromInterned(fn_info.return_type), zcu, cg.target)) {
break :result cg.return_value;
}
break :result try cg.allocStackPtr(inst);
};
return cg.finishAir(inst, result, &.{});
}
fn airRetLoad(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const un_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try cg.resolveInst(un_op);
const ret_ty = cg.typeOf(un_op).childType(zcu);
const fn_info = zcu.typeToFunc(zcu.navValue(cg.owner_nav).typeOf(zcu)).?;
if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
if (ret_ty.isError(zcu)) {
try cg.addImm32(0);
}
} else if (!firstParamSRet(fn_info.cc, Type.fromInterned(fn_info.return_type), zcu, cg.target)) {
// leave on the stack
_ = try cg.load(operand, ret_ty, 0);
}
try cg.restoreStackPointer();
try cg.addTag(.@"return");
return cg.finishAir(inst, .none, &.{un_op});
}
fn airCall(cg: *CodeGen, inst: Air.Inst.Index, modifier: std.builtin.CallModifier) InnerError!void {
if (modifier == .always_tail) return cg.fail("TODO implement tail calls for wasm", .{});
const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = cg.air.extraData(Air.Call, pl_op.payload);
const args: []const Air.Inst.Ref = @ptrCast(cg.air.extra.items[extra.end..][0..extra.data.args_len]);
const ty = cg.typeOf(pl_op.operand);
const pt = cg.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const fn_ty = switch (ty.zigTypeTag(zcu)) {
.@"fn" => ty,
.pointer => ty.childType(zcu),
else => unreachable,
};
const ret_ty = fn_ty.fnReturnType(zcu);
const fn_info = zcu.typeToFunc(fn_ty).?;
const first_param_sret = firstParamSRet(fn_info.cc, Type.fromInterned(fn_info.return_type), zcu, cg.target);
const callee: ?InternPool.Nav.Index = blk: {
const func_val = (try cg.air.value(pl_op.operand, pt)) orelse break :blk null;
switch (ip.indexToKey(func_val.toIntern())) {
inline .func, .@"extern" => |x| break :blk x.owner_nav,
.ptr => |ptr| if (ptr.byte_offset == 0) switch (ptr.base_addr) {
.nav => |nav| break :blk nav,
else => {},
},
else => {},
}
return cg.fail("unable to lower callee to a function index", .{});
};
const sret: WValue = if (first_param_sret) blk: {
const sret_local = try cg.allocStack(ret_ty);
try cg.lowerToStack(sret_local);
break :blk sret_local;
} else .none;
for (args) |arg| {
const arg_val = try cg.resolveInst(arg);
const arg_ty = cg.typeOf(arg);
if (!arg_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue;
try cg.lowerArg(zcu.typeToFunc(fn_ty).?.cc, arg_ty, arg_val);
}
if (callee) |nav_index| {
try cg.addInst(.{ .tag = .call_nav, .data = .{ .nav_index = nav_index } });
} else {
// in this case we call a function pointer
// so load its value onto the stack
assert(ty.zigTypeTag(zcu) == .pointer);
const operand = try cg.resolveInst(pl_op.operand);
try cg.emitWValue(operand);
try cg.mir_func_tys.put(cg.gpa, fn_ty.toIntern(), {});
try cg.addInst(.{
.tag = .call_indirect,
.data = .{ .ip_index = fn_ty.toIntern() },
});
}
const result_value = result_value: {
if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu) and !ret_ty.isError(zcu)) {
break :result_value .none;
} else if (ret_ty.isNoReturn(zcu)) {
try cg.addTag(.@"unreachable");
break :result_value .none;
} else if (first_param_sret) {
break :result_value sret;
} else if (zcu.typeToFunc(fn_ty).?.cc == .wasm_mvp) {
switch (abi.classifyType(ret_ty, zcu)) {
.direct => |scalar_type| {
assert(!abi.lowerAsDoubleI64(scalar_type, zcu));
if (!isByRef(ret_ty, zcu, cg.target)) {
const result_local = try cg.allocLocal(ret_ty);
try cg.addLocal(.local_set, result_local.local.value);
break :result_value result_local;
} else {
const result_local = try cg.allocLocal(ret_ty);
try cg.addLocal(.local_set, result_local.local.value);
const result = try cg.allocStack(ret_ty);
try cg.store(result, result_local, scalar_type, 0);
break :result_value result;
}
},
.indirect => unreachable,
}
} else {
const result_local = try cg.allocLocal(ret_ty);
try cg.addLocal(.local_set, result_local.local.value);
break :result_value result_local;
}
};
var bt = try cg.iterateBigTomb(inst, 1 + args.len);
bt.feed(pl_op.operand);
for (args) |arg| bt.feed(arg);
return bt.finishAir(result_value);
}
fn airAlloc(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const value = try cg.allocStackPtr(inst);
return cg.finishAir(inst, value, &.{});
}
fn airStore(cg: *CodeGen, inst: Air.Inst.Index, safety: bool) InnerError!void {
const pt = cg.pt;
const zcu = pt.zcu;
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try cg.resolveInst(bin_op.lhs);
const rhs = try cg.resolveInst(bin_op.rhs);
const ptr_ty = cg.typeOf(bin_op.lhs);
const ptr_info = ptr_ty.ptrInfo(zcu);
const ty = ptr_ty.childType(zcu);
if (!safety and bin_op.rhs == .undef) {
return cg.finishAir(inst, .none, &.{ bin_op.lhs, bin_op.rhs });
}
if (ptr_info.packed_offset.host_size == 0) {
try cg.store(lhs, rhs, ty, 0);
} else {
// at this point we have a non-natural alignment, we must
// load the value, and then shift+or the rhs into the result location.
const host_size = ptr_info.packed_offset.host_size * 8;
const host_ty = try pt.intType(.unsigned, host_size);
const bit_size: u16 = @intCast(ty.bitSize(zcu));
const bit_offset = ptr_info.packed_offset.bit_offset;
const mask_val = try cg.resolveValue(val: {
const limbs = try cg.gpa.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(host_size) + 1,
);
defer cg.gpa.free(limbs);
var mask_bigint: std.math.big.int.Mutable = .{ .limbs = limbs, .positive = undefined, .len = undefined };
mask_bigint.setTwosCompIntLimit(.max, .unsigned, host_size);
if (bit_size != host_size) {
mask_bigint.shiftRight(mask_bigint.toConst(), host_size - bit_size);
}
if (bit_offset != 0) {
mask_bigint.shiftLeft(mask_bigint.toConst(), bit_offset);
}
mask_bigint.bitNotWrap(mask_bigint.toConst(), .unsigned, host_size);
break :val try pt.intValue_big(host_ty, mask_bigint.toConst());
});
const shift_val: WValue = if (33 <= host_size and host_size <= 64)
.{ .imm64 = bit_offset }
else
.{ .imm32 = bit_offset };
if (host_size <= 64) {
try cg.emitWValue(lhs);
}
const loaded = if (host_size <= 64)
try cg.load(lhs, host_ty, 0)
else
lhs;
const anded = try cg.binOp(loaded, mask_val, host_ty, .@"and");
const extended_value = try cg.intcast(rhs, ty, host_ty);
const shifted_value = if (bit_offset > 0)
try cg.binOp(extended_value, shift_val, host_ty, .shl)
else
extended_value;
const result = try cg.binOp(anded, shifted_value, host_ty, .@"or");
if (host_size <= 64) {
try cg.store(.stack, result, host_ty, lhs.offset());
} else {
try cg.store(lhs, result, host_ty, lhs.offset());
}
}
return cg.finishAir(inst, .none, &.{ bin_op.lhs, bin_op.rhs });
}
fn store(cg: *CodeGen, lhs: WValue, rhs: WValue, ty: Type, offset: u32) InnerError!void {
assert(!(lhs != .stack and rhs == .stack));
const pt = cg.pt;
const zcu = pt.zcu;
const abi_size = ty.abiSize(zcu);
if (!ty.hasRuntimeBitsIgnoreComptime(zcu)) return;
switch (ty.zigTypeTag(zcu)) {
.error_union => {
const pl_ty = ty.errorUnionPayload(zcu);
if (!pl_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
return cg.store(lhs, rhs, Type.anyerror, offset);
}
const len = @as(u32, @intCast(abi_size));
assert(offset == 0);
return cg.memcpy(lhs, rhs, .{ .imm32 = len });
},
.optional => {
if (ty.isPtrLikeOptional(zcu)) {
return cg.store(lhs, rhs, Type.usize, offset);
}
const pl_ty = ty.optionalChild(zcu);
if (!pl_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
return cg.store(lhs, rhs, Type.u8, offset);
}
if (pl_ty.zigTypeTag(zcu) == .error_set) {
return cg.store(lhs, rhs, Type.anyerror, offset);
}
const len = @as(u32, @intCast(abi_size));
assert(offset == 0);
return cg.memcpy(lhs, rhs, .{ .imm32 = len });
},
.@"struct", .array, .@"union" => if (isByRef(ty, zcu, cg.target)) {
const len = @as(u32, @intCast(abi_size));
assert(offset == 0);
return cg.memcpy(lhs, rhs, .{ .imm32 = len });
},
.vector => switch (determineSimdStoreStrategy(ty, zcu, cg.target)) {
.unrolled => {
const len: u32 = @intCast(abi_size);
return cg.memcpy(lhs, rhs, .{ .imm32 = len });
},
.direct => {
try cg.emitWValue(lhs);
try cg.lowerToStack(rhs);
// TODO: Add helper functions for simd opcodes
const extra_index: u32 = @intCast(cg.mir_extra.items.len);
// stores as := opcode, offset, alignment (opcode::memarg)
try cg.mir_extra.appendSlice(cg.gpa, &[_]u32{
@intFromEnum(std.wasm.SimdOpcode.v128_store),
offset + lhs.offset(),
@intCast(ty.abiAlignment(zcu).toByteUnits() orelse 0),
});
return cg.addInst(.{ .tag = .simd_prefix, .data = .{ .payload = extra_index } });
},
},
.pointer => {
if (ty.isSlice(zcu)) {
assert(offset == 0);
// store pointer first
// lower it to the stack so we do not have to store rhs into a local first
try cg.emitWValue(lhs);
const ptr_local = try cg.load(rhs, Type.usize, 0);
try cg.store(.stack, ptr_local, Type.usize, 0 + lhs.offset());
// retrieve length from rhs, and store that alongside lhs as well
try cg.emitWValue(lhs);
const len_local = try cg.load(rhs, Type.usize, cg.ptrSize());
try cg.store(.stack, len_local, Type.usize, cg.ptrSize() + lhs.offset());
return;
}
},
.int, .@"enum", .float => if (abi_size > 8 and abi_size <= 16) {
assert(offset == 0);
try cg.emitWValue(lhs);
const lsb = try cg.load(rhs, Type.u64, 0);
try cg.store(.stack, lsb, Type.u64, 0 + lhs.offset());
try cg.emitWValue(lhs);
const msb = try cg.load(rhs, Type.u64, 8);
try cg.store(.stack, msb, Type.u64, 8 + lhs.offset());
return;
} else if (abi_size > 16) {
assert(offset == 0);
try cg.memcpy(lhs, rhs, .{ .imm32 = @as(u32, @intCast(ty.abiSize(zcu))) });
},
else => if (abi_size > 8) {
return cg.fail("TODO: `store` for type `{f}` with abisize `{d}`", .{ ty.fmt(pt), abi_size });
},
}
try cg.emitWValue(lhs);
// In this case we're actually interested in storing the stack position
// into lhs, so we calculate that and emit that instead
try cg.lowerToStack(rhs);
const valtype = typeToValtype(ty, zcu, cg.target);
const opcode = buildOpcode(.{
.valtype1 = valtype,
.width = @as(u8, @intCast(abi_size * 8)),
.op = .store,
});
// store rhs value at stack pointer's location in memory
try cg.addMemArg(
Mir.Inst.Tag.fromOpcode(opcode),
.{
.offset = offset + lhs.offset(),
.alignment = @intCast(ty.abiAlignment(zcu).toByteUnits().?),
},
);
}
fn airLoad(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = cg.pt;
const zcu = pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
const ty = ty_op.ty.toType();
const ptr_ty = cg.typeOf(ty_op.operand);
const ptr_info = ptr_ty.ptrInfo(zcu);
if (!ty.hasRuntimeBitsIgnoreComptime(zcu)) return cg.finishAir(inst, .none, &.{ty_op.operand});
const result = result: {
if (isByRef(ty, zcu, cg.target)) {
const new_local = try cg.allocStack(ty);
try cg.store(new_local, operand, ty, 0);
break :result new_local;
}
if (ptr_info.packed_offset.host_size == 0) {
const loaded = try cg.load(operand, ty, 0);
const ty_size = ty.abiSize(zcu);
if (ty.isAbiInt(zcu) and ty_size * 8 > ty.bitSize(zcu)) {
const int_elem_ty = try pt.intType(.unsigned, @intCast(ty_size * 8));
break :result try cg.trunc(loaded, ty, int_elem_ty);
} else {
break :result loaded;
}
} else {
const int_elem_ty = try pt.intType(.unsigned, ptr_info.packed_offset.host_size * 8);
const shift_val: WValue = if (ptr_info.packed_offset.host_size <= 4)
.{ .imm32 = ptr_info.packed_offset.bit_offset }
else if (ptr_info.packed_offset.host_size <= 8)
.{ .imm64 = ptr_info.packed_offset.bit_offset }
else
.{ .imm32 = ptr_info.packed_offset.bit_offset };
const stack_loaded = if (ptr_info.packed_offset.host_size <= 8)
try cg.load(operand, int_elem_ty, 0)
else
operand;
const shifted = try cg.binOp(stack_loaded, shift_val, int_elem_ty, .shr);
break :result try cg.trunc(shifted, ty, int_elem_ty);
}
};
return cg.finishAir(inst, result, &.{ty_op.operand});
}
/// Loads an operand from the linear memory section.
/// NOTE: Leaves the value on the stack.
fn load(cg: *CodeGen, operand: WValue, ty: Type, offset: u32) InnerError!WValue {
const zcu = cg.pt.zcu;
// load local's value from memory by its stack position
try cg.emitWValue(operand);
if (ty.zigTypeTag(zcu) == .vector) {
// TODO: Add helper functions for simd opcodes
const extra_index: u32 = @intCast(cg.mir_extra.items.len);
// stores as := opcode, offset, alignment (opcode::memarg)
try cg.mir_extra.appendSlice(cg.gpa, &[_]u32{
@intFromEnum(std.wasm.SimdOpcode.v128_load),
offset + operand.offset(),
@intCast(ty.abiAlignment(zcu).toByteUnits().?),
});
try cg.addInst(.{ .tag = .simd_prefix, .data = .{ .payload = extra_index } });
return .stack;
}
const abi_size: u8 = @intCast(ty.abiSize(zcu));
const opcode = buildOpcode(.{
.valtype1 = typeToValtype(ty, zcu, cg.target),
.width = abi_size * 8,
.op = .load,
.signedness = if (ty.isSignedInt(zcu)) .signed else .unsigned,
});
try cg.addMemArg(
Mir.Inst.Tag.fromOpcode(opcode),
.{
.offset = offset + operand.offset(),
.alignment = @intCast(ty.abiAlignment(zcu).toByteUnits().?),
},
);
return .stack;
}
fn airArg(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = cg.pt;
const zcu = pt.zcu;
const arg_index = cg.arg_index;
const arg = cg.args[arg_index];
const cc = zcu.typeToFunc(zcu.navValue(cg.owner_nav).typeOf(zcu)).?.cc;
const arg_ty = cg.typeOfIndex(inst);
if (cc == .wasm_mvp) {
switch (abi.classifyType(arg_ty, zcu)) {
.direct => |scalar_ty| if (!abi.lowerAsDoubleI64(scalar_ty, zcu)) {
cg.arg_index += 1;
} else {
cg.arg_index += 2;
const result = try cg.allocStack(arg_ty);
try cg.store(result, arg, Type.u64, 0);
try cg.store(result, cg.args[arg_index + 1], Type.u64, 8);
return cg.finishAir(inst, result, &.{});
},
.indirect => cg.arg_index += 1,
}
} else {
cg.arg_index += 1;
}
return cg.finishAir(inst, arg, &.{});
}
fn airBinOp(cg: *CodeGen, inst: Air.Inst.Index, op: Op) InnerError!void {
const zcu = cg.pt.zcu;
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try cg.resolveInst(bin_op.lhs);
const rhs = try cg.resolveInst(bin_op.rhs);
const lhs_ty = cg.typeOf(bin_op.lhs);
const rhs_ty = cg.typeOf(bin_op.rhs);
// For certain operations, such as shifting, the types are different.
// When converting this to a WebAssembly type, they *must* match to perform
// an operation. For this reason we verify if the WebAssembly type is different, in which
// case we first coerce the operands to the same type before performing the operation.
// For big integers we can ignore this as we will call into compiler-rt which handles this.
const result = switch (op) {
.shr, .shl => result: {
if (lhs_ty.isVector(zcu) and !rhs_ty.isVector(zcu)) {
return cg.fail("TODO: implement vector '{s}' with scalar rhs", .{@tagName(op)});
}
const lhs_wasm_bits = toWasmBits(@intCast(lhs_ty.bitSize(zcu))) orelse {
return cg.fail("TODO: implement '{s}' for types larger than 128 bits", .{@tagName(op)});
};
const rhs_wasm_bits = toWasmBits(@intCast(rhs_ty.bitSize(zcu))).?;
const new_rhs = if (lhs_wasm_bits != rhs_wasm_bits and lhs_wasm_bits != 128)
try (try cg.intcast(rhs, rhs_ty, lhs_ty)).toLocal(cg, lhs_ty)
else
rhs;
break :result try cg.binOp(lhs, new_rhs, lhs_ty, op);
},
else => try cg.binOp(lhs, rhs, lhs_ty, op),
};
return cg.finishAir(inst, result, &.{ bin_op.lhs, bin_op.rhs });
}
/// Performs a binary operation on the given `WValue`'s
/// NOTE: THis leaves the value on top of the stack.
fn binOp(cg: *CodeGen, lhs: WValue, rhs: WValue, ty: Type, op: Op) InnerError!WValue {
const pt = cg.pt;
const zcu = pt.zcu;
assert(!(lhs != .stack and rhs == .stack));
if (ty.isAnyFloat()) {
const float_op = FloatOp.fromOp(op);
return cg.floatOp(float_op, ty, &.{ lhs, rhs });
}
if (isByRef(ty, zcu, cg.target)) {
if (ty.zigTypeTag(zcu) == .int) {
return cg.binOpBigInt(lhs, rhs, ty, op);
} else {
return cg.fail("TODO: Implement binary operation for type: {f}", .{ty.fmt(pt)});
}
}
const opcode: std.wasm.Opcode = buildOpcode(.{
.op = op,
.valtype1 = typeToValtype(ty, zcu, cg.target),
.signedness = if (ty.isSignedInt(zcu)) .signed else .unsigned,
});
try cg.emitWValue(lhs);
try cg.emitWValue(rhs);
try cg.addTag(Mir.Inst.Tag.fromOpcode(opcode));
return .stack;
}
fn binOpBigInt(cg: *CodeGen, lhs: WValue, rhs: WValue, ty: Type, op: Op) InnerError!WValue {
const zcu = cg.pt.zcu;
const int_info = ty.intInfo(zcu);
if (int_info.bits > 128) {
return cg.fail("TODO: Implement binary operation for big integers larger than 128 bits", .{});
}
switch (op) {
.mul => return cg.callIntrinsic(.__multi3, &.{ ty.toIntern(), ty.toIntern() }, ty, &.{ lhs, rhs }),
.div => switch (int_info.signedness) {
.signed => return cg.callIntrinsic(.__divti3, &.{ ty.toIntern(), ty.toIntern() }, ty, &.{ lhs, rhs }),
.unsigned => return cg.callIntrinsic(.__udivti3, &.{ ty.toIntern(), ty.toIntern() }, ty, &.{ lhs, rhs }),
},
.rem => switch (int_info.signedness) {
.signed => return cg.callIntrinsic(.__modti3, &.{ ty.toIntern(), ty.toIntern() }, ty, &.{ lhs, rhs }),
.unsigned => return cg.callIntrinsic(.__umodti3, &.{ ty.toIntern(), ty.toIntern() }, ty, &.{ lhs, rhs }),
},
.shr => switch (int_info.signedness) {
.signed => return cg.callIntrinsic(.__ashrti3, &.{ ty.toIntern(), .i32_type }, ty, &.{ lhs, rhs }),
.unsigned => return cg.callIntrinsic(.__lshrti3, &.{ ty.toIntern(), .i32_type }, ty, &.{ lhs, rhs }),
},
.shl => return cg.callIntrinsic(.__ashlti3, &.{ ty.toIntern(), .i32_type }, ty, &.{ lhs, rhs }),
.@"and", .@"or", .xor => {
const result = try cg.allocStack(ty);
try cg.emitWValue(result);
const lhs_lsb = try cg.load(lhs, Type.u64, 0);
const rhs_lsb = try cg.load(rhs, Type.u64, 0);
const op_lsb = try cg.binOp(lhs_lsb, rhs_lsb, Type.u64, op);
try cg.store(.stack, op_lsb, Type.u64, result.offset());
try cg.emitWValue(result);
const lhs_msb = try cg.load(lhs, Type.u64, 8);
const rhs_msb = try cg.load(rhs, Type.u64, 8);
const op_msb = try cg.binOp(lhs_msb, rhs_msb, Type.u64, op);
try cg.store(.stack, op_msb, Type.u64, result.offset() + 8);
return result;
},
.add, .sub => {
const result = try cg.allocStack(ty);
var lhs_lsb = try (try cg.load(lhs, Type.u64, 0)).toLocal(cg, Type.u64);
defer lhs_lsb.free(cg);
var rhs_lsb = try (try cg.load(rhs, Type.u64, 0)).toLocal(cg, Type.u64);
defer rhs_lsb.free(cg);
var op_lsb = try (try cg.binOp(lhs_lsb, rhs_lsb, Type.u64, op)).toLocal(cg, Type.u64);
defer op_lsb.free(cg);
const lhs_msb = try cg.load(lhs, Type.u64, 8);
const rhs_msb = try cg.load(rhs, Type.u64, 8);
const op_msb = try cg.binOp(lhs_msb, rhs_msb, Type.u64, op);
const lt = if (op == .add) blk: {
break :blk try cg.cmp(op_lsb, rhs_lsb, Type.u64, .lt);
} else if (op == .sub) blk: {
break :blk try cg.cmp(lhs_lsb, rhs_lsb, Type.u64, .lt);
} else unreachable;
const tmp = try cg.intcast(lt, Type.u32, Type.u64);
var tmp_op = try (try cg.binOp(op_msb, tmp, Type.u64, op)).toLocal(cg, Type.u64);
defer tmp_op.free(cg);
try cg.store(result, op_lsb, Type.u64, 0);
try cg.store(result, tmp_op, Type.u64, 8);
return result;
},
else => return cg.fail("TODO: Implement binary operation for big integers: '{s}'", .{@tagName(op)}),
}
}
const FloatOp = enum {
add,
ceil,
cos,
div,
exp,
exp2,
fabs,
floor,
fma,
fmax,
fmin,
fmod,
log,
log10,
log2,
mul,
neg,
round,
sin,
sqrt,
sub,
tan,
trunc,
pub fn fromOp(op: Op) FloatOp {
return switch (op) {
.add => .add,
.ceil => .ceil,
.div => .div,
.abs => .fabs,
.floor => .floor,
.max => .fmax,
.min => .fmin,
.mul => .mul,
.neg => .neg,
.nearest => .round,
.sqrt => .sqrt,
.sub => .sub,
.trunc => .trunc,
.rem => .fmod,
else => unreachable,
};
}
pub fn toOp(float_op: FloatOp) ?Op {
return switch (float_op) {
.add => .add,
.ceil => .ceil,
.div => .div,
.fabs => .abs,
.floor => .floor,
.fmax => .max,
.fmin => .min,
.mul => .mul,
.neg => .neg,
.round => .nearest,
.sqrt => .sqrt,
.sub => .sub,
.trunc => .trunc,
.cos,
.exp,
.exp2,
.fma,
.fmod,
.log,
.log10,
.log2,
.sin,
.tan,
=> null,
};
}
fn intrinsic(op: FloatOp, bits: u16) Mir.Intrinsic {
return switch (op) {
inline .add, .sub, .div, .mul => |ct_op| switch (bits) {
inline 16, 80, 128 => |ct_bits| @field(
Mir.Intrinsic,
"__" ++ @tagName(ct_op) ++ compilerRtFloatAbbrev(ct_bits) ++ "f3",
),
else => unreachable,
},
inline .ceil,
.fabs,
.floor,
.fmax,
.fmin,
.round,
.sqrt,
.trunc,
=> |ct_op| switch (bits) {
inline 16, 80, 128 => |ct_bits| @field(
Mir.Intrinsic,
libcFloatPrefix(ct_bits) ++ @tagName(ct_op) ++ libcFloatSuffix(ct_bits),
),
else => unreachable,
},
inline .cos,
.exp,
.exp2,
.fma,
.fmod,
.log,
.log10,
.log2,
.sin,
.tan,
=> |ct_op| switch (bits) {
inline 16, 32, 64, 80, 128 => |ct_bits| @field(
Mir.Intrinsic,
libcFloatPrefix(ct_bits) ++ @tagName(ct_op) ++ libcFloatSuffix(ct_bits),
),
else => unreachable,
},
.neg => unreachable,
};
}
};
fn airAbs(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = cg.pt;
const zcu = pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
const ty = cg.typeOf(ty_op.operand);
const scalar_ty = ty.scalarType(zcu);
switch (scalar_ty.zigTypeTag(zcu)) {
.int => if (ty.zigTypeTag(zcu) == .vector) {
return cg.fail("TODO implement airAbs for {f}", .{ty.fmt(pt)});
} else {
const int_bits = ty.intInfo(zcu).bits;
const wasm_bits = toWasmBits(int_bits) orelse {
return cg.fail("TODO: airAbs for signed integers larger than '{d}' bits", .{int_bits});
};
switch (wasm_bits) {
32 => {
try cg.emitWValue(operand);
try cg.addImm32(31);
try cg.addTag(.i32_shr_s);
var tmp = try cg.allocLocal(ty);
defer tmp.free(cg);
try cg.addLocal(.local_tee, tmp.local.value);
try cg.emitWValue(operand);
try cg.addTag(.i32_xor);
try cg.emitWValue(tmp);
try cg.addTag(.i32_sub);
return cg.finishAir(inst, .stack, &.{ty_op.operand});
},
64 => {
try cg.emitWValue(operand);
try cg.addImm64(63);
try cg.addTag(.i64_shr_s);
var tmp = try cg.allocLocal(ty);
defer tmp.free(cg);
try cg.addLocal(.local_tee, tmp.local.value);
try cg.emitWValue(operand);
try cg.addTag(.i64_xor);
try cg.emitWValue(tmp);
try cg.addTag(.i64_sub);
return cg.finishAir(inst, .stack, &.{ty_op.operand});
},
128 => {
const mask = try cg.allocStack(Type.u128);
try cg.emitWValue(mask);
try cg.emitWValue(mask);
_ = try cg.load(operand, Type.u64, 8);
try cg.addImm64(63);
try cg.addTag(.i64_shr_s);
var tmp = try cg.allocLocal(Type.u64);
defer tmp.free(cg);
try cg.addLocal(.local_tee, tmp.local.value);
try cg.store(.stack, .stack, Type.u64, mask.offset() + 0);
try cg.emitWValue(tmp);
try cg.store(.stack, .stack, Type.u64, mask.offset() + 8);
const a = try cg.binOpBigInt(operand, mask, Type.u128, .xor);
const b = try cg.binOpBigInt(a, mask, Type.u128, .sub);
return cg.finishAir(inst, b, &.{ty_op.operand});
},
else => unreachable,
}
},
.float => {
const result = try cg.floatOp(.fabs, ty, &.{operand});
return cg.finishAir(inst, result, &.{ty_op.operand});
},
else => unreachable,
}
}
fn airUnaryFloatOp(cg: *CodeGen, inst: Air.Inst.Index, op: FloatOp) InnerError!void {
const un_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try cg.resolveInst(un_op);
const ty = cg.typeOf(un_op);
const result = try cg.floatOp(op, ty, &.{operand});
return cg.finishAir(inst, result, &.{un_op});
}
fn floatOp(cg: *CodeGen, float_op: FloatOp, ty: Type, args: []const WValue) InnerError!WValue {
const zcu = cg.pt.zcu;
if (ty.zigTypeTag(zcu) == .vector) {
return cg.fail("TODO: Implement floatOps for vectors", .{});
}
const float_bits = ty.floatBits(cg.target);
if (float_op == .neg) {
return cg.floatNeg(ty, args[0]);
}
if (float_bits == 32 or float_bits == 64) {
if (float_op.toOp()) |op| {
for (args) |operand| {
try cg.emitWValue(operand);
}
const opcode = buildOpcode(.{ .op = op, .valtype1 = typeToValtype(ty, zcu, cg.target) });
try cg.addTag(Mir.Inst.Tag.fromOpcode(opcode));
return .stack;
}
}
const intrinsic = float_op.intrinsic(float_bits);
// fma requires three operands
var param_types_buffer: [3]InternPool.Index = .{ ty.ip_index, ty.ip_index, ty.ip_index };
const param_types = param_types_buffer[0..args.len];
return cg.callIntrinsic(intrinsic, param_types, ty, args);
}
/// NOTE: The result value remains on top of the stack.
fn floatNeg(cg: *CodeGen, ty: Type, arg: WValue) InnerError!WValue {
const float_bits = ty.floatBits(cg.target);
switch (float_bits) {
16 => {
try cg.emitWValue(arg);
try cg.addImm32(0x8000);
try cg.addTag(.i32_xor);
return .stack;
},
32, 64 => {
try cg.emitWValue(arg);
const val_type: std.wasm.Valtype = if (float_bits == 32) .f32 else .f64;
const opcode = buildOpcode(.{ .op = .neg, .valtype1 = val_type });
try cg.addTag(Mir.Inst.Tag.fromOpcode(opcode));
return .stack;
},
80, 128 => {
const result = try cg.allocStack(ty);
try cg.emitWValue(result);
try cg.emitWValue(arg);
try cg.addMemArg(.i64_load, .{ .offset = 0 + arg.offset(), .alignment = 2 });
try cg.addMemArg(.i64_store, .{ .offset = 0 + result.offset(), .alignment = 2 });
try cg.emitWValue(result);
try cg.emitWValue(arg);
try cg.addMemArg(.i64_load, .{ .offset = 8 + arg.offset(), .alignment = 2 });
if (float_bits == 80) {
try cg.addImm64(0x8000);
try cg.addTag(.i64_xor);
try cg.addMemArg(.i64_store16, .{ .offset = 8 + result.offset(), .alignment = 2 });
} else {
try cg.addImm64(0x8000000000000000);
try cg.addTag(.i64_xor);
try cg.addMemArg(.i64_store, .{ .offset = 8 + result.offset(), .alignment = 2 });
}
return result;
},
else => unreachable,
}
}
fn airWrapBinOp(cg: *CodeGen, inst: Air.Inst.Index, op: Op) InnerError!void {
const zcu = cg.pt.zcu;
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try cg.resolveInst(bin_op.lhs);
const rhs = try cg.resolveInst(bin_op.rhs);
const lhs_ty = cg.typeOf(bin_op.lhs);
const rhs_ty = cg.typeOf(bin_op.rhs);
if (lhs_ty.isVector(zcu)) {
if ((op == .shr or op == .shl) and !rhs_ty.isVector(zcu)) {
return cg.fail("TODO: implement wrapping vector '{s}' with scalar rhs", .{@tagName(op)});
} else {
return cg.fail("TODO: implement wrapping '{s}' for vectors", .{@tagName(op)});
}
}
// For certain operations, such as shifting, the types are different.
// When converting this to a WebAssembly type, they *must* match to perform
// an operation. For this reason we verify if the WebAssembly type is different, in which
// case we first coerce the operands to the same type before performing the operation.
// For big integers we can ignore this as we will call into compiler-rt which handles this.
const result = switch (op) {
.shr, .shl => result: {
const lhs_wasm_bits = toWasmBits(@intCast(lhs_ty.bitSize(zcu))) orelse {
return cg.fail("TODO: implement '{s}' for types larger than 128 bits", .{@tagName(op)});
};
const rhs_wasm_bits = toWasmBits(@intCast(rhs_ty.bitSize(zcu))).?;
const new_rhs = if (lhs_wasm_bits != rhs_wasm_bits and lhs_wasm_bits != 128)
try (try cg.intcast(rhs, rhs_ty, lhs_ty)).toLocal(cg, lhs_ty)
else
rhs;
break :result try cg.wrapBinOp(lhs, new_rhs, lhs_ty, op);
},
else => try cg.wrapBinOp(lhs, rhs, lhs_ty, op),
};
return cg.finishAir(inst, result, &.{ bin_op.lhs, bin_op.rhs });
}
/// Performs a wrapping binary operation.
/// Asserts rhs is not a stack value when lhs also isn't.
/// NOTE: Leaves the result on the stack when its Type is <= 64 bits
fn wrapBinOp(cg: *CodeGen, lhs: WValue, rhs: WValue, ty: Type, op: Op) InnerError!WValue {
const bin_local = try cg.binOp(lhs, rhs, ty, op);
return cg.wrapOperand(bin_local, ty);
}
/// Wraps an operand based on a given type's bitsize.
/// Asserts `Type` is <= 128 bits.
/// NOTE: When the Type is <= 64 bits, leaves the value on top of the stack, if wrapping was needed.
fn wrapOperand(cg: *CodeGen, operand: WValue, ty: Type) InnerError!WValue {
const zcu = cg.pt.zcu;
assert(ty.abiSize(zcu) <= 16);
const int_bits: u16 = @intCast(ty.bitSize(zcu)); // TODO use ty.intInfo(zcu).bits
const wasm_bits = toWasmBits(int_bits) orelse {
return cg.fail("TODO: Implement wrapOperand for bitsize '{d}'", .{int_bits});
};
if (wasm_bits == int_bits) return operand;
switch (wasm_bits) {
32 => {
try cg.emitWValue(operand);
if (ty.isSignedInt(zcu)) {
try cg.addImm32(32 - int_bits);
try cg.addTag(.i32_shl);
try cg.addImm32(32 - int_bits);
try cg.addTag(.i32_shr_s);
} else {
try cg.addImm32(~@as(u32, 0) >> @intCast(32 - int_bits));
try cg.addTag(.i32_and);
}
return .stack;
},
64 => {
try cg.emitWValue(operand);
if (ty.isSignedInt(zcu)) {
try cg.addImm64(64 - int_bits);
try cg.addTag(.i64_shl);
try cg.addImm64(64 - int_bits);
try cg.addTag(.i64_shr_s);
} else {
try cg.addImm64(~@as(u64, 0) >> @intCast(64 - int_bits));
try cg.addTag(.i64_and);
}
return .stack;
},
128 => {
assert(operand != .stack);
const result = try cg.allocStack(ty);
try cg.emitWValue(result);
_ = try cg.load(operand, Type.u64, 0);
try cg.store(.stack, .stack, Type.u64, result.offset());
try cg.emitWValue(result);
_ = try cg.load(operand, Type.u64, 8);
if (ty.isSignedInt(zcu)) {
try cg.addImm64(128 - int_bits);
try cg.addTag(.i64_shl);
try cg.addImm64(128 - int_bits);
try cg.addTag(.i64_shr_s);
} else {
try cg.addImm64(~@as(u64, 0) >> @intCast(128 - int_bits));
try cg.addTag(.i64_and);
}
try cg.store(.stack, .stack, Type.u64, result.offset() + 8);
return result;
},
else => unreachable,
}
}
fn lowerPtr(cg: *CodeGen, ptr_val: InternPool.Index, prev_offset: u64) InnerError!WValue {
const pt = cg.pt;
const zcu = pt.zcu;
const ptr = zcu.intern_pool.indexToKey(ptr_val).ptr;
const offset: u64 = prev_offset + ptr.byte_offset;
return switch (ptr.base_addr) {
.nav => |nav| return .{ .nav_ref = .{ .nav_index = nav, .offset = @intCast(offset) } },
.uav => |uav| return .{ .uav_ref = .{ .ip_index = uav.val, .offset = @intCast(offset), .orig_ptr_ty = uav.orig_ty } },
.int => return cg.lowerConstant(try pt.intValue(Type.usize, offset), Type.usize),
.eu_payload => |eu_ptr| try cg.lowerPtr(
eu_ptr,
offset + codegen.errUnionPayloadOffset(
Value.fromInterned(eu_ptr).typeOf(zcu).childType(zcu),
zcu,
),
),
.opt_payload => |opt_ptr| return cg.lowerPtr(opt_ptr, offset),
.field => |field| {
const base_ptr = Value.fromInterned(field.base);
const base_ty = base_ptr.typeOf(zcu).childType(zcu);
const field_off: u64 = switch (base_ty.zigTypeTag(zcu)) {
.pointer => off: {
assert(base_ty.isSlice(zcu));
break :off switch (field.index) {
Value.slice_ptr_index => 0,
Value.slice_len_index => @divExact(cg.target.ptrBitWidth(), 8),
else => unreachable,
};
},
.@"struct" => switch (base_ty.containerLayout(zcu)) {
.auto => base_ty.structFieldOffset(@intCast(field.index), zcu),
.@"extern", .@"packed" => unreachable,
},
.@"union" => switch (base_ty.containerLayout(zcu)) {
.auto => base_ty.structFieldOffset(@intCast(field.index), zcu),
.@"extern", .@"packed" => unreachable,
},
else => unreachable,
};
return cg.lowerPtr(field.base, offset + field_off);
},
.arr_elem, .comptime_field, .comptime_alloc => unreachable,
};
}
/// Asserts that `isByRef` returns `false` for `ty`.
fn lowerConstant(cg: *CodeGen, val: Value, ty: Type) InnerError!WValue {
const pt = cg.pt;
const zcu = pt.zcu;
assert(!isByRef(ty, zcu, cg.target));
const ip = &zcu.intern_pool;
if (val.isUndef(zcu)) return cg.emitUndefined(ty);
switch (ip.indexToKey(val.ip_index)) {
.int_type,
.ptr_type,
.array_type,
.vector_type,
.opt_type,
.anyframe_type,
.error_union_type,
.simple_type,
.struct_type,
.tuple_type,
.union_type,
.opaque_type,
.enum_type,
.func_type,
.error_set_type,
.inferred_error_set_type,
=> unreachable, // types, not values
.undef => unreachable, // handled above
.simple_value => |simple_value| switch (simple_value) {
.undefined,
.void,
.null,
.empty_tuple,
.@"unreachable",
=> unreachable, // non-runtime values
.false, .true => return .{ .imm32 = switch (simple_value) {
.false => 0,
.true => 1,
else => unreachable,
} },
},
.variable,
.@"extern",
.func,
.enum_literal,
.empty_enum_value,
=> unreachable, // non-runtime values
.int => {
const int_info = ty.intInfo(zcu);
switch (int_info.signedness) {
.signed => switch (int_info.bits) {
0...32 => return .{ .imm32 = @bitCast(@as(i32, @intCast(val.toSignedInt(zcu)))) },
33...64 => return .{ .imm64 = @bitCast(val.toSignedInt(zcu)) },
else => unreachable,
},
.unsigned => switch (int_info.bits) {
0...32 => return .{ .imm32 = @intCast(val.toUnsignedInt(zcu)) },
33...64 => return .{ .imm64 = val.toUnsignedInt(zcu) },
else => unreachable,
},
}
},
.err => |err| {
const int = try pt.getErrorValue(err.name);
return .{ .imm32 = int };
},
.error_union => |error_union| {
const err_int_ty = try pt.errorIntType();
const err_ty, const err_val = switch (error_union.val) {
.err_name => |err_name| .{
ty.errorUnionSet(zcu),
Value.fromInterned(try pt.intern(.{ .err = .{
.ty = ty.errorUnionSet(zcu).toIntern(),
.name = err_name,
} })),
},
.payload => .{
err_int_ty,
try pt.intValue(err_int_ty, 0),
},
};
const payload_type = ty.errorUnionPayload(zcu);
if (!payload_type.hasRuntimeBitsIgnoreComptime(zcu)) {
// We use the error type directly as the type.
return cg.lowerConstant(err_val, err_ty);
}
return cg.fail("Wasm TODO: lowerConstant error union with non-zero-bit payload type", .{});
},
.enum_tag => |enum_tag| {
const int_tag_ty = ip.typeOf(enum_tag.int);
return cg.lowerConstant(Value.fromInterned(enum_tag.int), Type.fromInterned(int_tag_ty));
},
.float => |float| switch (float.storage) {
.f16 => |f16_val| return .{ .imm32 = @as(u16, @bitCast(f16_val)) },
.f32 => |f32_val| return .{ .float32 = f32_val },
.f64 => |f64_val| return .{ .float64 = f64_val },
else => unreachable,
},
.slice => unreachable, // isByRef == true
.ptr => return cg.lowerPtr(val.toIntern(), 0),
.opt => if (ty.optionalReprIsPayload(zcu)) {
const pl_ty = ty.optionalChild(zcu);
if (val.optionalValue(zcu)) |payload| {
return cg.lowerConstant(payload, pl_ty);
} else {
return .{ .imm32 = 0 };
}
} else {
return .{ .imm32 = @intFromBool(!val.isNull(zcu)) };
},
.aggregate => switch (ip.indexToKey(ty.ip_index)) {
.array_type => return cg.fail("Wasm TODO: LowerConstant for {f}", .{ty.fmt(pt)}),
.vector_type => {
assert(determineSimdStoreStrategy(ty, zcu, cg.target) == .direct);
var buf: [16]u8 = undefined;
val.writeToMemory(pt, &buf) catch unreachable;
return cg.storeSimdImmd(buf);
},
.struct_type => {
const struct_type = ip.loadStructType(ty.toIntern());
// non-packed structs are not handled in this function because they
// are by-ref types.
assert(struct_type.layout == .@"packed");
var buf: [8]u8 = .{0} ** 8; // zero the buffer so we do not read 0xaa as integer
val.writeToPackedMemory(ty, pt, &buf, 0) catch unreachable;
const backing_int_ty = Type.fromInterned(struct_type.backingIntTypeUnordered(ip));
const int_val = try pt.intValue(
backing_int_ty,
mem.readInt(u64, &buf, .little),
);
return cg.lowerConstant(int_val, backing_int_ty);
},
else => unreachable,
},
.un => {
const int_type = try pt.intType(.unsigned, @intCast(ty.bitSize(zcu)));
var buf: [8]u8 = .{0} ** 8; // zero the buffer so we do not read 0xaa as integer
val.writeToPackedMemory(ty, pt, &buf, 0) catch unreachable;
const int_val = try pt.intValue(
int_type,
mem.readInt(u64, &buf, .little),
);
return cg.lowerConstant(int_val, int_type);
},
.memoized_call => unreachable,
}
}
/// Stores the value as a 128bit-immediate value by storing it inside
/// the list and returning the index into this list as `WValue`.
fn storeSimdImmd(cg: *CodeGen, value: [16]u8) !WValue {
const index = @as(u32, @intCast(cg.simd_immediates.items.len));
try cg.simd_immediates.append(cg.gpa, value);
return .{ .imm128 = index };
}
fn emitUndefined(cg: *CodeGen, ty: Type) InnerError!WValue {
const zcu = cg.pt.zcu;
const ip = &zcu.intern_pool;
switch (ty.zigTypeTag(zcu)) {
.bool, .error_set => return .{ .imm32 = 0xaaaaaaaa },
.int, .@"enum" => switch (ty.intInfo(zcu).bits) {
0...32 => return .{ .imm32 = 0xaaaaaaaa },
33...64 => return .{ .imm64 = 0xaaaaaaaaaaaaaaaa },
else => unreachable,
},
.float => switch (ty.floatBits(cg.target)) {
16 => return .{ .imm32 = 0xaaaaaaaa },
32 => return .{ .float32 = @as(f32, @bitCast(@as(u32, 0xaaaaaaaa))) },
64 => return .{ .float64 = @as(f64, @bitCast(@as(u64, 0xaaaaaaaaaaaaaaaa))) },
else => unreachable,
},
.pointer => switch (cg.ptr_size) {
.wasm32 => return .{ .imm32 = 0xaaaaaaaa },
.wasm64 => return .{ .imm64 = 0xaaaaaaaaaaaaaaaa },
},
.optional => {
const pl_ty = ty.optionalChild(zcu);
if (ty.optionalReprIsPayload(zcu)) {
return cg.emitUndefined(pl_ty);
}
return .{ .imm32 = 0xaaaaaaaa };
},
.error_union => {
return .{ .imm32 = 0xaaaaaaaa };
},
.@"struct" => {
const packed_struct = zcu.typeToPackedStruct(ty).?;
return cg.emitUndefined(Type.fromInterned(packed_struct.backingIntTypeUnordered(ip)));
},
.@"union" => switch (ty.containerLayout(zcu)) {
.@"packed" => switch (ty.bitSize(zcu)) {
0...32 => return .{ .imm32 = 0xaaaaaaaa },
33...64 => return .{ .imm64 = 0xaaaaaaaaaaaaaaaa },
else => unreachable,
},
else => unreachable,
},
else => return cg.fail("Wasm TODO: emitUndefined for type: {t}\n", .{ty.zigTypeTag(zcu)}),
}
}
fn airBlock(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = cg.air.extraData(Air.Block, ty_pl.payload);
try cg.lowerBlock(inst, ty_pl.ty.toType(), @ptrCast(cg.air.extra.items[extra.end..][0..extra.data.body_len]));
}
fn lowerBlock(cg: *CodeGen, inst: Air.Inst.Index, block_ty: Type, body: []const Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
// if wasm_block_ty is non-empty, we create a register to store the temporary value
const block_result: WValue = if (block_ty.hasRuntimeBitsIgnoreComptime(zcu))
try cg.allocLocal(block_ty)
else
.none;
try cg.startBlock(.block, .empty);
// Here we set the current block idx, so breaks know the depth to jump
// to when breaking out.
try cg.blocks.putNoClobber(cg.gpa, inst, .{
.label = cg.block_depth,
.value = block_result,
});
try cg.genBody(body);
try cg.endBlock();
const liveness = cg.liveness.getBlock(inst);
try cg.currentBranch().values.ensureUnusedCapacity(cg.gpa, liveness.deaths.len);
return cg.finishAir(inst, block_result, &.{});
}
/// appends a new wasm block to the code section and increases the `block_depth` by 1
fn startBlock(cg: *CodeGen, block_tag: std.wasm.Opcode, block_type: std.wasm.BlockType) !void {
cg.block_depth += 1;
try cg.addInst(.{
.tag = Mir.Inst.Tag.fromOpcode(block_tag),
.data = .{ .block_type = block_type },
});
}
/// Ends the current wasm block and decreases the `block_depth` by 1
fn endBlock(cg: *CodeGen) !void {
try cg.addTag(.end);
cg.block_depth -= 1;
}
fn airLoop(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const loop = cg.air.extraData(Air.Block, ty_pl.payload);
const body: []const Air.Inst.Index = @ptrCast(cg.air.extra.items[loop.end..][0..loop.data.body_len]);
// result type of loop is always 'noreturn', meaning we can always
// emit the wasm type 'block_empty'.
try cg.startBlock(.loop, .empty);
try cg.loops.putNoClobber(cg.gpa, inst, cg.block_depth);
defer assert(cg.loops.remove(inst));
try cg.genBody(body);
try cg.endBlock();
return cg.finishAir(inst, .none, &.{});
}
fn airCondBr(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const condition = try cg.resolveInst(pl_op.operand);
const extra = cg.air.extraData(Air.CondBr, pl_op.payload);
const then_body: []const Air.Inst.Index = @ptrCast(cg.air.extra.items[extra.end..][0..extra.data.then_body_len]);
const else_body: []const Air.Inst.Index = @ptrCast(cg.air.extra.items[extra.end + then_body.len ..][0..extra.data.else_body_len]);
const liveness_condbr = cg.liveness.getCondBr(inst);
// result type is always noreturn, so use `block_empty` as type.
try cg.startBlock(.block, .empty);
// emit the conditional value
try cg.emitWValue(condition);
// we inserted the block in front of the condition
// so now check if condition matches. If not, break outside this block
// and continue with the then codepath
try cg.addLabel(.br_if, 0);
try cg.branches.ensureUnusedCapacity(cg.gpa, 2);
{
cg.branches.appendAssumeCapacity(.{});
try cg.currentBranch().values.ensureUnusedCapacity(cg.gpa, @as(u32, @intCast(liveness_condbr.else_deaths.len)));
defer {
var else_stack = cg.branches.pop().?;
else_stack.deinit(cg.gpa);
}
try cg.genBody(else_body);
try cg.endBlock();
}
// Outer block that matches the condition
{
cg.branches.appendAssumeCapacity(.{});
try cg.currentBranch().values.ensureUnusedCapacity(cg.gpa, @as(u32, @intCast(liveness_condbr.then_deaths.len)));
defer {
var then_stack = cg.branches.pop().?;
then_stack.deinit(cg.gpa);
}
try cg.genBody(then_body);
}
return cg.finishAir(inst, .none, &.{});
}
fn airCmp(cg: *CodeGen, inst: Air.Inst.Index, op: std.math.CompareOperator) InnerError!void {
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try cg.resolveInst(bin_op.lhs);
const rhs = try cg.resolveInst(bin_op.rhs);
const operand_ty = cg.typeOf(bin_op.lhs);
const result = try cg.cmp(lhs, rhs, operand_ty, op);
return cg.finishAir(inst, result, &.{ bin_op.lhs, bin_op.rhs });
}
/// Compares two operands.
/// Asserts rhs is not a stack value when the lhs isn't a stack value either
/// NOTE: This leaves the result on top of the stack, rather than a new local.
fn cmp(cg: *CodeGen, lhs: WValue, rhs: WValue, ty: Type, op: std.math.CompareOperator) InnerError!WValue {
assert(!(lhs != .stack and rhs == .stack));
const zcu = cg.pt.zcu;
if (ty.zigTypeTag(zcu) == .optional and !ty.optionalReprIsPayload(zcu)) {
const payload_ty = ty.optionalChild(zcu);
if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
// When we hit this case, we must check the value of optionals
// that are not pointers. This means first checking against non-null for
// both lhs and rhs, as well as checking the payload are matching of lhs and rhs
return cg.cmpOptionals(lhs, rhs, ty, op);
}
} else if (ty.isAnyFloat()) {
return cg.cmpFloat(ty, lhs, rhs, op);
} else if (isByRef(ty, zcu, cg.target)) {
return cg.cmpBigInt(lhs, rhs, ty, op);
}
const signedness: std.builtin.Signedness = blk: {
// by default we tell the operand type is unsigned (i.e. bools and enum values)
if (ty.zigTypeTag(zcu) != .int) break :blk .unsigned;
// incase of an actual integer, we emit the correct signedness
break :blk ty.intInfo(zcu).signedness;
};
// ensure that when we compare pointers, we emit
// the true pointer of a stack value, rather than the stack pointer.
try cg.lowerToStack(lhs);
try cg.lowerToStack(rhs);
const opcode: std.wasm.Opcode = buildOpcode(.{
.valtype1 = typeToValtype(ty, zcu, cg.target),
.op = switch (op) {
.lt => .lt,
.lte => .le,
.eq => .eq,
.neq => .ne,
.gte => .ge,
.gt => .gt,
},
.signedness = signedness,
});
try cg.addTag(Mir.Inst.Tag.fromOpcode(opcode));
return .stack;
}
/// Compares two floats.
/// NOTE: Leaves the result of the comparison on top of the stack.
fn cmpFloat(cg: *CodeGen, ty: Type, lhs: WValue, rhs: WValue, cmp_op: std.math.CompareOperator) InnerError!WValue {
const float_bits = ty.floatBits(cg.target);
const op: Op = switch (cmp_op) {
.lt => .lt,
.lte => .le,
.eq => .eq,
.neq => .ne,
.gte => .ge,
.gt => .gt,
};
switch (float_bits) {
16 => {
_ = try cg.fpext(lhs, Type.f16, Type.f32);
_ = try cg.fpext(rhs, Type.f16, Type.f32);
const opcode = buildOpcode(.{ .op = op, .valtype1 = .f32 });
try cg.addTag(Mir.Inst.Tag.fromOpcode(opcode));
return .stack;
},
32, 64 => {
try cg.emitWValue(lhs);
try cg.emitWValue(rhs);
const val_type: std.wasm.Valtype = if (float_bits == 32) .f32 else .f64;
const opcode = buildOpcode(.{ .op = op, .valtype1 = val_type });
try cg.addTag(Mir.Inst.Tag.fromOpcode(opcode));
return .stack;
},
80, 128 => {
const intrinsic = floatCmpIntrinsic(cmp_op, float_bits);
const result = try cg.callIntrinsic(intrinsic, &.{ ty.ip_index, ty.ip_index }, Type.bool, &.{ lhs, rhs });
return cg.cmp(result, .{ .imm32 = 0 }, Type.i32, cmp_op);
},
else => unreachable,
}
}
fn airCmpVector(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
_ = inst;
return cg.fail("TODO implement airCmpVector for wasm", .{});
}
fn airCmpLtErrorsLen(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const un_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try cg.resolveInst(un_op);
try cg.emitWValue(operand);
const pt = cg.pt;
const err_int_ty = try pt.errorIntType();
try cg.addTag(.errors_len);
const result = try cg.cmp(.stack, .stack, err_int_ty, .lt);
return cg.finishAir(inst, result, &.{un_op});
}
fn airBr(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const br = cg.air.instructions.items(.data)[@intFromEnum(inst)].br;
const block = cg.blocks.get(br.block_inst).?;
// if operand has codegen bits we should break with a value
if (block.value != .none) {
const operand = try cg.resolveInst(br.operand);
try cg.lowerToStack(operand);
try cg.addLocal(.local_set, block.value.local.value);
}
// We map every block to its block index.
// We then determine how far we have to jump to it by subtracting it from current block depth
const idx: u32 = cg.block_depth - block.label;
try cg.addLabel(.br, idx);
return cg.finishAir(inst, .none, &.{br.operand});
}
fn airRepeat(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const repeat = cg.air.instructions.items(.data)[@intFromEnum(inst)].repeat;
const loop_label = cg.loops.get(repeat.loop_inst).?;
const idx: u32 = cg.block_depth - loop_label;
try cg.addLabel(.br, idx);
return cg.finishAir(inst, .none, &.{});
}
fn airNot(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
const operand_ty = cg.typeOf(ty_op.operand);
const pt = cg.pt;
const zcu = pt.zcu;
const result = result: {
if (operand_ty.zigTypeTag(zcu) == .bool) {
try cg.emitWValue(operand);
try cg.addTag(.i32_eqz);
const not_tmp = try cg.allocLocal(operand_ty);
try cg.addLocal(.local_set, not_tmp.local.value);
break :result not_tmp;
} else {
const int_info = operand_ty.intInfo(zcu);
const wasm_bits = toWasmBits(int_info.bits) orelse {
return cg.fail("TODO: Implement binary NOT for {f}", .{operand_ty.fmt(pt)});
};
switch (wasm_bits) {
32 => {
try cg.emitWValue(operand);
try cg.addImm32(switch (int_info.signedness) {
.unsigned => ~@as(u32, 0) >> @intCast(32 - int_info.bits),
.signed => ~@as(u32, 0),
});
try cg.addTag(.i32_xor);
break :result .stack;
},
64 => {
try cg.emitWValue(operand);
try cg.addImm64(switch (int_info.signedness) {
.unsigned => ~@as(u64, 0) >> @intCast(64 - int_info.bits),
.signed => ~@as(u64, 0),
});
try cg.addTag(.i64_xor);
break :result .stack;
},
128 => {
const ptr = try cg.allocStack(operand_ty);
try cg.emitWValue(ptr);
_ = try cg.load(operand, Type.u64, 0);
try cg.addImm64(~@as(u64, 0));
try cg.addTag(.i64_xor);
try cg.store(.stack, .stack, Type.u64, ptr.offset());
try cg.emitWValue(ptr);
_ = try cg.load(operand, Type.u64, 8);
try cg.addImm64(switch (int_info.signedness) {
.unsigned => ~@as(u64, 0) >> @intCast(128 - int_info.bits),
.signed => ~@as(u64, 0),
});
try cg.addTag(.i64_xor);
try cg.store(.stack, .stack, Type.u64, ptr.offset() + 8);
break :result ptr;
},
else => unreachable,
}
}
};
return cg.finishAir(inst, result, &.{ty_op.operand});
}
fn airTrap(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
try cg.addTag(.@"unreachable");
return cg.finishAir(inst, .none, &.{});
}
fn airBreakpoint(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
// unsupported by wasm itfunc. Can be implemented once we support DWARF
// for wasm
try cg.addTag(.@"unreachable");
return cg.finishAir(inst, .none, &.{});
}
fn airUnreachable(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
try cg.addTag(.@"unreachable");
return cg.finishAir(inst, .none, &.{});
}
fn airBitcast(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
const wanted_ty = cg.typeOfIndex(inst);
const given_ty = cg.typeOf(ty_op.operand);
const bit_size = given_ty.bitSize(zcu);
const needs_wrapping = (given_ty.isSignedInt(zcu) != wanted_ty.isSignedInt(zcu)) and
bit_size != 32 and bit_size != 64 and bit_size != 128;
const result = result: {
if (given_ty.isAnyFloat() or wanted_ty.isAnyFloat()) {
break :result try cg.bitcast(wanted_ty, given_ty, operand);
}
if (isByRef(given_ty, zcu, cg.target) and !isByRef(wanted_ty, zcu, cg.target)) {
const loaded_memory = try cg.load(operand, wanted_ty, 0);
if (needs_wrapping) {
break :result try cg.wrapOperand(loaded_memory, wanted_ty);
} else {
break :result loaded_memory;
}
}
if (!isByRef(given_ty, zcu, cg.target) and isByRef(wanted_ty, zcu, cg.target)) {
const stack_memory = try cg.allocStack(wanted_ty);
try cg.store(stack_memory, operand, given_ty, 0);
if (needs_wrapping) {
break :result try cg.wrapOperand(stack_memory, wanted_ty);
} else {
break :result stack_memory;
}
}
if (needs_wrapping) {
break :result try cg.wrapOperand(operand, wanted_ty);
}
break :result switch (operand) {
// for stack offset, return a pointer to this offset.
.stack_offset => try cg.buildPointerOffset(operand, 0, .new),
else => cg.reuseOperand(ty_op.operand, operand),
};
};
return cg.finishAir(inst, result, &.{ty_op.operand});
}
fn bitcast(cg: *CodeGen, wanted_ty: Type, given_ty: Type, operand: WValue) InnerError!WValue {
const zcu = cg.pt.zcu;
// if we bitcast a float to or from an integer we must use the 'reinterpret' instruction
if (!(wanted_ty.isAnyFloat() or given_ty.isAnyFloat())) return operand;
if (wanted_ty.ip_index == .f16_type or given_ty.ip_index == .f16_type) return operand;
if (wanted_ty.bitSize(zcu) > 64) return operand;
assert((wanted_ty.isInt(zcu) and given_ty.isAnyFloat()) or (wanted_ty.isAnyFloat() and given_ty.isInt(zcu)));
const opcode = buildOpcode(.{
.op = .reinterpret,
.valtype1 = typeToValtype(wanted_ty, zcu, cg.target),
.valtype2 = typeToValtype(given_ty, zcu, cg.target),
});
try cg.emitWValue(operand);
try cg.addTag(Mir.Inst.Tag.fromOpcode(opcode));
return .stack;
}
fn airStructFieldPtr(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = cg.air.extraData(Air.StructField, ty_pl.payload);
const struct_ptr = try cg.resolveInst(extra.data.struct_operand);
const struct_ptr_ty = cg.typeOf(extra.data.struct_operand);
const struct_ty = struct_ptr_ty.childType(zcu);
const result = try cg.structFieldPtr(inst, extra.data.struct_operand, struct_ptr, struct_ptr_ty, struct_ty, extra.data.field_index);
return cg.finishAir(inst, result, &.{extra.data.struct_operand});
}
fn airStructFieldPtrIndex(cg: *CodeGen, inst: Air.Inst.Index, index: u32) InnerError!void {
const zcu = cg.pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const struct_ptr = try cg.resolveInst(ty_op.operand);
const struct_ptr_ty = cg.typeOf(ty_op.operand);
const struct_ty = struct_ptr_ty.childType(zcu);
const result = try cg.structFieldPtr(inst, ty_op.operand, struct_ptr, struct_ptr_ty, struct_ty, index);
return cg.finishAir(inst, result, &.{ty_op.operand});
}
fn structFieldPtr(
cg: *CodeGen,
inst: Air.Inst.Index,
ref: Air.Inst.Ref,
struct_ptr: WValue,
struct_ptr_ty: Type,
struct_ty: Type,
index: u32,
) InnerError!WValue {
const pt = cg.pt;
const zcu = pt.zcu;
const result_ty = cg.typeOfIndex(inst);
const struct_ptr_ty_info = struct_ptr_ty.ptrInfo(zcu);
const offset = switch (struct_ty.containerLayout(zcu)) {
.@"packed" => switch (struct_ty.zigTypeTag(zcu)) {
.@"struct" => offset: {
if (result_ty.ptrInfo(zcu).packed_offset.host_size != 0) {
break :offset @as(u32, 0);
}
const struct_type = zcu.typeToStruct(struct_ty).?;
break :offset @divExact(zcu.structPackedFieldBitOffset(struct_type, index) + struct_ptr_ty_info.packed_offset.bit_offset, 8);
},
.@"union" => 0,
else => unreachable,
},
else => struct_ty.structFieldOffset(index, zcu),
};
// save a load and store when we can simply reuse the operand
if (offset == 0) {
return cg.reuseOperand(ref, struct_ptr);
}
switch (struct_ptr) {
.stack_offset => |stack_offset| {
return .{ .stack_offset = .{ .value = stack_offset.value + @as(u32, @intCast(offset)), .references = 1 } };
},
else => return cg.buildPointerOffset(struct_ptr, offset, .new),
}
}
fn airStructFieldVal(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = cg.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const struct_field = cg.air.extraData(Air.StructField, ty_pl.payload).data;
const struct_ty = cg.typeOf(struct_field.struct_operand);
const operand = try cg.resolveInst(struct_field.struct_operand);
const field_index = struct_field.field_index;
const field_ty = struct_ty.fieldType(field_index, zcu);
if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) return cg.finishAir(inst, .none, &.{struct_field.struct_operand});
const result: WValue = switch (struct_ty.containerLayout(zcu)) {
.@"packed" => switch (struct_ty.zigTypeTag(zcu)) {
.@"struct" => result: {
const packed_struct = zcu.typeToPackedStruct(struct_ty).?;
const offset = zcu.structPackedFieldBitOffset(packed_struct, field_index);
const backing_ty = Type.fromInterned(packed_struct.backingIntTypeUnordered(ip));
const host_bits = backing_ty.intInfo(zcu).bits;
const const_wvalue: WValue = if (33 <= host_bits and host_bits <= 64)
.{ .imm64 = offset }
else
.{ .imm32 = offset };
// for first field we don't require any shifting
const shifted_value = if (offset == 0)
operand
else
try cg.binOp(operand, const_wvalue, backing_ty, .shr);
if (field_ty.zigTypeTag(zcu) == .float) {
const int_type = try pt.intType(.unsigned, @as(u16, @intCast(field_ty.bitSize(zcu))));
const truncated = try cg.trunc(shifted_value, int_type, backing_ty);
break :result try cg.bitcast(field_ty, int_type, truncated);
} else if (field_ty.isPtrAtRuntime(zcu) and packed_struct.field_types.len == 1) {
// In this case we do not have to perform any transformations,
// we can simply reuse the operand.
break :result cg.reuseOperand(struct_field.struct_operand, operand);
} else if (field_ty.isPtrAtRuntime(zcu)) {
const int_type = try pt.intType(.unsigned, @as(u16, @intCast(field_ty.bitSize(zcu))));
break :result try cg.trunc(shifted_value, int_type, backing_ty);
}
break :result try cg.trunc(shifted_value, field_ty, backing_ty);
},
.@"union" => result: {
if (isByRef(struct_ty, zcu, cg.target)) {
if (!isByRef(field_ty, zcu, cg.target)) {
break :result try cg.load(operand, field_ty, 0);
} else {
const new_stack_val = try cg.allocStack(field_ty);
try cg.store(new_stack_val, operand, field_ty, 0);
break :result new_stack_val;
}
}
const union_int_type = try pt.intType(.unsigned, @as(u16, @intCast(struct_ty.bitSize(zcu))));
if (field_ty.zigTypeTag(zcu) == .float) {
const int_type = try pt.intType(.unsigned, @as(u16, @intCast(field_ty.bitSize(zcu))));
const truncated = try cg.trunc(operand, int_type, union_int_type);
break :result try cg.bitcast(field_ty, int_type, truncated);
} else if (field_ty.isPtrAtRuntime(zcu)) {
const int_type = try pt.intType(.unsigned, @as(u16, @intCast(field_ty.bitSize(zcu))));
break :result try cg.trunc(operand, int_type, union_int_type);
}
break :result try cg.trunc(operand, field_ty, union_int_type);
},
else => unreachable,
},
else => result: {
const offset = std.math.cast(u32, struct_ty.structFieldOffset(field_index, zcu)) orelse {
return cg.fail("Field type '{f}' too big to fit into stack frame", .{field_ty.fmt(pt)});
};
if (isByRef(field_ty, zcu, cg.target)) {
switch (operand) {
.stack_offset => |stack_offset| {
break :result .{ .stack_offset = .{ .value = stack_offset.value + offset, .references = 1 } };
},
else => break :result try cg.buildPointerOffset(operand, offset, .new),
}
}
break :result try cg.load(operand, field_ty, offset);
},
};
return cg.finishAir(inst, result, &.{struct_field.struct_operand});
}
fn airSwitchBr(cg: *CodeGen, inst: Air.Inst.Index, is_dispatch_loop: bool) InnerError!void {
const pt = cg.pt;
const zcu = pt.zcu;
const switch_br = cg.air.unwrapSwitch(inst);
const target_ty = cg.typeOf(switch_br.operand);
assert(target_ty.hasRuntimeBitsIgnoreComptime(zcu));
// swap target value with placeholder local, for dispatching
const target = if (is_dispatch_loop) target: {
const initial_target = try cg.resolveInst(switch_br.operand);
const target: WValue = try cg.allocLocal(target_ty);
try cg.lowerToStack(initial_target);
try cg.addLocal(.local_set, target.local.value);
try cg.startBlock(.loop, .empty); // dispatch loop start
try cg.blocks.putNoClobber(cg.gpa, inst, .{
.label = cg.block_depth,
.value = target,
});
break :target target;
} else try cg.resolveInst(switch_br.operand);
const liveness = try cg.liveness.getSwitchBr(cg.gpa, inst, switch_br.cases_len + 1);
defer cg.gpa.free(liveness.deaths);
const has_else_body = switch_br.else_body_len != 0;
const branch_count = switch_br.cases_len + 1; // if else branch is missing, we trap when failing all conditions
try cg.branches.ensureUnusedCapacity(cg.gpa, switch_br.cases_len + @intFromBool(has_else_body));
if (switch_br.cases_len == 0) {
assert(has_else_body);
var it = switch_br.iterateCases();
const else_body = it.elseBody();
cg.branches.appendAssumeCapacity(.{});
const else_deaths = liveness.deaths.len - 1;
try cg.currentBranch().values.ensureUnusedCapacity(cg.gpa, liveness.deaths[else_deaths].len);
defer {
var else_branch = cg.branches.pop().?;
else_branch.deinit(cg.gpa);
}
try cg.genBody(else_body);
if (is_dispatch_loop) {
try cg.endBlock(); // dispatch loop end
}
return cg.finishAir(inst, .none, &.{});
}
var min: ?Value = null;
var max: ?Value = null;
var branching_size: u32 = 0; // single item +1, range +2
{
var cases_it = switch_br.iterateCases();
while (cases_it.next()) |case| {
for (case.items) |item| {
const val = Value.fromInterned(item.toInterned().?);
if (min == null or val.compareHetero(.lt, min.?, zcu)) min = val;
if (max == null or val.compareHetero(.gt, max.?, zcu)) max = val;
branching_size += 1;
}
for (case.ranges) |range| {
const low = Value.fromInterned(range[0].toInterned().?);
if (min == null or low.compareHetero(.lt, min.?, zcu)) min = low;
const high = Value.fromInterned(range[1].toInterned().?);
if (max == null or high.compareHetero(.gt, max.?, zcu)) max = high;
branching_size += 2;
}
}
}
var min_space: Value.BigIntSpace = undefined;
const min_bigint = min.?.toBigInt(&min_space, zcu);
var max_space: Value.BigIntSpace = undefined;
const max_bigint = max.?.toBigInt(&max_space, zcu);
const limbs = try cg.gpa.alloc(
std.math.big.Limb,
@max(min_bigint.limbs.len, max_bigint.limbs.len) + 1,
);
defer cg.gpa.free(limbs);
const width_maybe: ?u32 = width: {
var width_bigint: std.math.big.int.Mutable = .{ .limbs = limbs, .positive = undefined, .len = undefined };
width_bigint.sub(max_bigint, min_bigint);
width_bigint.addScalar(width_bigint.toConst(), 1);
break :width width_bigint.toConst().toInt(u32) catch null;
};
try cg.startBlock(.block, .empty); // whole switch block start
for (0..branch_count) |_| {
try cg.startBlock(.block, .empty);
}
// Heuristic on deciding when to use .br_table instead of .br_if jump table
// 1. Differences between lowest and highest values should fit into u32
// 2. .br_table should be applied for "dense" switch, we test it by checking .br_if jumps will need more instructions
// 3. Do not use .br_table for tiny switches
const use_br_table = cond: {
const width = width_maybe orelse break :cond false;
if (width > 2 * branching_size) break :cond false;
if (width < 2 or branch_count < 2) break :cond false;
break :cond true;
};
if (use_br_table) {
const width = width_maybe.?;
const br_value_original = try cg.binOp(target, try cg.resolveValue(min.?), target_ty, .sub);
_ = try cg.intcast(br_value_original, target_ty, Type.u32);
const jump_table: Mir.JumpTable = .{ .length = width + 1 };
const table_extra_index = try cg.addExtra(jump_table);
try cg.addInst(.{ .tag = .br_table, .data = .{ .payload = table_extra_index } });
const branch_list = try cg.mir_extra.addManyAsSlice(cg.gpa, width + 1);
@memset(branch_list, branch_count - 1);
var cases_it = switch_br.iterateCases();
while (cases_it.next()) |case| {
for (case.items) |item| {
const val = Value.fromInterned(item.toInterned().?);
var val_space: Value.BigIntSpace = undefined;
const val_bigint = val.toBigInt(&val_space, zcu);
var index_bigint: std.math.big.int.Mutable = .{ .limbs = limbs, .positive = undefined, .len = undefined };
index_bigint.sub(val_bigint, min_bigint);
branch_list[index_bigint.toConst().toInt(u32) catch unreachable] = case.idx;
}
for (case.ranges) |range| {
var low_space: Value.BigIntSpace = undefined;
const low_bigint = Value.fromInterned(range[0].toInterned().?).toBigInt(&low_space, zcu);
var high_space: Value.BigIntSpace = undefined;
const high_bigint = Value.fromInterned(range[1].toInterned().?).toBigInt(&high_space, zcu);
var index_bigint: std.math.big.int.Mutable = .{ .limbs = limbs, .positive = undefined, .len = undefined };
index_bigint.sub(low_bigint, min_bigint);
const start = index_bigint.toConst().toInt(u32) catch unreachable;
index_bigint.sub(high_bigint, min_bigint);
const end = (index_bigint.toConst().toInt(u32) catch unreachable) + 1;
@memset(branch_list[start..end], case.idx);
}
}
} else {
var cases_it = switch_br.iterateCases();
while (cases_it.next()) |case| {
for (case.items) |ref| {
const val = try cg.resolveInst(ref);
_ = try cg.cmp(target, val, target_ty, .eq);
try cg.addLabel(.br_if, case.idx); // item match found
}
for (case.ranges) |range| {
const low = try cg.resolveInst(range[0]);
const high = try cg.resolveInst(range[1]);
const gte = try cg.cmp(target, low, target_ty, .gte);
const lte = try cg.cmp(target, high, target_ty, .lte);
_ = try cg.binOp(gte, lte, Type.bool, .@"and");
try cg.addLabel(.br_if, case.idx); // range match found
}
}
try cg.addLabel(.br, branch_count - 1);
}
var cases_it = switch_br.iterateCases();
while (cases_it.next()) |case| {
try cg.endBlock();
cg.branches.appendAssumeCapacity(.{});
try cg.currentBranch().values.ensureUnusedCapacity(cg.gpa, liveness.deaths[case.idx].len);
defer {
var case_branch = cg.branches.pop().?;
case_branch.deinit(cg.gpa);
}
try cg.genBody(case.body);
try cg.addLabel(.br, branch_count - case.idx - 1); // matching case found and executed => exit switch
}
try cg.endBlock();
if (has_else_body) {
const else_body = cases_it.elseBody();
cg.branches.appendAssumeCapacity(.{});
const else_deaths = liveness.deaths.len - 1;
try cg.currentBranch().values.ensureUnusedCapacity(cg.gpa, liveness.deaths[else_deaths].len);
defer {
var else_branch = cg.branches.pop().?;
else_branch.deinit(cg.gpa);
}
try cg.genBody(else_body);
} else {
try cg.addTag(.@"unreachable");
}
try cg.endBlock(); // whole switch block end
if (is_dispatch_loop) {
try cg.endBlock(); // dispatch loop end
}
return cg.finishAir(inst, .none, &.{});
}
fn airSwitchDispatch(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const br = cg.air.instructions.items(.data)[@intFromEnum(inst)].br;
const switch_loop = cg.blocks.get(br.block_inst).?;
const operand = try cg.resolveInst(br.operand);
try cg.lowerToStack(operand);
try cg.addLocal(.local_set, switch_loop.value.local.value);
const idx: u32 = cg.block_depth - switch_loop.label;
try cg.addLabel(.br, idx);
return cg.finishAir(inst, .none, &.{br.operand});
}
fn airIsErr(cg: *CodeGen, inst: Air.Inst.Index, opcode: std.wasm.Opcode, op_kind: enum { value, ptr }) InnerError!void {
const zcu = cg.pt.zcu;
const un_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try cg.resolveInst(un_op);
const err_union_ty = cg.typeOf(un_op);
const pl_ty = err_union_ty.errorUnionPayload(zcu);
const result: WValue = result: {
if (err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu)) {
switch (opcode) {
.i32_ne => break :result .{ .imm32 = 0 },
.i32_eq => break :result .{ .imm32 = 1 },
else => unreachable,
}
}
try cg.emitWValue(operand);
if (op_kind == .ptr or pl_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
try cg.addMemArg(.i32_load16_u, .{
.offset = operand.offset() + @as(u32, @intCast(errUnionErrorOffset(pl_ty, zcu))),
.alignment = @intCast(Type.anyerror.abiAlignment(zcu).toByteUnits().?),
});
}
// Compare the error value with '0'
try cg.addImm32(0);
try cg.addTag(Mir.Inst.Tag.fromOpcode(opcode));
break :result .stack;
};
return cg.finishAir(inst, result, &.{un_op});
}
/// E!T -> T op_is_ptr == false
/// *(E!T) -> *T op_is_prt == true
fn airUnwrapErrUnionPayload(cg: *CodeGen, inst: Air.Inst.Index, op_is_ptr: bool) InnerError!void {
const zcu = cg.pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
const op_ty = cg.typeOf(ty_op.operand);
const eu_ty = if (op_is_ptr) op_ty.childType(zcu) else op_ty;
const payload_ty = eu_ty.errorUnionPayload(zcu);
const result: WValue = result: {
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
if (op_is_ptr) {
break :result cg.reuseOperand(ty_op.operand, operand);
} else {
break :result .none;
}
}
const pl_offset: u32 = @intCast(errUnionPayloadOffset(payload_ty, zcu));
if (op_is_ptr or isByRef(payload_ty, zcu, cg.target)) {
break :result try cg.buildPointerOffset(operand, pl_offset, .new);
} else {
assert(isByRef(eu_ty, zcu, cg.target));
break :result try cg.load(operand, payload_ty, pl_offset);
}
};
return cg.finishAir(inst, result, &.{ty_op.operand});
}
/// E!T -> E op_is_ptr == false
/// *(E!T) -> E op_is_prt == true
/// NOTE: op_is_ptr will not change return type
fn airUnwrapErrUnionError(cg: *CodeGen, inst: Air.Inst.Index, op_is_ptr: bool) InnerError!void {
const zcu = cg.pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
const op_ty = cg.typeOf(ty_op.operand);
const eu_ty = if (op_is_ptr) op_ty.childType(zcu) else op_ty;
const payload_ty = eu_ty.errorUnionPayload(zcu);
const result: WValue = result: {
if (eu_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu)) {
break :result .{ .imm32 = 0 };
}
const err_offset: u32 = @intCast(errUnionErrorOffset(payload_ty, zcu));
if (op_is_ptr or isByRef(eu_ty, zcu, cg.target)) {
break :result try cg.load(operand, Type.anyerror, err_offset);
} else {
assert(!payload_ty.hasRuntimeBitsIgnoreComptime(zcu));
break :result cg.reuseOperand(ty_op.operand, operand);
}
};
return cg.finishAir(inst, result, &.{ty_op.operand});
}
fn airWrapErrUnionPayload(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
const err_ty = cg.typeOfIndex(inst);
const pl_ty = cg.typeOf(ty_op.operand);
const result = result: {
if (!pl_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
break :result cg.reuseOperand(ty_op.operand, operand);
}
const err_union = try cg.allocStack(err_ty);
const payload_ptr = try cg.buildPointerOffset(err_union, @as(u32, @intCast(errUnionPayloadOffset(pl_ty, zcu))), .new);
try cg.store(payload_ptr, operand, pl_ty, 0);
// ensure we also write '0' to the error part, so any present stack value gets overwritten by it.
try cg.emitWValue(err_union);
try cg.addImm32(0);
const err_val_offset: u32 = @intCast(errUnionErrorOffset(pl_ty, zcu));
try cg.addMemArg(.i32_store16, .{
.offset = err_union.offset() + err_val_offset,
.alignment = 2,
});
break :result err_union;
};
return cg.finishAir(inst, result, &.{ty_op.operand});
}
fn airWrapErrUnionErr(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
const err_ty = ty_op.ty.toType();
const pl_ty = err_ty.errorUnionPayload(zcu);
const result = result: {
if (!pl_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
break :result cg.reuseOperand(ty_op.operand, operand);
}
const err_union = try cg.allocStack(err_ty);
// store error value
try cg.store(err_union, operand, Type.anyerror, @intCast(errUnionErrorOffset(pl_ty, zcu)));
// write 'undefined' to the payload
const payload_ptr = try cg.buildPointerOffset(err_union, @as(u32, @intCast(errUnionPayloadOffset(pl_ty, zcu))), .new);
const len = @as(u32, @intCast(err_ty.errorUnionPayload(zcu).abiSize(zcu)));
try cg.memset(Type.u8, payload_ptr, .{ .imm32 = len }, .{ .imm32 = 0xaa });
break :result err_union;
};
return cg.finishAir(inst, result, &.{ty_op.operand});
}
fn airIntcast(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const ty = ty_op.ty.toType();
const operand = try cg.resolveInst(ty_op.operand);
const operand_ty = cg.typeOf(ty_op.operand);
const zcu = cg.pt.zcu;
if (ty.zigTypeTag(zcu) == .vector or operand_ty.zigTypeTag(zcu) == .vector) {
return cg.fail("todo Wasm intcast for vectors", .{});
}
if (ty.abiSize(zcu) > 16 or operand_ty.abiSize(zcu) > 16) {
return cg.fail("todo Wasm intcast for bitsize > 128", .{});
}
const op_bits = toWasmBits(@intCast(operand_ty.bitSize(zcu))).?;
const wanted_bits = toWasmBits(@intCast(ty.bitSize(zcu))).?;
const result = if (op_bits == wanted_bits)
cg.reuseOperand(ty_op.operand, operand)
else
try cg.intcast(operand, operand_ty, ty);
return cg.finishAir(inst, result, &.{ty_op.operand});
}
/// Upcasts or downcasts an integer based on the given and wanted types,
/// and stores the result in a new operand.
/// Asserts type's bitsize <= 128
/// NOTE: May leave the result on the top of the stack.
fn intcast(cg: *CodeGen, operand: WValue, given: Type, wanted: Type) InnerError!WValue {
const zcu = cg.pt.zcu;
const given_bitsize = @as(u16, @intCast(given.bitSize(zcu)));
const wanted_bitsize = @as(u16, @intCast(wanted.bitSize(zcu)));
assert(given_bitsize <= 128);
assert(wanted_bitsize <= 128);
const op_bits = toWasmBits(given_bitsize).?;
const wanted_bits = toWasmBits(wanted_bitsize).?;
if (op_bits == wanted_bits) {
return operand;
}
if (op_bits == 64 and wanted_bits == 32) {
try cg.emitWValue(operand);
try cg.addTag(.i32_wrap_i64);
return .stack;
} else if (op_bits == 32 and wanted_bits == 64) {
try cg.emitWValue(operand);
try cg.addTag(if (wanted.isSignedInt(zcu)) .i64_extend_i32_s else .i64_extend_i32_u);
return .stack;
} else if (wanted_bits == 128) {
// for 128bit integers we store the integer in the virtual stack, rather than a local
const stack_ptr = try cg.allocStack(wanted);
try cg.emitWValue(stack_ptr);
// for 32 bit integers, we first coerce the value into a 64 bit integer before storing it
// meaning less store operations are required.
const lhs = if (op_bits == 32) blk: {
const sign_ty = if (wanted.isSignedInt(zcu)) Type.i64 else Type.u64;
break :blk try (try cg.intcast(operand, given, sign_ty)).toLocal(cg, sign_ty);
} else operand;
// store lsb first
try cg.store(.stack, lhs, Type.u64, 0 + stack_ptr.offset());
// For signed integers we shift lsb by 63 (64bit integer - 1 sign bit) and store remaining value
if (wanted.isSignedInt(zcu)) {
try cg.emitWValue(stack_ptr);
const shr = try cg.binOp(lhs, .{ .imm64 = 63 }, Type.i64, .shr);
try cg.store(.stack, shr, Type.u64, 8 + stack_ptr.offset());
} else {
// Ensure memory of msb is zero'd
try cg.store(stack_ptr, .{ .imm64 = 0 }, Type.u64, 8);
}
return stack_ptr;
} else return cg.load(operand, wanted, 0);
}
fn airIsNull(cg: *CodeGen, inst: Air.Inst.Index, opcode: std.wasm.Opcode, op_kind: enum { value, ptr }) InnerError!void {
const zcu = cg.pt.zcu;
const un_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try cg.resolveInst(un_op);
const op_ty = cg.typeOf(un_op);
const optional_ty = if (op_kind == .ptr) op_ty.childType(zcu) else op_ty;
const result = try cg.isNull(operand, optional_ty, opcode);
return cg.finishAir(inst, result, &.{un_op});
}
/// For a given type and operand, checks if it's considered `null`.
/// NOTE: Leaves the result on the stack
fn isNull(cg: *CodeGen, operand: WValue, optional_ty: Type, opcode: std.wasm.Opcode) InnerError!WValue {
const pt = cg.pt;
const zcu = pt.zcu;
try cg.emitWValue(operand);
const payload_ty = optional_ty.optionalChild(zcu);
if (!optional_ty.optionalReprIsPayload(zcu)) {
// When payload is zero-bits, we can treat operand as a value, rather than
// a pointer to the stack value
if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
const offset = std.math.cast(u32, payload_ty.abiSize(zcu)) orelse {
return cg.fail("Optional type {f} too big to fit into stack frame", .{optional_ty.fmt(pt)});
};
try cg.addMemArg(.i32_load8_u, .{ .offset = operand.offset() + offset, .alignment = 1 });
}
} else if (payload_ty.isSlice(zcu)) {
switch (cg.ptr_size) {
.wasm32 => try cg.addMemArg(.i32_load, .{ .offset = operand.offset(), .alignment = 4 }),
.wasm64 => try cg.addMemArg(.i64_load, .{ .offset = operand.offset(), .alignment = 8 }),
}
}
// Compare the null value with '0'
try cg.addImm32(0);
try cg.addTag(Mir.Inst.Tag.fromOpcode(opcode));
return .stack;
}
fn airOptionalPayload(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const opt_ty = cg.typeOf(ty_op.operand);
const payload_ty = cg.typeOfIndex(inst);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
return cg.finishAir(inst, .none, &.{ty_op.operand});
}
const result = result: {
const operand = try cg.resolveInst(ty_op.operand);
if (opt_ty.optionalReprIsPayload(zcu)) break :result cg.reuseOperand(ty_op.operand, operand);
if (isByRef(payload_ty, zcu, cg.target)) {
break :result try cg.buildPointerOffset(operand, 0, .new);
}
break :result try cg.load(operand, payload_ty, 0);
};
return cg.finishAir(inst, result, &.{ty_op.operand});
}
fn airOptionalPayloadPtr(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
const opt_ty = cg.typeOf(ty_op.operand).childType(zcu);
const result = result: {
const payload_ty = opt_ty.optionalChild(zcu);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu) or opt_ty.optionalReprIsPayload(zcu)) {
break :result cg.reuseOperand(ty_op.operand, operand);
}
break :result try cg.buildPointerOffset(operand, 0, .new);
};
return cg.finishAir(inst, result, &.{ty_op.operand});
}
fn airOptionalPayloadPtrSet(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = cg.pt;
const zcu = pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
const opt_ty = cg.typeOf(ty_op.operand).childType(zcu);
const payload_ty = opt_ty.optionalChild(zcu);
if (opt_ty.optionalReprIsPayload(zcu)) {
return cg.finishAir(inst, operand, &.{ty_op.operand});
}
const offset = std.math.cast(u32, payload_ty.abiSize(zcu)) orelse {
return cg.fail("Optional type {f} too big to fit into stack frame", .{opt_ty.fmt(pt)});
};
try cg.emitWValue(operand);
try cg.addImm32(1);
try cg.addMemArg(.i32_store8, .{ .offset = operand.offset() + offset, .alignment = 1 });
const result = try cg.buildPointerOffset(operand, 0, .new);
return cg.finishAir(inst, result, &.{ty_op.operand});
}
fn airWrapOptional(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const payload_ty = cg.typeOf(ty_op.operand);
const pt = cg.pt;
const zcu = pt.zcu;
const result = result: {
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
const non_null_bit = try cg.allocStack(Type.u1);
try cg.emitWValue(non_null_bit);
try cg.addImm32(1);
try cg.addMemArg(.i32_store8, .{ .offset = non_null_bit.offset(), .alignment = 1 });
break :result non_null_bit;
}
const operand = try cg.resolveInst(ty_op.operand);
const op_ty = cg.typeOfIndex(inst);
if (op_ty.optionalReprIsPayload(zcu)) {
break :result cg.reuseOperand(ty_op.operand, operand);
}
const offset = std.math.cast(u32, payload_ty.abiSize(zcu)) orelse {
return cg.fail("Optional type {f} too big to fit into stack frame", .{op_ty.fmt(pt)});
};
// Create optional type, set the non-null bit, and store the operand inside the optional type
const result_ptr = try cg.allocStack(op_ty);
try cg.emitWValue(result_ptr);
try cg.addImm32(1);
try cg.addMemArg(.i32_store8, .{ .offset = result_ptr.offset() + offset, .alignment = 1 });
const payload_ptr = try cg.buildPointerOffset(result_ptr, 0, .new);
try cg.store(payload_ptr, operand, payload_ty, 0);
break :result result_ptr;
};
return cg.finishAir(inst, result, &.{ty_op.operand});
}
fn airSlice(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = cg.air.extraData(Air.Bin, ty_pl.payload).data;
const lhs = try cg.resolveInst(bin_op.lhs);
const rhs = try cg.resolveInst(bin_op.rhs);
const slice_ty = cg.typeOfIndex(inst);
const slice = try cg.allocStack(slice_ty);
try cg.store(slice, lhs, Type.usize, 0);
try cg.store(slice, rhs, Type.usize, cg.ptrSize());
return cg.finishAir(inst, slice, &.{ bin_op.lhs, bin_op.rhs });
}
fn airSliceLen(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
return cg.finishAir(inst, try cg.sliceLen(operand), &.{ty_op.operand});
}
fn airSliceElemVal(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const slice_ty = cg.typeOf(bin_op.lhs);
const slice = try cg.resolveInst(bin_op.lhs);
const index = try cg.resolveInst(bin_op.rhs);
const elem_ty = slice_ty.childType(zcu);
const elem_size = elem_ty.abiSize(zcu);
// load pointer onto stack
_ = try cg.load(slice, Type.usize, 0);
// calculate index into slice
try cg.emitWValue(index);
try cg.addImm32(@intCast(elem_size));
try cg.addTag(.i32_mul);
try cg.addTag(.i32_add);
const elem_result = if (isByRef(elem_ty, zcu, cg.target))
.stack
else
try cg.load(.stack, elem_ty, 0);
return cg.finishAir(inst, elem_result, &.{ bin_op.lhs, bin_op.rhs });
}
fn airSliceElemPtr(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = cg.air.extraData(Air.Bin, ty_pl.payload).data;
const elem_ty = ty_pl.ty.toType().childType(zcu);
const elem_size = elem_ty.abiSize(zcu);
const slice = try cg.resolveInst(bin_op.lhs);
const index = try cg.resolveInst(bin_op.rhs);
_ = try cg.load(slice, Type.usize, 0);
// calculate index into slice
try cg.emitWValue(index);
try cg.addImm32(@intCast(elem_size));
try cg.addTag(.i32_mul);
try cg.addTag(.i32_add);
return cg.finishAir(inst, .stack, &.{ bin_op.lhs, bin_op.rhs });
}
fn airSlicePtr(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
return cg.finishAir(inst, try cg.slicePtr(operand), &.{ty_op.operand});
}
fn slicePtr(cg: *CodeGen, operand: WValue) InnerError!WValue {
const ptr = try cg.load(operand, Type.usize, 0);
return ptr.toLocal(cg, Type.usize);
}
fn sliceLen(cg: *CodeGen, operand: WValue) InnerError!WValue {
const len = try cg.load(operand, Type.usize, cg.ptrSize());
return len.toLocal(cg, Type.usize);
}
fn airTrunc(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
const wanted_ty: Type = ty_op.ty.toType();
const op_ty = cg.typeOf(ty_op.operand);
const zcu = cg.pt.zcu;
if (wanted_ty.zigTypeTag(zcu) == .vector or op_ty.zigTypeTag(zcu) == .vector) {
return cg.fail("TODO: trunc for vectors", .{});
}
const result = if (op_ty.bitSize(zcu) == wanted_ty.bitSize(zcu))
cg.reuseOperand(ty_op.operand, operand)
else
try cg.trunc(operand, wanted_ty, op_ty);
return cg.finishAir(inst, result, &.{ty_op.operand});
}
/// Truncates a given operand to a given type, discarding any overflown bits.
/// NOTE: Resulting value is left on the stack.
fn trunc(cg: *CodeGen, operand: WValue, wanted_ty: Type, given_ty: Type) InnerError!WValue {
const zcu = cg.pt.zcu;
const given_bits = @as(u16, @intCast(given_ty.bitSize(zcu)));
if (toWasmBits(given_bits) == null) {
return cg.fail("TODO: Implement wasm integer truncation for integer bitsize: {d}", .{given_bits});
}
var result = try cg.intcast(operand, given_ty, wanted_ty);
const wanted_bits = @as(u16, @intCast(wanted_ty.bitSize(zcu)));
const wasm_bits = toWasmBits(wanted_bits).?;
if (wasm_bits != wanted_bits) {
result = try cg.wrapOperand(result, wanted_ty);
}
return result;
}
fn airArrayToSlice(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
const array_ty = cg.typeOf(ty_op.operand).childType(zcu);
const slice_ty = ty_op.ty.toType();
// create a slice on the stack
const slice_local = try cg.allocStack(slice_ty);
// store the array ptr in the slice
if (array_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
try cg.store(slice_local, operand, Type.usize, 0);
}
// store the length of the array in the slice
const array_len: u32 = @intCast(array_ty.arrayLen(zcu));
try cg.store(slice_local, .{ .imm32 = array_len }, Type.usize, cg.ptrSize());
return cg.finishAir(inst, slice_local, &.{ty_op.operand});
}
fn airPtrElemVal(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ptr_ty = cg.typeOf(bin_op.lhs);
const ptr = try cg.resolveInst(bin_op.lhs);
const index = try cg.resolveInst(bin_op.rhs);
const elem_ty = ptr_ty.childType(zcu);
const elem_size = elem_ty.abiSize(zcu);
// load pointer onto the stack
if (ptr_ty.isSlice(zcu)) {
_ = try cg.load(ptr, Type.usize, 0);
} else {
try cg.lowerToStack(ptr);
}
// calculate index into slice
try cg.emitWValue(index);
try cg.addImm32(@intCast(elem_size));
try cg.addTag(.i32_mul);
try cg.addTag(.i32_add);
const elem_result = if (isByRef(elem_ty, zcu, cg.target))
.stack
else
try cg.load(.stack, elem_ty, 0);
return cg.finishAir(inst, elem_result, &.{ bin_op.lhs, bin_op.rhs });
}
fn airPtrElemPtr(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = cg.air.extraData(Air.Bin, ty_pl.payload).data;
const ptr_ty = cg.typeOf(bin_op.lhs);
const elem_ty = ty_pl.ty.toType().childType(zcu);
const elem_size = elem_ty.abiSize(zcu);
const ptr = try cg.resolveInst(bin_op.lhs);
const index = try cg.resolveInst(bin_op.rhs);
// load pointer onto the stack
if (ptr_ty.isSlice(zcu)) {
_ = try cg.load(ptr, Type.usize, 0);
} else {
try cg.lowerToStack(ptr);
}
// calculate index into ptr
try cg.emitWValue(index);
try cg.addImm32(@intCast(elem_size));
try cg.addTag(.i32_mul);
try cg.addTag(.i32_add);
return cg.finishAir(inst, .stack, &.{ bin_op.lhs, bin_op.rhs });
}
fn airPtrBinOp(cg: *CodeGen, inst: Air.Inst.Index, op: Op) InnerError!void {
const zcu = cg.pt.zcu;
const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = cg.air.extraData(Air.Bin, ty_pl.payload).data;
const ptr = try cg.resolveInst(bin_op.lhs);
const offset = try cg.resolveInst(bin_op.rhs);
const ptr_ty = cg.typeOf(bin_op.lhs);
const pointee_ty = switch (ptr_ty.ptrSize(zcu)) {
.one => ptr_ty.childType(zcu).childType(zcu), // ptr to array, so get array element type
else => ptr_ty.childType(zcu),
};
const valtype = typeToValtype(Type.usize, zcu, cg.target);
const mul_opcode = buildOpcode(.{ .valtype1 = valtype, .op = .mul });
const bin_opcode = buildOpcode(.{ .valtype1 = valtype, .op = op });
try cg.lowerToStack(ptr);
try cg.emitWValue(offset);
try cg.addImm32(@intCast(pointee_ty.abiSize(zcu)));
try cg.addTag(Mir.Inst.Tag.fromOpcode(mul_opcode));
try cg.addTag(Mir.Inst.Tag.fromOpcode(bin_opcode));
return cg.finishAir(inst, .stack, &.{ bin_op.lhs, bin_op.rhs });
}
fn airMemset(cg: *CodeGen, inst: Air.Inst.Index, safety: bool) InnerError!void {
const zcu = cg.pt.zcu;
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ptr = try cg.resolveInst(bin_op.lhs);
const ptr_ty = cg.typeOf(bin_op.lhs);
const value = try cg.resolveInst(bin_op.rhs);
const len = switch (ptr_ty.ptrSize(zcu)) {
.slice => try cg.sliceLen(ptr),
.one => @as(WValue, .{ .imm32 = @as(u32, @intCast(ptr_ty.childType(zcu).arrayLen(zcu))) }),
.c, .many => unreachable,
};
const elem_ty = if (ptr_ty.ptrSize(zcu) == .one)
ptr_ty.childType(zcu).childType(zcu)
else
ptr_ty.childType(zcu);
if (!safety and bin_op.rhs == .undef) {
return cg.finishAir(inst, .none, &.{ bin_op.lhs, bin_op.rhs });
}
const dst_ptr = try cg.sliceOrArrayPtr(ptr, ptr_ty);
try cg.memset(elem_ty, dst_ptr, len, value);
return cg.finishAir(inst, .none, &.{ bin_op.lhs, bin_op.rhs });
}
/// Sets a region of memory at `ptr` to the value of `value`
/// When the user has enabled the bulk_memory feature, we lower
/// this to wasm's memset instruction. When the feature is not present,
/// we implement it manually.
fn memset(cg: *CodeGen, elem_ty: Type, ptr: WValue, len: WValue, value: WValue) InnerError!void {
const zcu = cg.pt.zcu;
const abi_size = @as(u32, @intCast(elem_ty.abiSize(zcu)));
// When bulk_memory is enabled, we lower it to wasm's memset instruction.
// If not, we lower it ourselves.
if (cg.target.cpu.has(.wasm, .bulk_memory) and abi_size == 1) {
const len0_ok = cg.target.cpu.has(.wasm, .nontrapping_bulk_memory_len0);
if (!len0_ok) {
try cg.startBlock(.block, .empty);
// Even if `len` is zero, the spec requires an implementation to trap if `ptr + len` is
// out of memory bounds. This can easily happen in Zig in a case such as:
//
// const ptr: [*]u8 = undefined;
// var len: usize = runtime_zero();
// @memset(ptr[0..len], 42);
//
// So explicitly avoid using `memory.fill` in the `len == 0` case. Lovely design.
try cg.emitWValue(len);
try cg.addTag(.i32_eqz);
try cg.addLabel(.br_if, 0);
}
try cg.lowerToStack(ptr);
try cg.emitWValue(value);
try cg.emitWValue(len);
try cg.addExtended(.memory_fill);
if (!len0_ok) {
try cg.endBlock();
}
return;
}
const final_len: WValue = switch (len) {
.imm32 => |val| .{ .imm32 = val * abi_size },
.imm64 => |val| .{ .imm64 = val * abi_size },
else => if (abi_size != 1) blk: {
const new_len = try cg.ensureAllocLocal(Type.usize);
try cg.emitWValue(len);
switch (cg.ptr_size) {
.wasm32 => {
try cg.emitWValue(.{ .imm32 = abi_size });
try cg.addTag(.i32_mul);
},
.wasm64 => {
try cg.emitWValue(.{ .imm64 = abi_size });
try cg.addTag(.i64_mul);
},
}
try cg.addLocal(.local_set, new_len.local.value);
break :blk new_len;
} else len,
};
var end_ptr = try cg.allocLocal(Type.usize);
defer end_ptr.free(cg);
var new_ptr = try cg.buildPointerOffset(ptr, 0, .new);
defer new_ptr.free(cg);
// get the loop conditional: if current pointer address equals final pointer's address
try cg.lowerToStack(ptr);
try cg.emitWValue(final_len);
switch (cg.ptr_size) {
.wasm32 => try cg.addTag(.i32_add),
.wasm64 => try cg.addTag(.i64_add),
}
try cg.addLocal(.local_set, end_ptr.local.value);
// outer block to jump to when loop is done
try cg.startBlock(.block, .empty);
try cg.startBlock(.loop, .empty);
// check for condition for loop end
try cg.emitWValue(new_ptr);
try cg.emitWValue(end_ptr);
switch (cg.ptr_size) {
.wasm32 => try cg.addTag(.i32_eq),
.wasm64 => try cg.addTag(.i64_eq),
}
try cg.addLabel(.br_if, 1); // jump out of loop into outer block (finished)
// store the value at the current position of the pointer
try cg.store(new_ptr, value, elem_ty, 0);
// move the pointer to the next element
try cg.emitWValue(new_ptr);
switch (cg.ptr_size) {
.wasm32 => {
try cg.emitWValue(.{ .imm32 = abi_size });
try cg.addTag(.i32_add);
},
.wasm64 => {
try cg.emitWValue(.{ .imm64 = abi_size });
try cg.addTag(.i64_add);
},
}
try cg.addLocal(.local_set, new_ptr.local.value);
// end of loop
try cg.addLabel(.br, 0); // jump to start of loop
try cg.endBlock();
try cg.endBlock();
}
fn airArrayElemVal(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const array_ty = cg.typeOf(bin_op.lhs);
const array = try cg.resolveInst(bin_op.lhs);
const index = try cg.resolveInst(bin_op.rhs);
const elem_ty = array_ty.childType(zcu);
const elem_size = elem_ty.abiSize(zcu);
if (isByRef(array_ty, zcu, cg.target)) {
try cg.lowerToStack(array);
try cg.emitWValue(index);
try cg.addImm32(@intCast(elem_size));
try cg.addTag(.i32_mul);
try cg.addTag(.i32_add);
} else {
assert(array_ty.zigTypeTag(zcu) == .vector);
switch (index) {
inline .imm32, .imm64 => |lane| {
const opcode: std.wasm.SimdOpcode = switch (elem_ty.bitSize(zcu)) {
8 => if (elem_ty.isSignedInt(zcu)) .i8x16_extract_lane_s else .i8x16_extract_lane_u,
16 => if (elem_ty.isSignedInt(zcu)) .i16x8_extract_lane_s else .i16x8_extract_lane_u,
32 => if (elem_ty.isInt(zcu)) .i32x4_extract_lane else .f32x4_extract_lane,
64 => if (elem_ty.isInt(zcu)) .i64x2_extract_lane else .f64x2_extract_lane,
else => unreachable,
};
var operands = [_]u32{ @intFromEnum(opcode), @as(u8, @intCast(lane)) };
try cg.emitWValue(array);
const extra_index: u32 = @intCast(cg.mir_extra.items.len);
try cg.mir_extra.appendSlice(cg.gpa, &operands);
try cg.addInst(.{ .tag = .simd_prefix, .data = .{ .payload = extra_index } });
return cg.finishAir(inst, .stack, &.{ bin_op.lhs, bin_op.rhs });
},
else => {
const stack_vec = try cg.allocStack(array_ty);
try cg.store(stack_vec, array, array_ty, 0);
// Is a non-unrolled vector (v128)
try cg.lowerToStack(stack_vec);
try cg.emitWValue(index);
try cg.addImm32(@intCast(elem_size));
try cg.addTag(.i32_mul);
try cg.addTag(.i32_add);
},
}
}
const elem_result = if (isByRef(elem_ty, zcu, cg.target))
.stack
else
try cg.load(.stack, elem_ty, 0);
return cg.finishAir(inst, elem_result, &.{ bin_op.lhs, bin_op.rhs });
}
fn airIntFromFloat(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
const op_ty = cg.typeOf(ty_op.operand);
const op_bits = op_ty.floatBits(cg.target);
const dest_ty = cg.typeOfIndex(inst);
const dest_info = dest_ty.intInfo(zcu);
if (dest_info.bits > 128) {
return cg.fail("TODO: intFromFloat for integers/floats with bitsize {}", .{dest_info.bits});
}
if ((op_bits != 32 and op_bits != 64) or dest_info.bits > 64) {
const dest_bitsize = if (dest_info.bits <= 32) 32 else std.math.ceilPowerOfTwoAssert(u16, dest_info.bits);
const intrinsic = switch (dest_info.signedness) {
inline .signed, .unsigned => |ct_s| switch (op_bits) {
inline 16, 32, 64, 80, 128 => |ct_op_bits| switch (dest_bitsize) {
inline 32, 64, 128 => |ct_dest_bits| @field(
Mir.Intrinsic,
"__fix" ++ switch (ct_s) {
.signed => "",
.unsigned => "uns",
} ++
compilerRtFloatAbbrev(ct_op_bits) ++ "f" ++
compilerRtIntAbbrev(ct_dest_bits) ++ "i",
),
else => unreachable,
},
else => unreachable,
},
};
const result = try cg.callIntrinsic(intrinsic, &.{op_ty.ip_index}, dest_ty, &.{operand});
return cg.finishAir(inst, result, &.{ty_op.operand});
}
try cg.emitWValue(operand);
const op = buildOpcode(.{
.op = .trunc,
.valtype1 = typeToValtype(dest_ty, zcu, cg.target),
.valtype2 = typeToValtype(op_ty, zcu, cg.target),
.signedness = dest_info.signedness,
});
try cg.addTag(Mir.Inst.Tag.fromOpcode(op));
const result = try cg.wrapOperand(.stack, dest_ty);
return cg.finishAir(inst, result, &.{ty_op.operand});
}
fn airFloatFromInt(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
const op_ty = cg.typeOf(ty_op.operand);
const op_info = op_ty.intInfo(zcu);
const dest_ty = cg.typeOfIndex(inst);
const dest_bits = dest_ty.floatBits(cg.target);
if (op_info.bits > 128) {
return cg.fail("TODO: floatFromInt for integers/floats with bitsize {d} bits", .{op_info.bits});
}
if (op_info.bits > 64 or (dest_bits > 64 or dest_bits < 32)) {
const op_bitsize = if (op_info.bits <= 32) 32 else std.math.ceilPowerOfTwoAssert(u16, op_info.bits);
const intrinsic = switch (op_info.signedness) {
inline .signed, .unsigned => |ct_s| switch (op_bitsize) {
inline 32, 64, 128 => |ct_int_bits| switch (dest_bits) {
inline 16, 32, 64, 80, 128 => |ct_float_bits| @field(
Mir.Intrinsic,
"__float" ++ switch (ct_s) {
.signed => "",
.unsigned => "un",
} ++
compilerRtIntAbbrev(ct_int_bits) ++ "i" ++
compilerRtFloatAbbrev(ct_float_bits) ++ "f",
),
else => unreachable,
},
else => unreachable,
},
};
const result = try cg.callIntrinsic(intrinsic, &.{op_ty.ip_index}, dest_ty, &.{operand});
return cg.finishAir(inst, result, &.{ty_op.operand});
}
try cg.emitWValue(operand);
const op = buildOpcode(.{
.op = .convert,
.valtype1 = typeToValtype(dest_ty, zcu, cg.target),
.valtype2 = typeToValtype(op_ty, zcu, cg.target),
.signedness = op_info.signedness,
});
try cg.addTag(Mir.Inst.Tag.fromOpcode(op));
return cg.finishAir(inst, .stack, &.{ty_op.operand});
}
fn airSplat(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
const ty = cg.typeOfIndex(inst);
const elem_ty = ty.childType(zcu);
if (determineSimdStoreStrategy(ty, zcu, cg.target) == .direct) blk: {
switch (operand) {
// when the operand lives in the linear memory section, we can directly
// load and splat the value at once. Meaning we do not first have to load
// the scalar value onto the stack.
.stack_offset, .nav_ref, .uav_ref => {
const opcode = switch (elem_ty.bitSize(zcu)) {
8 => @intFromEnum(std.wasm.SimdOpcode.v128_load8_splat),
16 => @intFromEnum(std.wasm.SimdOpcode.v128_load16_splat),
32 => @intFromEnum(std.wasm.SimdOpcode.v128_load32_splat),
64 => @intFromEnum(std.wasm.SimdOpcode.v128_load64_splat),
else => break :blk, // Cannot make use of simd-instructions
};
try cg.emitWValue(operand);
const extra_index: u32 = @intCast(cg.mir_extra.items.len);
// stores as := opcode, offset, alignment (opcode::memarg)
try cg.mir_extra.appendSlice(cg.gpa, &[_]u32{
opcode,
operand.offset(),
@intCast(elem_ty.abiAlignment(zcu).toByteUnits().?),
});
try cg.addInst(.{ .tag = .simd_prefix, .data = .{ .payload = extra_index } });
return cg.finishAir(inst, .stack, &.{ty_op.operand});
},
.local => {
const opcode = switch (elem_ty.bitSize(zcu)) {
8 => @intFromEnum(std.wasm.SimdOpcode.i8x16_splat),
16 => @intFromEnum(std.wasm.SimdOpcode.i16x8_splat),
32 => if (elem_ty.isInt(zcu)) @intFromEnum(std.wasm.SimdOpcode.i32x4_splat) else @intFromEnum(std.wasm.SimdOpcode.f32x4_splat),
64 => if (elem_ty.isInt(zcu)) @intFromEnum(std.wasm.SimdOpcode.i64x2_splat) else @intFromEnum(std.wasm.SimdOpcode.f64x2_splat),
else => break :blk, // Cannot make use of simd-instructions
};
try cg.emitWValue(operand);
const extra_index: u32 = @intCast(cg.mir_extra.items.len);
try cg.mir_extra.append(cg.gpa, opcode);
try cg.addInst(.{ .tag = .simd_prefix, .data = .{ .payload = extra_index } });
return cg.finishAir(inst, .stack, &.{ty_op.operand});
},
else => unreachable,
}
}
const elem_size = elem_ty.bitSize(zcu);
const vector_len = @as(usize, @intCast(ty.vectorLen(zcu)));
if ((!std.math.isPowerOfTwo(elem_size) or elem_size % 8 != 0) and vector_len > 1) {
return cg.fail("TODO: WebAssembly `@splat` for arbitrary element bitsize {d}", .{elem_size});
}
const result = try cg.allocStack(ty);
const elem_byte_size = @as(u32, @intCast(elem_ty.abiSize(zcu)));
var index: usize = 0;
var offset: u32 = 0;
while (index < vector_len) : (index += 1) {
try cg.store(result, operand, elem_ty, offset);
offset += elem_byte_size;
}
return cg.finishAir(inst, result, &.{ty_op.operand});
}
fn airSelect(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const operand = try cg.resolveInst(pl_op.operand);
_ = operand;
return cg.fail("TODO: Implement wasm airSelect", .{});
}
fn airShuffleOne(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = cg.pt;
const zcu = pt.zcu;
const unwrapped = cg.air.unwrapShuffleOne(zcu, inst);
const result_ty = unwrapped.result_ty;
const mask = unwrapped.mask;
const operand = try cg.resolveInst(unwrapped.operand);
const elem_ty = result_ty.childType(zcu);
const elem_size = elem_ty.abiSize(zcu);
// TODO: this function could have an `i8x16_shuffle` fast path like `airShuffleTwo` if we were
// to lower the comptime-known operands to a non-by-ref vector value.
// TODO: this is incorrect if either operand or the result is *not* by-ref, which is possible.
// I tried to fix it, but I couldn't make much sense of how this backend handles memory.
if (!isByRef(result_ty, zcu, cg.target) or
!isByRef(cg.typeOf(unwrapped.operand), zcu, cg.target)) return cg.fail("TODO: handle mixed by-ref shuffle", .{});
const dest_alloc = try cg.allocStack(result_ty);
for (mask, 0..) |mask_elem, out_idx| {
try cg.emitWValue(dest_alloc);
const elem_val = switch (mask_elem.unwrap()) {
.elem => |idx| try cg.load(operand, elem_ty, @intCast(elem_size * idx)),
.value => |val| try cg.lowerConstant(.fromInterned(val), elem_ty),
};
try cg.store(.stack, elem_val, elem_ty, @intCast(dest_alloc.offset() + elem_size * out_idx));
}
return cg.finishAir(inst, dest_alloc, &.{unwrapped.operand});
}
fn airShuffleTwo(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = cg.pt;
const zcu = pt.zcu;
const unwrapped = cg.air.unwrapShuffleTwo(zcu, inst);
const result_ty = unwrapped.result_ty;
const mask = unwrapped.mask;
const operand_a = try cg.resolveInst(unwrapped.operand_a);
const operand_b = try cg.resolveInst(unwrapped.operand_b);
const a_ty = cg.typeOf(unwrapped.operand_a);
const b_ty = cg.typeOf(unwrapped.operand_b);
const elem_ty = result_ty.childType(zcu);
const elem_size = elem_ty.abiSize(zcu);
// WASM has `i8x16_shuffle`, which we can apply if the element type bit size is a multiple of 8
// and the input and output vectors have a bit size of 128 (and are hence not by-ref). Otherwise,
// we fall back to a naive loop lowering.
if (!isByRef(a_ty, zcu, cg.target) and
!isByRef(b_ty, zcu, cg.target) and
!isByRef(result_ty, zcu, cg.target) and
elem_ty.bitSize(zcu) % 8 == 0)
{
var lane_map: [16]u8 align(4) = undefined;
const lanes_per_elem: usize = @intCast(elem_ty.bitSize(zcu) / 8);
for (mask, 0..) |mask_elem, out_idx| {
const out_first_lane = out_idx * lanes_per_elem;
const in_first_lane = switch (mask_elem.unwrap()) {
.a_elem => |i| i * lanes_per_elem,
.b_elem => |i| i * lanes_per_elem + 16,
.undef => 0, // doesn't matter
};
for (lane_map[out_first_lane..][0..lanes_per_elem], in_first_lane..) |*out, in| {
out.* = @intCast(in);
}
}
try cg.emitWValue(operand_a);
try cg.emitWValue(operand_b);
const extra_index: u32 = @intCast(cg.mir_extra.items.len);
try cg.mir_extra.appendSlice(cg.gpa, &.{
@intFromEnum(std.wasm.SimdOpcode.i8x16_shuffle),
@bitCast(lane_map[0..4].*),
@bitCast(lane_map[4..8].*),
@bitCast(lane_map[8..12].*),
@bitCast(lane_map[12..].*),
});
try cg.addInst(.{ .tag = .simd_prefix, .data = .{ .payload = extra_index } });
return cg.finishAir(inst, .stack, &.{ unwrapped.operand_a, unwrapped.operand_b });
}
// TODO: this is incorrect if either operand or the result is *not* by-ref, which is possible.
// I tried to fix it, but I couldn't make much sense of how this backend handles memory.
if (!isByRef(result_ty, zcu, cg.target) or
!isByRef(a_ty, zcu, cg.target) or
!isByRef(b_ty, zcu, cg.target)) return cg.fail("TODO: handle mixed by-ref shuffle", .{});
const dest_alloc = try cg.allocStack(result_ty);
for (mask, 0..) |mask_elem, out_idx| {
try cg.emitWValue(dest_alloc);
const elem_val = switch (mask_elem.unwrap()) {
.a_elem => |idx| try cg.load(operand_a, elem_ty, @intCast(elem_size * idx)),
.b_elem => |idx| try cg.load(operand_b, elem_ty, @intCast(elem_size * idx)),
.undef => try cg.emitUndefined(elem_ty),
};
try cg.store(.stack, elem_val, elem_ty, @intCast(dest_alloc.offset() + elem_size * out_idx));
}
return cg.finishAir(inst, dest_alloc, &.{ unwrapped.operand_a, unwrapped.operand_b });
}
fn airReduce(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const reduce = cg.air.instructions.items(.data)[@intFromEnum(inst)].reduce;
const operand = try cg.resolveInst(reduce.operand);
_ = operand;
return cg.fail("TODO: Implement wasm airReduce", .{});
}
fn airAggregateInit(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = cg.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const result_ty = cg.typeOfIndex(inst);
const len = @as(usize, @intCast(result_ty.arrayLen(zcu)));
const elements: []const Air.Inst.Ref = @ptrCast(cg.air.extra.items[ty_pl.payload..][0..len]);
const result: WValue = result_value: {
switch (result_ty.zigTypeTag(zcu)) {
.array => {
const result = try cg.allocStack(result_ty);
const elem_ty = result_ty.childType(zcu);
const elem_size = @as(u32, @intCast(elem_ty.abiSize(zcu)));
const sentinel = result_ty.sentinel(zcu);
// When the element type is by reference, we must copy the entire
// value. It is therefore safer to move the offset pointer and store
// each value individually, instead of using store offsets.
if (isByRef(elem_ty, zcu, cg.target)) {
// copy stack pointer into a temporary local, which is
// moved for each element to store each value in the right position.
const offset = try cg.buildPointerOffset(result, 0, .new);
for (elements, 0..) |elem, elem_index| {
const elem_val = try cg.resolveInst(elem);
try cg.store(offset, elem_val, elem_ty, 0);
if (elem_index < elements.len - 1 or sentinel != null) {
_ = try cg.buildPointerOffset(offset, elem_size, .modify);
}
}
if (sentinel) |s| {
const val = try cg.resolveValue(s);
try cg.store(offset, val, elem_ty, 0);
}
} else {
var offset: u32 = 0;
for (elements) |elem| {
const elem_val = try cg.resolveInst(elem);
try cg.store(result, elem_val, elem_ty, offset);
offset += elem_size;
}
if (sentinel) |s| {
const val = try cg.resolveValue(s);
try cg.store(result, val, elem_ty, offset);
}
}
break :result_value result;
},
.@"struct" => switch (result_ty.containerLayout(zcu)) {
.@"packed" => {
if (isByRef(result_ty, zcu, cg.target)) {
return cg.fail("TODO: airAggregateInit for packed structs larger than 64 bits", .{});
}
const packed_struct = zcu.typeToPackedStruct(result_ty).?;
const field_types = packed_struct.field_types;
const backing_type = Type.fromInterned(packed_struct.backingIntTypeUnordered(ip));
// ensure the result is zero'd
const result = try cg.allocLocal(backing_type);
if (backing_type.bitSize(zcu) <= 32)
try cg.addImm32(0)
else
try cg.addImm64(0);
try cg.addLocal(.local_set, result.local.value);
var current_bit: u16 = 0;
for (elements, 0..) |elem, elem_index| {
const field_ty = Type.fromInterned(field_types.get(ip)[elem_index]);
if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue;
const shift_val: WValue = if (backing_type.bitSize(zcu) <= 32)
.{ .imm32 = current_bit }
else
.{ .imm64 = current_bit };
const value = try cg.resolveInst(elem);
const value_bit_size: u16 = @intCast(field_ty.bitSize(zcu));
const int_ty = try pt.intType(.unsigned, value_bit_size);
// load our current result on stack so we can perform all transformations
// using only stack values. Saving the cost of loads and stores.
try cg.emitWValue(result);
const bitcasted = try cg.bitcast(int_ty, field_ty, value);
const extended_val = try cg.intcast(bitcasted, int_ty, backing_type);
// no need to shift any values when the current offset is 0
const shifted = if (current_bit != 0) shifted: {
break :shifted try cg.binOp(extended_val, shift_val, backing_type, .shl);
} else extended_val;
// we ignore the result as we keep it on the stack to assign it directly to `result`
_ = try cg.binOp(.stack, shifted, backing_type, .@"or");
try cg.addLocal(.local_set, result.local.value);
current_bit += value_bit_size;
}
break :result_value result;
},
else => {
const result = try cg.allocStack(result_ty);
const offset = try cg.buildPointerOffset(result, 0, .new); // pointer to offset
var prev_field_offset: u64 = 0;
for (elements, 0..) |elem, elem_index| {
if (try result_ty.structFieldValueComptime(pt, elem_index) != null) continue;
const elem_ty = result_ty.fieldType(elem_index, zcu);
const field_offset = result_ty.structFieldOffset(elem_index, zcu);
_ = try cg.buildPointerOffset(offset, @intCast(field_offset - prev_field_offset), .modify);
prev_field_offset = field_offset;
const value = try cg.resolveInst(elem);
try cg.store(offset, value, elem_ty, 0);
}
break :result_value result;
},
},
.vector => return cg.fail("TODO: Wasm backend: implement airAggregateInit for vectors", .{}),
else => unreachable,
}
};
if (elements.len <= Air.Liveness.bpi - 1) {
var buf = [1]Air.Inst.Ref{.none} ** (Air.Liveness.bpi - 1);
@memcpy(buf[0..elements.len], elements);
return cg.finishAir(inst, result, &buf);
}
var bt = try cg.iterateBigTomb(inst, elements.len);
for (elements) |arg| bt.feed(arg);
return bt.finishAir(result);
}
fn airUnionInit(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = cg.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = cg.air.extraData(Air.UnionInit, ty_pl.payload).data;
const result = result: {
const union_ty = cg.typeOfIndex(inst);
const layout = union_ty.unionGetLayout(zcu);
const union_obj = zcu.typeToUnion(union_ty).?;
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[extra.field_index]);
const field_name = union_obj.loadTagType(ip).names.get(ip)[extra.field_index];
const tag_int = blk: {
const tag_ty = union_ty.unionTagTypeHypothetical(zcu);
const enum_field_index = tag_ty.enumFieldIndex(field_name, zcu).?;
const tag_val = try pt.enumValueFieldIndex(tag_ty, enum_field_index);
break :blk try cg.lowerConstant(tag_val, tag_ty);
};
if (layout.payload_size == 0) {
if (layout.tag_size == 0) {
break :result .none;
}
assert(!isByRef(union_ty, zcu, cg.target));
break :result tag_int;
}
if (isByRef(union_ty, zcu, cg.target)) {
const result_ptr = try cg.allocStack(union_ty);
const payload = try cg.resolveInst(extra.init);
if (layout.tag_align.compare(.gte, layout.payload_align)) {
if (isByRef(field_ty, zcu, cg.target)) {
const payload_ptr = try cg.buildPointerOffset(result_ptr, layout.tag_size, .new);
try cg.store(payload_ptr, payload, field_ty, 0);
} else {
try cg.store(result_ptr, payload, field_ty, @intCast(layout.tag_size));
}
if (layout.tag_size > 0) {
try cg.store(result_ptr, tag_int, Type.fromInterned(union_obj.enum_tag_ty), 0);
}
} else {
try cg.store(result_ptr, payload, field_ty, 0);
if (layout.tag_size > 0) {
try cg.store(
result_ptr,
tag_int,
Type.fromInterned(union_obj.enum_tag_ty),
@intCast(layout.payload_size),
);
}
}
break :result result_ptr;
} else {
const operand = try cg.resolveInst(extra.init);
const union_int_type = try pt.intType(.unsigned, @as(u16, @intCast(union_ty.bitSize(zcu))));
if (field_ty.zigTypeTag(zcu) == .float) {
const int_type = try pt.intType(.unsigned, @intCast(field_ty.bitSize(zcu)));
const bitcasted = try cg.bitcast(field_ty, int_type, operand);
break :result try cg.trunc(bitcasted, int_type, union_int_type);
} else if (field_ty.isPtrAtRuntime(zcu)) {
const int_type = try pt.intType(.unsigned, @intCast(field_ty.bitSize(zcu)));
break :result try cg.intcast(operand, int_type, union_int_type);
}
break :result try cg.intcast(operand, field_ty, union_int_type);
}
};
return cg.finishAir(inst, result, &.{extra.init});
}
fn airPrefetch(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const prefetch = cg.air.instructions.items(.data)[@intFromEnum(inst)].prefetch;
return cg.finishAir(inst, .none, &.{prefetch.ptr});
}
fn airWasmMemorySize(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
try cg.addLabel(.memory_size, pl_op.payload);
return cg.finishAir(inst, .stack, &.{pl_op.operand});
}
fn airWasmMemoryGrow(cg: *CodeGen, inst: Air.Inst.Index) !void {
const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const operand = try cg.resolveInst(pl_op.operand);
try cg.emitWValue(operand);
try cg.addLabel(.memory_grow, pl_op.payload);
return cg.finishAir(inst, .stack, &.{pl_op.operand});
}
fn cmpOptionals(cg: *CodeGen, lhs: WValue, rhs: WValue, operand_ty: Type, op: std.math.CompareOperator) InnerError!WValue {
const zcu = cg.pt.zcu;
assert(operand_ty.hasRuntimeBitsIgnoreComptime(zcu));
assert(op == .eq or op == .neq);
const payload_ty = operand_ty.optionalChild(zcu);
assert(!isByRef(payload_ty, zcu, cg.target));
var result = try cg.allocLocal(Type.i32);
defer result.free(cg);
var lhs_null = try cg.allocLocal(Type.i32);
defer lhs_null.free(cg);
try cg.startBlock(.block, .empty);
try cg.addImm32(if (op == .eq) 0 else 1);
try cg.addLocal(.local_set, result.local.value);
_ = try cg.isNull(lhs, operand_ty, .i32_eq);
try cg.addLocal(.local_tee, lhs_null.local.value);
_ = try cg.isNull(rhs, operand_ty, .i32_eq);
try cg.addTag(.i32_ne);
try cg.addLabel(.br_if, 0); // only one is null
try cg.addImm32(if (op == .eq) 1 else 0);
try cg.addLocal(.local_set, result.local.value);
try cg.addLocal(.local_get, lhs_null.local.value);
try cg.addLabel(.br_if, 0); // both are null
_ = try cg.load(lhs, payload_ty, 0);
_ = try cg.load(rhs, payload_ty, 0);
_ = try cg.cmp(.stack, .stack, payload_ty, op);
try cg.addLocal(.local_set, result.local.value);
try cg.endBlock();
try cg.addLocal(.local_get, result.local.value);
return .stack;
}
/// Compares big integers by checking both its high bits and low bits.
/// NOTE: Leaves the result of the comparison on top of the stack.
/// TODO: Lower this to compiler_rt call when bitsize > 128
fn cmpBigInt(cg: *CodeGen, lhs: WValue, rhs: WValue, operand_ty: Type, op: std.math.CompareOperator) InnerError!WValue {
const zcu = cg.pt.zcu;
assert(operand_ty.abiSize(zcu) >= 16);
assert(!(lhs != .stack and rhs == .stack));
if (operand_ty.bitSize(zcu) > 128) {
return cg.fail("TODO: Support cmpBigInt for integer bitsize: '{d}'", .{operand_ty.bitSize(zcu)});
}
var lhs_msb = try (try cg.load(lhs, Type.u64, 8)).toLocal(cg, Type.u64);
defer lhs_msb.free(cg);
var rhs_msb = try (try cg.load(rhs, Type.u64, 8)).toLocal(cg, Type.u64);
defer rhs_msb.free(cg);
switch (op) {
.eq, .neq => {
const xor_high = try cg.binOp(lhs_msb, rhs_msb, Type.u64, .xor);
const lhs_lsb = try cg.load(lhs, Type.u64, 0);
const rhs_lsb = try cg.load(rhs, Type.u64, 0);
const xor_low = try cg.binOp(lhs_lsb, rhs_lsb, Type.u64, .xor);
const or_result = try cg.binOp(xor_high, xor_low, Type.u64, .@"or");
switch (op) {
.eq => return cg.cmp(or_result, .{ .imm64 = 0 }, Type.u64, .eq),
.neq => return cg.cmp(or_result, .{ .imm64 = 0 }, Type.u64, .neq),
else => unreachable,
}
},
else => {
const ty = if (operand_ty.isSignedInt(zcu)) Type.i64 else Type.u64;
// leave those value on top of the stack for '.select'
const lhs_lsb = try cg.load(lhs, Type.u64, 0);
const rhs_lsb = try cg.load(rhs, Type.u64, 0);
_ = try cg.cmp(lhs_lsb, rhs_lsb, Type.u64, op);
_ = try cg.cmp(lhs_msb, rhs_msb, ty, op);
_ = try cg.cmp(lhs_msb, rhs_msb, ty, .eq);
try cg.addTag(.select);
},
}
return .stack;
}
fn airSetUnionTag(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = cg.pt;
const zcu = pt.zcu;
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const un_ty = cg.typeOf(bin_op.lhs).childType(zcu);
const tag_ty = cg.typeOf(bin_op.rhs);
const layout = un_ty.unionGetLayout(zcu);
if (layout.tag_size == 0) return cg.finishAir(inst, .none, &.{ bin_op.lhs, bin_op.rhs });
const union_ptr = try cg.resolveInst(bin_op.lhs);
const new_tag = try cg.resolveInst(bin_op.rhs);
if (layout.payload_size == 0) {
try cg.store(union_ptr, new_tag, tag_ty, 0);
return cg.finishAir(inst, .none, &.{ bin_op.lhs, bin_op.rhs });
}
// when the tag alignment is smaller than the payload, the field will be stored
// after the payload.
const offset: u32 = if (layout.tag_align.compare(.lt, layout.payload_align)) blk: {
break :blk @intCast(layout.payload_size);
} else 0;
try cg.store(union_ptr, new_tag, tag_ty, offset);
return cg.finishAir(inst, .none, &.{ bin_op.lhs, bin_op.rhs });
}
fn airGetUnionTag(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const un_ty = cg.typeOf(ty_op.operand);
const tag_ty = cg.typeOfIndex(inst);
const layout = un_ty.unionGetLayout(zcu);
if (layout.tag_size == 0) return cg.finishAir(inst, .none, &.{ty_op.operand});
const operand = try cg.resolveInst(ty_op.operand);
// when the tag alignment is smaller than the payload, the field will be stored
// after the payload.
const offset: u32 = if (layout.tag_align.compare(.lt, layout.payload_align))
@intCast(layout.payload_size)
else
0;
const result = try cg.load(operand, tag_ty, offset);
return cg.finishAir(inst, result, &.{ty_op.operand});
}
fn airFpext(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const dest_ty = cg.typeOfIndex(inst);
const operand = try cg.resolveInst(ty_op.operand);
const result = try cg.fpext(operand, cg.typeOf(ty_op.operand), dest_ty);
return cg.finishAir(inst, result, &.{ty_op.operand});
}
/// Extends a float from a given `Type` to a larger wanted `Type`, leaving the
/// result on the stack.
fn fpext(cg: *CodeGen, operand: WValue, given: Type, wanted: Type) InnerError!WValue {
const given_bits = given.floatBits(cg.target);
const wanted_bits = wanted.floatBits(cg.target);
const intrinsic: Mir.Intrinsic = switch (given_bits) {
16 => switch (wanted_bits) {
32 => {
assert(.stack == try cg.callIntrinsic(.__extendhfsf2, &.{.f16_type}, Type.f32, &.{operand}));
return .stack;
},
64 => {
assert(.stack == try cg.callIntrinsic(.__extendhfsf2, &.{.f16_type}, Type.f32, &.{operand}));
try cg.addTag(.f64_promote_f32);
return .stack;
},
80 => .__extendhfxf2,
128 => .__extendhftf2,
else => unreachable,
},
32 => switch (wanted_bits) {
64 => {
try cg.emitWValue(operand);
try cg.addTag(.f64_promote_f32);
return .stack;
},
80 => .__extendsfxf2,
128 => .__extendsftf2,
else => unreachable,
},
64 => switch (wanted_bits) {
80 => .__extenddfxf2,
128 => .__extenddftf2,
else => unreachable,
},
80 => switch (wanted_bits) {
128 => .__extendxftf2,
else => unreachable,
},
else => unreachable,
};
return cg.callIntrinsic(intrinsic, &.{given.ip_index}, wanted, &.{operand});
}
fn airFptrunc(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const dest_ty = cg.typeOfIndex(inst);
const operand = try cg.resolveInst(ty_op.operand);
const result = try cg.fptrunc(operand, cg.typeOf(ty_op.operand), dest_ty);
return cg.finishAir(inst, result, &.{ty_op.operand});
}
/// Truncates a float from a given `Type` to its wanted `Type`, leaving the
/// result on the stack.
fn fptrunc(cg: *CodeGen, operand: WValue, given: Type, wanted: Type) InnerError!WValue {
const given_bits = given.floatBits(cg.target);
const wanted_bits = wanted.floatBits(cg.target);
const intrinsic: Mir.Intrinsic = switch (given_bits) {
32 => switch (wanted_bits) {
16 => {
return cg.callIntrinsic(.__truncsfhf2, &.{.f32_type}, Type.f16, &.{operand});
},
else => unreachable,
},
64 => switch (wanted_bits) {
16 => {
try cg.emitWValue(operand);
try cg.addTag(.f32_demote_f64);
return cg.callIntrinsic(.__truncsfhf2, &.{.f32_type}, Type.f16, &.{.stack});
},
32 => {
try cg.emitWValue(operand);
try cg.addTag(.f32_demote_f64);
return .stack;
},
else => unreachable,
},
80 => switch (wanted_bits) {
16 => .__truncxfhf2,
32 => .__truncxfsf2,
64 => .__truncxfdf2,
else => unreachable,
},
128 => switch (wanted_bits) {
16 => .__trunctfhf2,
32 => .__trunctfsf2,
64 => .__trunctfdf2,
80 => .__trunctfxf2,
else => unreachable,
},
else => unreachable,
};
return cg.callIntrinsic(intrinsic, &.{given.ip_index}, wanted, &.{operand});
}
fn airErrUnionPayloadPtrSet(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const err_set_ty = cg.typeOf(ty_op.operand).childType(zcu);
const payload_ty = err_set_ty.errorUnionPayload(zcu);
const operand = try cg.resolveInst(ty_op.operand);
// set error-tag to '0' to annotate error union is non-error
try cg.store(
operand,
.{ .imm32 = 0 },
Type.anyerror,
@intCast(errUnionErrorOffset(payload_ty, zcu)),
);
const result = result: {
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
break :result cg.reuseOperand(ty_op.operand, operand);
}
break :result try cg.buildPointerOffset(operand, @as(u32, @intCast(errUnionPayloadOffset(payload_ty, zcu))), .new);
};
return cg.finishAir(inst, result, &.{ty_op.operand});
}
fn airFieldParentPtr(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = cg.pt;
const zcu = pt.zcu;
const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = cg.air.extraData(Air.FieldParentPtr, ty_pl.payload).data;
const field_ptr = try cg.resolveInst(extra.field_ptr);
const parent_ptr_ty = cg.typeOfIndex(inst);
const parent_ty = parent_ptr_ty.childType(zcu);
const field_ptr_ty = cg.typeOf(extra.field_ptr);
const field_index = extra.field_index;
const field_offset = switch (parent_ty.containerLayout(zcu)) {
.auto, .@"extern" => parent_ty.structFieldOffset(field_index, zcu),
.@"packed" => offset: {
const parent_ptr_offset = parent_ptr_ty.ptrInfo(zcu).packed_offset.bit_offset;
const field_offset = if (zcu.typeToStruct(parent_ty)) |loaded_struct| zcu.structPackedFieldBitOffset(loaded_struct, field_index) else 0;
const field_ptr_offset = field_ptr_ty.ptrInfo(zcu).packed_offset.bit_offset;
break :offset @divExact(parent_ptr_offset + field_offset - field_ptr_offset, 8);
},
};
const result = if (field_offset != 0) result: {
const base = try cg.buildPointerOffset(field_ptr, 0, .new);
try cg.addLocal(.local_get, base.local.value);
try cg.addImm32(@intCast(field_offset));
try cg.addTag(.i32_sub);
try cg.addLocal(.local_set, base.local.value);
break :result base;
} else cg.reuseOperand(extra.field_ptr, field_ptr);
return cg.finishAir(inst, result, &.{extra.field_ptr});
}
fn sliceOrArrayPtr(cg: *CodeGen, ptr: WValue, ptr_ty: Type) InnerError!WValue {
const zcu = cg.pt.zcu;
if (ptr_ty.isSlice(zcu)) {
return cg.slicePtr(ptr);
} else {
return ptr;
}
}
fn airMemcpy(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const dst = try cg.resolveInst(bin_op.lhs);
const dst_ty = cg.typeOf(bin_op.lhs);
const ptr_elem_ty = dst_ty.childType(zcu);
const src = try cg.resolveInst(bin_op.rhs);
const src_ty = cg.typeOf(bin_op.rhs);
const len = switch (dst_ty.ptrSize(zcu)) {
.slice => blk: {
const slice_len = try cg.sliceLen(dst);
if (ptr_elem_ty.abiSize(zcu) != 1) {
try cg.emitWValue(slice_len);
try cg.emitWValue(.{ .imm32 = @as(u32, @intCast(ptr_elem_ty.abiSize(zcu))) });
try cg.addTag(.i32_mul);
try cg.addLocal(.local_set, slice_len.local.value);
}
break :blk slice_len;
},
.one => @as(WValue, .{
.imm32 = @as(u32, @intCast(ptr_elem_ty.arrayLen(zcu) * ptr_elem_ty.childType(zcu).abiSize(zcu))),
}),
.c, .many => unreachable,
};
const dst_ptr = try cg.sliceOrArrayPtr(dst, dst_ty);
const src_ptr = try cg.sliceOrArrayPtr(src, src_ty);
try cg.memcpy(dst_ptr, src_ptr, len);
return cg.finishAir(inst, .none, &.{ bin_op.lhs, bin_op.rhs });
}
fn airRetAddr(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
// TODO: Implement this properly once stack serialization is solved
return cg.finishAir(inst, switch (cg.ptr_size) {
.wasm32 => .{ .imm32 = 0 },
.wasm64 => .{ .imm64 = 0 },
}, &.{});
}
fn airPopcount(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = cg.pt;
const zcu = pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
const op_ty = cg.typeOf(ty_op.operand);
if (op_ty.zigTypeTag(zcu) == .vector) {
return cg.fail("TODO: Implement @popCount for vectors", .{});
}
const int_info = op_ty.intInfo(zcu);
const bits = int_info.bits;
const wasm_bits = toWasmBits(bits) orelse {
return cg.fail("TODO: Implement @popCount for integers with bitsize '{d}'", .{bits});
};
switch (wasm_bits) {
32 => {
try cg.emitWValue(operand);
if (op_ty.isSignedInt(zcu) and bits != wasm_bits) {
_ = try cg.wrapOperand(.stack, try pt.intType(.unsigned, bits));
}
try cg.addTag(.i32_popcnt);
},
64 => {
try cg.emitWValue(operand);
if (op_ty.isSignedInt(zcu) and bits != wasm_bits) {
_ = try cg.wrapOperand(.stack, try pt.intType(.unsigned, bits));
}
try cg.addTag(.i64_popcnt);
try cg.addTag(.i32_wrap_i64);
try cg.emitWValue(operand);
},
128 => {
_ = try cg.load(operand, Type.u64, 0);
try cg.addTag(.i64_popcnt);
_ = try cg.load(operand, Type.u64, 8);
if (op_ty.isSignedInt(zcu) and bits != wasm_bits) {
_ = try cg.wrapOperand(.stack, try pt.intType(.unsigned, bits - 64));
}
try cg.addTag(.i64_popcnt);
try cg.addTag(.i64_add);
try cg.addTag(.i32_wrap_i64);
},
else => unreachable,
}
return cg.finishAir(inst, .stack, &.{ty_op.operand});
}
fn airBitReverse(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
const ty = cg.typeOf(ty_op.operand);
if (ty.zigTypeTag(zcu) == .vector) {
return cg.fail("TODO: Implement @bitReverse for vectors", .{});
}
const int_info = ty.intInfo(zcu);
const bits = int_info.bits;
const wasm_bits = toWasmBits(bits) orelse {
return cg.fail("TODO: Implement @bitReverse for integers with bitsize '{d}'", .{bits});
};
switch (wasm_bits) {
32 => {
const intrin_ret = try cg.callIntrinsic(
.__bitreversesi2,
&.{.u32_type},
Type.u32,
&.{operand},
);
const result = if (bits == 32)
intrin_ret
else
try cg.binOp(intrin_ret, .{ .imm32 = 32 - bits }, ty, .shr);
return cg.finishAir(inst, result, &.{ty_op.operand});
},
64 => {
const intrin_ret = try cg.callIntrinsic(
.__bitreversedi2,
&.{.u64_type},
Type.u64,
&.{operand},
);
const result = if (bits == 64)
intrin_ret
else
try cg.binOp(intrin_ret, .{ .imm64 = 64 - bits }, ty, .shr);
return cg.finishAir(inst, result, &.{ty_op.operand});
},
128 => {
const result = try cg.allocStack(ty);
try cg.emitWValue(result);
const first_half = try cg.load(operand, Type.u64, 8);
const intrin_ret_first = try cg.callIntrinsic(
.__bitreversedi2,
&.{.u64_type},
Type.u64,
&.{first_half},
);
try cg.emitWValue(intrin_ret_first);
if (bits < 128) {
try cg.emitWValue(.{ .imm64 = 128 - bits });
try cg.addTag(.i64_shr_u);
}
try cg.emitWValue(result);
const second_half = try cg.load(operand, Type.u64, 0);
const intrin_ret_second = try cg.callIntrinsic(
.__bitreversedi2,
&.{.u64_type},
Type.u64,
&.{second_half},
);
try cg.emitWValue(intrin_ret_second);
if (bits == 128) {
try cg.store(.stack, .stack, Type.u64, result.offset() + 8);
try cg.store(.stack, .stack, Type.u64, result.offset());
} else {
var tmp = try cg.allocLocal(Type.u64);
defer tmp.free(cg);
try cg.addLocal(.local_tee, tmp.local.value);
try cg.emitWValue(.{ .imm64 = 128 - bits });
if (ty.isSignedInt(zcu)) {
try cg.addTag(.i64_shr_s);
} else {
try cg.addTag(.i64_shr_u);
}
try cg.store(.stack, .stack, Type.u64, result.offset() + 8);
try cg.addLocal(.local_get, tmp.local.value);
try cg.emitWValue(.{ .imm64 = bits - 64 });
try cg.addTag(.i64_shl);
try cg.addTag(.i64_or);
try cg.store(.stack, .stack, Type.u64, result.offset());
}
return cg.finishAir(inst, result, &.{ty_op.operand});
},
else => unreachable,
}
}
fn airErrorName(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const un_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try cg.resolveInst(un_op);
// Each entry to this table is a slice (ptr+len).
// The operand in this instruction represents the index within this table.
// This means to get the final name, we emit the base pointer and then perform
// pointer arithmetic to find the pointer to this slice and return that.
//
// As the names are global and the slice elements are constant, we do not have
// to make a copy of the ptr+value but can point towards them directly.
const pt = cg.pt;
const name_ty = Type.slice_const_u8_sentinel_0;
const abi_size = name_ty.abiSize(pt.zcu);
// Lowers to a i32.const or i64.const with the error table memory address.
cg.error_name_table_ref_count += 1;
try cg.addTag(.error_name_table_ref);
try cg.emitWValue(operand);
switch (cg.ptr_size) {
.wasm32 => {
try cg.addImm32(@intCast(abi_size));
try cg.addTag(.i32_mul);
try cg.addTag(.i32_add);
},
.wasm64 => {
try cg.addImm64(abi_size);
try cg.addTag(.i64_mul);
try cg.addTag(.i64_add);
},
}
return cg.finishAir(inst, .stack, &.{un_op});
}
fn airPtrSliceFieldPtr(cg: *CodeGen, inst: Air.Inst.Index, offset: u32) InnerError!void {
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const slice_ptr = try cg.resolveInst(ty_op.operand);
const result = try cg.buildPointerOffset(slice_ptr, offset, .new);
return cg.finishAir(inst, result, &.{ty_op.operand});
}
/// NOTE: Allocates place for result on virtual stack, when integer size > 64 bits
fn intZeroValue(cg: *CodeGen, ty: Type) InnerError!WValue {
const zcu = cg.pt.zcu;
const int_info = ty.intInfo(zcu);
const wasm_bits = toWasmBits(int_info.bits) orelse {
return cg.fail("TODO: Implement intZeroValue for integer bitsize: {d}", .{int_info.bits});
};
switch (wasm_bits) {
32 => return .{ .imm32 = 0 },
64 => return .{ .imm64 = 0 },
128 => {
const result = try cg.allocStack(ty);
try cg.store(result, .{ .imm64 = 0 }, Type.u64, 0);
try cg.store(result, .{ .imm64 = 0 }, Type.u64, 8);
return result;
},
else => unreachable,
}
}
fn airAddSubWithOverflow(cg: *CodeGen, inst: Air.Inst.Index, op: Op) InnerError!void {
assert(op == .add or op == .sub);
const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = cg.air.extraData(Air.Bin, ty_pl.payload).data;
const lhs = try cg.resolveInst(extra.lhs);
const rhs = try cg.resolveInst(extra.rhs);
const ty = cg.typeOf(extra.lhs);
const pt = cg.pt;
const zcu = pt.zcu;
if (ty.zigTypeTag(zcu) == .vector) {
return cg.fail("TODO: Implement overflow arithmetic for vectors", .{});
}
const int_info = ty.intInfo(zcu);
const is_signed = int_info.signedness == .signed;
if (int_info.bits > 128) {
return cg.fail("TODO: Implement {{add/sub}}_with_overflow for integer bitsize: {d}", .{int_info.bits});
}
const op_result = try cg.wrapBinOp(lhs, rhs, ty, op);
var op_tmp = try op_result.toLocal(cg, ty);
defer op_tmp.free(cg);
const cmp_op: std.math.CompareOperator = switch (op) {
.add => .lt,
.sub => .gt,
else => unreachable,
};
const overflow_bit = if (is_signed) blk: {
const zero = try intZeroValue(cg, ty);
const rhs_is_neg = try cg.cmp(rhs, zero, ty, .lt);
const overflow_cmp = try cg.cmp(op_tmp, lhs, ty, cmp_op);
break :blk try cg.cmp(rhs_is_neg, overflow_cmp, Type.u1, .neq);
} else try cg.cmp(op_tmp, lhs, ty, cmp_op);
var bit_tmp = try overflow_bit.toLocal(cg, Type.u1);
defer bit_tmp.free(cg);
const result = try cg.allocStack(cg.typeOfIndex(inst));
const offset: u32 = @intCast(ty.abiSize(zcu));
try cg.store(result, op_tmp, ty, 0);
try cg.store(result, bit_tmp, Type.u1, offset);
return cg.finishAir(inst, result, &.{ extra.lhs, extra.rhs });
}
fn airShlWithOverflow(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = cg.pt;
const zcu = pt.zcu;
const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = cg.air.extraData(Air.Bin, ty_pl.payload).data;
const lhs = try cg.resolveInst(extra.lhs);
const rhs = try cg.resolveInst(extra.rhs);
const ty = cg.typeOf(extra.lhs);
const rhs_ty = cg.typeOf(extra.rhs);
if (ty.isVector(zcu)) {
if (!rhs_ty.isVector(zcu)) {
return cg.fail("TODO: implement vector 'shl_with_overflow' with scalar rhs", .{});
} else {
return cg.fail("TODO: implement vector 'shl_with_overflow'", .{});
}
}
const int_info = ty.intInfo(zcu);
const wasm_bits = toWasmBits(int_info.bits) orelse {
return cg.fail("TODO: implement 'shl_with_overflow' for integer bitsize: {d}", .{int_info.bits});
};
// Ensure rhs is coerced to lhs as they must have the same WebAssembly types
// before we can perform any binary operation.
const rhs_wasm_bits = toWasmBits(rhs_ty.intInfo(zcu).bits).?;
// If wasm_bits == 128, compiler-rt expects i32 for shift
const rhs_final = if (wasm_bits != rhs_wasm_bits and wasm_bits == 64) blk: {
const rhs_casted = try cg.intcast(rhs, rhs_ty, ty);
break :blk try rhs_casted.toLocal(cg, ty);
} else rhs;
var shl = try (try cg.wrapBinOp(lhs, rhs_final, ty, .shl)).toLocal(cg, ty);
defer shl.free(cg);
const overflow_bit = blk: {
const shr = try cg.binOp(shl, rhs_final, ty, .shr);
break :blk try cg.cmp(shr, lhs, ty, .neq);
};
var overflow_local = try overflow_bit.toLocal(cg, Type.u1);
defer overflow_local.free(cg);
const result = try cg.allocStack(cg.typeOfIndex(inst));
const offset: u32 = @intCast(ty.abiSize(zcu));
try cg.store(result, shl, ty, 0);
try cg.store(result, overflow_local, Type.u1, offset);
return cg.finishAir(inst, result, &.{ extra.lhs, extra.rhs });
}
fn airMulWithOverflow(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = cg.air.extraData(Air.Bin, ty_pl.payload).data;
const lhs = try cg.resolveInst(extra.lhs);
const rhs = try cg.resolveInst(extra.rhs);
const ty = cg.typeOf(extra.lhs);
const pt = cg.pt;
const zcu = pt.zcu;
if (ty.zigTypeTag(zcu) == .vector) {
return cg.fail("TODO: Implement overflow arithmetic for vectors", .{});
}
// We store the bit if it's overflowed or not in this. As it's zero-initialized
// we only need to update it if an overflow (or underflow) occurred.
var overflow_bit = try cg.ensureAllocLocal(Type.u1);
defer overflow_bit.free(cg);
const int_info = ty.intInfo(zcu);
const wasm_bits = toWasmBits(int_info.bits) orelse {
return cg.fail("TODO: Implement `@mulWithOverflow` for integer bitsize: {d}", .{int_info.bits});
};
const zero: WValue = switch (wasm_bits) {
32 => .{ .imm32 = 0 },
64, 128 => .{ .imm64 = 0 },
else => unreachable,
};
// for 32 bit integers we upcast it to a 64bit integer
const mul = if (wasm_bits == 32) blk: {
const new_ty = if (int_info.signedness == .signed) Type.i64 else Type.u64;
const lhs_upcast = try cg.intcast(lhs, ty, new_ty);
const rhs_upcast = try cg.intcast(rhs, ty, new_ty);
const bin_op = try (try cg.binOp(lhs_upcast, rhs_upcast, new_ty, .mul)).toLocal(cg, new_ty);
const res = try (try cg.trunc(bin_op, ty, new_ty)).toLocal(cg, ty);
const res_upcast = try cg.intcast(res, ty, new_ty);
_ = try cg.cmp(res_upcast, bin_op, new_ty, .neq);
try cg.addLocal(.local_set, overflow_bit.local.value);
break :blk res;
} else if (wasm_bits == 64) blk: {
const new_ty = if (int_info.signedness == .signed) Type.i128 else Type.u128;
const lhs_upcast = try cg.intcast(lhs, ty, new_ty);
const rhs_upcast = try cg.intcast(rhs, ty, new_ty);
const bin_op = try (try cg.binOp(lhs_upcast, rhs_upcast, new_ty, .mul)).toLocal(cg, new_ty);
const res = try (try cg.trunc(bin_op, ty, new_ty)).toLocal(cg, ty);
const res_upcast = try cg.intcast(res, ty, new_ty);
_ = try cg.cmp(res_upcast, bin_op, new_ty, .neq);
try cg.addLocal(.local_set, overflow_bit.local.value);
break :blk res;
} else if (int_info.bits == 128 and int_info.signedness == .unsigned) blk: {
var lhs_lsb = try (try cg.load(lhs, Type.u64, 0)).toLocal(cg, Type.u64);
defer lhs_lsb.free(cg);
var lhs_msb = try (try cg.load(lhs, Type.u64, 8)).toLocal(cg, Type.u64);
defer lhs_msb.free(cg);
var rhs_lsb = try (try cg.load(rhs, Type.u64, 0)).toLocal(cg, Type.u64);
defer rhs_lsb.free(cg);
var rhs_msb = try (try cg.load(rhs, Type.u64, 8)).toLocal(cg, Type.u64);
defer rhs_msb.free(cg);
const cross_1 = try cg.callIntrinsic(
.__multi3,
&[_]InternPool.Index{.i64_type} ** 4,
Type.i128,
&.{ lhs_msb, zero, rhs_lsb, zero },
);
const cross_2 = try cg.callIntrinsic(
.__multi3,
&[_]InternPool.Index{.i64_type} ** 4,
Type.i128,
&.{ rhs_msb, zero, lhs_lsb, zero },
);
const mul_lsb = try cg.callIntrinsic(
.__multi3,
&[_]InternPool.Index{.i64_type} ** 4,
Type.i128,
&.{ rhs_lsb, zero, lhs_lsb, zero },
);
const rhs_msb_not_zero = try cg.cmp(rhs_msb, zero, Type.u64, .neq);
const lhs_msb_not_zero = try cg.cmp(lhs_msb, zero, Type.u64, .neq);
const both_msb_not_zero = try cg.binOp(rhs_msb_not_zero, lhs_msb_not_zero, Type.bool, .@"and");
const cross_1_msb = try cg.load(cross_1, Type.u64, 8);
const cross_1_msb_not_zero = try cg.cmp(cross_1_msb, zero, Type.u64, .neq);
const cond_1 = try cg.binOp(both_msb_not_zero, cross_1_msb_not_zero, Type.bool, .@"or");
const cross_2_msb = try cg.load(cross_2, Type.u64, 8);
const cross_2_msb_not_zero = try cg.cmp(cross_2_msb, zero, Type.u64, .neq);
const cond_2 = try cg.binOp(cond_1, cross_2_msb_not_zero, Type.bool, .@"or");
const cross_1_lsb = try cg.load(cross_1, Type.u64, 0);
const cross_2_lsb = try cg.load(cross_2, Type.u64, 0);
const cross_add = try cg.binOp(cross_1_lsb, cross_2_lsb, Type.u64, .add);
var mul_lsb_msb = try (try cg.load(mul_lsb, Type.u64, 8)).toLocal(cg, Type.u64);
defer mul_lsb_msb.free(cg);
var all_add = try (try cg.binOp(cross_add, mul_lsb_msb, Type.u64, .add)).toLocal(cg, Type.u64);
defer all_add.free(cg);
const add_overflow = try cg.cmp(all_add, mul_lsb_msb, Type.u64, .lt);
// result for overflow bit
_ = try cg.binOp(cond_2, add_overflow, Type.bool, .@"or");
try cg.addLocal(.local_set, overflow_bit.local.value);
const tmp_result = try cg.allocStack(Type.u128);
try cg.emitWValue(tmp_result);
const mul_lsb_lsb = try cg.load(mul_lsb, Type.u64, 0);
try cg.store(.stack, mul_lsb_lsb, Type.u64, tmp_result.offset());
try cg.store(tmp_result, all_add, Type.u64, 8);
break :blk tmp_result;
} else if (int_info.bits == 128 and int_info.signedness == .signed) blk: {
const overflow_ret = try cg.allocStack(Type.i32);
const res = try cg.callIntrinsic(
.__muloti4,
&[_]InternPool.Index{ .i128_type, .i128_type, .usize_type },
Type.i128,
&.{ lhs, rhs, overflow_ret },
);
_ = try cg.load(overflow_ret, Type.i32, 0);
try cg.addLocal(.local_set, overflow_bit.local.value);
break :blk res;
} else return cg.fail("TODO: @mulWithOverflow for {f}", .{ty.fmt(pt)});
var bin_op_local = try mul.toLocal(cg, ty);
defer bin_op_local.free(cg);
const result = try cg.allocStack(cg.typeOfIndex(inst));
const offset: u32 = @intCast(ty.abiSize(zcu));
try cg.store(result, bin_op_local, ty, 0);
try cg.store(result, overflow_bit, Type.u1, offset);
return cg.finishAir(inst, result, &.{ extra.lhs, extra.rhs });
}
fn airMaxMin(
cg: *CodeGen,
inst: Air.Inst.Index,
op: enum { fmax, fmin },
cmp_op: std.math.CompareOperator,
) InnerError!void {
const zcu = cg.pt.zcu;
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ty = cg.typeOfIndex(inst);
if (ty.zigTypeTag(zcu) == .vector) {
return cg.fail("TODO: `@maximum` and `@minimum` for vectors", .{});
}
if (ty.abiSize(zcu) > 16) {
return cg.fail("TODO: `@maximum` and `@minimum` for types larger than 16 bytes", .{});
}
const lhs = try cg.resolveInst(bin_op.lhs);
const rhs = try cg.resolveInst(bin_op.rhs);
if (ty.zigTypeTag(zcu) == .float) {
const intrinsic = switch (op) {
inline .fmin, .fmax => |ct_op| switch (ty.floatBits(cg.target)) {
inline 16, 32, 64, 80, 128 => |bits| @field(
Mir.Intrinsic,
libcFloatPrefix(bits) ++ @tagName(ct_op) ++ libcFloatSuffix(bits),
),
else => unreachable,
},
};
const result = try cg.callIntrinsic(intrinsic, &.{ ty.ip_index, ty.ip_index }, ty, &.{ lhs, rhs });
try cg.lowerToStack(result);
} else {
// operands to select from
try cg.lowerToStack(lhs);
try cg.lowerToStack(rhs);
_ = try cg.cmp(lhs, rhs, ty, cmp_op);
// based on the result from comparison, return operand 0 or 1.
try cg.addTag(.select);
}
return cg.finishAir(inst, .stack, &.{ bin_op.lhs, bin_op.rhs });
}
fn airMulAdd(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const bin_op = cg.air.extraData(Air.Bin, pl_op.payload).data;
const ty = cg.typeOfIndex(inst);
if (ty.zigTypeTag(zcu) == .vector) {
return cg.fail("TODO: `@mulAdd` for vectors", .{});
}
const addend = try cg.resolveInst(pl_op.operand);
const lhs = try cg.resolveInst(bin_op.lhs);
const rhs = try cg.resolveInst(bin_op.rhs);
const result = if (ty.floatBits(cg.target) == 16) fl_result: {
const rhs_ext = try cg.fpext(rhs, ty, Type.f32);
const lhs_ext = try cg.fpext(lhs, ty, Type.f32);
const addend_ext = try cg.fpext(addend, ty, Type.f32);
// call to compiler-rt `fn fmaf(f32, f32, f32) f32`
const result = try cg.callIntrinsic(
.fmaf,
&.{ .f32_type, .f32_type, .f32_type },
Type.f32,
&.{ rhs_ext, lhs_ext, addend_ext },
);
break :fl_result try cg.fptrunc(result, Type.f32, ty);
} else result: {
const mul_result = try cg.binOp(lhs, rhs, ty, .mul);
break :result try cg.binOp(mul_result, addend, ty, .add);
};
return cg.finishAir(inst, result, &.{ bin_op.lhs, bin_op.rhs, pl_op.operand });
}
fn airClz(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const ty = cg.typeOf(ty_op.operand);
if (ty.zigTypeTag(zcu) == .vector) {
return cg.fail("TODO: `@clz` for vectors", .{});
}
const operand = try cg.resolveInst(ty_op.operand);
const int_info = ty.intInfo(zcu);
const wasm_bits = toWasmBits(int_info.bits) orelse {
return cg.fail("TODO: `@clz` for integers with bitsize '{d}'", .{int_info.bits});
};
switch (wasm_bits) {
32 => {
if (int_info.signedness == .signed) {
const mask = ~@as(u32, 0) >> @intCast(32 - int_info.bits);
_ = try cg.binOp(operand, .{ .imm32 = mask }, ty, .@"and");
} else {
try cg.emitWValue(operand);
}
try cg.addTag(.i32_clz);
},
64 => {
if (int_info.signedness == .signed) {
const mask = ~@as(u64, 0) >> @intCast(64 - int_info.bits);
_ = try cg.binOp(operand, .{ .imm64 = mask }, ty, .@"and");
} else {
try cg.emitWValue(operand);
}
try cg.addTag(.i64_clz);
try cg.addTag(.i32_wrap_i64);
},
128 => {
var msb = try (try cg.load(operand, Type.u64, 8)).toLocal(cg, Type.u64);
defer msb.free(cg);
try cg.emitWValue(msb);
try cg.addTag(.i64_clz);
_ = try cg.load(operand, Type.u64, 0);
try cg.addTag(.i64_clz);
try cg.emitWValue(.{ .imm64 = 64 });
try cg.addTag(.i64_add);
_ = try cg.cmp(msb, .{ .imm64 = 0 }, Type.u64, .neq);
try cg.addTag(.select);
try cg.addTag(.i32_wrap_i64);
},
else => unreachable,
}
if (wasm_bits != int_info.bits) {
try cg.emitWValue(.{ .imm32 = wasm_bits - int_info.bits });
try cg.addTag(.i32_sub);
}
return cg.finishAir(inst, .stack, &.{ty_op.operand});
}
fn airCtz(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const ty = cg.typeOf(ty_op.operand);
if (ty.zigTypeTag(zcu) == .vector) {
return cg.fail("TODO: `@ctz` for vectors", .{});
}
const operand = try cg.resolveInst(ty_op.operand);
const int_info = ty.intInfo(zcu);
const wasm_bits = toWasmBits(int_info.bits) orelse {
return cg.fail("TODO: `@clz` for integers with bitsize '{d}'", .{int_info.bits});
};
switch (wasm_bits) {
32 => {
if (wasm_bits != int_info.bits) {
const val: u32 = @as(u32, 1) << @as(u5, @intCast(int_info.bits));
// leave value on the stack
_ = try cg.binOp(operand, .{ .imm32 = val }, ty, .@"or");
} else try cg.emitWValue(operand);
try cg.addTag(.i32_ctz);
},
64 => {
if (wasm_bits != int_info.bits) {
const val: u64 = @as(u64, 1) << @as(u6, @intCast(int_info.bits));
// leave value on the stack
_ = try cg.binOp(operand, .{ .imm64 = val }, ty, .@"or");
} else try cg.emitWValue(operand);
try cg.addTag(.i64_ctz);
try cg.addTag(.i32_wrap_i64);
},
128 => {
var lsb = try (try cg.load(operand, Type.u64, 0)).toLocal(cg, Type.u64);
defer lsb.free(cg);
try cg.emitWValue(lsb);
try cg.addTag(.i64_ctz);
_ = try cg.load(operand, Type.u64, 8);
if (wasm_bits != int_info.bits) {
try cg.addImm64(@as(u64, 1) << @as(u6, @intCast(int_info.bits - 64)));
try cg.addTag(.i64_or);
}
try cg.addTag(.i64_ctz);
try cg.addImm64(64);
if (wasm_bits != int_info.bits) {
try cg.addTag(.i64_or);
} else {
try cg.addTag(.i64_add);
}
_ = try cg.cmp(lsb, .{ .imm64 = 0 }, Type.u64, .neq);
try cg.addTag(.select);
try cg.addTag(.i32_wrap_i64);
},
else => unreachable,
}
return cg.finishAir(inst, .stack, &.{ty_op.operand});
}
fn airDbgStmt(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const dbg_stmt = cg.air.instructions.items(.data)[@intFromEnum(inst)].dbg_stmt;
try cg.addInst(.{ .tag = .dbg_line, .data = .{
.payload = try cg.addExtra(Mir.DbgLineColumn{
.line = dbg_stmt.line,
.column = dbg_stmt.column,
}),
} });
return cg.finishAir(inst, .none, &.{});
}
fn airDbgInlineBlock(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = cg.air.extraData(Air.DbgInlineBlock, ty_pl.payload);
// TODO
try cg.lowerBlock(inst, ty_pl.ty.toType(), @ptrCast(cg.air.extra.items[extra.end..][0..extra.data.body_len]));
}
fn airDbgVar(
cg: *CodeGen,
inst: Air.Inst.Index,
local_tag: link.File.Dwarf.WipNav.LocalVarTag,
is_ptr: bool,
) InnerError!void {
_ = is_ptr;
_ = local_tag;
return cg.finishAir(inst, .none, &.{});
}
fn airTry(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const err_union = try cg.resolveInst(pl_op.operand);
const extra = cg.air.extraData(Air.Try, pl_op.payload);
const body: []const Air.Inst.Index = @ptrCast(cg.air.extra.items[extra.end..][0..extra.data.body_len]);
const err_union_ty = cg.typeOf(pl_op.operand);
const result = try lowerTry(cg, inst, err_union, body, err_union_ty, false);
return cg.finishAir(inst, result, &.{pl_op.operand});
}
fn airTryPtr(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = cg.air.extraData(Air.TryPtr, ty_pl.payload);
const err_union_ptr = try cg.resolveInst(extra.data.ptr);
const body: []const Air.Inst.Index = @ptrCast(cg.air.extra.items[extra.end..][0..extra.data.body_len]);
const err_union_ty = cg.typeOf(extra.data.ptr).childType(zcu);
const result = try lowerTry(cg, inst, err_union_ptr, body, err_union_ty, true);
return cg.finishAir(inst, result, &.{extra.data.ptr});
}
fn lowerTry(
cg: *CodeGen,
inst: Air.Inst.Index,
err_union: WValue,
body: []const Air.Inst.Index,
err_union_ty: Type,
operand_is_ptr: bool,
) InnerError!WValue {
const zcu = cg.pt.zcu;
const pl_ty = err_union_ty.errorUnionPayload(zcu);
const pl_has_bits = pl_ty.hasRuntimeBitsIgnoreComptime(zcu);
if (!err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu)) {
// Block we can jump out of when error is not set
try cg.startBlock(.block, .empty);
// check if the error tag is set for the error union.
try cg.emitWValue(err_union);
if (pl_has_bits or operand_is_ptr) {
const err_offset: u32 = @intCast(errUnionErrorOffset(pl_ty, zcu));
try cg.addMemArg(.i32_load16_u, .{
.offset = err_union.offset() + err_offset,
.alignment = @intCast(Type.anyerror.abiAlignment(zcu).toByteUnits().?),
});
}
try cg.addTag(.i32_eqz);
try cg.addLabel(.br_if, 0); // jump out of block when error is '0'
const liveness = cg.liveness.getCondBr(inst);
try cg.branches.append(cg.gpa, .{});
try cg.currentBranch().values.ensureUnusedCapacity(cg.gpa, liveness.else_deaths.len + liveness.then_deaths.len);
defer {
var branch = cg.branches.pop().?;
branch.deinit(cg.gpa);
}
try cg.genBody(body);
try cg.endBlock();
}
// if we reach here it means error was not set, and we want the payload
if (!pl_has_bits and !operand_is_ptr) {
return .none;
}
const pl_offset: u32 = @intCast(errUnionPayloadOffset(pl_ty, zcu));
if (operand_is_ptr or isByRef(pl_ty, zcu, cg.target)) {
return buildPointerOffset(cg, err_union, pl_offset, .new);
}
const payload = try cg.load(err_union, pl_ty, pl_offset);
return payload.toLocal(cg, pl_ty);
}
fn airByteSwap(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const ty = cg.typeOfIndex(inst);
const operand = try cg.resolveInst(ty_op.operand);
if (ty.zigTypeTag(zcu) == .vector) {
return cg.fail("TODO: @byteSwap for vectors", .{});
}
const int_info = ty.intInfo(zcu);
const wasm_bits = toWasmBits(int_info.bits) orelse {
return cg.fail("TODO: @byteSwap for integers with bitsize {d}", .{int_info.bits});
};
// bytes are no-op
if (int_info.bits == 8) {
return cg.finishAir(inst, cg.reuseOperand(ty_op.operand, operand), &.{ty_op.operand});
}
const result = result: {
switch (wasm_bits) {
32 => {
const intrin_ret = try cg.callIntrinsic(
.__bswapsi2,
&.{.u32_type},
Type.u32,
&.{operand},
);
break :result if (int_info.bits == 32)
intrin_ret
else
try cg.binOp(intrin_ret, .{ .imm32 = 32 - int_info.bits }, ty, .shr);
},
64 => {
const intrin_ret = try cg.callIntrinsic(
.__bswapdi2,
&.{.u64_type},
Type.u64,
&.{operand},
);
break :result if (int_info.bits == 64)
intrin_ret
else
try cg.binOp(intrin_ret, .{ .imm64 = 64 - int_info.bits }, ty, .shr);
},
else => return cg.fail("TODO: @byteSwap for integers with bitsize {d}", .{int_info.bits}),
}
};
return cg.finishAir(inst, result, &.{ty_op.operand});
}
fn airDiv(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ty = cg.typeOfIndex(inst);
const lhs = try cg.resolveInst(bin_op.lhs);
const rhs = try cg.resolveInst(bin_op.rhs);
const result = try cg.binOp(lhs, rhs, ty, .div);
return cg.finishAir(inst, result, &.{ bin_op.lhs, bin_op.rhs });
}
fn airDivTrunc(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ty = cg.typeOfIndex(inst);
const lhs = try cg.resolveInst(bin_op.lhs);
const rhs = try cg.resolveInst(bin_op.rhs);
const div_result = try cg.binOp(lhs, rhs, ty, .div);
if (ty.isAnyFloat()) {
const trunc_result = try cg.floatOp(.trunc, ty, &.{div_result});
return cg.finishAir(inst, trunc_result, &.{ bin_op.lhs, bin_op.rhs });
}
return cg.finishAir(inst, div_result, &.{ bin_op.lhs, bin_op.rhs });
}
fn airDivFloor(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const zcu = cg.pt.zcu;
const ty = cg.typeOfIndex(inst);
const lhs = try cg.resolveInst(bin_op.lhs);
const rhs = try cg.resolveInst(bin_op.rhs);
if (ty.isUnsignedInt(zcu)) {
_ = try cg.binOp(lhs, rhs, ty, .div);
} else if (ty.isSignedInt(zcu)) {
const int_bits = ty.intInfo(zcu).bits;
const wasm_bits = toWasmBits(int_bits) orelse {
return cg.fail("TODO: `@divFloor` for signed integers larger than 64 bits ({d} bits requested)", .{int_bits});
};
if (wasm_bits > 64) {
return cg.fail("TODO: `@divFloor` for signed integers larger than 64 bits ({d} bits requested)", .{int_bits});
}
const zero: WValue = switch (wasm_bits) {
32 => .{ .imm32 = 0 },
64 => .{ .imm64 = 0 },
else => unreachable,
};
// tee leaves the value on the stack and stores it in a local.
const quotient = try cg.allocLocal(ty);
_ = try cg.binOp(lhs, rhs, ty, .div);
try cg.addLocal(.local_tee, quotient.local.value);
// select takes a 32 bit value as the condition, so in the 64 bit case we use eqz to narrow
// the 64 bit value we want to use as the condition to 32 bits.
// This also inverts the condition (non 0 => 0, 0 => 1), so we put the adjusted and
// non-adjusted quotients on the stack in the opposite order for 32 vs 64 bits.
if (wasm_bits == 64) {
try cg.emitWValue(quotient);
}
// 0 if the signs of rhs_wasm and lhs_wasm are the same, 1 otherwise.
_ = try cg.binOp(lhs, rhs, ty, .xor);
_ = try cg.cmp(.stack, zero, ty, .lt);
switch (wasm_bits) {
32 => {
try cg.addTag(.i32_sub);
try cg.emitWValue(quotient);
},
64 => {
try cg.addTag(.i64_extend_i32_u);
try cg.addTag(.i64_sub);
},
else => unreachable,
}
_ = try cg.binOp(lhs, rhs, ty, .rem);
if (wasm_bits == 64) {
try cg.addTag(.i64_eqz);
}
try cg.addTag(.select);
// We need to zero the high bits because N bit comparisons consider all 32 or 64 bits, and
// expect all but the lowest N bits to be 0.
// TODO: Should we be zeroing the high bits here or should we be ignoring the high bits
// when performing comparisons?
if (int_bits != wasm_bits) {
_ = try cg.wrapOperand(.stack, ty);
}
} else {
const float_bits = ty.floatBits(cg.target);
if (float_bits > 64) {
return cg.fail("TODO: `@divFloor` for floats with bitsize: {d}", .{float_bits});
}
const is_f16 = float_bits == 16;
const lhs_wasm = if (is_f16) try cg.fpext(lhs, Type.f16, Type.f32) else lhs;
const rhs_wasm = if (is_f16) try cg.fpext(rhs, Type.f16, Type.f32) else rhs;
try cg.emitWValue(lhs_wasm);
try cg.emitWValue(rhs_wasm);
switch (float_bits) {
16, 32 => {
try cg.addTag(.f32_div);
try cg.addTag(.f32_floor);
},
64 => {
try cg.addTag(.f64_div);
try cg.addTag(.f64_floor);
},
else => unreachable,
}
if (is_f16) {
_ = try cg.fptrunc(.stack, Type.f32, Type.f16);
}
}
return cg.finishAir(inst, .stack, &.{ bin_op.lhs, bin_op.rhs });
}
fn airRem(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ty = cg.typeOfIndex(inst);
const lhs = try cg.resolveInst(bin_op.lhs);
const rhs = try cg.resolveInst(bin_op.rhs);
const result = try cg.binOp(lhs, rhs, ty, .rem);
return cg.finishAir(inst, result, &.{ bin_op.lhs, bin_op.rhs });
}
/// Remainder after floor division, defined by:
/// @divFloor(a, b) * b + @mod(a, b) = a
fn airMod(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const pt = cg.pt;
const zcu = pt.zcu;
const ty = cg.typeOfIndex(inst);
const lhs = try cg.resolveInst(bin_op.lhs);
const rhs = try cg.resolveInst(bin_op.rhs);
const result = result: {
if (ty.isUnsignedInt(zcu)) {
break :result try cg.binOp(lhs, rhs, ty, .rem);
}
if (ty.isSignedInt(zcu)) {
// The wasm rem instruction gives the remainder after truncating division (rounding towards
// 0), equivalent to @rem.
// We make use of the fact that:
// @mod(a, b) = @rem(@rem(a, b) + b, b)
const int_bits = ty.intInfo(zcu).bits;
const wasm_bits = toWasmBits(int_bits) orelse {
return cg.fail("TODO: `@mod` for signed integers larger than 64 bits ({d} bits requested)", .{int_bits});
};
if (wasm_bits > 64) {
return cg.fail("TODO: `@mod` for signed integers larger than 64 bits ({d} bits requested)", .{int_bits});
}
_ = try cg.binOp(lhs, rhs, ty, .rem);
_ = try cg.binOp(.stack, rhs, ty, .add);
break :result try cg.binOp(.stack, rhs, ty, .rem);
}
if (ty.isAnyFloat()) {
const rem = try cg.binOp(lhs, rhs, ty, .rem);
const add = try cg.binOp(rem, rhs, ty, .add);
break :result try cg.binOp(add, rhs, ty, .rem);
}
return cg.fail("TODO: @mod for {f}", .{ty.fmt(pt)});
};
return cg.finishAir(inst, result, &.{ bin_op.lhs, bin_op.rhs });
}
fn airSatMul(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const pt = cg.pt;
const zcu = pt.zcu;
const ty = cg.typeOfIndex(inst);
const int_info = ty.intInfo(zcu);
const is_signed = int_info.signedness == .signed;
const lhs = try cg.resolveInst(bin_op.lhs);
const rhs = try cg.resolveInst(bin_op.rhs);
const wasm_bits = toWasmBits(int_info.bits) orelse {
return cg.fail("TODO: mul_sat for {f}", .{ty.fmt(pt)});
};
switch (wasm_bits) {
32 => {
const upcast_ty: Type = if (is_signed) Type.i64 else Type.u64;
const lhs_up = try cg.intcast(lhs, ty, upcast_ty);
const rhs_up = try cg.intcast(rhs, ty, upcast_ty);
var mul_res = try (try cg.binOp(lhs_up, rhs_up, upcast_ty, .mul)).toLocal(cg, upcast_ty);
defer mul_res.free(cg);
if (is_signed) {
const imm_max: WValue = .{ .imm64 = ~@as(u64, 0) >> @intCast(64 - (int_info.bits - 1)) };
try cg.emitWValue(mul_res);
try cg.emitWValue(imm_max);
_ = try cg.cmp(mul_res, imm_max, upcast_ty, .lt);
try cg.addTag(.select);
var tmp = try cg.allocLocal(upcast_ty);
defer tmp.free(cg);
try cg.addLocal(.local_set, tmp.local.value);
const imm_min: WValue = .{ .imm64 = ~@as(u64, 0) << @intCast(int_info.bits - 1) };
try cg.emitWValue(tmp);
try cg.emitWValue(imm_min);
_ = try cg.cmp(tmp, imm_min, upcast_ty, .gt);
try cg.addTag(.select);
} else {
const imm_max: WValue = .{ .imm64 = ~@as(u64, 0) >> @intCast(64 - int_info.bits) };
try cg.emitWValue(mul_res);
try cg.emitWValue(imm_max);
_ = try cg.cmp(mul_res, imm_max, upcast_ty, .lt);
try cg.addTag(.select);
}
try cg.addTag(.i32_wrap_i64);
},
64 => {
if (!(int_info.bits == 64 and int_info.signedness == .signed)) {
return cg.fail("TODO: mul_sat for {f}", .{ty.fmt(pt)});
}
const overflow_ret = try cg.allocStack(Type.i32);
_ = try cg.callIntrinsic(
.__mulodi4,
&[_]InternPool.Index{ .i64_type, .i64_type, .usize_type },
Type.i64,
&.{ lhs, rhs, overflow_ret },
);
const xor = try cg.binOp(lhs, rhs, Type.i64, .xor);
const sign_v = try cg.binOp(xor, .{ .imm64 = 63 }, Type.i64, .shr);
_ = try cg.binOp(sign_v, .{ .imm64 = ~@as(u63, 0) }, Type.i64, .xor);
_ = try cg.load(overflow_ret, Type.i32, 0);
try cg.addTag(.i32_eqz);
try cg.addTag(.select);
},
128 => {
if (!(int_info.bits == 128 and int_info.signedness == .signed)) {
return cg.fail("TODO: mul_sat for {f}", .{ty.fmt(pt)});
}
const overflow_ret = try cg.allocStack(Type.i32);
const ret = try cg.callIntrinsic(
.__muloti4,
&[_]InternPool.Index{ .i128_type, .i128_type, .usize_type },
Type.i128,
&.{ lhs, rhs, overflow_ret },
);
try cg.lowerToStack(ret);
const xor = try cg.binOp(lhs, rhs, Type.i128, .xor);
const sign_v = try cg.binOp(xor, .{ .imm32 = 127 }, Type.i128, .shr);
// xor ~@as(u127, 0)
try cg.emitWValue(sign_v);
const lsb = try cg.load(sign_v, Type.u64, 0);
_ = try cg.binOp(lsb, .{ .imm64 = ~@as(u64, 0) }, Type.u64, .xor);
try cg.store(.stack, .stack, Type.u64, sign_v.offset());
try cg.emitWValue(sign_v);
const msb = try cg.load(sign_v, Type.u64, 8);
_ = try cg.binOp(msb, .{ .imm64 = ~@as(u63, 0) }, Type.u64, .xor);
try cg.store(.stack, .stack, Type.u64, sign_v.offset() + 8);
try cg.lowerToStack(sign_v);
_ = try cg.load(overflow_ret, Type.i32, 0);
try cg.addTag(.i32_eqz);
try cg.addTag(.select);
},
else => unreachable,
}
return cg.finishAir(inst, .stack, &.{ bin_op.lhs, bin_op.rhs });
}
fn airSatBinOp(cg: *CodeGen, inst: Air.Inst.Index, op: Op) InnerError!void {
assert(op == .add or op == .sub);
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const zcu = cg.pt.zcu;
const ty = cg.typeOfIndex(inst);
const lhs = try cg.resolveInst(bin_op.lhs);
const rhs = try cg.resolveInst(bin_op.rhs);
const int_info = ty.intInfo(zcu);
const is_signed = int_info.signedness == .signed;
if (int_info.bits > 64) {
return cg.fail("TODO: saturating arithmetic for integers with bitsize '{d}'", .{int_info.bits});
}
if (is_signed) {
const result = try signedSat(cg, lhs, rhs, ty, op);
return cg.finishAir(inst, result, &.{ bin_op.lhs, bin_op.rhs });
}
const wasm_bits = toWasmBits(int_info.bits).?;
var bin_result = try (try cg.binOp(lhs, rhs, ty, op)).toLocal(cg, ty);
defer bin_result.free(cg);
if (wasm_bits != int_info.bits and op == .add) {
const val: u64 = @as(u64, @intCast((@as(u65, 1) << @as(u7, @intCast(int_info.bits))) - 1));
const imm_val: WValue = switch (wasm_bits) {
32 => .{ .imm32 = @intCast(val) },
64 => .{ .imm64 = val },
else => unreachable,
};
try cg.emitWValue(bin_result);
try cg.emitWValue(imm_val);
_ = try cg.cmp(bin_result, imm_val, ty, .lt);
} else {
switch (wasm_bits) {
32 => try cg.addImm32(if (op == .add) std.math.maxInt(u32) else 0),
64 => try cg.addImm64(if (op == .add) std.math.maxInt(u64) else 0),
else => unreachable,
}
try cg.emitWValue(bin_result);
_ = try cg.cmp(bin_result, lhs, ty, if (op == .add) .lt else .gt);
}
try cg.addTag(.select);
return cg.finishAir(inst, .stack, &.{ bin_op.lhs, bin_op.rhs });
}
fn signedSat(cg: *CodeGen, lhs: WValue, rhs: WValue, ty: Type, op: Op) InnerError!WValue {
const pt = cg.pt;
const zcu = pt.zcu;
const int_info = ty.intInfo(zcu);
const wasm_bits = toWasmBits(int_info.bits).?;
const is_wasm_bits = wasm_bits == int_info.bits;
const ext_ty = if (!is_wasm_bits) try pt.intType(int_info.signedness, wasm_bits) else ty;
const max_val: u64 = @as(u64, @intCast((@as(u65, 1) << @as(u7, @intCast(int_info.bits - 1))) - 1));
const min_val: i64 = (-@as(i64, @intCast(@as(u63, @intCast(max_val))))) - 1;
const max_wvalue: WValue = switch (wasm_bits) {
32 => .{ .imm32 = @truncate(max_val) },
64 => .{ .imm64 = max_val },
else => unreachable,
};
const min_wvalue: WValue = switch (wasm_bits) {
32 => .{ .imm32 = @bitCast(@as(i32, @truncate(min_val))) },
64 => .{ .imm64 = @bitCast(min_val) },
else => unreachable,
};
var bin_result = try (try cg.binOp(lhs, rhs, ext_ty, op)).toLocal(cg, ext_ty);
if (!is_wasm_bits) {
defer bin_result.free(cg); // not returned in this branch
try cg.emitWValue(bin_result);
try cg.emitWValue(max_wvalue);
_ = try cg.cmp(bin_result, max_wvalue, ext_ty, .lt);
try cg.addTag(.select);
try cg.addLocal(.local_set, bin_result.local.value); // re-use local
try cg.emitWValue(bin_result);
try cg.emitWValue(min_wvalue);
_ = try cg.cmp(bin_result, min_wvalue, ext_ty, .gt);
try cg.addTag(.select);
try cg.addLocal(.local_set, bin_result.local.value); // re-use local
return (try cg.wrapOperand(bin_result, ty)).toLocal(cg, ty);
} else {
const zero: WValue = switch (wasm_bits) {
32 => .{ .imm32 = 0 },
64 => .{ .imm64 = 0 },
else => unreachable,
};
try cg.emitWValue(max_wvalue);
try cg.emitWValue(min_wvalue);
_ = try cg.cmp(bin_result, zero, ty, .lt);
try cg.addTag(.select);
try cg.emitWValue(bin_result);
// leave on stack
const cmp_zero_result = try cg.cmp(rhs, zero, ty, if (op == .add) .lt else .gt);
const cmp_bin_result = try cg.cmp(bin_result, lhs, ty, .lt);
_ = try cg.binOp(cmp_zero_result, cmp_bin_result, Type.u32, .xor); // comparisons always return i32, so provide u32 as type to xor.
try cg.addTag(.select);
try cg.addLocal(.local_set, bin_result.local.value); // re-use local
return bin_result;
}
}
fn airShlSat(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const pt = cg.pt;
const zcu = pt.zcu;
if (cg.typeOf(bin_op.lhs).isVector(zcu) and !cg.typeOf(bin_op.rhs).isVector(zcu)) {
return cg.fail("TODO: implement vector 'shl_sat' with scalar rhs", .{});
}
const ty = cg.typeOfIndex(inst);
const int_info = ty.intInfo(zcu);
const is_signed = int_info.signedness == .signed;
if (int_info.bits > 64) {
return cg.fail("TODO: Saturating shifting left for integers with bitsize '{d}'", .{int_info.bits});
}
const lhs = try cg.resolveInst(bin_op.lhs);
const rhs = try cg.resolveInst(bin_op.rhs);
const wasm_bits = toWasmBits(int_info.bits).?;
const result = try cg.allocLocal(ty);
if (wasm_bits == int_info.bits) {
var shl = try (try cg.binOp(lhs, rhs, ty, .shl)).toLocal(cg, ty);
defer shl.free(cg);
var shr = try (try cg.binOp(shl, rhs, ty, .shr)).toLocal(cg, ty);
defer shr.free(cg);
switch (wasm_bits) {
32 => blk: {
if (!is_signed) {
try cg.addImm32(std.math.maxInt(u32));
break :blk;
}
try cg.addImm32(@bitCast(@as(i32, std.math.minInt(i32))));
try cg.addImm32(@bitCast(@as(i32, std.math.maxInt(i32))));
_ = try cg.cmp(lhs, .{ .imm32 = 0 }, ty, .lt);
try cg.addTag(.select);
},
64 => blk: {
if (!is_signed) {
try cg.addImm64(std.math.maxInt(u64));
break :blk;
}
try cg.addImm64(@bitCast(@as(i64, std.math.minInt(i64))));
try cg.addImm64(@bitCast(@as(i64, std.math.maxInt(i64))));
_ = try cg.cmp(lhs, .{ .imm64 = 0 }, ty, .lt);
try cg.addTag(.select);
},
else => unreachable,
}
try cg.emitWValue(shl);
_ = try cg.cmp(lhs, shr, ty, .neq);
try cg.addTag(.select);
try cg.addLocal(.local_set, result.local.value);
} else {
const shift_size = wasm_bits - int_info.bits;
const shift_value: WValue = switch (wasm_bits) {
32 => .{ .imm32 = shift_size },
64 => .{ .imm64 = shift_size },
else => unreachable,
};
const ext_ty = try pt.intType(int_info.signedness, wasm_bits);
var shl_res = try (try cg.binOp(lhs, shift_value, ext_ty, .shl)).toLocal(cg, ext_ty);
defer shl_res.free(cg);
var shl = try (try cg.binOp(shl_res, rhs, ext_ty, .shl)).toLocal(cg, ext_ty);
defer shl.free(cg);
var shr = try (try cg.binOp(shl, rhs, ext_ty, .shr)).toLocal(cg, ext_ty);
defer shr.free(cg);
switch (wasm_bits) {
32 => blk: {
if (!is_signed) {
try cg.addImm32(std.math.maxInt(u32));
break :blk;
}
try cg.addImm32(@bitCast(@as(i32, std.math.minInt(i32))));
try cg.addImm32(@bitCast(@as(i32, std.math.maxInt(i32))));
_ = try cg.cmp(shl_res, .{ .imm32 = 0 }, ext_ty, .lt);
try cg.addTag(.select);
},
64 => blk: {
if (!is_signed) {
try cg.addImm64(std.math.maxInt(u64));
break :blk;
}
try cg.addImm64(@bitCast(@as(i64, std.math.minInt(i64))));
try cg.addImm64(@bitCast(@as(i64, std.math.maxInt(i64))));
_ = try cg.cmp(shl_res, .{ .imm64 = 0 }, ext_ty, .lt);
try cg.addTag(.select);
},
else => unreachable,
}
try cg.emitWValue(shl);
_ = try cg.cmp(shl_res, shr, ext_ty, .neq);
try cg.addTag(.select);
try cg.addLocal(.local_set, result.local.value);
var shift_result = try cg.binOp(result, shift_value, ext_ty, .shr);
if (is_signed) {
shift_result = try cg.wrapOperand(shift_result, ty);
}
try cg.addLocal(.local_set, result.local.value);
}
return cg.finishAir(inst, result, &.{ bin_op.lhs, bin_op.rhs });
}
/// Calls a compiler-rt intrinsic by creating an undefined symbol,
/// then lowering the arguments and calling the symbol as a function call.
/// This function call assumes the C-ABI.
/// Asserts arguments are not stack values when the return value is
/// passed as the first parameter.
/// May leave the return value on the stack.
fn callIntrinsic(
cg: *CodeGen,
intrinsic: Mir.Intrinsic,
param_types: []const InternPool.Index,
return_type: Type,
args: []const WValue,
) InnerError!WValue {
assert(param_types.len == args.len);
const zcu = cg.pt.zcu;
// Always pass over C-ABI
const want_sret_param = firstParamSRet(.{ .wasm_mvp = .{} }, return_type, zcu, cg.target);
// if we want return as first param, we allocate a pointer to stack,
// and emit it as our first argument
const sret = if (want_sret_param) blk: {
const sret_local = try cg.allocStack(return_type);
try cg.lowerToStack(sret_local);
break :blk sret_local;
} else .none;
// Lower all arguments to the stack before we call our function
for (args, 0..) |arg, arg_i| {
assert(!(want_sret_param and arg == .stack));
assert(Type.fromInterned(param_types[arg_i]).hasRuntimeBitsIgnoreComptime(zcu));
try cg.lowerArg(.{ .wasm_mvp = .{} }, Type.fromInterned(param_types[arg_i]), arg);
}
try cg.addInst(.{ .tag = .call_intrinsic, .data = .{ .intrinsic = intrinsic } });
if (!return_type.hasRuntimeBitsIgnoreComptime(zcu)) {
return .none;
} else if (return_type.isNoReturn(zcu)) {
try cg.addTag(.@"unreachable");
return .none;
} else if (want_sret_param) {
return sret;
} else {
return .stack;
}
}
fn airTagName(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const un_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try cg.resolveInst(un_op);
const enum_ty = cg.typeOf(un_op);
const result_ptr = try cg.allocStack(cg.typeOfIndex(inst));
try cg.lowerToStack(result_ptr);
try cg.emitWValue(operand);
try cg.addInst(.{ .tag = .call_tag_name, .data = .{ .ip_index = enum_ty.toIntern() } });
return cg.finishAir(inst, result_ptr, &.{un_op});
}
fn airErrorSetHasValue(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ip = &zcu.intern_pool;
const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try cg.resolveInst(ty_op.operand);
const error_set_ty = ty_op.ty.toType();
const result = try cg.allocLocal(Type.bool);
const names = error_set_ty.errorSetNames(zcu);
var values = try std.array_list.Managed(u32).initCapacity(cg.gpa, names.len);
defer values.deinit();
var lowest: ?u32 = null;
var highest: ?u32 = null;
for (0..names.len) |name_index| {
const err_int = ip.getErrorValueIfExists(names.get(ip)[name_index]).?;
if (lowest) |*l| {
if (err_int < l.*) {
l.* = err_int;
}
} else {
lowest = err_int;
}
if (highest) |*h| {
if (err_int > h.*) {
highest = err_int;
}
} else {
highest = err_int;
}
values.appendAssumeCapacity(err_int);
}
// start block for 'true' branch
try cg.startBlock(.block, .empty);
// start block for 'false' branch
try cg.startBlock(.block, .empty);
// block for the jump table itself
try cg.startBlock(.block, .empty);
// lower operand to determine jump table target
try cg.emitWValue(operand);
try cg.addImm32(lowest.?);
try cg.addTag(.i32_sub);
// Account for default branch so always add '1'
const depth = @as(u32, @intCast(highest.? - lowest.? + 1));
const jump_table: Mir.JumpTable = .{ .length = depth };
const table_extra_index = try cg.addExtra(jump_table);
try cg.addInst(.{ .tag = .br_table, .data = .{ .payload = table_extra_index } });
try cg.mir_extra.ensureUnusedCapacity(cg.gpa, depth);
var value: u32 = lowest.?;
while (value <= highest.?) : (value += 1) {
const idx: u32 = blk: {
for (values.items) |val| {
if (val == value) break :blk 1;
}
break :blk 0;
};
cg.mir_extra.appendAssumeCapacity(idx);
}
try cg.endBlock();
// 'false' branch (i.e. error set does not have value
// ensure we set local to 0 in case the local was re-used.
try cg.addImm32(0);
try cg.addLocal(.local_set, result.local.value);
try cg.addLabel(.br, 1);
try cg.endBlock();
// 'true' branch
try cg.addImm32(1);
try cg.addLocal(.local_set, result.local.value);
try cg.addLabel(.br, 0);
try cg.endBlock();
return cg.finishAir(inst, result, &.{ty_op.operand});
}
inline fn useAtomicFeature(cg: *const CodeGen) bool {
return cg.target.cpu.has(.wasm, .atomics);
}
fn airCmpxchg(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = cg.air.extraData(Air.Cmpxchg, ty_pl.payload).data;
const ptr_ty = cg.typeOf(extra.ptr);
const ty = ptr_ty.childType(zcu);
const result_ty = cg.typeOfIndex(inst);
const ptr_operand = try cg.resolveInst(extra.ptr);
const expected_val = try cg.resolveInst(extra.expected_value);
const new_val = try cg.resolveInst(extra.new_value);
const cmp_result = try cg.allocLocal(Type.bool);
const ptr_val = if (cg.useAtomicFeature()) val: {
const val_local = try cg.allocLocal(ty);
try cg.emitWValue(ptr_operand);
try cg.lowerToStack(expected_val);
try cg.lowerToStack(new_val);
try cg.addAtomicMemArg(switch (ty.abiSize(zcu)) {
1 => .i32_atomic_rmw8_cmpxchg_u,
2 => .i32_atomic_rmw16_cmpxchg_u,
4 => .i32_atomic_rmw_cmpxchg,
8 => .i32_atomic_rmw_cmpxchg,
else => |size| return cg.fail("TODO: implement `@cmpxchg` for types with abi size '{d}'", .{size}),
}, .{
.offset = ptr_operand.offset(),
.alignment = @intCast(ty.abiAlignment(zcu).toByteUnits().?),
});
try cg.addLocal(.local_tee, val_local.local.value);
_ = try cg.cmp(.stack, expected_val, ty, .eq);
try cg.addLocal(.local_set, cmp_result.local.value);
break :val val_local;
} else val: {
if (ty.abiSize(zcu) > 8) {
return cg.fail("TODO: Implement `@cmpxchg` for types larger than abi size of 8 bytes", .{});
}
const ptr_val = try WValue.toLocal(try cg.load(ptr_operand, ty, 0), cg, ty);
try cg.lowerToStack(ptr_operand);
try cg.lowerToStack(new_val);
try cg.emitWValue(ptr_val);
_ = try cg.cmp(ptr_val, expected_val, ty, .eq);
try cg.addLocal(.local_tee, cmp_result.local.value);
try cg.addTag(.select);
try cg.store(.stack, .stack, ty, 0);
break :val ptr_val;
};
const result = if (isByRef(result_ty, zcu, cg.target)) val: {
try cg.emitWValue(cmp_result);
try cg.addImm32(~@as(u32, 0));
try cg.addTag(.i32_xor);
try cg.addImm32(1);
try cg.addTag(.i32_and);
const and_result = try WValue.toLocal(.stack, cg, Type.bool);
const result_ptr = try cg.allocStack(result_ty);
try cg.store(result_ptr, and_result, Type.bool, @as(u32, @intCast(ty.abiSize(zcu))));
try cg.store(result_ptr, ptr_val, ty, 0);
break :val result_ptr;
} else val: {
try cg.addImm32(0);
try cg.emitWValue(ptr_val);
try cg.emitWValue(cmp_result);
try cg.addTag(.select);
break :val .stack;
};
return cg.finishAir(inst, result, &.{ extra.ptr, extra.expected_value, extra.new_value });
}
fn airAtomicLoad(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const atomic_load = cg.air.instructions.items(.data)[@intFromEnum(inst)].atomic_load;
const ptr = try cg.resolveInst(atomic_load.ptr);
const ty = cg.typeOfIndex(inst);
if (cg.useAtomicFeature()) {
const tag: std.wasm.AtomicsOpcode = switch (ty.abiSize(zcu)) {
1 => .i32_atomic_load8_u,
2 => .i32_atomic_load16_u,
4 => .i32_atomic_load,
8 => .i64_atomic_load,
else => |size| return cg.fail("TODO: @atomicLoad for types with abi size {d}", .{size}),
};
try cg.emitWValue(ptr);
try cg.addAtomicMemArg(tag, .{
.offset = ptr.offset(),
.alignment = @intCast(ty.abiAlignment(zcu).toByteUnits().?),
});
} else {
_ = try cg.load(ptr, ty, 0);
}
return cg.finishAir(inst, .stack, &.{atomic_load.ptr});
}
fn airAtomicRmw(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = cg.air.extraData(Air.AtomicRmw, pl_op.payload).data;
const ptr = try cg.resolveInst(pl_op.operand);
const operand = try cg.resolveInst(extra.operand);
const ty = cg.typeOfIndex(inst);
const op: std.builtin.AtomicRmwOp = extra.op();
if (cg.useAtomicFeature()) {
switch (op) {
.Max,
.Min,
.Nand,
=> {
const tmp = try cg.load(ptr, ty, 0);
const value = try tmp.toLocal(cg, ty);
// create a loop to cmpxchg the new value
try cg.startBlock(.loop, .empty);
try cg.emitWValue(ptr);
try cg.emitWValue(value);
if (op == .Nand) {
const wasm_bits = toWasmBits(@intCast(ty.bitSize(zcu))).?;
const and_res = try cg.binOp(value, operand, ty, .@"and");
if (wasm_bits == 32)
try cg.addImm32(~@as(u32, 0))
else if (wasm_bits == 64)
try cg.addImm64(~@as(u64, 0))
else
return cg.fail("TODO: `@atomicRmw` with operator `Nand` for types larger than 64 bits", .{});
_ = try cg.binOp(and_res, .stack, ty, .xor);
} else {
try cg.emitWValue(value);
try cg.emitWValue(operand);
_ = try cg.cmp(value, operand, ty, if (op == .Max) .gt else .lt);
try cg.addTag(.select);
}
try cg.addAtomicMemArg(
switch (ty.abiSize(zcu)) {
1 => .i32_atomic_rmw8_cmpxchg_u,
2 => .i32_atomic_rmw16_cmpxchg_u,
4 => .i32_atomic_rmw_cmpxchg,
8 => .i64_atomic_rmw_cmpxchg,
else => return cg.fail("TODO: implement `@atomicRmw` with operation `{s}` for types larger than 64 bits", .{@tagName(op)}),
},
.{
.offset = ptr.offset(),
.alignment = @intCast(ty.abiAlignment(zcu).toByteUnits().?),
},
);
const select_res = try cg.allocLocal(ty);
try cg.addLocal(.local_tee, select_res.local.value);
_ = try cg.cmp(.stack, value, ty, .neq); // leave on stack so we can use it for br_if
try cg.emitWValue(select_res);
try cg.addLocal(.local_set, value.local.value);
try cg.addLabel(.br_if, 0);
try cg.endBlock();
return cg.finishAir(inst, value, &.{ pl_op.operand, extra.operand });
},
// the other operations have their own instructions for Wasm.
else => {
try cg.emitWValue(ptr);
try cg.emitWValue(operand);
const tag: std.wasm.AtomicsOpcode = switch (ty.abiSize(zcu)) {
1 => switch (op) {
.Xchg => .i32_atomic_rmw8_xchg_u,
.Add => .i32_atomic_rmw8_add_u,
.Sub => .i32_atomic_rmw8_sub_u,
.And => .i32_atomic_rmw8_and_u,
.Or => .i32_atomic_rmw8_or_u,
.Xor => .i32_atomic_rmw8_xor_u,
else => unreachable,
},
2 => switch (op) {
.Xchg => .i32_atomic_rmw16_xchg_u,
.Add => .i32_atomic_rmw16_add_u,
.Sub => .i32_atomic_rmw16_sub_u,
.And => .i32_atomic_rmw16_and_u,
.Or => .i32_atomic_rmw16_or_u,
.Xor => .i32_atomic_rmw16_xor_u,
else => unreachable,
},
4 => switch (op) {
.Xchg => .i32_atomic_rmw_xchg,
.Add => .i32_atomic_rmw_add,
.Sub => .i32_atomic_rmw_sub,
.And => .i32_atomic_rmw_and,
.Or => .i32_atomic_rmw_or,
.Xor => .i32_atomic_rmw_xor,
else => unreachable,
},
8 => switch (op) {
.Xchg => .i64_atomic_rmw_xchg,
.Add => .i64_atomic_rmw_add,
.Sub => .i64_atomic_rmw_sub,
.And => .i64_atomic_rmw_and,
.Or => .i64_atomic_rmw_or,
.Xor => .i64_atomic_rmw_xor,
else => unreachable,
},
else => |size| return cg.fail("TODO: Implement `@atomicRmw` for types with abi size {d}", .{size}),
};
try cg.addAtomicMemArg(tag, .{
.offset = ptr.offset(),
.alignment = @intCast(ty.abiAlignment(zcu).toByteUnits().?),
});
return cg.finishAir(inst, .stack, &.{ pl_op.operand, extra.operand });
},
}
} else {
const loaded = try cg.load(ptr, ty, 0);
const result = try loaded.toLocal(cg, ty);
switch (op) {
.Xchg => {
try cg.store(ptr, operand, ty, 0);
},
.Add,
.Sub,
.And,
.Or,
.Xor,
=> {
try cg.emitWValue(ptr);
_ = try cg.binOp(result, operand, ty, switch (op) {
.Add => .add,
.Sub => .sub,
.And => .@"and",
.Or => .@"or",
.Xor => .xor,
else => unreachable,
});
if (ty.isInt(zcu) and (op == .Add or op == .Sub)) {
_ = try cg.wrapOperand(.stack, ty);
}
try cg.store(.stack, .stack, ty, ptr.offset());
},
.Max,
.Min,
=> {
try cg.emitWValue(ptr);
try cg.emitWValue(result);
try cg.emitWValue(operand);
_ = try cg.cmp(result, operand, ty, if (op == .Max) .gt else .lt);
try cg.addTag(.select);
try cg.store(.stack, .stack, ty, ptr.offset());
},
.Nand => {
const wasm_bits = toWasmBits(@intCast(ty.bitSize(zcu))).?;
try cg.emitWValue(ptr);
const and_res = try cg.binOp(result, operand, ty, .@"and");
if (wasm_bits == 32)
try cg.addImm32(~@as(u32, 0))
else if (wasm_bits == 64)
try cg.addImm64(~@as(u64, 0))
else
return cg.fail("TODO: `@atomicRmw` with operator `Nand` for types larger than 64 bits", .{});
_ = try cg.binOp(and_res, .stack, ty, .xor);
try cg.store(.stack, .stack, ty, ptr.offset());
},
}
return cg.finishAir(inst, result, &.{ pl_op.operand, extra.operand });
}
}
fn airAtomicStore(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const zcu = cg.pt.zcu;
const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ptr = try cg.resolveInst(bin_op.lhs);
const operand = try cg.resolveInst(bin_op.rhs);
const ptr_ty = cg.typeOf(bin_op.lhs);
const ty = ptr_ty.childType(zcu);
if (cg.useAtomicFeature()) {
const tag: std.wasm.AtomicsOpcode = switch (ty.abiSize(zcu)) {
1 => .i32_atomic_store8,
2 => .i32_atomic_store16,
4 => .i32_atomic_store,
8 => .i64_atomic_store,
else => |size| return cg.fail("TODO: @atomicLoad for types with abi size {d}", .{size}),
};
try cg.emitWValue(ptr);
try cg.lowerToStack(operand);
try cg.addAtomicMemArg(tag, .{
.offset = ptr.offset(),
.alignment = @intCast(ty.abiAlignment(zcu).toByteUnits().?),
});
} else {
try cg.store(ptr, operand, ty, 0);
}
return cg.finishAir(inst, .none, &.{ bin_op.lhs, bin_op.rhs });
}
fn airFrameAddress(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
if (cg.initial_stack_value == .none) {
try cg.initializeStack();
}
try cg.emitWValue(cg.bottom_stack_value);
return cg.finishAir(inst, .stack, &.{});
}
fn airRuntimeNavPtr(cg: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_nav = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_nav;
const mod = cg.pt.zcu.navFileScope(cg.owner_nav).mod.?;
if (mod.single_threaded) {
const result: WValue = .{ .nav_ref = .{
.nav_index = ty_nav.nav,
.offset = 0,
} };
return cg.finishAir(inst, result, &.{});
}
return cg.fail("TODO: thread-local variables", .{});
}
fn typeOf(cg: *CodeGen, inst: Air.Inst.Ref) Type {
const zcu = cg.pt.zcu;
return cg.air.typeOf(inst, &zcu.intern_pool);
}
fn typeOfIndex(cg: *CodeGen, inst: Air.Inst.Index) Type {
const zcu = cg.pt.zcu;
return cg.air.typeOfIndex(inst, &zcu.intern_pool);
}
fn floatCmpIntrinsic(op: std.math.CompareOperator, bits: u16) Mir.Intrinsic {
return switch (op) {
.lt => switch (bits) {
80 => .__ltxf2,
128 => .__lttf2,
else => unreachable,
},
.lte => switch (bits) {
80 => .__lexf2,
128 => .__letf2,
else => unreachable,
},
.eq => switch (bits) {
80 => .__eqxf2,
128 => .__eqtf2,
else => unreachable,
},
.neq => switch (bits) {
80 => .__nexf2,
128 => .__netf2,
else => unreachable,
},
.gte => switch (bits) {
80 => .__gexf2,
128 => .__getf2,
else => unreachable,
},
.gt => switch (bits) {
80 => .__gtxf2,
128 => .__gttf2,
else => unreachable,
},
};
}