zig/src/arch/riscv64/CodeGen.zig
Jacob Young 1f98c98fff x86_64: increase passing test coverage on windows
Now that codegen has no references to linker state this is much easier.

Closes #24153
2025-06-19 18:41:12 -04:00

8501 lines
318 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const build_options = @import("build_options");
const mem = std.mem;
const math = std.math;
const assert = std.debug.assert;
const Allocator = mem.Allocator;
const Air = @import("../../Air.zig");
const Mir = @import("Mir.zig");
const Emit = @import("Emit.zig");
const Type = @import("../../Type.zig");
const Value = @import("../../Value.zig");
const link = @import("../../link.zig");
const Zcu = @import("../../Zcu.zig");
const Package = @import("../../Package.zig");
const InternPool = @import("../../InternPool.zig");
const Compilation = @import("../../Compilation.zig");
const target_util = @import("../../target.zig");
const trace = @import("../../tracy.zig").trace;
const codegen = @import("../../codegen.zig");
const ErrorMsg = Zcu.ErrorMsg;
const Target = std.Target;
const log = std.log.scoped(.riscv_codegen);
const tracking_log = std.log.scoped(.tracking);
const verbose_tracking_log = std.log.scoped(.verbose_tracking);
const wip_mir_log = std.log.scoped(.wip_mir);
const Alignment = InternPool.Alignment;
const CodeGenError = codegen.CodeGenError;
const bits = @import("bits.zig");
const abi = @import("abi.zig");
const Lower = @import("Lower.zig");
const mnem_import = @import("mnem.zig");
const Mnemonic = mnem_import.Mnemonic;
const Pseudo = mnem_import.Pseudo;
const encoding = @import("encoding.zig");
const Register = bits.Register;
const CSR = bits.CSR;
const Immediate = bits.Immediate;
const Memory = bits.Memory;
const FrameIndex = bits.FrameIndex;
const RegisterManager = abi.RegisterManager;
const RegisterLock = RegisterManager.RegisterLock;
const Instruction = encoding.Instruction;
const InnerError = CodeGenError || error{OutOfRegisters};
pub fn legalizeFeatures(_: *const std.Target) *const Air.Legalize.Features {
return comptime &.initMany(&.{
.expand_intcast_safe,
.expand_int_from_float_safe,
.expand_int_from_float_optimized_safe,
.expand_add_safe,
.expand_sub_safe,
.expand_mul_safe,
});
}
pt: Zcu.PerThread,
air: Air,
liveness: Air.Liveness,
bin_file: *link.File,
gpa: Allocator,
mod: *Package.Module,
target: *const std.Target,
args: []MCValue,
ret_mcv: InstTracking,
func_index: InternPool.Index,
fn_type: Type,
arg_index: usize,
src_loc: Zcu.LazySrcLoc,
mir_instructions: std.MultiArrayList(Mir.Inst) = .{},
owner: Owner,
/// Byte offset within the source file of the ending curly.
end_di_line: u32,
end_di_column: u32,
scope_generation: u32,
/// The value is an offset into the `Function` `code` from the beginning.
/// To perform the reloc, write 32-bit signed little-endian integer
/// which is a relative jump, based on the address following the reloc.
exitlude_jump_relocs: std.ArrayListUnmanaged(usize) = .empty,
reused_operands: std.StaticBitSet(Air.Liveness.bpi - 1) = undefined,
/// Whenever there is a runtime branch, we push a Branch onto this stack,
/// and pop it off when the runtime branch joins. This provides an "overlay"
/// of the table of mappings from instructions to `MCValue` from within the branch.
/// This way we can modify the `MCValue` for an instruction in different ways
/// within different branches. Special consideration is needed when a branch
/// joins with its parent, to make sure all instructions have the same MCValue
/// across each runtime branch upon joining.
branch_stack: *std.ArrayList(Branch),
// Currently set vector properties, null means they haven't been set yet in the function.
avl: ?u64,
vtype: ?bits.VType,
// Key is the block instruction
blocks: std.AutoHashMapUnmanaged(Air.Inst.Index, BlockData) = .empty,
register_manager: RegisterManager = .{},
const_tracking: ConstTrackingMap = .{},
inst_tracking: InstTrackingMap = .{},
frame_allocs: std.MultiArrayList(FrameAlloc) = .{},
free_frame_indices: std.AutoArrayHashMapUnmanaged(FrameIndex, void) = .empty,
frame_locs: std.MultiArrayList(Mir.FrameLoc) = .{},
loops: std.AutoHashMapUnmanaged(Air.Inst.Index, struct {
/// The state to restore before branching.
state: State,
/// The branch target.
jmp_target: Mir.Inst.Index,
}) = .{},
/// Debug field, used to find bugs in the compiler.
air_bookkeeping: @TypeOf(air_bookkeeping_init) = air_bookkeeping_init,
const air_bookkeeping_init = if (std.debug.runtime_safety) @as(usize, 0) else {};
const SymbolOffset = struct { sym: u32, off: i32 = 0 };
const RegisterOffset = struct { reg: Register, off: i32 = 0 };
pub const FrameAddr = struct { index: FrameIndex, off: i32 = 0 };
const Owner = union(enum) {
nav_index: InternPool.Nav.Index,
lazy_sym: link.File.LazySymbol,
fn getSymbolIndex(owner: Owner, func: *Func) !u32 {
const pt = func.pt;
switch (owner) {
.nav_index => |nav_index| {
const elf_file = func.bin_file.cast(.elf).?;
return elf_file.zigObjectPtr().?.getOrCreateMetadataForNav(pt.zcu, nav_index);
},
.lazy_sym => |lazy_sym| {
const elf_file = func.bin_file.cast(.elf).?;
return elf_file.zigObjectPtr().?.getOrCreateMetadataForLazySymbol(elf_file, pt, lazy_sym) catch |err|
func.fail("{s} creating lazy symbol", .{@errorName(err)});
},
}
}
};
const MCValue = union(enum) {
/// No runtime bits. `void` types, empty structs, u0, enums with 1 tag, etc.
/// TODO Look into deleting this tag and using `dead` instead, since every use
/// of MCValue.none should be instead looking at the type and noticing it is 0 bits.
none,
/// Control flow will not allow this value to be observed.
unreach,
/// No more references to this value remain.
/// The payload is the value of scope_generation at the point where the death occurred
dead: u32,
/// The value is undefined. Contains a symbol index to an undefined constant. Null means
/// set the undefined value via immediate instead of a load.
undef: ?u32,
/// A pointer-sized integer that fits in a register.
/// If the type is a pointer, this is the pointer address in virtual address space.
immediate: u64,
/// The value doesn't exist in memory yet.
load_symbol: SymbolOffset,
/// The address of the memory location not-yet-allocated by the linker.
lea_symbol: SymbolOffset,
/// The value is in a target-specific register.
register: Register,
/// The value is split across two registers
register_pair: [2]Register,
/// The value is in memory at a hard-coded address.
/// If the type is a pointer, it means the pointer address is at this memory location.
memory: u64,
/// The value stored at an offset from a frame index
/// Payload is a frame address.
load_frame: FrameAddr,
/// The address of an offset from a frame index
/// Payload is a frame address.
lea_frame: FrameAddr,
air_ref: Air.Inst.Ref,
/// The value is in memory at a constant offset from the address in a register.
indirect: RegisterOffset,
/// The value is a constant offset from the value in a register.
register_offset: RegisterOffset,
/// This indicates that we have already allocated a frame index for this instruction,
/// but it has not been spilled there yet in the current control flow.
/// Payload is a frame index.
reserved_frame: FrameIndex,
fn isMemory(mcv: MCValue) bool {
return switch (mcv) {
.memory, .indirect, .load_frame => true,
else => false,
};
}
fn isImmediate(mcv: MCValue) bool {
return switch (mcv) {
.immediate => true,
else => false,
};
}
fn isRegister(mcv: MCValue) bool {
return switch (mcv) {
.register => true,
.register_offset => |reg_off| return reg_off.off == 0,
else => false,
};
}
fn isMutable(mcv: MCValue) bool {
return switch (mcv) {
.none => unreachable,
.unreach => unreachable,
.dead => unreachable,
.immediate,
.memory,
.lea_frame,
.undef,
.lea_symbol,
.air_ref,
.reserved_frame,
=> false,
.register,
.register_pair,
.register_offset,
.load_symbol,
.indirect,
=> true,
.load_frame => |frame_addr| !frame_addr.index.isNamed(),
};
}
fn address(mcv: MCValue) MCValue {
return switch (mcv) {
.none,
.unreach,
.dead,
.immediate,
.lea_frame,
.register_offset,
.register_pair,
.register,
.undef,
.air_ref,
.lea_symbol,
.reserved_frame,
=> unreachable, // not in memory
.load_symbol => |sym_off| .{ .lea_symbol = sym_off },
.memory => |addr| .{ .immediate = addr },
.load_frame => |off| .{ .lea_frame = off },
.indirect => |reg_off| switch (reg_off.off) {
0 => .{ .register = reg_off.reg },
else => .{ .register_offset = reg_off },
},
};
}
fn deref(mcv: MCValue) MCValue {
return switch (mcv) {
.none,
.unreach,
.dead,
.memory,
.indirect,
.undef,
.air_ref,
.register_pair,
.load_frame,
.load_symbol,
.reserved_frame,
=> unreachable, // not a pointer
.immediate => |addr| .{ .memory = addr },
.register => |reg| .{ .indirect = .{ .reg = reg } },
.register_offset => |reg_off| .{ .indirect = reg_off },
.lea_frame => |off| .{ .load_frame = off },
.lea_symbol => |sym_off| .{ .load_symbol = sym_off },
};
}
fn offset(mcv: MCValue, off: i32) MCValue {
return switch (mcv) {
.none,
.unreach,
.dead,
.undef,
.air_ref,
.reserved_frame,
=> unreachable, // not valid
.register_pair,
.memory,
.indirect,
.load_symbol,
.lea_symbol,
=> switch (off) {
0 => mcv,
else => unreachable,
},
.load_frame => |frame| .{ .load_frame = .{ .index = frame.index, .off = frame.off + off } },
.immediate => |imm| .{ .immediate = @bitCast(@as(i64, @bitCast(imm)) +% off) },
.register => |reg| .{ .register_offset = .{ .reg = reg, .off = off } },
.register_offset => |reg_off| .{ .register_offset = .{ .reg = reg_off.reg, .off = reg_off.off + off } },
.lea_frame => |frame_addr| .{
.lea_frame = .{ .index = frame_addr.index, .off = frame_addr.off + off },
},
};
}
fn getReg(mcv: MCValue) ?Register {
return switch (mcv) {
.register => |reg| reg,
.register_offset, .indirect => |ro| ro.reg,
else => null,
};
}
fn getRegs(mcv: *const MCValue) []const Register {
return switch (mcv.*) {
.register => |*reg| @as(*const [1]Register, reg),
.register_pair => |*regs| regs,
.register_offset, .indirect => |*ro| @as(*const [1]Register, &ro.reg),
else => &.{},
};
}
};
const Branch = struct {
inst_table: std.AutoArrayHashMapUnmanaged(Air.Inst.Index, MCValue) = .empty,
fn deinit(func: *Branch, gpa: Allocator) void {
func.inst_table.deinit(gpa);
func.* = undefined;
}
};
const InstTrackingMap = std.AutoArrayHashMapUnmanaged(Air.Inst.Index, InstTracking);
const ConstTrackingMap = std.AutoArrayHashMapUnmanaged(InternPool.Index, InstTracking);
const InstTracking = struct {
long: MCValue,
short: MCValue,
fn init(result: MCValue) InstTracking {
return .{ .long = switch (result) {
.none,
.unreach,
.undef,
.immediate,
.memory,
.load_frame,
.lea_frame,
.load_symbol,
.lea_symbol,
=> result,
.dead,
.reserved_frame,
.air_ref,
=> unreachable,
.register,
.register_pair,
.register_offset,
.indirect,
=> .none,
}, .short = result };
}
fn getReg(inst_tracking: InstTracking) ?Register {
return inst_tracking.short.getReg();
}
fn getRegs(inst_tracking: *const InstTracking) []const Register {
return inst_tracking.short.getRegs();
}
fn spill(inst_tracking: *InstTracking, function: *Func, inst: Air.Inst.Index) !void {
if (std.meta.eql(inst_tracking.long, inst_tracking.short)) return; // Already spilled
// Allocate or reuse frame index
switch (inst_tracking.long) {
.none => inst_tracking.long = try function.allocRegOrMem(
function.typeOfIndex(inst),
inst,
false,
),
.load_frame => {},
.reserved_frame => |index| inst_tracking.long = .{ .load_frame = .{ .index = index } },
else => unreachable,
}
tracking_log.debug("spill %{d} from {} to {}", .{ inst, inst_tracking.short, inst_tracking.long });
try function.genCopy(function.typeOfIndex(inst), inst_tracking.long, inst_tracking.short);
}
fn reuseFrame(inst_tracking: *InstTracking) void {
switch (inst_tracking.long) {
.reserved_frame => |index| inst_tracking.long = .{ .load_frame = .{ .index = index } },
else => {},
}
inst_tracking.short = switch (inst_tracking.long) {
.none,
.unreach,
.undef,
.immediate,
.memory,
.load_frame,
.lea_frame,
.load_symbol,
.lea_symbol,
=> inst_tracking.long,
.dead,
.register,
.register_pair,
.register_offset,
.indirect,
.reserved_frame,
.air_ref,
=> unreachable,
};
}
fn trackSpill(inst_tracking: *InstTracking, function: *Func, inst: Air.Inst.Index) !void {
try function.freeValue(inst_tracking.short);
inst_tracking.reuseFrame();
tracking_log.debug("%{d} => {} (spilled)", .{ inst, inst_tracking.* });
}
fn verifyMaterialize(inst_tracking: InstTracking, target: InstTracking) void {
switch (inst_tracking.long) {
.none,
.unreach,
.undef,
.immediate,
.memory,
.lea_frame,
.load_symbol,
.lea_symbol,
=> assert(std.meta.eql(inst_tracking.long, target.long)),
.load_frame,
.reserved_frame,
=> switch (target.long) {
.none,
.load_frame,
.reserved_frame,
=> {},
else => unreachable,
},
.dead,
.register,
.register_pair,
.register_offset,
.indirect,
.air_ref,
=> unreachable,
}
}
fn materialize(
inst_tracking: *InstTracking,
function: *Func,
inst: Air.Inst.Index,
target: InstTracking,
) !void {
inst_tracking.verifyMaterialize(target);
try inst_tracking.materializeUnsafe(function, inst, target);
}
fn materializeUnsafe(
inst_tracking: InstTracking,
function: *Func,
inst: Air.Inst.Index,
target: InstTracking,
) !void {
const ty = function.typeOfIndex(inst);
if ((inst_tracking.long == .none or inst_tracking.long == .reserved_frame) and target.long == .load_frame)
try function.genCopy(ty, target.long, inst_tracking.short);
try function.genCopy(ty, target.short, inst_tracking.short);
}
fn trackMaterialize(inst_tracking: *InstTracking, inst: Air.Inst.Index, target: InstTracking) void {
inst_tracking.verifyMaterialize(target);
// Don't clobber reserved frame indices
inst_tracking.long = if (target.long == .none) switch (inst_tracking.long) {
.load_frame => |addr| .{ .reserved_frame = addr.index },
.reserved_frame => inst_tracking.long,
else => target.long,
} else target.long;
inst_tracking.short = target.short;
tracking_log.debug("%{d} => {} (materialize)", .{ inst, inst_tracking.* });
}
fn resurrect(inst_tracking: *InstTracking, inst: Air.Inst.Index, scope_generation: u32) void {
switch (inst_tracking.short) {
.dead => |die_generation| if (die_generation >= scope_generation) {
inst_tracking.reuseFrame();
tracking_log.debug("%{d} => {} (resurrect)", .{ inst, inst_tracking.* });
},
else => {},
}
}
fn die(inst_tracking: *InstTracking, function: *Func, inst: Air.Inst.Index) !void {
if (inst_tracking.short == .dead) return;
try function.freeValue(inst_tracking.short);
inst_tracking.short = .{ .dead = function.scope_generation };
tracking_log.debug("%{d} => {} (death)", .{ inst, inst_tracking.* });
}
fn reuse(
inst_tracking: *InstTracking,
function: *Func,
new_inst: ?Air.Inst.Index,
old_inst: Air.Inst.Index,
) void {
inst_tracking.short = .{ .dead = function.scope_generation };
if (new_inst) |inst|
tracking_log.debug("%{d} => {} (reuse %{d})", .{ inst, inst_tracking.*, old_inst })
else
tracking_log.debug("tmp => {} (reuse %{d})", .{ inst_tracking.*, old_inst });
}
fn liveOut(inst_tracking: *InstTracking, function: *Func, inst: Air.Inst.Index) void {
for (inst_tracking.getRegs()) |reg| {
if (function.register_manager.isRegFree(reg)) {
tracking_log.debug("%{d} => {} (live-out)", .{ inst, inst_tracking.* });
continue;
}
const index = RegisterManager.indexOfRegIntoTracked(reg).?;
const tracked_inst = function.register_manager.registers[index];
const tracking = function.getResolvedInstValue(tracked_inst);
// Disable death.
var found_reg = false;
var remaining_reg: Register = .zero;
for (tracking.getRegs()) |tracked_reg| if (tracked_reg.id() == reg.id()) {
assert(!found_reg);
found_reg = true;
} else {
assert(remaining_reg == .zero);
remaining_reg = tracked_reg;
};
assert(found_reg);
tracking.short = switch (remaining_reg) {
.zero => .{ .dead = function.scope_generation },
else => .{ .register = remaining_reg },
};
// Perform side-effects of freeValue manually.
function.register_manager.freeReg(reg);
tracking_log.debug("%{d} => {} (live-out %{d})", .{ inst, inst_tracking.*, tracked_inst });
}
}
pub fn format(
inst_tracking: InstTracking,
comptime _: []const u8,
_: std.fmt.FormatOptions,
writer: anytype,
) @TypeOf(writer).Error!void {
if (!std.meta.eql(inst_tracking.long, inst_tracking.short)) try writer.print("|{}| ", .{inst_tracking.long});
try writer.print("{}", .{inst_tracking.short});
}
};
const FrameAlloc = struct {
abi_size: u31,
spill_pad: u3,
abi_align: Alignment,
ref_count: u16,
fn init(alloc_abi: struct { size: u64, pad: u3 = 0, alignment: Alignment }) FrameAlloc {
return .{
.abi_size = @intCast(alloc_abi.size),
.spill_pad = alloc_abi.pad,
.abi_align = alloc_abi.alignment,
.ref_count = 0,
};
}
fn initType(ty: Type, zcu: *Zcu) FrameAlloc {
return init(.{
.size = ty.abiSize(zcu),
.alignment = ty.abiAlignment(zcu),
});
}
fn initSpill(ty: Type, zcu: *Zcu) FrameAlloc {
const abi_size = ty.abiSize(zcu);
const spill_size = if (abi_size < 8)
math.ceilPowerOfTwoAssert(u64, abi_size)
else
std.mem.alignForward(u64, abi_size, 8);
return init(.{
.size = spill_size,
.pad = @intCast(spill_size - abi_size),
.alignment = ty.abiAlignment(zcu).maxStrict(
Alignment.fromNonzeroByteUnits(@min(spill_size, 8)),
),
});
}
};
const BlockData = struct {
relocs: std.ArrayListUnmanaged(Mir.Inst.Index) = .empty,
state: State,
fn deinit(bd: *BlockData, gpa: Allocator) void {
bd.relocs.deinit(gpa);
bd.* = undefined;
}
};
const State = struct {
registers: RegisterManager.TrackedRegisters,
reg_tracking: [RegisterManager.RegisterBitSet.bit_length]InstTracking,
free_registers: RegisterManager.RegisterBitSet,
inst_tracking_len: u32,
scope_generation: u32,
};
fn initRetroactiveState(func: *Func) State {
var state: State = undefined;
state.inst_tracking_len = @intCast(func.inst_tracking.count());
state.scope_generation = func.scope_generation;
return state;
}
fn saveRetroactiveState(func: *Func, state: *State) !void {
const free_registers = func.register_manager.free_registers;
var it = free_registers.iterator(.{ .kind = .unset });
while (it.next()) |index| {
const tracked_inst = func.register_manager.registers[index];
state.registers[index] = tracked_inst;
state.reg_tracking[index] = func.inst_tracking.get(tracked_inst).?;
}
state.free_registers = free_registers;
}
fn saveState(func: *Func) !State {
var state = func.initRetroactiveState();
try func.saveRetroactiveState(&state);
return state;
}
fn restoreState(func: *Func, state: State, deaths: []const Air.Inst.Index, comptime opts: struct {
emit_instructions: bool,
update_tracking: bool,
resurrect: bool,
close_scope: bool,
}) !void {
if (opts.close_scope) {
for (
func.inst_tracking.keys()[state.inst_tracking_len..],
func.inst_tracking.values()[state.inst_tracking_len..],
) |inst, *tracking| try tracking.die(func, inst);
func.inst_tracking.shrinkRetainingCapacity(state.inst_tracking_len);
}
if (opts.resurrect) for (
func.inst_tracking.keys()[0..state.inst_tracking_len],
func.inst_tracking.values()[0..state.inst_tracking_len],
) |inst, *tracking| tracking.resurrect(inst, state.scope_generation);
for (deaths) |death| try func.processDeath(death);
const ExpectedContents = [@typeInfo(RegisterManager.TrackedRegisters).array.len]RegisterLock;
var stack align(@max(@alignOf(ExpectedContents), @alignOf(std.heap.StackFallbackAllocator(0)))) =
if (opts.update_tracking) {} else std.heap.stackFallback(@sizeOf(ExpectedContents), func.gpa);
var reg_locks = if (opts.update_tracking) {} else try std.ArrayList(RegisterLock).initCapacity(
stack.get(),
@typeInfo(ExpectedContents).array.len,
);
defer if (!opts.update_tracking) {
for (reg_locks.items) |lock| func.register_manager.unlockReg(lock);
reg_locks.deinit();
};
for (0..state.registers.len) |index| {
const current_maybe_inst = if (func.register_manager.free_registers.isSet(index))
null
else
func.register_manager.registers[index];
const target_maybe_inst = if (state.free_registers.isSet(index))
null
else
state.registers[index];
if (std.debug.runtime_safety) if (target_maybe_inst) |target_inst|
assert(func.inst_tracking.getIndex(target_inst).? < state.inst_tracking_len);
if (opts.emit_instructions) {
if (current_maybe_inst) |current_inst| {
try func.inst_tracking.getPtr(current_inst).?.spill(func, current_inst);
}
if (target_maybe_inst) |target_inst| {
const target_tracking = func.inst_tracking.getPtr(target_inst).?;
try target_tracking.materialize(func, target_inst, state.reg_tracking[index]);
}
}
if (opts.update_tracking) {
if (current_maybe_inst) |current_inst| {
try func.inst_tracking.getPtr(current_inst).?.trackSpill(func, current_inst);
}
blk: {
const inst = target_maybe_inst orelse break :blk;
const reg = RegisterManager.regAtTrackedIndex(@intCast(index));
func.register_manager.freeReg(reg);
func.register_manager.getRegAssumeFree(reg, inst);
}
if (target_maybe_inst) |target_inst| {
func.inst_tracking.getPtr(target_inst).?.trackMaterialize(
target_inst,
state.reg_tracking[index],
);
}
} else if (target_maybe_inst) |_|
try reg_locks.append(func.register_manager.lockRegIndexAssumeUnused(@intCast(index)));
}
if (opts.update_tracking and std.debug.runtime_safety) {
assert(func.register_manager.free_registers.eql(state.free_registers));
var used_reg_it = state.free_registers.iterator(.{ .kind = .unset });
while (used_reg_it.next()) |index|
assert(func.register_manager.registers[index] == state.registers[index]);
}
}
const Func = @This();
const CallView = enum(u1) {
callee,
caller,
};
pub fn generate(
bin_file: *link.File,
pt: Zcu.PerThread,
src_loc: Zcu.LazySrcLoc,
func_index: InternPool.Index,
air: *const Air,
liveness: *const Air.Liveness,
) CodeGenError!Mir {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const func = zcu.funcInfo(func_index);
const fn_type = Type.fromInterned(func.ty);
const mod = zcu.navFileScope(func.owner_nav).mod.?;
var branch_stack = std.ArrayList(Branch).init(gpa);
defer {
assert(branch_stack.items.len == 1);
branch_stack.items[0].deinit(gpa);
branch_stack.deinit();
}
try branch_stack.append(.{});
var function: Func = .{
.gpa = gpa,
.air = air.*,
.pt = pt,
.mod = mod,
.bin_file = bin_file,
.liveness = liveness.*,
.target = &mod.resolved_target.result,
.owner = .{ .nav_index = func.owner_nav },
.args = undefined, // populated after `resolveCallingConventionValues`
.ret_mcv = undefined, // populated after `resolveCallingConventionValues`
.func_index = func_index,
.fn_type = fn_type,
.arg_index = 0,
.branch_stack = &branch_stack,
.src_loc = src_loc,
.end_di_line = func.rbrace_line,
.end_di_column = func.rbrace_column,
.scope_generation = 0,
.avl = null,
.vtype = null,
};
defer {
function.frame_allocs.deinit(gpa);
function.free_frame_indices.deinit(gpa);
function.frame_locs.deinit(gpa);
function.loops.deinit(gpa);
var block_it = function.blocks.valueIterator();
while (block_it.next()) |block| block.deinit(gpa);
function.blocks.deinit(gpa);
function.inst_tracking.deinit(gpa);
function.const_tracking.deinit(gpa);
function.exitlude_jump_relocs.deinit(gpa);
function.mir_instructions.deinit(gpa);
}
wip_mir_log.debug("{}:", .{fmtNav(func.owner_nav, ip)});
try function.frame_allocs.resize(gpa, FrameIndex.named_count);
function.frame_allocs.set(
@intFromEnum(FrameIndex.stack_frame),
FrameAlloc.init(.{ .size = 0, .alignment = .@"1" }),
);
function.frame_allocs.set(
@intFromEnum(FrameIndex.call_frame),
FrameAlloc.init(.{ .size = 0, .alignment = .@"1" }),
);
const fn_info = zcu.typeToFunc(fn_type).?;
var call_info = function.resolveCallingConventionValues(fn_info, &.{}) catch |err| switch (err) {
error.CodegenFail => return error.CodegenFail,
else => |e| return e,
};
defer call_info.deinit(&function);
function.args = call_info.args;
function.ret_mcv = call_info.return_value;
function.frame_allocs.set(@intFromEnum(FrameIndex.ret_addr), FrameAlloc.init(.{
.size = Type.u64.abiSize(zcu),
.alignment = Type.u64.abiAlignment(zcu).min(call_info.stack_align),
}));
function.frame_allocs.set(@intFromEnum(FrameIndex.base_ptr), FrameAlloc.init(.{
.size = Type.u64.abiSize(zcu),
.alignment = Alignment.min(
call_info.stack_align,
Alignment.fromNonzeroByteUnits(function.target.stackAlignment()),
),
}));
function.frame_allocs.set(@intFromEnum(FrameIndex.args_frame), FrameAlloc.init(.{
.size = call_info.stack_byte_count,
.alignment = call_info.stack_align,
}));
function.frame_allocs.set(@intFromEnum(FrameIndex.spill_frame), FrameAlloc.init(.{
.size = 0,
.alignment = Type.u64.abiAlignment(zcu),
}));
function.gen() catch |err| switch (err) {
error.CodegenFail => return error.CodegenFail,
error.OutOfRegisters => return function.fail("ran out of registers (Zig compiler bug)", .{}),
else => |e| return e,
};
var mir: Mir = .{
.instructions = function.mir_instructions.toOwnedSlice(),
.frame_locs = function.frame_locs.toOwnedSlice(),
};
errdefer mir.deinit(gpa);
return mir;
}
pub fn generateLazy(
bin_file: *link.File,
pt: Zcu.PerThread,
src_loc: Zcu.LazySrcLoc,
lazy_sym: link.File.LazySymbol,
code: *std.ArrayListUnmanaged(u8),
debug_output: link.File.DebugInfoOutput,
) CodeGenError!void {
const comp = bin_file.comp;
const gpa = comp.gpa;
const mod = comp.root_mod;
var function: Func = .{
.gpa = gpa,
.air = undefined,
.pt = pt,
.mod = mod,
.bin_file = bin_file,
.liveness = undefined,
.target = &mod.resolved_target.result,
.owner = .{ .lazy_sym = lazy_sym },
.args = undefined, // populated after `resolveCallingConventionValues`
.ret_mcv = undefined, // populated after `resolveCallingConventionValues`
.func_index = undefined,
.fn_type = undefined,
.arg_index = 0,
.branch_stack = undefined,
.src_loc = src_loc,
.end_di_line = undefined,
.end_di_column = undefined,
.scope_generation = 0,
.avl = null,
.vtype = null,
};
defer function.mir_instructions.deinit(gpa);
function.genLazy(lazy_sym) catch |err| switch (err) {
error.CodegenFail => return error.CodegenFail,
error.OutOfRegisters => return function.fail("ran out of registers (Zig compiler bug)", .{}),
else => |e| return e,
};
var mir: Mir = .{
.instructions = function.mir_instructions.toOwnedSlice(),
.frame_locs = function.frame_locs.toOwnedSlice(),
};
defer mir.deinit(gpa);
var emit: Emit = .{
.lower = .{
.pt = pt,
.allocator = gpa,
.mir = mir,
.cc = .auto,
.src_loc = src_loc,
.output_mode = comp.config.output_mode,
.link_mode = comp.config.link_mode,
.pic = mod.pic,
},
.bin_file = bin_file,
.debug_output = debug_output,
.code = code,
.prev_di_pc = undefined, // no debug info yet
.prev_di_line = undefined, // no debug info yet
.prev_di_column = undefined, // no debug info yet
};
defer emit.deinit();
emit.emitMir() catch |err| switch (err) {
error.LowerFail, error.EmitFail => return function.failMsg(emit.lower.err_msg.?),
error.InvalidInstruction => |e| return function.fail("emit MIR failed: {s} (Zig compiler bug)", .{@errorName(e)}),
else => |e| return e,
};
}
const FormatWipMirData = struct {
func: *Func,
inst: Mir.Inst.Index,
};
fn formatWipMir(
data: FormatWipMirData,
comptime _: []const u8,
_: std.fmt.FormatOptions,
writer: anytype,
) @TypeOf(writer).Error!void {
const pt = data.func.pt;
const comp = pt.zcu.comp;
var lower: Lower = .{
.pt = pt,
.allocator = data.func.gpa,
.mir = .{
.instructions = data.func.mir_instructions.slice(),
.frame_locs = data.func.frame_locs.slice(),
},
.cc = .auto,
.src_loc = data.func.src_loc,
.output_mode = comp.config.output_mode,
.link_mode = comp.config.link_mode,
.pic = comp.root_mod.pic,
};
var first = true;
for ((lower.lowerMir(data.inst, .{ .allow_frame_locs = false }) catch |err| switch (err) {
error.LowerFail => {
defer {
lower.err_msg.?.deinit(data.func.gpa);
lower.err_msg = null;
}
try writer.writeAll(lower.err_msg.?.msg);
return;
},
error.OutOfMemory, error.InvalidInstruction => |e| {
try writer.writeAll(switch (e) {
error.OutOfMemory => "Out of memory",
error.InvalidInstruction => "CodeGen failed to find a viable instruction.",
});
return;
},
else => |e| return e,
}).insts) |lowered_inst| {
if (!first) try writer.writeAll("\ndebug(wip_mir): ");
try writer.print(" | {}", .{lowered_inst});
first = false;
}
}
fn fmtWipMir(func: *Func, inst: Mir.Inst.Index) std.fmt.Formatter(formatWipMir) {
return .{ .data = .{ .func = func, .inst = inst } };
}
const FormatNavData = struct {
ip: *const InternPool,
nav_index: InternPool.Nav.Index,
};
fn formatNav(
data: FormatNavData,
comptime _: []const u8,
_: std.fmt.FormatOptions,
writer: anytype,
) @TypeOf(writer).Error!void {
try writer.print("{}", .{data.ip.getNav(data.nav_index).fqn.fmt(data.ip)});
}
fn fmtNav(nav_index: InternPool.Nav.Index, ip: *const InternPool) std.fmt.Formatter(formatNav) {
return .{ .data = .{
.ip = ip,
.nav_index = nav_index,
} };
}
const FormatAirData = struct {
func: *Func,
inst: Air.Inst.Index,
};
fn formatAir(
data: FormatAirData,
comptime _: []const u8,
_: std.fmt.FormatOptions,
writer: anytype,
) @TypeOf(writer).Error!void {
data.func.air.dumpInst(data.inst, data.func.pt, data.func.liveness);
}
fn fmtAir(func: *Func, inst: Air.Inst.Index) std.fmt.Formatter(formatAir) {
return .{ .data = .{ .func = func, .inst = inst } };
}
const FormatTrackingData = struct {
func: *Func,
};
fn formatTracking(
data: FormatTrackingData,
comptime _: []const u8,
_: std.fmt.FormatOptions,
writer: anytype,
) @TypeOf(writer).Error!void {
var it = data.func.inst_tracking.iterator();
while (it.next()) |entry| try writer.print("\n%{d} = {}", .{ entry.key_ptr.*, entry.value_ptr.* });
}
fn fmtTracking(func: *Func) std.fmt.Formatter(formatTracking) {
return .{ .data = .{ .func = func } };
}
fn addInst(func: *Func, inst: Mir.Inst) error{OutOfMemory}!Mir.Inst.Index {
const gpa = func.gpa;
try func.mir_instructions.ensureUnusedCapacity(gpa, 1);
const result_index: Mir.Inst.Index = @intCast(func.mir_instructions.len);
func.mir_instructions.appendAssumeCapacity(inst);
if (switch (inst.tag) {
else => true,
.pseudo_dbg_prologue_end,
.pseudo_dbg_line_column,
.pseudo_dbg_epilogue_begin,
.pseudo_dead,
=> false,
}) wip_mir_log.debug("{}", .{func.fmtWipMir(result_index)});
return result_index;
}
fn addPseudo(func: *Func, mnem: Mnemonic) error{OutOfMemory}!Mir.Inst.Index {
return func.addInst(.{
.tag = mnem,
.data = .none,
});
}
/// Returns a temporary register that contains the value of the `reg` csr.
///
/// Caller's duty to lock the return register is needed.
fn getCsr(func: *Func, csr: CSR) !Register {
assert(func.hasFeature(.zicsr));
const dst_reg = try func.register_manager.allocReg(null, func.regTempClassForType(Type.u64));
_ = try func.addInst(.{
.tag = .csrrs,
.data = .{ .csr = .{
.csr = csr,
.rd = dst_reg,
.rs1 = .x0,
} },
});
return dst_reg;
}
fn setVl(func: *Func, dst_reg: Register, avl: u64, options: bits.VType) !void {
if (func.avl == avl) if (func.vtype) |vtype| {
// it's already set, we don't need to do anything
if (@as(u8, @bitCast(vtype)) == @as(u8, @bitCast(options))) return;
};
func.avl = avl;
func.vtype = options;
if (avl == 0) {
// the caller means to do "vsetvli zero, zero ..." which keeps the avl to whatever it was before
const options_int: u12 = @as(u12, 0) | @as(u8, @bitCast(options));
_ = try func.addInst(.{
.tag = .vsetvli,
.data = .{ .i_type = .{
.rd = dst_reg,
.rs1 = .zero,
.imm12 = Immediate.u(options_int),
} },
});
} else {
// if the avl can fit into u5 we can use vsetivli otherwise use vsetvli
if (avl <= std.math.maxInt(u5)) {
const options_int: u12 = (~@as(u12, 0) << 10) | @as(u8, @bitCast(options));
_ = try func.addInst(.{
.tag = .vsetivli,
.data = .{
.i_type = .{
.rd = dst_reg,
.rs1 = @enumFromInt(avl),
.imm12 = Immediate.u(options_int),
},
},
});
} else {
const options_int: u12 = @as(u12, 0) | @as(u8, @bitCast(options));
const temp_reg = try func.copyToTmpRegister(Type.u64, .{ .immediate = avl });
_ = try func.addInst(.{
.tag = .vsetvli,
.data = .{ .i_type = .{
.rd = dst_reg,
.rs1 = temp_reg,
.imm12 = Immediate.u(options_int),
} },
});
}
}
}
const required_features = [_]Target.riscv.Feature{
.d,
.m,
.a,
.zicsr,
.v,
.zbb,
};
fn gen(func: *Func) !void {
const pt = func.pt;
const zcu = pt.zcu;
const fn_info = zcu.typeToFunc(func.fn_type).?;
inline for (required_features) |feature| {
if (!func.hasFeature(feature)) {
return func.fail(
"target missing required feature {s}",
.{@tagName(feature)},
);
}
}
if (fn_info.cc != .naked) {
_ = try func.addPseudo(.pseudo_dbg_prologue_end);
const backpatch_stack_alloc = try func.addPseudo(.pseudo_dead);
const backpatch_ra_spill = try func.addPseudo(.pseudo_dead);
const backpatch_fp_spill = try func.addPseudo(.pseudo_dead);
const backpatch_fp_add = try func.addPseudo(.pseudo_dead);
const backpatch_spill_callee_preserved_regs = try func.addPseudo(.pseudo_dead);
switch (func.ret_mcv.long) {
.none, .unreach => {},
.indirect => {
// The address where to store the return value for the caller is in a
// register which the callee is free to clobber. Therefore, we purposely
// spill it to stack immediately.
const frame_index = try func.allocFrameIndex(FrameAlloc.initSpill(Type.u64, zcu));
try func.genSetMem(
.{ .frame = frame_index },
0,
Type.u64,
func.ret_mcv.long.address().offset(-func.ret_mcv.short.indirect.off),
);
func.ret_mcv.long = .{ .load_frame = .{ .index = frame_index } };
tracking_log.debug("spill {} to {}", .{ func.ret_mcv.long, frame_index });
},
else => unreachable,
}
try func.genBody(func.air.getMainBody());
for (func.exitlude_jump_relocs.items) |jmp_reloc| {
func.mir_instructions.items(.data)[jmp_reloc].j_type.inst =
@intCast(func.mir_instructions.len);
}
_ = try func.addPseudo(.pseudo_dbg_epilogue_begin);
const backpatch_restore_callee_preserved_regs = try func.addPseudo(.pseudo_dead);
const backpatch_ra_restore = try func.addPseudo(.pseudo_dead);
const backpatch_fp_restore = try func.addPseudo(.pseudo_dead);
const backpatch_stack_alloc_restore = try func.addPseudo(.pseudo_dead);
// ret
_ = try func.addInst(.{
.tag = .jalr,
.data = .{ .i_type = .{
.rd = .zero,
.rs1 = .ra,
.imm12 = Immediate.s(0),
} },
});
const frame_layout = try func.computeFrameLayout();
const need_save_reg = frame_layout.save_reg_list.count() > 0;
func.mir_instructions.set(backpatch_stack_alloc, .{
.tag = .addi,
.data = .{ .i_type = .{
.rd = .sp,
.rs1 = .sp,
.imm12 = Immediate.s(-@as(i32, @intCast(frame_layout.stack_adjust))),
} },
});
func.mir_instructions.set(backpatch_ra_spill, .{
.tag = .pseudo_store_rm,
.data = .{ .rm = .{
.r = .ra,
.m = .{
.base = .{ .frame = .ret_addr },
.mod = .{ .size = .dword, .unsigned = false },
},
} },
});
func.mir_instructions.set(backpatch_ra_restore, .{
.tag = .pseudo_load_rm,
.data = .{ .rm = .{
.r = .ra,
.m = .{
.base = .{ .frame = .ret_addr },
.mod = .{ .size = .dword, .unsigned = false },
},
} },
});
func.mir_instructions.set(backpatch_fp_spill, .{
.tag = .pseudo_store_rm,
.data = .{ .rm = .{
.r = .s0,
.m = .{
.base = .{ .frame = .base_ptr },
.mod = .{ .size = .dword, .unsigned = false },
},
} },
});
func.mir_instructions.set(backpatch_fp_restore, .{
.tag = .pseudo_load_rm,
.data = .{ .rm = .{
.r = .s0,
.m = .{
.base = .{ .frame = .base_ptr },
.mod = .{ .size = .dword, .unsigned = false },
},
} },
});
func.mir_instructions.set(backpatch_fp_add, .{
.tag = .addi,
.data = .{ .i_type = .{
.rd = .s0,
.rs1 = .sp,
.imm12 = Immediate.s(@intCast(frame_layout.stack_adjust)),
} },
});
func.mir_instructions.set(backpatch_stack_alloc_restore, .{
.tag = .addi,
.data = .{ .i_type = .{
.rd = .sp,
.rs1 = .sp,
.imm12 = Immediate.s(@intCast(frame_layout.stack_adjust)),
} },
});
if (need_save_reg) {
func.mir_instructions.set(backpatch_spill_callee_preserved_regs, .{
.tag = .pseudo_spill_regs,
.data = .{ .reg_list = frame_layout.save_reg_list },
});
func.mir_instructions.set(backpatch_restore_callee_preserved_regs, .{
.tag = .pseudo_restore_regs,
.data = .{ .reg_list = frame_layout.save_reg_list },
});
}
} else {
_ = try func.addPseudo(.pseudo_dbg_prologue_end);
try func.genBody(func.air.getMainBody());
_ = try func.addPseudo(.pseudo_dbg_epilogue_begin);
}
// Drop them off at the rbrace.
_ = try func.addInst(.{
.tag = .pseudo_dbg_line_column,
.data = .{ .pseudo_dbg_line_column = .{
.line = func.end_di_line,
.column = func.end_di_column,
} },
});
}
fn genLazy(func: *Func, lazy_sym: link.File.LazySymbol) InnerError!void {
const pt = func.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
switch (Type.fromInterned(lazy_sym.ty).zigTypeTag(zcu)) {
.@"enum" => {
const enum_ty = Type.fromInterned(lazy_sym.ty);
wip_mir_log.debug("{}.@tagName:", .{enum_ty.fmt(pt)});
const param_regs = abi.Registers.Integer.function_arg_regs;
const ret_reg = param_regs[0];
const enum_mcv: MCValue = .{ .register = param_regs[1] };
const exitlude_jump_relocs = try func.gpa.alloc(Mir.Inst.Index, enum_ty.enumFieldCount(zcu));
defer func.gpa.free(exitlude_jump_relocs);
const data_reg, const data_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(data_lock);
const elf_file = func.bin_file.cast(.elf).?;
const zo = elf_file.zigObjectPtr().?;
const sym_index = zo.getOrCreateMetadataForLazySymbol(elf_file, pt, .{
.kind = .const_data,
.ty = enum_ty.toIntern(),
}) catch |err|
return func.fail("{s} creating lazy symbol", .{@errorName(err)});
try func.genSetReg(Type.u64, data_reg, .{ .lea_symbol = .{ .sym = sym_index } });
const cmp_reg, const cmp_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(cmp_lock);
var data_off: i32 = 0;
const tag_names = enum_ty.enumFields(zcu);
for (exitlude_jump_relocs, 0..) |*exitlude_jump_reloc, tag_index| {
const tag_name_len = tag_names.get(ip)[tag_index].length(ip);
const tag_val = try pt.enumValueFieldIndex(enum_ty, @intCast(tag_index));
const tag_mcv = try func.genTypedValue(tag_val);
_ = try func.genBinOp(
.cmp_neq,
enum_mcv,
enum_ty,
tag_mcv,
enum_ty,
cmp_reg,
);
const skip_reloc = try func.condBr(Type.bool, .{ .register = cmp_reg });
try func.genSetMem(
.{ .reg = ret_reg },
0,
Type.u64,
.{ .register_offset = .{ .reg = data_reg, .off = data_off } },
);
try func.genSetMem(
.{ .reg = ret_reg },
8,
Type.u64,
.{ .immediate = tag_name_len },
);
exitlude_jump_reloc.* = try func.addInst(.{
.tag = .pseudo_j,
.data = .{ .j_type = .{
.rd = .zero,
.inst = undefined,
} },
});
func.performReloc(skip_reloc);
data_off += @intCast(tag_name_len + 1);
}
try func.airTrap();
for (exitlude_jump_relocs) |reloc| func.performReloc(reloc);
_ = try func.addInst(.{
.tag = .jalr,
.data = .{ .i_type = .{
.rd = .zero,
.rs1 = .ra,
.imm12 = Immediate.s(0),
} },
});
},
else => return func.fail(
"TODO implement {s} for {}",
.{ @tagName(lazy_sym.kind), Type.fromInterned(lazy_sym.ty).fmt(pt) },
),
}
}
fn genBody(func: *Func, body: []const Air.Inst.Index) InnerError!void {
const pt = func.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const air_tags = func.air.instructions.items(.tag);
for (body) |inst| {
if (func.liveness.isUnused(inst) and !func.air.mustLower(inst, ip)) continue;
wip_mir_log.debug("{}", .{func.fmtAir(inst)});
verbose_tracking_log.debug("{}", .{func.fmtTracking()});
const old_air_bookkeeping = func.air_bookkeeping;
try func.ensureProcessDeathCapacity(Air.Liveness.bpi);
func.reused_operands = @TypeOf(func.reused_operands).initEmpty();
try func.inst_tracking.ensureUnusedCapacity(func.gpa, 1);
const tag = air_tags[@intFromEnum(inst)];
switch (tag) {
// zig fmt: off
.add,
.add_wrap,
.sub,
.sub_wrap,
.add_sat,
.mul,
.mul_wrap,
.div_trunc,
.div_exact,
.rem,
.shl, .shl_exact,
.shr, .shr_exact,
.bool_and,
.bool_or,
.bit_and,
.bit_or,
.xor,
.min,
.max,
=> try func.airBinOp(inst, tag),
.ptr_add,
.ptr_sub => try func.airPtrArithmetic(inst, tag),
.mod,
.div_float,
.div_floor,
=> return func.fail("TODO: {s}", .{@tagName(tag)}),
.sqrt,
.sin,
.cos,
.tan,
.exp,
.exp2,
.log,
.log2,
.log10,
.floor,
.ceil,
.round,
.trunc_float,
.neg,
=> try func.airUnaryMath(inst, tag),
.add_with_overflow => try func.airAddWithOverflow(inst),
.sub_with_overflow => try func.airSubWithOverflow(inst),
.mul_with_overflow => try func.airMulWithOverflow(inst),
.shl_with_overflow => try func.airShlWithOverflow(inst),
.sub_sat => try func.airSubSat(inst),
.mul_sat => try func.airMulSat(inst),
.shl_sat => try func.airShlSat(inst),
.add_safe,
.sub_safe,
.mul_safe,
.intcast_safe,
.int_from_float_safe,
.int_from_float_optimized_safe,
=> return func.fail("TODO implement safety_checked_instructions", .{}),
.cmp_lt,
.cmp_lte,
.cmp_eq,
.cmp_gte,
.cmp_gt,
.cmp_neq,
=> try func.airCmp(inst, tag),
.cmp_vector => try func.airCmpVector(inst),
.cmp_lt_errors_len => try func.airCmpLtErrorsLen(inst),
.slice => try func.airSlice(inst),
.array_to_slice => try func.airArrayToSlice(inst),
.slice_ptr => try func.airSlicePtr(inst),
.slice_len => try func.airSliceLen(inst),
.alloc => try func.airAlloc(inst),
.ret_ptr => try func.airRetPtr(inst),
.arg => try func.airArg(inst),
.assembly => try func.airAsm(inst),
.bitcast => try func.airBitCast(inst),
.block => try func.airBlock(inst),
.br => try func.airBr(inst),
.repeat => try func.airRepeat(inst),
.switch_dispatch => try func.airSwitchDispatch(inst),
.trap => try func.airTrap(),
.breakpoint => try func.airBreakpoint(),
.ret_addr => try func.airRetAddr(inst),
.frame_addr => try func.airFrameAddress(inst),
.cond_br => try func.airCondBr(inst),
.dbg_stmt => try func.airDbgStmt(inst),
.dbg_empty_stmt => func.finishAirBookkeeping(),
.fptrunc => try func.airFptrunc(inst),
.fpext => try func.airFpext(inst),
.intcast => try func.airIntCast(inst),
.trunc => try func.airTrunc(inst),
.is_non_null => try func.airIsNonNull(inst),
.is_non_null_ptr => try func.airIsNonNullPtr(inst),
.is_null => try func.airIsNull(inst),
.is_null_ptr => try func.airIsNullPtr(inst),
.is_non_err => try func.airIsNonErr(inst),
.is_non_err_ptr => try func.airIsNonErrPtr(inst),
.is_err => try func.airIsErr(inst),
.is_err_ptr => try func.airIsErrPtr(inst),
.load => try func.airLoad(inst),
.loop => try func.airLoop(inst),
.not => try func.airNot(inst),
.ret => try func.airRet(inst, false),
.ret_safe => try func.airRet(inst, true),
.ret_load => try func.airRetLoad(inst),
.store => try func.airStore(inst, false),
.store_safe => try func.airStore(inst, true),
.struct_field_ptr=> try func.airStructFieldPtr(inst),
.struct_field_val=> try func.airStructFieldVal(inst),
.float_from_int => try func.airFloatFromInt(inst),
.int_from_float => try func.airIntFromFloat(inst),
.cmpxchg_strong => try func.airCmpxchg(inst, .strong),
.cmpxchg_weak => try func.airCmpxchg(inst, .weak),
.atomic_rmw => try func.airAtomicRmw(inst),
.atomic_load => try func.airAtomicLoad(inst),
.memcpy => try func.airMemcpy(inst),
.memmove => try func.airMemmove(inst),
.memset => try func.airMemset(inst, false),
.memset_safe => try func.airMemset(inst, true),
.set_union_tag => try func.airSetUnionTag(inst),
.get_union_tag => try func.airGetUnionTag(inst),
.clz => try func.airClz(inst),
.ctz => try func.airCtz(inst),
.popcount => try func.airPopcount(inst),
.abs => try func.airAbs(inst),
.byte_swap => try func.airByteSwap(inst),
.bit_reverse => try func.airBitReverse(inst),
.tag_name => try func.airTagName(inst),
.error_name => try func.airErrorName(inst),
.splat => try func.airSplat(inst),
.select => try func.airSelect(inst),
.shuffle_one => try func.airShuffleOne(inst),
.shuffle_two => try func.airShuffleTwo(inst),
.reduce => try func.airReduce(inst),
.aggregate_init => try func.airAggregateInit(inst),
.union_init => try func.airUnionInit(inst),
.prefetch => try func.airPrefetch(inst),
.mul_add => try func.airMulAdd(inst),
.addrspace_cast => return func.fail("TODO: addrspace_cast", .{}),
.@"try" => try func.airTry(inst),
.try_cold => try func.airTry(inst),
.try_ptr => return func.fail("TODO: try_ptr", .{}),
.try_ptr_cold => return func.fail("TODO: try_ptr_cold", .{}),
.dbg_var_ptr,
.dbg_var_val,
.dbg_arg_inline,
=> try func.airDbgVar(inst),
.dbg_inline_block => try func.airDbgInlineBlock(inst),
.call => try func.airCall(inst, .auto),
.call_always_tail => try func.airCall(inst, .always_tail),
.call_never_tail => try func.airCall(inst, .never_tail),
.call_never_inline => try func.airCall(inst, .never_inline),
.atomic_store_unordered => try func.airAtomicStore(inst, .unordered),
.atomic_store_monotonic => try func.airAtomicStore(inst, .monotonic),
.atomic_store_release => try func.airAtomicStore(inst, .release),
.atomic_store_seq_cst => try func.airAtomicStore(inst, .seq_cst),
.struct_field_ptr_index_0 => try func.airStructFieldPtrIndex(inst, 0),
.struct_field_ptr_index_1 => try func.airStructFieldPtrIndex(inst, 1),
.struct_field_ptr_index_2 => try func.airStructFieldPtrIndex(inst, 2),
.struct_field_ptr_index_3 => try func.airStructFieldPtrIndex(inst, 3),
.field_parent_ptr => try func.airFieldParentPtr(inst),
.switch_br => try func.airSwitchBr(inst),
.loop_switch_br => try func.airLoopSwitchBr(inst),
.ptr_slice_len_ptr => try func.airPtrSliceLenPtr(inst),
.ptr_slice_ptr_ptr => try func.airPtrSlicePtrPtr(inst),
.array_elem_val => try func.airArrayElemVal(inst),
.slice_elem_val => try func.airSliceElemVal(inst),
.slice_elem_ptr => try func.airSliceElemPtr(inst),
.ptr_elem_val => try func.airPtrElemVal(inst),
.ptr_elem_ptr => try func.airPtrElemPtr(inst),
.inferred_alloc, .inferred_alloc_comptime => unreachable,
.unreach => func.finishAirBookkeeping(),
.optional_payload => try func.airOptionalPayload(inst),
.optional_payload_ptr => try func.airOptionalPayloadPtr(inst),
.optional_payload_ptr_set => try func.airOptionalPayloadPtrSet(inst),
.unwrap_errunion_err => try func.airUnwrapErrErr(inst),
.unwrap_errunion_payload => try func.airUnwrapErrPayload(inst),
.unwrap_errunion_err_ptr => try func.airUnwrapErrErrPtr(inst),
.unwrap_errunion_payload_ptr=> try func.airUnwrapErrPayloadPtr(inst),
.errunion_payload_ptr_set => try func.airErrUnionPayloadPtrSet(inst),
.err_return_trace => try func.airErrReturnTrace(inst),
.set_err_return_trace => try func.airSetErrReturnTrace(inst),
.save_err_return_trace_index=> try func.airSaveErrReturnTraceIndex(inst),
.wrap_optional => try func.airWrapOptional(inst),
.wrap_errunion_payload => try func.airWrapErrUnionPayload(inst),
.wrap_errunion_err => try func.airWrapErrUnionErr(inst),
.runtime_nav_ptr => try func.airRuntimeNavPtr(inst),
.add_optimized,
.sub_optimized,
.mul_optimized,
.div_float_optimized,
.div_trunc_optimized,
.div_floor_optimized,
.div_exact_optimized,
.rem_optimized,
.mod_optimized,
.neg_optimized,
.cmp_lt_optimized,
.cmp_lte_optimized,
.cmp_eq_optimized,
.cmp_gte_optimized,
.cmp_gt_optimized,
.cmp_neq_optimized,
.cmp_vector_optimized,
.reduce_optimized,
.int_from_float_optimized,
=> return func.fail("TODO implement optimized float mode", .{}),
.is_named_enum_value => return func.fail("TODO implement is_named_enum_value", .{}),
.error_set_has_value => return func.fail("TODO implement error_set_has_value", .{}),
.vector_store_elem => return func.fail("TODO implement vector_store_elem", .{}),
.c_va_arg => return func.fail("TODO implement c_va_arg", .{}),
.c_va_copy => return func.fail("TODO implement c_va_copy", .{}),
.c_va_end => return func.fail("TODO implement c_va_end", .{}),
.c_va_start => return func.fail("TODO implement c_va_start", .{}),
.wasm_memory_size => unreachable,
.wasm_memory_grow => unreachable,
.work_item_id => unreachable,
.work_group_size => unreachable,
.work_group_id => unreachable,
// zig fmt: on
}
assert(!func.register_manager.lockedRegsExist());
if (std.debug.runtime_safety) {
if (func.air_bookkeeping < old_air_bookkeeping + 1) {
std.debug.panic("in codegen.zig, handling of AIR instruction %{d} ('{}') did not do proper bookkeeping. Look for a missing call to finishAir.", .{ inst, air_tags[@intFromEnum(inst)] });
}
{ // check consistency of tracked registers
var it = func.register_manager.free_registers.iterator(.{ .kind = .unset });
while (it.next()) |index| {
const tracked_inst = func.register_manager.registers[index];
tracking_log.debug("tracked inst: {}", .{tracked_inst});
const tracking = func.getResolvedInstValue(tracked_inst);
for (tracking.getRegs()) |reg| {
if (RegisterManager.indexOfRegIntoTracked(reg).? == index) break;
} else return std.debug.panic(
\\%{} takes up these regs: {any}, however this regs {any}, don't use it
, .{ tracked_inst, tracking.getRegs(), RegisterManager.regAtTrackedIndex(@intCast(index)) });
}
}
}
}
verbose_tracking_log.debug("{}", .{func.fmtTracking()});
}
fn getValue(func: *Func, value: MCValue, inst: ?Air.Inst.Index) !void {
for (value.getRegs()) |reg| try func.register_manager.getReg(reg, inst);
}
fn getValueIfFree(func: *Func, value: MCValue, inst: ?Air.Inst.Index) void {
for (value.getRegs()) |reg| if (func.register_manager.isRegFree(reg))
func.register_manager.getRegAssumeFree(reg, inst);
}
fn freeValue(func: *Func, value: MCValue) !void {
switch (value) {
.register => |reg| func.register_manager.freeReg(reg),
.register_pair => |regs| for (regs) |reg| func.register_manager.freeReg(reg),
.register_offset => |reg_off| func.register_manager.freeReg(reg_off.reg),
else => {}, // TODO process stack allocation death
}
}
fn feed(func: *Func, bt: *Air.Liveness.BigTomb, operand: Air.Inst.Ref) !void {
if (bt.feed()) if (operand.toIndex()) |inst| {
log.debug("feed inst: %{}", .{inst});
try func.processDeath(inst);
};
}
/// Asserts there is already capacity to insert into top branch inst_table.
fn processDeath(func: *Func, inst: Air.Inst.Index) !void {
try func.inst_tracking.getPtr(inst).?.die(func, inst);
}
/// Called when there are no operands, and the instruction is always unreferenced.
fn finishAirBookkeeping(func: *Func) void {
if (std.debug.runtime_safety) {
func.air_bookkeeping += 1;
}
}
fn finishAirResult(func: *Func, inst: Air.Inst.Index, result: MCValue) void {
if (func.liveness.isUnused(inst)) switch (result) {
.none, .dead, .unreach => {},
// Why didn't the result die?
.register => |r| if (r != .zero) unreachable,
else => unreachable,
} else {
switch (result) {
.register => |r| if (r == .zero) unreachable, // Why did we discard a used result?
else => {},
}
tracking_log.debug("%{d} => {} (birth)", .{ inst, result });
func.inst_tracking.putAssumeCapacityNoClobber(inst, InstTracking.init(result));
// In some cases, an operand may be reused as the result.
// If that operand died and was a register, it was freed by
// processDeath, so we have to "re-allocate" the register.
func.getValueIfFree(result, inst);
}
func.finishAirBookkeeping();
}
fn finishAir(
func: *Func,
inst: Air.Inst.Index,
result: MCValue,
operands: [Air.Liveness.bpi - 1]Air.Inst.Ref,
) !void {
const tomb_bits = func.liveness.getTombBits(inst);
for (0.., operands) |op_index, op| {
if (tomb_bits & @as(Air.Liveness.Bpi, 1) << @intCast(op_index) == 0) continue;
if (func.reused_operands.isSet(op_index)) continue;
try func.processDeath(op.toIndexAllowNone() orelse continue);
}
func.finishAirResult(inst, result);
}
const FrameLayout = struct {
stack_adjust: i12,
save_reg_list: Mir.RegisterList,
};
fn setFrameLoc(
func: *Func,
frame_index: FrameIndex,
base: Register,
offset: *i32,
comptime aligned: bool,
) void {
const frame_i = @intFromEnum(frame_index);
if (aligned) {
const alignment: InternPool.Alignment = func.frame_allocs.items(.abi_align)[frame_i];
offset.* = math.sign(offset.*) * @as(i32, @intCast(alignment.backward(@intCast(@abs(offset.*)))));
}
func.frame_locs.set(frame_i, .{ .base = base, .disp = offset.* });
offset.* += func.frame_allocs.items(.abi_size)[frame_i];
}
fn computeFrameLayout(func: *Func) !FrameLayout {
const frame_allocs_len = func.frame_allocs.len;
try func.frame_locs.resize(func.gpa, frame_allocs_len);
const stack_frame_order = try func.gpa.alloc(FrameIndex, frame_allocs_len - FrameIndex.named_count);
defer func.gpa.free(stack_frame_order);
const frame_size = func.frame_allocs.items(.abi_size);
const frame_align = func.frame_allocs.items(.abi_align);
for (stack_frame_order, FrameIndex.named_count..) |*frame_order, frame_index|
frame_order.* = @enumFromInt(frame_index);
{
const SortContext = struct {
frame_align: @TypeOf(frame_align),
pub fn lessThan(context: @This(), lhs: FrameIndex, rhs: FrameIndex) bool {
return context.frame_align[@intFromEnum(lhs)].compare(.gt, context.frame_align[@intFromEnum(rhs)]);
}
};
const sort_context = SortContext{ .frame_align = frame_align };
mem.sort(FrameIndex, stack_frame_order, sort_context, SortContext.lessThan);
}
var save_reg_list = Mir.RegisterList{};
for (abi.Registers.all_preserved) |reg| {
if (func.register_manager.isRegAllocated(reg)) {
save_reg_list.push(&abi.Registers.all_preserved, reg);
}
}
const total_alloc_size: i32 = blk: {
var i: i32 = 0;
for (stack_frame_order) |frame_index| {
i += frame_size[@intFromEnum(frame_index)];
}
break :blk i;
};
const saved_reg_size = save_reg_list.size();
frame_size[@intFromEnum(FrameIndex.spill_frame)] = @intCast(saved_reg_size);
// The total frame size is calculated by the amount of s registers you need to save * 8, as each
// register is 8 bytes, the total allocation sizes, and 16 more register for the spilled ra and s0
// register. Finally we align the frame size to the alignment of the base pointer.
const args_frame_size = frame_size[@intFromEnum(FrameIndex.args_frame)];
const spill_frame_size = frame_size[@intFromEnum(FrameIndex.spill_frame)];
const call_frame_size = frame_size[@intFromEnum(FrameIndex.call_frame)];
// TODO: this 64 should be a 16, but we were clobbering the top and bottom of the frame.
// maybe everything can go from the bottom?
const acc_frame_size: i32 = std.mem.alignForward(
i32,
total_alloc_size + 64 + args_frame_size + spill_frame_size + call_frame_size,
@intCast(frame_align[@intFromEnum(FrameIndex.base_ptr)].toByteUnits().?),
);
log.debug("frame size: {}", .{acc_frame_size});
// store the ra at total_size - 8, so it's the very first thing in the stack
// relative to the fp
func.frame_locs.set(
@intFromEnum(FrameIndex.ret_addr),
.{ .base = .sp, .disp = acc_frame_size - 8 },
);
func.frame_locs.set(
@intFromEnum(FrameIndex.base_ptr),
.{ .base = .sp, .disp = acc_frame_size - 16 },
);
// now we grow the stack frame from the bottom of total frame in order to
// not need to know the size of the first allocation. Stack offsets point at the "bottom"
// of variables.
var s0_offset: i32 = -acc_frame_size;
func.setFrameLoc(.stack_frame, .s0, &s0_offset, true);
for (stack_frame_order) |frame_index| func.setFrameLoc(frame_index, .s0, &s0_offset, true);
func.setFrameLoc(.args_frame, .s0, &s0_offset, true);
func.setFrameLoc(.call_frame, .s0, &s0_offset, true);
func.setFrameLoc(.spill_frame, .s0, &s0_offset, true);
return .{
.stack_adjust = @intCast(acc_frame_size),
.save_reg_list = save_reg_list,
};
}
fn ensureProcessDeathCapacity(func: *Func, additional_count: usize) !void {
const table = &func.branch_stack.items[func.branch_stack.items.len - 1].inst_table;
try table.ensureUnusedCapacity(func.gpa, additional_count);
}
fn memSize(func: *Func, ty: Type) Memory.Size {
const pt = func.pt;
const zcu = pt.zcu;
return switch (ty.zigTypeTag(zcu)) {
.float => Memory.Size.fromBitSize(ty.floatBits(func.target)),
else => Memory.Size.fromByteSize(ty.abiSize(zcu)),
};
}
fn splitType(func: *Func, ty: Type) ![2]Type {
const zcu = func.pt.zcu;
const classes = mem.sliceTo(&abi.classifySystem(ty, zcu), .none);
var parts: [2]Type = undefined;
if (classes.len == 2) for (&parts, classes, 0..) |*part, class, part_i| {
part.* = switch (class) {
.integer => switch (part_i) {
0 => Type.u64,
1 => part: {
const elem_size = ty.abiAlignment(zcu).minStrict(.@"8").toByteUnits().?;
const elem_ty = try func.pt.intType(.unsigned, @intCast(elem_size * 8));
break :part switch (@divExact(ty.abiSize(zcu) - 8, elem_size)) {
1 => elem_ty,
else => |len| try func.pt.arrayType(.{ .len = len, .child = elem_ty.toIntern() }),
};
},
else => unreachable,
},
else => return func.fail("TODO: splitType class {}", .{class}),
};
} else if (parts[0].abiSize(zcu) + parts[1].abiSize(zcu) == ty.abiSize(zcu)) return parts;
return func.fail("TODO implement splitType for {}", .{ty.fmt(func.pt)});
}
/// Truncates the value in the register in place.
/// Clobbers any remaining bits.
fn truncateRegister(func: *Func, ty: Type, reg: Register) !void {
const pt = func.pt;
const zcu = pt.zcu;
const int_info = if (ty.isAbiInt(zcu)) ty.intInfo(zcu) else std.builtin.Type.Int{
.signedness = .unsigned,
.bits = @intCast(ty.bitSize(zcu)),
};
assert(reg.class() == .int);
const shift = math.cast(u6, 64 - int_info.bits % 64) orelse return;
switch (int_info.signedness) {
.signed => {
_ = try func.addInst(.{
.tag = .slli,
.data = .{
.i_type = .{
.rd = reg,
.rs1 = reg,
.imm12 = Immediate.u(shift),
},
},
});
_ = try func.addInst(.{
.tag = .srai,
.data = .{
.i_type = .{
.rd = reg,
.rs1 = reg,
.imm12 = Immediate.u(shift),
},
},
});
},
.unsigned => {
const mask = ~@as(u64, 0) >> shift;
if (mask < 256) {
_ = try func.addInst(.{
.tag = .andi,
.data = .{
.i_type = .{
.rd = reg,
.rs1 = reg,
.imm12 = Immediate.u(@intCast(mask)),
},
},
});
} else {
_ = try func.addInst(.{
.tag = .slli,
.data = .{
.i_type = .{
.rd = reg,
.rs1 = reg,
.imm12 = Immediate.u(shift),
},
},
});
_ = try func.addInst(.{
.tag = .srli,
.data = .{
.i_type = .{
.rd = reg,
.rs1 = reg,
.imm12 = Immediate.u(shift),
},
},
});
}
},
}
}
fn allocFrameIndex(func: *Func, alloc: FrameAlloc) !FrameIndex {
const frame_allocs_slice = func.frame_allocs.slice();
const frame_size = frame_allocs_slice.items(.abi_size);
const frame_align = frame_allocs_slice.items(.abi_align);
const stack_frame_align = &frame_align[@intFromEnum(FrameIndex.stack_frame)];
stack_frame_align.* = stack_frame_align.max(alloc.abi_align);
for (func.free_frame_indices.keys(), 0..) |frame_index, free_i| {
const abi_size = frame_size[@intFromEnum(frame_index)];
if (abi_size != alloc.abi_size) continue;
const abi_align = &frame_align[@intFromEnum(frame_index)];
abi_align.* = abi_align.max(alloc.abi_align);
_ = func.free_frame_indices.swapRemoveAt(free_i);
return frame_index;
}
const frame_index: FrameIndex = @enumFromInt(func.frame_allocs.len);
try func.frame_allocs.append(func.gpa, alloc);
log.debug("allocated frame {}", .{frame_index});
return frame_index;
}
/// Use a pointer instruction as the basis for allocating stack memory.
fn allocMemPtr(func: *Func, inst: Air.Inst.Index) !FrameIndex {
const pt = func.pt;
const zcu = pt.zcu;
const ptr_ty = func.typeOfIndex(inst);
const val_ty = ptr_ty.childType(zcu);
return func.allocFrameIndex(FrameAlloc.init(.{
.size = math.cast(u32, val_ty.abiSize(zcu)) orelse {
return func.fail("type '{}' too big to fit into stack frame", .{val_ty.fmt(pt)});
},
.alignment = ptr_ty.ptrAlignment(zcu).max(.@"1"),
}));
}
fn typeRegClass(func: *Func, ty: Type) abi.RegisterClass {
const pt = func.pt;
const zcu = pt.zcu;
return switch (ty.zigTypeTag(zcu)) {
.float => .float,
.vector => .vector,
else => .int,
};
}
fn regGeneralClassForType(func: *Func, ty: Type) RegisterManager.RegisterBitSet {
return switch (ty.zigTypeTag(func.pt.zcu)) {
.float => abi.Registers.Float.general_purpose,
.vector => abi.Registers.Vector.general_purpose,
else => abi.Registers.Integer.general_purpose,
};
}
fn regTempClassForType(func: *Func, ty: Type) RegisterManager.RegisterBitSet {
return switch (ty.zigTypeTag(func.pt.zcu)) {
.float => abi.Registers.Float.temporary,
.vector => abi.Registers.Vector.general_purpose, // there are no temporary vector registers
else => abi.Registers.Integer.temporary,
};
}
fn allocRegOrMem(func: *Func, elem_ty: Type, inst: ?Air.Inst.Index, reg_ok: bool) !MCValue {
const pt = func.pt;
const zcu = pt.zcu;
const bit_size = elem_ty.bitSize(zcu);
const min_size: u64 = switch (elem_ty.zigTypeTag(zcu)) {
.float => if (func.hasFeature(.d)) 64 else 32,
.vector => 256, // TODO: calculate it from avl * vsew
else => 64,
};
if (reg_ok and bit_size <= min_size) {
if (func.register_manager.tryAllocReg(inst, func.regGeneralClassForType(elem_ty))) |reg| {
return .{ .register = reg };
}
} else if (reg_ok and elem_ty.zigTypeTag(zcu) == .vector) {
return func.fail("did you forget to extend vector registers before allocating", .{});
}
const frame_index = try func.allocFrameIndex(FrameAlloc.initSpill(elem_ty, zcu));
return .{ .load_frame = .{ .index = frame_index } };
}
/// Allocates a register from the general purpose set and returns the Register and the Lock.
///
/// Up to the caller to unlock the register later.
fn allocReg(func: *Func, reg_class: abi.RegisterClass) !struct { Register, RegisterLock } {
if (reg_class == .float and !func.hasFeature(.f))
std.debug.panic("allocReg class == float where F isn't enabled", .{});
if (reg_class == .vector and !func.hasFeature(.v))
std.debug.panic("allocReg class == vector where V isn't enabled", .{});
const class = switch (reg_class) {
.int => abi.Registers.Integer.general_purpose,
.float => abi.Registers.Float.general_purpose,
.vector => abi.Registers.Vector.general_purpose,
};
const reg = try func.register_manager.allocReg(null, class);
const lock = func.register_manager.lockRegAssumeUnused(reg);
return .{ reg, lock };
}
/// Similar to `allocReg` but will copy the MCValue into the Register unless `operand` is already
/// a register, in which case it will return a possible lock to that register.
fn promoteReg(func: *Func, ty: Type, operand: MCValue) !struct { Register, ?RegisterLock } {
if (operand == .register) {
const op_reg = operand.register;
return .{ op_reg, func.register_manager.lockReg(operand.register) };
}
const class = func.typeRegClass(ty);
const reg, const lock = try func.allocReg(class);
try func.genSetReg(ty, reg, operand);
return .{ reg, lock };
}
fn elemOffset(func: *Func, index_ty: Type, index: MCValue, elem_size: u64) !Register {
const reg: Register = blk: {
switch (index) {
.immediate => |imm| {
// Optimisation: if index MCValue is an immediate, we can multiply in `comptime`
// and set the register directly to the scaled offset as an immediate.
const reg = try func.register_manager.allocReg(null, func.regGeneralClassForType(index_ty));
try func.genSetReg(index_ty, reg, .{ .immediate = imm * elem_size });
break :blk reg;
},
else => {
const reg = try func.copyToTmpRegister(index_ty, index);
const lock = func.register_manager.lockRegAssumeUnused(reg);
defer func.register_manager.unlockReg(lock);
const result_reg, const result_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(result_lock);
try func.genBinOp(
.mul,
.{ .register = reg },
index_ty,
.{ .immediate = elem_size },
index_ty,
result_reg,
);
break :blk result_reg;
},
}
};
return reg;
}
pub fn spillInstruction(func: *Func, reg: Register, inst: Air.Inst.Index) !void {
const tracking = func.inst_tracking.getPtr(inst) orelse return;
for (tracking.getRegs()) |tracked_reg| {
if (tracked_reg.id() == reg.id()) break;
} else unreachable; // spilled reg not tracked with spilled instruciton
try tracking.spill(func, inst);
try tracking.trackSpill(func, inst);
}
pub fn spillRegisters(func: *Func, comptime registers: []const Register) !void {
inline for (registers) |reg| try func.register_manager.getKnownReg(reg, null);
}
/// Copies a value to a register without tracking the register. The register is not considered
/// allocated. A second call to `copyToTmpRegister` may return the same register.
/// This can have a side effect of spilling instructions to the stack to free up a register.
fn copyToTmpRegister(func: *Func, ty: Type, mcv: MCValue) !Register {
log.debug("copyToTmpRegister ty: {}", .{ty.fmt(func.pt)});
const reg = try func.register_manager.allocReg(null, func.regTempClassForType(ty));
try func.genSetReg(ty, reg, mcv);
return reg;
}
/// Allocates a new register and copies `mcv` into it.
/// `reg_owner` is the instruction that gets associated with the register in the register table.
/// This can have a side effect of spilling instructions to the stack to free up a register.
fn copyToNewRegister(func: *Func, reg_owner: Air.Inst.Index, mcv: MCValue) !MCValue {
const ty = func.typeOfIndex(reg_owner);
const reg = try func.register_manager.allocReg(reg_owner, func.regGeneralClassForType(ty));
try func.genSetReg(func.typeOfIndex(reg_owner), reg, mcv);
return MCValue{ .register = reg };
}
fn airAlloc(func: *Func, inst: Air.Inst.Index) !void {
const result = MCValue{ .lea_frame = .{ .index = try func.allocMemPtr(inst) } };
return func.finishAir(inst, result, .{ .none, .none, .none });
}
fn airRetPtr(func: *Func, inst: Air.Inst.Index) !void {
const result: MCValue = switch (func.ret_mcv.long) {
.none => .{ .lea_frame = .{ .index = try func.allocMemPtr(inst) } },
.load_frame => .{ .register_offset = .{
.reg = (try func.copyToNewRegister(
inst,
func.ret_mcv.long,
)).register,
.off = func.ret_mcv.short.indirect.off,
} },
else => |t| return func.fail("TODO: airRetPtr {s}", .{@tagName(t)}),
};
return func.finishAir(inst, result, .{ .none, .none, .none });
}
fn airFptrunc(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else return func.fail("TODO implement airFptrunc for {}", .{func.target.cpu.arch});
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airFpext(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else return func.fail("TODO implement airFpext for {}", .{func.target.cpu.arch});
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airIntCast(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const src_ty = func.typeOf(ty_op.operand);
const dst_ty = func.typeOfIndex(inst);
const result: MCValue = result: {
const src_int_info = src_ty.intInfo(zcu);
const dst_int_info = dst_ty.intInfo(zcu);
const min_ty = if (dst_int_info.bits < src_int_info.bits) dst_ty else src_ty;
const src_mcv = try func.resolveInst(ty_op.operand);
const src_storage_bits: u16 = switch (src_mcv) {
.register => 64,
.load_frame => src_int_info.bits,
else => return func.fail("airIntCast from {s}", .{@tagName(src_mcv)}),
};
const dst_mcv = if (dst_int_info.bits <= src_storage_bits and
math.divCeil(u16, dst_int_info.bits, 64) catch unreachable ==
math.divCeil(u32, src_storage_bits, 64) catch unreachable and
func.reuseOperand(inst, ty_op.operand, 0, src_mcv)) src_mcv else dst: {
const dst_mcv = try func.allocRegOrMem(dst_ty, inst, true);
try func.genCopy(min_ty, dst_mcv, src_mcv);
break :dst dst_mcv;
};
if (dst_int_info.bits <= src_int_info.bits)
break :result dst_mcv;
if (dst_int_info.bits > 64 or src_int_info.bits > 64)
break :result null; // TODO
break :result dst_mcv;
} orelse return func.fail("TODO: implement airIntCast from {} to {}", .{
src_ty.fmt(pt), dst_ty.fmt(pt),
});
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airTrunc(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
if (func.liveness.isUnused(inst))
return func.finishAir(inst, .unreach, .{ ty_op.operand, .none, .none });
// we assume no zeroext in the "Zig ABI", so it's fine to just not truncate it.
const operand = try func.resolveInst(ty_op.operand);
// we can do it just to be safe, but this shouldn't be needed for no-runtime safety modes
switch (operand) {
.register => |reg| try func.truncateRegister(func.typeOf(ty_op.operand), reg),
else => {},
}
return func.finishAir(inst, operand, .{ ty_op.operand, .none, .none });
}
fn airNot(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const pt = func.pt;
const zcu = pt.zcu;
const operand = try func.resolveInst(ty_op.operand);
const ty = func.typeOf(ty_op.operand);
const operand_reg, const operand_lock = try func.promoteReg(ty, operand);
defer if (operand_lock) |lock| func.register_manager.unlockReg(lock);
const dst_reg: Register =
if (func.reuseOperand(inst, ty_op.operand, 0, operand) and operand == .register)
operand.register
else
(try func.allocRegOrMem(func.typeOfIndex(inst), inst, true)).register;
switch (ty.zigTypeTag(zcu)) {
.bool => {
_ = try func.addInst(.{
.tag = .pseudo_not,
.data = .{
.rr = .{
.rs = operand_reg,
.rd = dst_reg,
},
},
});
},
.int => {
const size = ty.bitSize(zcu);
if (!math.isPowerOfTwo(size))
return func.fail("TODO: airNot non-pow 2 int size", .{});
switch (size) {
32, 64 => {
_ = try func.addInst(.{
.tag = .xori,
.data = .{
.i_type = .{
.rd = dst_reg,
.rs1 = operand_reg,
.imm12 = Immediate.s(-1),
},
},
});
},
8, 16 => return func.fail("TODO: airNot 8 or 16, {}", .{size}),
else => unreachable,
}
},
else => unreachable,
}
break :result .{ .register = dst_reg };
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airSlice(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = func.air.extraData(Air.Bin, ty_pl.payload).data;
const slice_ty = func.typeOfIndex(inst);
const frame_index = try func.allocFrameIndex(FrameAlloc.initSpill(slice_ty, zcu));
const ptr_ty = func.typeOf(bin_op.lhs);
try func.genSetMem(.{ .frame = frame_index }, 0, ptr_ty, .{ .air_ref = bin_op.lhs });
const len_ty = func.typeOf(bin_op.rhs);
try func.genSetMem(
.{ .frame = frame_index },
@intCast(ptr_ty.abiSize(zcu)),
len_ty,
.{ .air_ref = bin_op.rhs },
);
const result = MCValue{ .load_frame = .{ .index = frame_index } };
return func.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airBinOp(func: *Func, inst: Air.Inst.Index, tag: Air.Inst.Tag) !void {
const pt = func.pt;
const zcu = pt.zcu;
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const dst_mcv = try func.binOp(inst, tag, bin_op.lhs, bin_op.rhs);
const dst_ty = func.typeOfIndex(inst);
if (dst_ty.isAbiInt(zcu)) {
const abi_size: u32 = @intCast(dst_ty.abiSize(zcu));
const bit_size: u32 = @intCast(dst_ty.bitSize(zcu));
if (abi_size * 8 > bit_size) {
const dst_lock = switch (dst_mcv) {
.register => |dst_reg| func.register_manager.lockRegAssumeUnused(dst_reg),
else => null,
};
defer if (dst_lock) |lock| func.register_manager.unlockReg(lock);
if (dst_mcv.isRegister()) {
try func.truncateRegister(dst_ty, dst_mcv.getReg().?);
} else {
const tmp_reg, const tmp_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(tmp_lock);
const hi_ty = try pt.intType(.unsigned, @intCast((dst_ty.bitSize(zcu) - 1) % 64 + 1));
const hi_mcv = dst_mcv.address().offset(@intCast(bit_size / 64 * 8)).deref();
try func.genSetReg(hi_ty, tmp_reg, hi_mcv);
try func.truncateRegister(dst_ty, tmp_reg);
try func.genCopy(hi_ty, hi_mcv, .{ .register = tmp_reg });
}
}
}
return func.finishAir(inst, dst_mcv, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn binOp(
func: *Func,
maybe_inst: ?Air.Inst.Index,
air_tag: Air.Inst.Tag,
lhs_air: Air.Inst.Ref,
rhs_air: Air.Inst.Ref,
) !MCValue {
_ = maybe_inst;
const pt = func.pt;
const zcu = pt.zcu;
const lhs_ty = func.typeOf(lhs_air);
const rhs_ty = func.typeOf(rhs_air);
if (lhs_ty.isRuntimeFloat()) libcall: {
const float_bits = lhs_ty.floatBits(func.target);
const type_needs_libcall = switch (float_bits) {
16 => true,
32, 64 => false,
80, 128 => true,
else => unreachable,
};
if (!type_needs_libcall) break :libcall;
return func.fail("binOp libcall runtime-float ops", .{});
}
// don't have support for certain sizes of addition
switch (lhs_ty.zigTypeTag(zcu)) {
.vector => {}, // works differently and fails in a different place
else => if (lhs_ty.bitSize(zcu) > 64) return func.fail("TODO: binOp >= 64 bits", .{}),
}
const lhs_mcv = try func.resolveInst(lhs_air);
const rhs_mcv = try func.resolveInst(rhs_air);
const class_for_dst_ty: abi.RegisterClass = switch (air_tag) {
// will always return int register no matter the input
.cmp_eq,
.cmp_neq,
.cmp_lt,
.cmp_lte,
.cmp_gt,
.cmp_gte,
=> .int,
else => func.typeRegClass(lhs_ty),
};
const dst_reg, const dst_lock = try func.allocReg(class_for_dst_ty);
defer func.register_manager.unlockReg(dst_lock);
try func.genBinOp(
air_tag,
lhs_mcv,
lhs_ty,
rhs_mcv,
rhs_ty,
dst_reg,
);
return .{ .register = dst_reg };
}
/// Does the same thing as binOp however is meant to be used internally to the backend.
///
/// The `dst_reg` argument is meant to be caller-locked. Asserts that the binOp result can be
/// fit into the register.
///
/// Assumes that the `dst_reg` class is correct.
fn genBinOp(
func: *Func,
tag: Air.Inst.Tag,
lhs_mcv: MCValue,
lhs_ty: Type,
rhs_mcv: MCValue,
rhs_ty: Type,
dst_reg: Register,
) !void {
const pt = func.pt;
const zcu = pt.zcu;
const bit_size = lhs_ty.bitSize(zcu);
const is_unsigned = lhs_ty.isUnsignedInt(zcu);
const lhs_reg, const maybe_lhs_lock = try func.promoteReg(lhs_ty, lhs_mcv);
const rhs_reg, const maybe_rhs_lock = try func.promoteReg(rhs_ty, rhs_mcv);
defer if (maybe_lhs_lock) |lock| func.register_manager.unlockReg(lock);
defer if (maybe_rhs_lock) |lock| func.register_manager.unlockReg(lock);
switch (tag) {
.add,
.add_wrap,
.sub,
.sub_wrap,
.mul,
.mul_wrap,
.rem,
.div_trunc,
.div_exact,
=> {
switch (tag) {
.rem,
.div_trunc,
.div_exact,
=> {
if (!math.isPowerOfTwo(bit_size)) {
try func.truncateRegister(lhs_ty, lhs_reg);
try func.truncateRegister(rhs_ty, rhs_reg);
}
},
else => {
if (!math.isPowerOfTwo(bit_size))
return func.fail(
"TODO: genBinOp verify if needs to truncate {s} non-pow 2, found {}",
.{ @tagName(tag), bit_size },
);
},
}
switch (lhs_ty.zigTypeTag(zcu)) {
.int => {
const mnem: Mnemonic = switch (tag) {
.add, .add_wrap => switch (bit_size) {
8, 16, 64 => .add,
32 => .addw,
else => unreachable,
},
.sub, .sub_wrap => switch (bit_size) {
8, 16, 32 => .subw,
64 => .sub,
else => unreachable,
},
.mul, .mul_wrap => switch (bit_size) {
8, 16, 64 => .mul,
32 => .mulw,
else => unreachable,
},
.rem => switch (bit_size) {
8, 16, 32 => if (is_unsigned) .remuw else .remw,
else => if (is_unsigned) .remu else .rem,
},
.div_trunc, .div_exact => switch (bit_size) {
8, 16, 32 => if (is_unsigned) .divuw else .divw,
else => if (is_unsigned) .divu else .div,
},
else => unreachable,
};
_ = try func.addInst(.{
.tag = mnem,
.data = .{
.r_type = .{
.rd = dst_reg,
.rs1 = lhs_reg,
.rs2 = rhs_reg,
},
},
});
},
.float => {
const mir_tag: Mnemonic = switch (tag) {
.add => switch (bit_size) {
32 => .fadds,
64 => .faddd,
else => unreachable,
},
.sub => switch (bit_size) {
32 => .fsubs,
64 => .fsubd,
else => unreachable,
},
.mul => switch (bit_size) {
32 => .fmuls,
64 => .fmuld,
else => unreachable,
},
else => return func.fail("TODO: genBinOp {s} Float", .{@tagName(tag)}),
};
_ = try func.addInst(.{
.tag = mir_tag,
.data = .{
.r_type = .{
.rd = dst_reg,
.rs1 = lhs_reg,
.rs2 = rhs_reg,
},
},
});
},
.vector => {
const num_elem = lhs_ty.vectorLen(zcu);
const elem_size = lhs_ty.childType(zcu).bitSize(zcu);
const child_ty = lhs_ty.childType(zcu);
const mir_tag: Mnemonic = switch (tag) {
.add => switch (child_ty.zigTypeTag(zcu)) {
.int => .vaddvv,
.float => .vfaddvv,
else => unreachable,
},
.sub => switch (child_ty.zigTypeTag(zcu)) {
.int => .vsubvv,
.float => .vfsubvv,
else => unreachable,
},
.mul => switch (child_ty.zigTypeTag(zcu)) {
.int => .vmulvv,
.float => .vfmulvv,
else => unreachable,
},
else => return func.fail("TODO: genBinOp {s} Vector", .{@tagName(tag)}),
};
try func.setVl(.zero, num_elem, .{
.vsew = switch (elem_size) {
8 => .@"8",
16 => .@"16",
32 => .@"32",
64 => .@"64",
else => return func.fail("TODO: genBinOp > 64 bit elements, found {d}", .{elem_size}),
},
.vlmul = .m1,
.vma = true,
.vta = true,
});
_ = try func.addInst(.{
.tag = mir_tag,
.data = .{
.r_type = .{
.rd = dst_reg,
.rs1 = rhs_reg,
.rs2 = lhs_reg,
},
},
});
},
else => unreachable,
}
},
.add_sat,
=> {
if (bit_size != 64 or !is_unsigned)
return func.fail("TODO: genBinOp ty: {}", .{lhs_ty.fmt(pt)});
const tmp_reg = try func.copyToTmpRegister(rhs_ty, .{ .register = rhs_reg });
const tmp_lock = func.register_manager.lockRegAssumeUnused(tmp_reg);
defer func.register_manager.unlockReg(tmp_lock);
_ = try func.addInst(.{
.tag = .add,
.data = .{ .r_type = .{
.rd = tmp_reg,
.rs1 = rhs_reg,
.rs2 = lhs_reg,
} },
});
_ = try func.addInst(.{
.tag = .sltu,
.data = .{ .r_type = .{
.rd = dst_reg,
.rs1 = tmp_reg,
.rs2 = lhs_reg,
} },
});
// neg dst_reg, dst_reg
_ = try func.addInst(.{
.tag = .sub,
.data = .{ .r_type = .{
.rd = dst_reg,
.rs1 = .zero,
.rs2 = dst_reg,
} },
});
_ = try func.addInst(.{
.tag = .@"or",
.data = .{ .r_type = .{
.rd = dst_reg,
.rs1 = dst_reg,
.rs2 = tmp_reg,
} },
});
},
.ptr_add,
.ptr_sub,
=> {
const tmp_reg = try func.copyToTmpRegister(rhs_ty, .{ .register = rhs_reg });
const tmp_mcv = MCValue{ .register = tmp_reg };
const tmp_lock = func.register_manager.lockRegAssumeUnused(tmp_reg);
defer func.register_manager.unlockReg(tmp_lock);
// RISC-V has no immediate mul, so we copy the size to a temporary register
const elem_size = lhs_ty.elemType2(zcu).abiSize(zcu);
const elem_size_reg = try func.copyToTmpRegister(Type.u64, .{ .immediate = elem_size });
try func.genBinOp(
.mul,
tmp_mcv,
rhs_ty,
.{ .register = elem_size_reg },
Type.u64,
tmp_reg,
);
try func.genBinOp(
switch (tag) {
.ptr_add => .add,
.ptr_sub => .sub,
else => unreachable,
},
lhs_mcv,
Type.u64, // we know it's a pointer, so it'll be usize.
tmp_mcv,
Type.u64,
dst_reg,
);
},
.bit_and,
.bit_or,
.bool_and,
.bool_or,
=> {
_ = try func.addInst(.{
.tag = switch (tag) {
.bit_and, .bool_and => .@"and",
.bit_or, .bool_or => .@"or",
else => unreachable,
},
.data = .{
.r_type = .{
.rd = dst_reg,
.rs1 = lhs_reg,
.rs2 = rhs_reg,
},
},
});
switch (tag) {
.bool_and,
.bool_or,
=> try func.truncateRegister(Type.bool, dst_reg),
else => {},
}
},
.shr,
.shr_exact,
.shl,
.shl_exact,
=> {
if (lhs_ty.isVector(zcu) and !rhs_ty.isVector(zcu)) return func.fail("TODO: vector shift with scalar rhs", .{});
if (bit_size > 64) return func.fail("TODO: genBinOp shift > 64 bits, {}", .{bit_size});
try func.truncateRegister(rhs_ty, rhs_reg);
const mir_tag: Mnemonic = switch (tag) {
.shl, .shl_exact => switch (bit_size) {
1...31, 33...64 => .sll,
32 => .sllw,
else => unreachable,
},
.shr, .shr_exact => switch (bit_size) {
1...31, 33...64 => .srl,
32 => .srlw,
else => unreachable,
},
else => unreachable,
};
_ = try func.addInst(.{
.tag = mir_tag,
.data = .{ .r_type = .{
.rd = dst_reg,
.rs1 = lhs_reg,
.rs2 = rhs_reg,
} },
});
},
// TODO: move the isel logic out of lower and into here.
.cmp_eq,
.cmp_neq,
.cmp_lt,
.cmp_lte,
.cmp_gt,
.cmp_gte,
=> {
assert(lhs_reg.class() == rhs_reg.class());
if (lhs_reg.class() == .int) {
try func.truncateRegister(lhs_ty, lhs_reg);
try func.truncateRegister(rhs_ty, rhs_reg);
}
_ = try func.addInst(.{
.tag = .pseudo_compare,
.data = .{
.compare = .{
.op = switch (tag) {
.cmp_eq => .eq,
.cmp_neq => .neq,
.cmp_lt => .lt,
.cmp_lte => .lte,
.cmp_gt => .gt,
.cmp_gte => .gte,
else => unreachable,
},
.rd = dst_reg,
.rs1 = lhs_reg,
.rs2 = rhs_reg,
.ty = lhs_ty,
},
},
});
},
// A branchless @min/@max sequence.
//
// Assume that a0 and a1 are the lhs and rhs respectively.
// Also assume that a2 is the destination register.
//
// Algorithm:
// slt s0, a0, a1
// sub s0, zero, s0
// xor a2, a0, a1
// and s0, a2, s0
// xor a2, a0, s0 # a0 is @min, a1 is @max
//
// "slt s0, a0, a1" will set s0 to 1 if a0 is less than a1, and 1 otherwise.
//
// "sub s0, zero, s0" will set all the bits of s0 to 1 if it was 1, otherwise it'll remain at 0.
//
// "xor a2, a0, a1" stores the bitwise XOR of a0 and a1 in a2. Effectively getting the difference between them.
//
// "and a0, a2, s0" here we mask the result of the XOR with the negated s0. If a0 < a1, s0 is -1, which
// doesn't change the bits of a2. If a0 >= a1, s0 is 0, nullifying a2.
//
// "xor a2, a0, s0" the final XOR operation adjusts a2 to be the minimum value of a0 and a1. If a0 was less than
// a1, s0 was -1, flipping all the bits in a2 and effectively restoring a0. If a0 was greater than or equal to a1,
// s0 was 0, leaving a2 unchanged as a0.
.min, .max => {
switch (lhs_ty.zigTypeTag(zcu)) {
.int => {
const int_info = lhs_ty.intInfo(zcu);
const mask_reg, const mask_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(mask_lock);
_ = try func.addInst(.{
.tag = if (int_info.signedness == .unsigned) .sltu else .slt,
.data = .{ .r_type = .{
.rd = mask_reg,
.rs1 = lhs_reg,
.rs2 = rhs_reg,
} },
});
_ = try func.addInst(.{
.tag = .sub,
.data = .{ .r_type = .{
.rd = mask_reg,
.rs1 = .zero,
.rs2 = mask_reg,
} },
});
_ = try func.addInst(.{
.tag = .xor,
.data = .{ .r_type = .{
.rd = dst_reg,
.rs1 = lhs_reg,
.rs2 = rhs_reg,
} },
});
_ = try func.addInst(.{
.tag = .@"and",
.data = .{ .r_type = .{
.rd = mask_reg,
.rs1 = dst_reg,
.rs2 = mask_reg,
} },
});
_ = try func.addInst(.{
.tag = .xor,
.data = .{ .r_type = .{
.rd = dst_reg,
.rs1 = if (tag == .min) rhs_reg else lhs_reg,
.rs2 = mask_reg,
} },
});
},
else => |t| return func.fail("TODO: genBinOp min/max for {s}", .{@tagName(t)}),
}
},
else => return func.fail("TODO: genBinOp {}", .{tag}),
}
}
fn airPtrArithmetic(func: *Func, inst: Air.Inst.Index, tag: Air.Inst.Tag) !void {
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = func.air.extraData(Air.Bin, ty_pl.payload).data;
const dst_mcv = try func.binOp(inst, tag, bin_op.lhs, bin_op.rhs);
return func.finishAir(inst, dst_mcv, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airAddWithOverflow(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.Bin, ty_pl.payload).data;
const rhs_ty = func.typeOf(extra.rhs);
const lhs_ty = func.typeOf(extra.lhs);
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
switch (lhs_ty.zigTypeTag(zcu)) {
.vector => return func.fail("TODO implement add with overflow for Vector type", .{}),
.int => {
const int_info = lhs_ty.intInfo(zcu);
const tuple_ty = func.typeOfIndex(inst);
const result_mcv = try func.allocRegOrMem(tuple_ty, inst, false);
const offset = result_mcv.load_frame;
if (int_info.bits >= 8 and math.isPowerOfTwo(int_info.bits)) {
const add_result = try func.binOp(null, .add, extra.lhs, extra.rhs);
try func.genSetMem(
.{ .frame = offset.index },
offset.off + @as(i32, @intCast(tuple_ty.structFieldOffset(0, zcu))),
lhs_ty,
add_result,
);
const trunc_reg = try func.copyToTmpRegister(lhs_ty, add_result);
const trunc_reg_lock = func.register_manager.lockRegAssumeUnused(trunc_reg);
defer func.register_manager.unlockReg(trunc_reg_lock);
const overflow_reg, const overflow_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(overflow_lock);
// if the result isn't equal after truncating it to the given type,
// an overflow must have happened.
try func.truncateRegister(lhs_ty, trunc_reg);
try func.genBinOp(
.cmp_neq,
add_result,
lhs_ty,
.{ .register = trunc_reg },
rhs_ty,
overflow_reg,
);
try func.genSetMem(
.{ .frame = offset.index },
offset.off + @as(i32, @intCast(tuple_ty.structFieldOffset(1, zcu))),
Type.u1,
.{ .register = overflow_reg },
);
break :result result_mcv;
} else {
const rhs_mcv = try func.resolveInst(extra.rhs);
const lhs_mcv = try func.resolveInst(extra.lhs);
const rhs_reg, const rhs_lock = try func.promoteReg(rhs_ty, rhs_mcv);
const lhs_reg, const lhs_lock = try func.promoteReg(lhs_ty, lhs_mcv);
defer {
if (rhs_lock) |lock| func.register_manager.unlockReg(lock);
if (lhs_lock) |lock| func.register_manager.unlockReg(lock);
}
try func.truncateRegister(rhs_ty, rhs_reg);
try func.truncateRegister(lhs_ty, lhs_reg);
const dest_reg, const dest_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(dest_lock);
_ = try func.addInst(.{
.tag = .add,
.data = .{ .r_type = .{
.rs1 = rhs_reg,
.rs2 = lhs_reg,
.rd = dest_reg,
} },
});
try func.truncateRegister(func.typeOfIndex(inst), dest_reg);
const add_result: MCValue = .{ .register = dest_reg };
try func.genSetMem(
.{ .frame = offset.index },
offset.off + @as(i32, @intCast(tuple_ty.structFieldOffset(0, zcu))),
lhs_ty,
add_result,
);
const trunc_reg = try func.copyToTmpRegister(lhs_ty, add_result);
const trunc_reg_lock = func.register_manager.lockRegAssumeUnused(trunc_reg);
defer func.register_manager.unlockReg(trunc_reg_lock);
const overflow_reg, const overflow_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(overflow_lock);
// if the result isn't equal after truncating it to the given type,
// an overflow must have happened.
try func.truncateRegister(lhs_ty, trunc_reg);
try func.genBinOp(
.cmp_neq,
add_result,
lhs_ty,
.{ .register = trunc_reg },
rhs_ty,
overflow_reg,
);
try func.genSetMem(
.{ .frame = offset.index },
offset.off + @as(i32, @intCast(tuple_ty.structFieldOffset(1, zcu))),
Type.u1,
.{ .register = overflow_reg },
);
break :result result_mcv;
}
},
else => unreachable,
}
};
return func.finishAir(inst, result, .{ extra.lhs, extra.rhs, .none });
}
fn airSubWithOverflow(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.Bin, ty_pl.payload).data;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const lhs = try func.resolveInst(extra.lhs);
const rhs = try func.resolveInst(extra.rhs);
const lhs_ty = func.typeOf(extra.lhs);
const rhs_ty = func.typeOf(extra.rhs);
const int_info = lhs_ty.intInfo(zcu);
if (!math.isPowerOfTwo(int_info.bits) or int_info.bits < 8) {
return func.fail("TODO: airSubWithOverflow non-power of 2 and less than 8 bits", .{});
}
if (int_info.bits > 64) {
return func.fail("TODO: airSubWithOverflow > 64 bits", .{});
}
const tuple_ty = func.typeOfIndex(inst);
const result_mcv = try func.allocRegOrMem(tuple_ty, inst, false);
const offset = result_mcv.load_frame;
const dest_mcv = try func.binOp(null, .sub, extra.lhs, extra.rhs);
assert(dest_mcv == .register);
const dest_reg = dest_mcv.register;
try func.genSetMem(
.{ .frame = offset.index },
offset.off + @as(i32, @intCast(tuple_ty.structFieldOffset(0, zcu))),
lhs_ty,
.{ .register = dest_reg },
);
const lhs_reg, const lhs_lock = try func.promoteReg(lhs_ty, lhs);
defer if (lhs_lock) |lock| func.register_manager.unlockReg(lock);
const rhs_reg, const rhs_lock = try func.promoteReg(rhs_ty, rhs);
defer if (rhs_lock) |lock| func.register_manager.unlockReg(lock);
const overflow_reg = try func.copyToTmpRegister(Type.u64, .{ .immediate = 0 });
const overflow_lock = func.register_manager.lockRegAssumeUnused(overflow_reg);
defer func.register_manager.unlockReg(overflow_lock);
switch (int_info.signedness) {
.unsigned => {
_ = try func.addInst(.{
.tag = .sltu,
.data = .{ .r_type = .{
.rd = overflow_reg,
.rs1 = lhs_reg,
.rs2 = rhs_reg,
} },
});
try func.genSetMem(
.{ .frame = offset.index },
offset.off + @as(i32, @intCast(tuple_ty.structFieldOffset(1, zcu))),
Type.u1,
.{ .register = overflow_reg },
);
break :result result_mcv;
},
.signed => {
switch (int_info.bits) {
64 => {
_ = try func.addInst(.{
.tag = .slt,
.data = .{ .r_type = .{
.rd = overflow_reg,
.rs1 = overflow_reg,
.rs2 = rhs_reg,
} },
});
_ = try func.addInst(.{
.tag = .slt,
.data = .{ .r_type = .{
.rd = rhs_reg,
.rs1 = rhs_reg,
.rs2 = lhs_reg,
} },
});
_ = try func.addInst(.{
.tag = .xor,
.data = .{ .r_type = .{
.rd = lhs_reg,
.rs1 = overflow_reg,
.rs2 = rhs_reg,
} },
});
try func.genBinOp(
.cmp_neq,
.{ .register = overflow_reg },
Type.u64,
.{ .register = rhs_reg },
Type.u64,
overflow_reg,
);
try func.genSetMem(
.{ .frame = offset.index },
offset.off + @as(i32, @intCast(tuple_ty.structFieldOffset(1, zcu))),
Type.u1,
.{ .register = overflow_reg },
);
break :result result_mcv;
},
else => |int_bits| return func.fail("TODO: airSubWithOverflow signed {}", .{int_bits}),
}
},
}
};
return func.finishAir(inst, result, .{ extra.lhs, extra.rhs, .none });
}
fn airMulWithOverflow(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.Bin, ty_pl.payload).data;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const lhs = try func.resolveInst(extra.lhs);
const rhs = try func.resolveInst(extra.rhs);
const lhs_ty = func.typeOf(extra.lhs);
const rhs_ty = func.typeOf(extra.rhs);
const tuple_ty = func.typeOfIndex(inst);
// genSetReg needs to support register_offset src_mcv for this to be true.
const result_mcv = try func.allocRegOrMem(tuple_ty, inst, false);
const result_off: i32 = @intCast(tuple_ty.structFieldOffset(0, zcu));
const overflow_off: i32 = @intCast(tuple_ty.structFieldOffset(1, zcu));
const dest_reg, const dest_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(dest_lock);
try func.genBinOp(
.mul,
lhs,
lhs_ty,
rhs,
rhs_ty,
dest_reg,
);
try func.genCopy(
lhs_ty,
result_mcv.offset(result_off),
.{ .register = dest_reg },
);
switch (lhs_ty.zigTypeTag(zcu)) {
else => |x| return func.fail("TODO: airMulWithOverflow {s}", .{@tagName(x)}),
.int => {
if (std.debug.runtime_safety) assert(lhs_ty.eql(rhs_ty, zcu));
const trunc_reg = try func.copyToTmpRegister(lhs_ty, .{ .register = dest_reg });
const trunc_reg_lock = func.register_manager.lockRegAssumeUnused(trunc_reg);
defer func.register_manager.unlockReg(trunc_reg_lock);
const overflow_reg, const overflow_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(overflow_lock);
// if the result isn't equal after truncating it to the given type,
// an overflow must have happened.
try func.truncateRegister(func.typeOf(extra.lhs), trunc_reg);
try func.genBinOp(
.cmp_neq,
.{ .register = dest_reg },
lhs_ty,
.{ .register = trunc_reg },
rhs_ty,
overflow_reg,
);
try func.genCopy(
lhs_ty,
result_mcv.offset(overflow_off),
.{ .register = overflow_reg },
);
break :result result_mcv;
},
}
};
return func.finishAir(inst, result, .{ extra.lhs, extra.rhs, .none });
}
fn airShlWithOverflow(func: *Func, inst: Air.Inst.Index) !void {
const zcu = func.pt.zcu;
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const result: MCValue = if (func.liveness.isUnused(inst))
.unreach
else if (func.typeOf(bin_op.lhs).isVector(zcu) and !func.typeOf(bin_op.rhs).isVector(zcu))
return func.fail("TODO implement vector airShlWithOverflow with scalar rhs", .{})
else
return func.fail("TODO implement airShlWithOverflow", .{});
return func.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airSubSat(func: *Func, inst: Air.Inst.Index) !void {
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else return func.fail("TODO implement airSubSat", .{});
return func.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airMulSat(func: *Func, inst: Air.Inst.Index) !void {
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else return func.fail("TODO implement airMulSat", .{});
return func.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airShlSat(func: *Func, inst: Air.Inst.Index) !void {
const zcu = func.pt.zcu;
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const result: MCValue = if (func.liveness.isUnused(inst))
.unreach
else if (func.typeOf(bin_op.lhs).isVector(zcu) and !func.typeOf(bin_op.rhs).isVector(zcu))
return func.fail("TODO implement vector airShlSat with scalar rhs", .{})
else
return func.fail("TODO implement airShlSat", .{});
return func.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airOptionalPayload(func: *Func, inst: Air.Inst.Index) !void {
const zcu = func.pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = result: {
const pl_ty = func.typeOfIndex(inst);
if (!pl_ty.hasRuntimeBitsIgnoreComptime(zcu)) break :result .none;
const opt_mcv = try func.resolveInst(ty_op.operand);
if (func.reuseOperand(inst, ty_op.operand, 0, opt_mcv)) {
switch (opt_mcv) {
.register => |pl_reg| try func.truncateRegister(pl_ty, pl_reg),
else => {},
}
break :result opt_mcv;
}
const pl_mcv = try func.allocRegOrMem(pl_ty, inst, true);
try func.genCopy(pl_ty, pl_mcv, opt_mcv);
break :result pl_mcv;
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airOptionalPayloadPtr(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else return func.fail("TODO implement .optional_payload_ptr for {}", .{func.target.cpu.arch});
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airOptionalPayloadPtrSet(func: *Func, inst: Air.Inst.Index) !void {
const zcu = func.pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const dst_ty = func.typeOfIndex(inst);
const src_ty = func.typeOf(ty_op.operand);
const opt_ty = src_ty.childType(zcu);
const src_mcv = try func.resolveInst(ty_op.operand);
if (opt_ty.optionalReprIsPayload(zcu)) {
break :result if (func.reuseOperand(inst, ty_op.operand, 0, src_mcv))
src_mcv
else
try func.copyToNewRegister(inst, src_mcv);
}
const dst_mcv: MCValue = if (src_mcv.isRegister() and
func.reuseOperand(inst, ty_op.operand, 0, src_mcv))
src_mcv
else
try func.copyToNewRegister(inst, src_mcv);
const pl_ty = dst_ty.childType(zcu);
const pl_abi_size: i32 = @intCast(pl_ty.abiSize(zcu));
try func.genSetMem(
.{ .reg = dst_mcv.getReg().? },
pl_abi_size,
Type.bool,
.{ .immediate = 1 },
);
break :result dst_mcv;
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airUnwrapErrErr(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const pt = func.pt;
const zcu = pt.zcu;
const err_union_ty = func.typeOf(ty_op.operand);
const err_ty = err_union_ty.errorUnionSet(zcu);
const payload_ty = err_union_ty.errorUnionPayload(zcu);
const operand = try func.resolveInst(ty_op.operand);
const result: MCValue = result: {
if (err_ty.errorSetIsEmpty(zcu)) {
break :result .{ .immediate = 0 };
}
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
break :result operand;
}
const err_off: u32 = @intCast(errUnionErrorOffset(payload_ty, zcu));
switch (operand) {
.register => |reg| {
const eu_lock = func.register_manager.lockReg(reg);
defer if (eu_lock) |lock| func.register_manager.unlockReg(lock);
const result = try func.copyToNewRegister(inst, operand);
if (err_off > 0) {
try func.genBinOp(
.shr,
result,
err_union_ty,
.{ .immediate = @as(u6, @intCast(err_off * 8)) },
Type.u8,
result.register,
);
}
break :result result;
},
.load_frame => |frame_addr| break :result .{ .load_frame = .{
.index = frame_addr.index,
.off = frame_addr.off + @as(i32, @intCast(err_off)),
} },
else => return func.fail("TODO implement unwrap_err_err for {}", .{operand}),
}
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airUnwrapErrPayload(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_ty = func.typeOf(ty_op.operand);
const operand = try func.resolveInst(ty_op.operand);
const result = try func.genUnwrapErrUnionPayloadMir(operand_ty, operand);
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn genUnwrapErrUnionPayloadMir(
func: *Func,
err_union_ty: Type,
err_union: MCValue,
) !MCValue {
const pt = func.pt;
const zcu = pt.zcu;
const payload_ty = err_union_ty.errorUnionPayload(zcu);
const result: MCValue = result: {
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) break :result .none;
const payload_off: u31 = @intCast(errUnionPayloadOffset(payload_ty, zcu));
switch (err_union) {
.load_frame => |frame_addr| break :result .{ .load_frame = .{
.index = frame_addr.index,
.off = frame_addr.off + payload_off,
} },
.register => |reg| {
const eu_lock = func.register_manager.lockReg(reg);
defer if (eu_lock) |lock| func.register_manager.unlockReg(lock);
const result_reg = try func.copyToTmpRegister(err_union_ty, err_union);
if (payload_off > 0) {
try func.genBinOp(
.shr,
.{ .register = result_reg },
err_union_ty,
.{ .immediate = @as(u6, @intCast(payload_off * 8)) },
Type.u8,
result_reg,
);
}
break :result .{ .register = result_reg };
},
else => return func.fail("TODO implement genUnwrapErrUnionPayloadMir for {}", .{err_union}),
}
};
return result;
}
// *(E!T) -> E
fn airUnwrapErrErrPtr(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else return func.fail("TODO implement unwrap error union error ptr for {}", .{func.target.cpu.arch});
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
// *(E!T) -> *T
fn airUnwrapErrPayloadPtr(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else return func.fail("TODO implement unwrap error union payload ptr for {}", .{func.target.cpu.arch});
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
// *(E!T) => *T
fn airErrUnionPayloadPtrSet(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const zcu = func.pt.zcu;
const src_ty = func.typeOf(ty_op.operand);
const src_mcv = try func.resolveInst(ty_op.operand);
// `src_reg` contains the pointer to the error union
const src_reg = switch (src_mcv) {
.register => |reg| reg,
else => try func.copyToTmpRegister(src_ty, src_mcv),
};
const src_lock = func.register_manager.lockRegAssumeUnused(src_reg);
defer func.register_manager.unlockReg(src_lock);
// we set the place of where the error would have been to 0
const eu_ty = src_ty.childType(zcu);
const pl_ty = eu_ty.errorUnionPayload(zcu);
const err_ty = eu_ty.errorUnionSet(zcu);
const err_off: i32 = @intCast(errUnionErrorOffset(pl_ty, zcu));
try func.genSetMem(.{ .reg = src_reg }, err_off, err_ty, .{ .immediate = 0 });
const dst_reg, const dst_lock = if (func.reuseOperand(inst, ty_op.operand, 0, src_mcv))
.{ src_reg, null }
else
try func.allocReg(.int);
defer if (dst_lock) |lock| func.register_manager.unlockReg(lock);
// move the pointer to be at the payload
const pl_off = errUnionPayloadOffset(pl_ty, zcu);
try func.genBinOp(
.add,
.{ .register = src_reg },
Type.u64,
.{ .immediate = pl_off },
Type.u64,
dst_reg,
);
break :result .{ .register = dst_reg };
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airErrReturnTrace(func: *Func, inst: Air.Inst.Index) !void {
const result: MCValue = if (func.liveness.isUnused(inst))
.unreach
else
return func.fail("TODO implement airErrReturnTrace for {}", .{func.target.cpu.arch});
return func.finishAir(inst, result, .{ .none, .none, .none });
}
fn airSetErrReturnTrace(func: *Func, inst: Air.Inst.Index) !void {
_ = inst;
return func.fail("TODO implement airSetErrReturnTrace for {}", .{func.target.cpu.arch});
}
fn airSaveErrReturnTraceIndex(func: *Func, inst: Air.Inst.Index) !void {
_ = inst;
return func.fail("TODO implement airSaveErrReturnTraceIndex for {}", .{func.target.cpu.arch});
}
fn airWrapOptional(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = result: {
const pl_ty = func.typeOf(ty_op.operand);
if (!pl_ty.hasRuntimeBits(zcu)) break :result .{ .immediate = 1 };
const opt_ty = func.typeOfIndex(inst);
const pl_mcv = try func.resolveInst(ty_op.operand);
const same_repr = opt_ty.optionalReprIsPayload(zcu);
if (same_repr and func.reuseOperand(inst, ty_op.operand, 0, pl_mcv)) break :result pl_mcv;
const pl_lock: ?RegisterLock = switch (pl_mcv) {
.register => |reg| func.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (pl_lock) |lock| func.register_manager.unlockReg(lock);
const opt_mcv = try func.allocRegOrMem(opt_ty, inst, false);
try func.genCopy(pl_ty, opt_mcv, pl_mcv);
if (!same_repr) {
const pl_abi_size: i32 = @intCast(pl_ty.abiSize(zcu));
switch (opt_mcv) {
.load_frame => |frame_addr| {
try func.genCopy(pl_ty, opt_mcv, pl_mcv);
try func.genSetMem(
.{ .frame = frame_addr.index },
frame_addr.off + pl_abi_size,
Type.u8,
.{ .immediate = 1 },
);
},
else => unreachable,
}
}
break :result opt_mcv;
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
/// T to E!T
fn airWrapErrUnionPayload(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const eu_ty = ty_op.ty.toType();
const pl_ty = eu_ty.errorUnionPayload(zcu);
const err_ty = eu_ty.errorUnionSet(zcu);
const operand = try func.resolveInst(ty_op.operand);
const result: MCValue = result: {
if (!pl_ty.hasRuntimeBitsIgnoreComptime(zcu)) break :result .{ .immediate = 0 };
const frame_index = try func.allocFrameIndex(FrameAlloc.initSpill(eu_ty, zcu));
const pl_off: i32 = @intCast(errUnionPayloadOffset(pl_ty, zcu));
const err_off: i32 = @intCast(errUnionErrorOffset(pl_ty, zcu));
try func.genSetMem(.{ .frame = frame_index }, pl_off, pl_ty, operand);
try func.genSetMem(.{ .frame = frame_index }, err_off, err_ty, .{ .immediate = 0 });
break :result .{ .load_frame = .{ .index = frame_index } };
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
/// E to E!T
fn airWrapErrUnionErr(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const eu_ty = ty_op.ty.toType();
const pl_ty = eu_ty.errorUnionPayload(zcu);
const err_ty = eu_ty.errorUnionSet(zcu);
const result: MCValue = result: {
if (!pl_ty.hasRuntimeBitsIgnoreComptime(zcu)) break :result try func.resolveInst(ty_op.operand);
const frame_index = try func.allocFrameIndex(FrameAlloc.initSpill(eu_ty, zcu));
const pl_off: i32 = @intCast(errUnionPayloadOffset(pl_ty, zcu));
const err_off: i32 = @intCast(errUnionErrorOffset(pl_ty, zcu));
try func.genSetMem(.{ .frame = frame_index }, pl_off, pl_ty, .{ .undef = null });
const operand = try func.resolveInst(ty_op.operand);
try func.genSetMem(.{ .frame = frame_index }, err_off, err_ty, operand);
break :result .{ .load_frame = .{ .index = frame_index } };
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airRuntimeNavPtr(func: *Func, inst: Air.Inst.Index) !void {
const zcu = func.pt.zcu;
const ip = &zcu.intern_pool;
const ty_nav = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_nav;
const ptr_ty: Type = .fromInterned(ty_nav.ty);
const nav = ip.getNav(ty_nav.nav);
const tlv_sym_index = if (func.bin_file.cast(.elf)) |elf_file| sym: {
const zo = elf_file.zigObjectPtr().?;
if (nav.getExtern(ip)) |e| {
break :sym try elf_file.getGlobalSymbol(nav.name.toSlice(ip), e.lib_name.toSlice(ip));
}
break :sym try zo.getOrCreateMetadataForNav(zcu, ty_nav.nav);
} else return func.fail("TODO runtime_nav_ptr on {}", .{func.bin_file.tag});
const dest_mcv = try func.allocRegOrMem(ptr_ty, inst, true);
if (dest_mcv.isRegister()) {
_ = try func.addInst(.{
.tag = .pseudo_load_tlv,
.data = .{ .reloc = .{
.register = dest_mcv.getReg().?,
.atom_index = try func.owner.getSymbolIndex(func),
.sym_index = tlv_sym_index,
} },
});
} else {
const tmp_reg, const tmp_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(tmp_lock);
_ = try func.addInst(.{
.tag = .pseudo_load_tlv,
.data = .{ .reloc = .{
.register = tmp_reg,
.atom_index = try func.owner.getSymbolIndex(func),
.sym_index = tlv_sym_index,
} },
});
try func.genCopy(ptr_ty, dest_mcv, .{ .register = tmp_reg });
}
return func.finishAir(inst, dest_mcv, .{ .none, .none, .none });
}
fn airTry(func: *Func, inst: Air.Inst.Index) !void {
const pl_op = func.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = func.air.extraData(Air.Try, pl_op.payload);
const body: []const Air.Inst.Index = @ptrCast(func.air.extra.items[extra.end..][0..extra.data.body_len]);
const operand_ty = func.typeOf(pl_op.operand);
const result = try func.genTry(inst, pl_op.operand, body, operand_ty, false);
return func.finishAir(inst, result, .{ .none, .none, .none });
}
fn genTry(
func: *Func,
inst: Air.Inst.Index,
operand: Air.Inst.Ref,
body: []const Air.Inst.Index,
operand_ty: Type,
operand_is_ptr: bool,
) !MCValue {
_ = operand_is_ptr;
const liveness_cond_br = func.liveness.getCondBr(inst);
const operand_mcv = try func.resolveInst(operand);
const is_err_mcv = try func.isErr(null, operand_ty, operand_mcv);
// A branch to the false section. Uses beq. 1 is the default "true" state.
const reloc = try func.condBr(Type.anyerror, is_err_mcv);
if (func.liveness.operandDies(inst, 0)) {
if (operand.toIndex()) |operand_inst| try func.processDeath(operand_inst);
}
func.scope_generation += 1;
const state = try func.saveState();
for (liveness_cond_br.else_deaths) |death| try func.processDeath(death);
try func.genBody(body);
try func.restoreState(state, &.{}, .{
.emit_instructions = false,
.update_tracking = true,
.resurrect = true,
.close_scope = true,
});
func.performReloc(reloc);
for (liveness_cond_br.then_deaths) |death| try func.processDeath(death);
const result = if (func.liveness.isUnused(inst))
.unreach
else
try func.genUnwrapErrUnionPayloadMir(operand_ty, operand_mcv);
return result;
}
fn airSlicePtr(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result = result: {
const src_mcv = try func.resolveInst(ty_op.operand);
if (func.reuseOperand(inst, ty_op.operand, 0, src_mcv)) break :result src_mcv;
const dst_mcv = try func.allocRegOrMem(func.typeOfIndex(inst), inst, true);
const dst_ty = func.typeOfIndex(inst);
try func.genCopy(dst_ty, dst_mcv, src_mcv);
break :result dst_mcv;
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airSliceLen(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const src_mcv = try func.resolveInst(ty_op.operand);
const ty = func.typeOfIndex(inst);
switch (src_mcv) {
.load_frame => |frame_addr| {
const len_mcv: MCValue = .{ .load_frame = .{
.index = frame_addr.index,
.off = frame_addr.off + 8,
} };
if (func.reuseOperand(inst, ty_op.operand, 0, src_mcv)) break :result len_mcv;
const dst_mcv = try func.allocRegOrMem(ty, inst, true);
try func.genCopy(Type.u64, dst_mcv, len_mcv);
break :result dst_mcv;
},
.register_pair => |pair| {
const len_mcv: MCValue = .{ .register = pair[1] };
if (func.reuseOperand(inst, ty_op.operand, 0, src_mcv)) break :result len_mcv;
const dst_mcv = try func.allocRegOrMem(ty, inst, true);
try func.genCopy(Type.u64, dst_mcv, len_mcv);
break :result dst_mcv;
},
else => return func.fail("TODO airSliceLen for {}", .{src_mcv}),
}
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airPtrSliceLenPtr(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const src_mcv = try func.resolveInst(ty_op.operand);
const dst_reg, const dst_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(dst_lock);
const dst_mcv: MCValue = .{ .register = dst_reg };
try func.genCopy(Type.u64, dst_mcv, src_mcv.offset(8));
break :result dst_mcv;
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airPtrSlicePtrPtr(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const opt_mcv = try func.resolveInst(ty_op.operand);
const dst_mcv = if (func.reuseOperand(inst, ty_op.operand, 0, opt_mcv))
opt_mcv
else
try func.copyToNewRegister(inst, opt_mcv);
return func.finishAir(inst, dst_mcv, .{ ty_op.operand, .none, .none });
}
fn airSliceElemVal(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const result: MCValue = result: {
const elem_ty = func.typeOfIndex(inst);
if (!elem_ty.hasRuntimeBitsIgnoreComptime(zcu)) break :result .none;
const slice_ty = func.typeOf(bin_op.lhs);
const slice_ptr_field_type = slice_ty.slicePtrFieldType(zcu);
const elem_ptr = try func.genSliceElemPtr(bin_op.lhs, bin_op.rhs);
const dst_mcv = try func.allocRegOrMem(elem_ty, inst, false);
try func.load(dst_mcv, elem_ptr, slice_ptr_field_type);
break :result dst_mcv;
};
return func.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airSliceElemPtr(func: *Func, inst: Air.Inst.Index) !void {
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.Bin, ty_pl.payload).data;
const dst_mcv = try func.genSliceElemPtr(extra.lhs, extra.rhs);
return func.finishAir(inst, dst_mcv, .{ extra.lhs, extra.rhs, .none });
}
fn genSliceElemPtr(func: *Func, lhs: Air.Inst.Ref, rhs: Air.Inst.Ref) !MCValue {
const pt = func.pt;
const zcu = pt.zcu;
const slice_ty = func.typeOf(lhs);
const slice_mcv = try func.resolveInst(lhs);
const slice_mcv_lock: ?RegisterLock = switch (slice_mcv) {
.register => |reg| func.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (slice_mcv_lock) |lock| func.register_manager.unlockReg(lock);
const elem_ty = slice_ty.childType(zcu);
const elem_size = elem_ty.abiSize(zcu);
const index_ty = func.typeOf(rhs);
const index_mcv = try func.resolveInst(rhs);
const index_mcv_lock: ?RegisterLock = switch (index_mcv) {
.register => |reg| func.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (index_mcv_lock) |lock| func.register_manager.unlockReg(lock);
const offset_reg = try func.elemOffset(index_ty, index_mcv, elem_size);
const offset_reg_lock = func.register_manager.lockRegAssumeUnused(offset_reg);
defer func.register_manager.unlockReg(offset_reg_lock);
const addr_reg, const addr_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(addr_lock);
try func.genSetReg(Type.u64, addr_reg, slice_mcv);
_ = try func.addInst(.{
.tag = .add,
.data = .{ .r_type = .{
.rd = addr_reg,
.rs1 = addr_reg,
.rs2 = offset_reg,
} },
});
return .{ .register = addr_reg };
}
fn airArrayElemVal(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const result_ty = func.typeOfIndex(inst);
const array_ty = func.typeOf(bin_op.lhs);
const array_mcv = try func.resolveInst(bin_op.lhs);
const index_mcv = try func.resolveInst(bin_op.rhs);
const index_ty = func.typeOf(bin_op.rhs);
const elem_ty = array_ty.childType(zcu);
const elem_abi_size = elem_ty.abiSize(zcu);
const addr_reg, const addr_reg_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(addr_reg_lock);
switch (array_mcv) {
.register => {
const frame_index = try func.allocFrameIndex(FrameAlloc.initType(array_ty, zcu));
try func.genSetMem(.{ .frame = frame_index }, 0, array_ty, array_mcv);
try func.genSetReg(Type.u64, addr_reg, .{ .lea_frame = .{ .index = frame_index } });
},
.load_frame => |frame_addr| {
try func.genSetReg(Type.u64, addr_reg, .{ .lea_frame = frame_addr });
},
else => try func.genSetReg(Type.u64, addr_reg, array_mcv.address()),
}
const dst_mcv = try func.allocRegOrMem(result_ty, inst, false);
if (array_ty.isVector(zcu)) {
// we need to load the vector, vslidedown to get the element we want
// and store that element in a load frame.
const src_reg, const src_lock = try func.allocReg(.vector);
defer func.register_manager.unlockReg(src_lock);
// load the vector into a temporary register
try func.genCopy(array_ty, .{ .register = src_reg }, .{ .indirect = .{ .reg = addr_reg } });
// we need to construct a 1xbitSize vector because of how lane splitting works in RISC-V
const single_ty = try pt.vectorType(.{ .child = elem_ty.toIntern(), .len = 1 });
// we can do a shortcut here where we don't need a vslicedown
// and can just copy to the frame index.
if (!(index_mcv == .immediate and index_mcv.immediate == 0)) {
const index_reg = try func.copyToTmpRegister(Type.u64, index_mcv);
_ = try func.addInst(.{
.tag = .vslidedownvx,
.data = .{ .r_type = .{
.rd = src_reg,
.rs1 = index_reg,
.rs2 = src_reg,
} },
});
}
try func.genCopy(single_ty, dst_mcv, .{ .register = src_reg });
break :result dst_mcv;
}
const offset_reg = try func.elemOffset(index_ty, index_mcv, elem_abi_size);
const offset_lock = func.register_manager.lockRegAssumeUnused(offset_reg);
defer func.register_manager.unlockReg(offset_lock);
_ = try func.addInst(.{
.tag = .add,
.data = .{ .r_type = .{
.rd = addr_reg,
.rs1 = addr_reg,
.rs2 = offset_reg,
} },
});
try func.genCopy(elem_ty, dst_mcv, .{ .indirect = .{ .reg = addr_reg } });
break :result dst_mcv;
};
return func.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airPtrElemVal(func: *Func, inst: Air.Inst.Index) !void {
const is_volatile = false; // TODO
const pt = func.pt;
const zcu = pt.zcu;
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const base_ptr_ty = func.typeOf(bin_op.lhs);
const result: MCValue = if (!is_volatile and func.liveness.isUnused(inst)) .unreach else result: {
const elem_ty = base_ptr_ty.elemType2(zcu);
if (!elem_ty.hasRuntimeBitsIgnoreComptime(zcu)) break :result .none;
const base_ptr_mcv = try func.resolveInst(bin_op.lhs);
const base_ptr_lock: ?RegisterLock = switch (base_ptr_mcv) {
.register => |reg| func.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (base_ptr_lock) |lock| func.register_manager.unlockReg(lock);
const index_mcv = try func.resolveInst(bin_op.rhs);
const index_lock: ?RegisterLock = switch (index_mcv) {
.register => |reg| func.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (index_lock) |lock| func.register_manager.unlockReg(lock);
const elem_ptr_reg, const elem_ptr_lock = if (base_ptr_mcv.isRegister() and
func.liveness.operandDies(inst, 0))
.{ base_ptr_mcv.register, null }
else blk: {
const reg, const lock = try func.allocReg(.int);
try func.genSetReg(base_ptr_ty, reg, base_ptr_mcv);
break :blk .{ reg, lock };
};
defer if (elem_ptr_lock) |lock| func.register_manager.unlockReg(lock);
try func.genBinOp(
.ptr_add,
base_ptr_mcv,
base_ptr_ty,
index_mcv,
Type.u64,
elem_ptr_reg,
);
const dst_mcv = try func.allocRegOrMem(func.typeOfIndex(inst), inst, true);
const dst_lock = switch (dst_mcv) {
.register => |reg| func.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (dst_lock) |lock| func.register_manager.unlockReg(lock);
try func.load(dst_mcv, .{ .register = elem_ptr_reg }, base_ptr_ty);
break :result dst_mcv;
};
return func.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airPtrElemPtr(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.Bin, ty_pl.payload).data;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const elem_ptr_ty = func.typeOfIndex(inst);
const base_ptr_ty = func.typeOf(extra.lhs);
if (elem_ptr_ty.ptrInfo(zcu).flags.vector_index != .none) {
@panic("audit");
}
const base_ptr_mcv = try func.resolveInst(extra.lhs);
const base_ptr_lock: ?RegisterLock = switch (base_ptr_mcv) {
.register => |reg| func.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (base_ptr_lock) |lock| func.register_manager.unlockReg(lock);
const index_mcv = try func.resolveInst(extra.rhs);
const index_lock: ?RegisterLock = switch (index_mcv) {
.register => |reg| func.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (index_lock) |lock| func.register_manager.unlockReg(lock);
const result_reg, const result_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(result_lock);
try func.genBinOp(
.ptr_add,
base_ptr_mcv,
base_ptr_ty,
index_mcv,
Type.u64,
result_reg,
);
break :result MCValue{ .register = result_reg };
};
return func.finishAir(inst, result, .{ extra.lhs, extra.rhs, .none });
}
fn airSetUnionTag(func: *Func, inst: Air.Inst.Index) !void {
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
_ = bin_op;
return func.fail("TODO implement airSetUnionTag for {}", .{func.target.cpu.arch});
// return func.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airGetUnionTag(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const tag_ty = func.typeOfIndex(inst);
const union_ty = func.typeOf(ty_op.operand);
const layout = union_ty.unionGetLayout(zcu);
if (layout.tag_size == 0) {
return func.finishAir(inst, .none, .{ ty_op.operand, .none, .none });
}
const operand = try func.resolveInst(ty_op.operand);
const frame_mcv = try func.allocRegOrMem(union_ty, null, false);
try func.genCopy(union_ty, frame_mcv, operand);
const tag_abi_size = tag_ty.abiSize(zcu);
const result_reg, const result_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(result_lock);
switch (frame_mcv) {
.load_frame => {
if (tag_abi_size <= 8) {
const off: i32 = if (layout.tag_align.compare(.lt, layout.payload_align))
@intCast(layout.payload_size)
else
0;
try func.genCopy(
tag_ty,
.{ .register = result_reg },
frame_mcv.offset(off),
);
} else {
return func.fail(
"TODO implement get_union_tag for ABI larger than 8 bytes and operand {}, tag {}",
.{ frame_mcv, tag_ty.fmt(pt) },
);
}
},
else => return func.fail("TODO: airGetUnionTag {s}", .{@tagName(operand)}),
}
return func.finishAir(inst, .{ .register = result_reg }, .{ ty_op.operand, .none, .none });
}
fn airClz(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const ty = func.typeOf(ty_op.operand);
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const src_reg, const src_lock = try func.promoteReg(ty, operand);
defer if (src_lock) |lock| func.register_manager.unlockReg(lock);
const dst_reg: Register = if (func.reuseOperand(
inst,
ty_op.operand,
0,
operand,
) and operand == .register)
operand.register
else
(try func.allocRegOrMem(func.typeOfIndex(inst), inst, true)).register;
const bit_size = ty.bitSize(func.pt.zcu);
if (!math.isPowerOfTwo(bit_size)) try func.truncateRegister(ty, src_reg);
if (bit_size > 64) {
return func.fail("TODO: airClz > 64 bits, found {d}", .{bit_size});
}
_ = try func.addInst(.{
.tag = switch (bit_size) {
32 => .clzw,
else => .clz,
},
.data = .{
.r_type = .{
.rs2 = .zero, // rs2 is 0 filled in the spec
.rs1 = src_reg,
.rd = dst_reg,
},
},
});
if (!(bit_size == 32 or bit_size == 64)) {
_ = try func.addInst(.{
.tag = .addi,
.data = .{ .i_type = .{
.rd = dst_reg,
.rs1 = dst_reg,
.imm12 = Immediate.s(-@as(i12, @intCast(64 - bit_size % 64))),
} },
});
}
break :result .{ .register = dst_reg };
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airCtz(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
_ = ty_op;
return func.fail("TODO: finish ctz", .{});
}
fn airPopcount(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const pt = func.pt;
const zcu = pt.zcu;
const operand = try func.resolveInst(ty_op.operand);
const src_ty = func.typeOf(ty_op.operand);
const operand_reg, const operand_lock = try func.promoteReg(src_ty, operand);
defer if (operand_lock) |lock| func.register_manager.unlockReg(lock);
const dst_reg, const dst_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(dst_lock);
const bit_size = src_ty.bitSize(zcu);
switch (bit_size) {
32, 64 => {},
1...31, 33...63 => try func.truncateRegister(src_ty, operand_reg),
else => return func.fail("TODO: airPopcount > 64 bits", .{}),
}
_ = try func.addInst(.{
.tag = if (bit_size <= 32) .cpopw else .cpop,
.data = .{
.r_type = .{
.rd = dst_reg,
.rs1 = operand_reg,
.rs2 = @enumFromInt(0b00010), // this is the cpop funct5
},
},
});
break :result .{ .register = dst_reg };
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airAbs(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const ty = func.typeOf(ty_op.operand);
const scalar_ty = ty.scalarType(zcu);
const operand = try func.resolveInst(ty_op.operand);
switch (scalar_ty.zigTypeTag(zcu)) {
.int => if (ty.zigTypeTag(zcu) == .vector) {
return func.fail("TODO implement airAbs for {}", .{ty.fmt(pt)});
} else {
const int_info = scalar_ty.intInfo(zcu);
const int_bits = int_info.bits;
switch (int_bits) {
32, 64 => {},
else => return func.fail("TODO: airAbs Int size {d}", .{int_bits}),
}
const return_mcv = try func.copyToNewRegister(inst, operand);
const operand_reg = return_mcv.register;
const temp_reg, const temp_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(temp_lock);
_ = try func.addInst(.{
.tag = switch (int_bits) {
32 => .sraiw,
64 => .srai,
else => unreachable,
},
.data = .{ .i_type = .{
.rd = temp_reg,
.rs1 = operand_reg,
.imm12 = Immediate.u(int_bits - 1),
} },
});
_ = try func.addInst(.{
.tag = .xor,
.data = .{ .r_type = .{
.rd = operand_reg,
.rs1 = operand_reg,
.rs2 = temp_reg,
} },
});
_ = try func.addInst(.{
.tag = switch (int_bits) {
32 => .subw,
64 => .sub,
else => unreachable,
},
.data = .{ .r_type = .{
.rd = operand_reg,
.rs1 = operand_reg,
.rs2 = temp_reg,
} },
});
break :result return_mcv;
},
.float => {
const float_bits = scalar_ty.floatBits(zcu.getTarget());
const mnem: Mnemonic = switch (float_bits) {
16 => return func.fail("TODO: airAbs 16-bit float", .{}),
32 => .fsgnjxs,
64 => .fsgnjxd,
80 => return func.fail("TODO: airAbs 80-bit float", .{}),
128 => return func.fail("TODO: airAbs 128-bit float", .{}),
else => unreachable,
};
const return_mcv = try func.copyToNewRegister(inst, operand);
const operand_reg = return_mcv.register;
assert(operand_reg.class() == .float);
_ = try func.addInst(.{
.tag = mnem,
.data = .{
.r_type = .{
.rd = operand_reg,
.rs1 = operand_reg,
.rs2 = operand_reg,
},
},
});
break :result return_mcv;
},
else => return func.fail("TODO: implement airAbs {}", .{scalar_ty.fmt(pt)}),
}
break :result .unreach;
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airByteSwap(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const pt = func.pt;
const zcu = pt.zcu;
const ty = func.typeOf(ty_op.operand);
const operand = try func.resolveInst(ty_op.operand);
switch (ty.zigTypeTag(zcu)) {
.int => {
const int_bits = ty.intInfo(zcu).bits;
// bytes are no-op
if (int_bits == 8 and func.reuseOperand(inst, ty_op.operand, 0, operand)) {
return func.finishAir(inst, operand, .{ ty_op.operand, .none, .none });
}
const dest_mcv = try func.copyToNewRegister(inst, operand);
const dest_reg = dest_mcv.register;
switch (int_bits) {
16 => {
const temp_reg, const temp_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(temp_lock);
_ = try func.addInst(.{
.tag = .srli,
.data = .{ .i_type = .{
.imm12 = Immediate.s(8),
.rd = temp_reg,
.rs1 = dest_reg,
} },
});
_ = try func.addInst(.{
.tag = .slli,
.data = .{ .i_type = .{
.imm12 = Immediate.s(8),
.rd = dest_reg,
.rs1 = dest_reg,
} },
});
_ = try func.addInst(.{
.tag = .@"or",
.data = .{ .r_type = .{
.rd = dest_reg,
.rs1 = dest_reg,
.rs2 = temp_reg,
} },
});
},
else => return func.fail("TODO: {d} bits for airByteSwap", .{int_bits}),
}
break :result dest_mcv;
},
else => return func.fail("TODO: airByteSwap {}", .{ty.fmt(pt)}),
}
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airBitReverse(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else return func.fail("TODO implement airBitReverse for {}", .{func.target.cpu.arch});
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airUnaryMath(func: *Func, inst: Air.Inst.Index, tag: Air.Inst.Tag) !void {
const pt = func.pt;
const zcu = pt.zcu;
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const ty = func.typeOf(un_op);
const operand = try func.resolveInst(un_op);
const operand_bit_size = ty.bitSize(zcu);
if (!math.isPowerOfTwo(operand_bit_size))
return func.fail("TODO: airUnaryMath non-pow 2", .{});
const operand_reg, const operand_lock = try func.promoteReg(ty, operand);
defer if (operand_lock) |lock| func.register_manager.unlockReg(lock);
const dst_class = func.typeRegClass(ty);
const dst_reg, const dst_lock = try func.allocReg(dst_class);
defer func.register_manager.unlockReg(dst_lock);
switch (ty.zigTypeTag(zcu)) {
.float => {
assert(dst_class == .float);
switch (operand_bit_size) {
16, 80, 128 => return func.fail("TODO: airUnaryMath Float bit-size {}", .{operand_bit_size}),
32, 64 => {},
else => unreachable,
}
switch (tag) {
.sqrt => {
_ = try func.addInst(.{
.tag = if (operand_bit_size == 64) .fsqrtd else .fsqrts,
.data = .{
.r_type = .{
.rd = dst_reg,
.rs1 = operand_reg,
.rs2 = .f0, // unused, spec says it's 0
},
},
});
},
else => return func.fail("TODO: airUnaryMath Float {s}", .{@tagName(tag)}),
}
},
.int => {
assert(dst_class == .int);
switch (tag) {
else => return func.fail("TODO: airUnaryMath Float {s}", .{@tagName(tag)}),
}
},
else => return func.fail("TODO: airUnaryMath ty: {}", .{ty.fmt(pt)}),
}
break :result MCValue{ .register = dst_reg };
};
return func.finishAir(inst, result, .{ un_op, .none, .none });
}
fn reuseOperand(
func: *Func,
inst: Air.Inst.Index,
operand: Air.Inst.Ref,
op_index: Air.Liveness.OperandInt,
mcv: MCValue,
) bool {
return func.reuseOperandAdvanced(inst, operand, op_index, mcv, inst);
}
fn reuseOperandAdvanced(
func: *Func,
inst: Air.Inst.Index,
operand: Air.Inst.Ref,
op_index: Air.Liveness.OperandInt,
mcv: MCValue,
maybe_tracked_inst: ?Air.Inst.Index,
) bool {
if (!func.liveness.operandDies(inst, op_index))
return false;
switch (mcv) {
.register,
.register_pair,
=> for (mcv.getRegs()) |reg| {
// If it's in the registers table, need to associate the register(s) with the
// new instruction.
if (maybe_tracked_inst) |tracked_inst| {
if (!func.register_manager.isRegFree(reg)) {
if (RegisterManager.indexOfRegIntoTracked(reg)) |index| {
func.register_manager.registers[index] = tracked_inst;
}
}
} else func.register_manager.freeReg(reg);
},
.load_frame => |frame_addr| if (frame_addr.index.isNamed()) return false,
else => return false,
}
// Prevent the operand deaths processing code from deallocating it.
func.reused_operands.set(op_index);
const op_inst = operand.toIndex().?;
func.getResolvedInstValue(op_inst).reuse(func, maybe_tracked_inst, op_inst);
return true;
}
fn airLoad(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const elem_ty = func.typeOfIndex(inst);
const result: MCValue = result: {
if (!elem_ty.hasRuntimeBits(zcu))
break :result .none;
const ptr = try func.resolveInst(ty_op.operand);
const is_volatile = func.typeOf(ty_op.operand).isVolatilePtr(zcu);
if (func.liveness.isUnused(inst) and !is_volatile)
break :result .unreach;
const elem_size = elem_ty.abiSize(zcu);
const dst_mcv: MCValue = blk: {
// The MCValue that holds the pointer can be re-used as the value.
// - "ptr" is 8 bytes, and if the element is more than that, we cannot reuse it.
//
// - "ptr" will be stored in an integer register, so the type that we're gonna
// load into it must also be a type that can be inside of an integer register
if (elem_size <= 8 and
(if (ptr == .register) func.typeRegClass(elem_ty) == ptr.register.class() else true) and
func.reuseOperand(inst, ty_op.operand, 0, ptr))
{
break :blk ptr;
} else {
break :blk try func.allocRegOrMem(elem_ty, inst, true);
}
};
try func.load(dst_mcv, ptr, func.typeOf(ty_op.operand));
break :result dst_mcv;
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn load(func: *Func, dst_mcv: MCValue, ptr_mcv: MCValue, ptr_ty: Type) InnerError!void {
const pt = func.pt;
const zcu = pt.zcu;
const dst_ty = ptr_ty.childType(zcu);
log.debug("loading {}:{} into {}", .{ ptr_mcv, ptr_ty.fmt(pt), dst_mcv });
switch (ptr_mcv) {
.none,
.undef,
.unreach,
.dead,
.register_pair,
.reserved_frame,
=> unreachable, // not a valid pointer
.immediate,
.register,
.register_offset,
.lea_frame,
.lea_symbol,
=> try func.genCopy(dst_ty, dst_mcv, ptr_mcv.deref()),
.memory,
.indirect,
.load_symbol,
.load_frame,
=> {
const addr_reg = try func.copyToTmpRegister(ptr_ty, ptr_mcv);
const addr_lock = func.register_manager.lockRegAssumeUnused(addr_reg);
defer func.register_manager.unlockReg(addr_lock);
try func.genCopy(dst_ty, dst_mcv, .{ .indirect = .{ .reg = addr_reg } });
},
.air_ref => |ptr_ref| try func.load(dst_mcv, try func.resolveInst(ptr_ref), ptr_ty),
}
}
fn airStore(func: *Func, inst: Air.Inst.Index, safety: bool) !void {
if (safety) {
// TODO if the value is undef, write 0xaa bytes to dest
} else {
// TODO if the value is undef, don't lower this instruction
}
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ptr = try func.resolveInst(bin_op.lhs);
const value = try func.resolveInst(bin_op.rhs);
const ptr_ty = func.typeOf(bin_op.lhs);
try func.store(ptr, value, ptr_ty);
return func.finishAir(inst, .none, .{ bin_op.lhs, bin_op.rhs, .none });
}
/// Loads `value` into the "payload" of `pointer`.
fn store(func: *Func, ptr_mcv: MCValue, src_mcv: MCValue, ptr_ty: Type) !void {
const zcu = func.pt.zcu;
const src_ty = ptr_ty.childType(zcu);
log.debug("storing {}:{} in {}:{}", .{ src_mcv, src_ty.fmt(func.pt), ptr_mcv, ptr_ty.fmt(func.pt) });
switch (ptr_mcv) {
.none => unreachable,
.undef => unreachable,
.unreach => unreachable,
.dead => unreachable,
.register_pair => unreachable,
.reserved_frame => unreachable,
.immediate,
.register,
.register_offset,
.lea_symbol,
.lea_frame,
=> try func.genCopy(src_ty, ptr_mcv.deref(), src_mcv),
.memory,
.indirect,
.load_symbol,
.load_frame,
=> {
const addr_reg = try func.copyToTmpRegister(ptr_ty, ptr_mcv);
const addr_lock = func.register_manager.lockRegAssumeUnused(addr_reg);
defer func.register_manager.unlockReg(addr_lock);
try func.genCopy(src_ty, .{ .indirect = .{ .reg = addr_reg } }, src_mcv);
},
.air_ref => |ptr_ref| try func.store(try func.resolveInst(ptr_ref), src_mcv, ptr_ty),
}
}
fn airStructFieldPtr(func: *Func, inst: Air.Inst.Index) !void {
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.StructField, ty_pl.payload).data;
const result = try func.structFieldPtr(inst, extra.struct_operand, extra.field_index);
return func.finishAir(inst, result, .{ extra.struct_operand, .none, .none });
}
fn airStructFieldPtrIndex(func: *Func, inst: Air.Inst.Index, index: u8) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result = try func.structFieldPtr(inst, ty_op.operand, index);
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn structFieldPtr(func: *Func, inst: Air.Inst.Index, operand: Air.Inst.Ref, index: u32) !MCValue {
const pt = func.pt;
const zcu = pt.zcu;
const ptr_field_ty = func.typeOfIndex(inst);
const ptr_container_ty = func.typeOf(operand);
const container_ty = ptr_container_ty.childType(zcu);
const field_offset: i32 = switch (container_ty.containerLayout(zcu)) {
.auto, .@"extern" => @intCast(container_ty.structFieldOffset(index, zcu)),
.@"packed" => @divExact(@as(i32, ptr_container_ty.ptrInfo(zcu).packed_offset.bit_offset) +
(if (zcu.typeToStruct(container_ty)) |struct_obj| pt.structPackedFieldBitOffset(struct_obj, index) else 0) -
ptr_field_ty.ptrInfo(zcu).packed_offset.bit_offset, 8),
};
const src_mcv = try func.resolveInst(operand);
const dst_mcv = if (switch (src_mcv) {
.immediate, .lea_frame => true,
.register, .register_offset => func.reuseOperand(inst, operand, 0, src_mcv),
else => false,
}) src_mcv else try func.copyToNewRegister(inst, src_mcv);
return dst_mcv.offset(field_offset);
}
fn airStructFieldVal(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.StructField, ty_pl.payload).data;
const operand = extra.struct_operand;
const index = extra.field_index;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const src_mcv = try func.resolveInst(operand);
const struct_ty = func.typeOf(operand);
const field_ty = struct_ty.fieldType(index, zcu);
if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) break :result .none;
const field_off: u32 = switch (struct_ty.containerLayout(zcu)) {
.auto, .@"extern" => @intCast(struct_ty.structFieldOffset(index, zcu) * 8),
.@"packed" => if (zcu.typeToStruct(struct_ty)) |struct_type|
pt.structPackedFieldBitOffset(struct_type, index)
else
0,
};
switch (src_mcv) {
.dead, .unreach => unreachable,
.register => |src_reg| {
const src_reg_lock = func.register_manager.lockRegAssumeUnused(src_reg);
defer func.register_manager.unlockReg(src_reg_lock);
const dst_reg = if (field_off == 0)
(try func.copyToNewRegister(inst, src_mcv)).register
else
try func.copyToTmpRegister(Type.u64, .{ .register = src_reg });
const dst_mcv: MCValue = .{ .register = dst_reg };
const dst_lock = func.register_manager.lockReg(dst_reg);
defer if (dst_lock) |lock| func.register_manager.unlockReg(lock);
if (field_off > 0) {
_ = try func.addInst(.{
.tag = .srli,
.data = .{ .i_type = .{
.imm12 = Immediate.u(@intCast(field_off)),
.rd = dst_reg,
.rs1 = dst_reg,
} },
});
}
if (field_off == 0) {
try func.truncateRegister(field_ty, dst_reg);
}
break :result if (field_off == 0) dst_mcv else try func.copyToNewRegister(inst, dst_mcv);
},
.load_frame => {
const field_abi_size: u32 = @intCast(field_ty.abiSize(zcu));
if (field_off % 8 == 0) {
const field_byte_off = @divExact(field_off, 8);
const off_mcv = src_mcv.address().offset(@intCast(field_byte_off)).deref();
const field_bit_size = field_ty.bitSize(zcu);
if (field_abi_size <= 8) {
const int_ty = try pt.intType(
if (field_ty.isAbiInt(zcu)) field_ty.intInfo(zcu).signedness else .unsigned,
@intCast(field_bit_size),
);
const dst_reg, const dst_lock = try func.allocReg(.int);
const dst_mcv = MCValue{ .register = dst_reg };
defer func.register_manager.unlockReg(dst_lock);
try func.genCopy(int_ty, dst_mcv, off_mcv);
break :result try func.copyToNewRegister(inst, dst_mcv);
}
const container_abi_size: u32 = @intCast(struct_ty.abiSize(zcu));
const dst_mcv = if (field_byte_off + field_abi_size <= container_abi_size and
func.reuseOperand(inst, operand, 0, src_mcv))
off_mcv
else dst: {
const dst_mcv = try func.allocRegOrMem(func.typeOfIndex(inst), inst, true);
try func.genCopy(field_ty, dst_mcv, off_mcv);
break :dst dst_mcv;
};
if (field_abi_size * 8 > field_bit_size and dst_mcv.isMemory()) {
const tmp_reg, const tmp_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(tmp_lock);
const hi_mcv =
dst_mcv.address().offset(@intCast(field_bit_size / 64 * 8)).deref();
try func.genSetReg(Type.u64, tmp_reg, hi_mcv);
try func.genCopy(Type.u64, hi_mcv, .{ .register = tmp_reg });
}
break :result dst_mcv;
}
return func.fail("TODO: airStructFieldVal load_frame field_off non multiple of 8", .{});
},
else => return func.fail("TODO: airStructField {s}", .{@tagName(src_mcv)}),
}
};
return func.finishAir(inst, result, .{ extra.struct_operand, .none, .none });
}
fn airFieldParentPtr(func: *Func, inst: Air.Inst.Index) !void {
_ = inst;
return func.fail("TODO implement codegen airFieldParentPtr", .{});
}
fn genArgDbgInfo(func: *const Func, name: []const u8, ty: Type, mcv: MCValue) InnerError!void {
assert(!func.mod.strip);
// TODO: Add a pseudo-instruction or something to defer this work until Emit.
// We aren't allowed to interact with linker state here.
if (true) return;
switch (func.debug_output) {
.dwarf => |dw| switch (mcv) {
.register => |reg| dw.genLocalDebugInfo(
.local_arg,
name,
ty,
.{ .reg = reg.dwarfNum() },
) catch |err| return func.fail("failed to generate debug info: {s}", .{@errorName(err)}),
.load_frame => {},
else => {},
},
.plan9 => {},
.none => {},
}
}
fn airArg(func: *Func, inst: Air.Inst.Index) InnerError!void {
const zcu = func.pt.zcu;
var arg_index = func.arg_index;
// we skip over args that have no bits
while (func.args[arg_index] == .none) arg_index += 1;
func.arg_index = arg_index + 1;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const src_mcv = func.args[arg_index];
const arg_ty = func.typeOfIndex(inst);
const dst_mcv = try func.allocRegOrMem(arg_ty, inst, false);
log.debug("airArg {} -> {}", .{ src_mcv, dst_mcv });
try func.genCopy(arg_ty, dst_mcv, src_mcv);
const arg = func.air.instructions.items(.data)[@intFromEnum(inst)].arg;
// can delete `func.func_index` if this logic is moved to emit
const func_zir = zcu.funcInfo(func.func_index).zir_body_inst.resolveFull(&zcu.intern_pool).?;
const file = zcu.fileByIndex(func_zir.file);
const zir = &file.zir.?;
const name = zir.nullTerminatedString(zir.getParamName(zir.getParamBody(func_zir.inst)[arg.zir_param_index]).?);
try func.genArgDbgInfo(name, arg_ty, src_mcv);
break :result dst_mcv;
};
return func.finishAir(inst, result, .{ .none, .none, .none });
}
fn airTrap(func: *Func) !void {
_ = try func.addInst(.{
.tag = .unimp,
.data = .none,
});
return func.finishAirBookkeeping();
}
fn airBreakpoint(func: *Func) !void {
_ = try func.addInst(.{
.tag = .ebreak,
.data = .none,
});
return func.finishAirBookkeeping();
}
fn airRetAddr(func: *Func, inst: Air.Inst.Index) !void {
const dst_mcv = try func.allocRegOrMem(func.typeOfIndex(inst), inst, true);
try func.genCopy(Type.u64, dst_mcv, .{ .load_frame = .{ .index = .ret_addr } });
return func.finishAir(inst, dst_mcv, .{ .none, .none, .none });
}
fn airFrameAddress(func: *Func, inst: Air.Inst.Index) !void {
const dst_mcv = try func.allocRegOrMem(func.typeOfIndex(inst), inst, true);
try func.genCopy(Type.u64, dst_mcv, .{ .lea_frame = .{ .index = .base_ptr } });
return func.finishAir(inst, dst_mcv, .{ .none, .none, .none });
}
fn airCall(func: *Func, inst: Air.Inst.Index, modifier: std.builtin.CallModifier) !void {
if (modifier == .always_tail) return func.fail("TODO implement tail calls for riscv64", .{});
const pl_op = func.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const callee = pl_op.operand;
const extra = func.air.extraData(Air.Call, pl_op.payload);
const arg_refs: []const Air.Inst.Ref = @ptrCast(func.air.extra.items[extra.end..][0..extra.data.args_len]);
const expected_num_args = 8;
const ExpectedContents = extern struct {
vals: [expected_num_args][@sizeOf(MCValue)]u8 align(@alignOf(MCValue)),
};
var stack align(@max(@alignOf(ExpectedContents), @alignOf(std.heap.StackFallbackAllocator(0)))) =
std.heap.stackFallback(@sizeOf(ExpectedContents), func.gpa);
const allocator = stack.get();
const arg_tys = try allocator.alloc(Type, arg_refs.len);
defer allocator.free(arg_tys);
for (arg_tys, arg_refs) |*arg_ty, arg_ref| arg_ty.* = func.typeOf(arg_ref);
const arg_vals = try allocator.alloc(MCValue, arg_refs.len);
defer allocator.free(arg_vals);
for (arg_vals, arg_refs) |*arg_val, arg_ref| arg_val.* = .{ .air_ref = arg_ref };
const call_ret = try func.genCall(.{ .air = callee }, arg_tys, arg_vals);
var bt = func.liveness.iterateBigTomb(inst);
try func.feed(&bt, pl_op.operand);
for (arg_refs) |arg_ref| try func.feed(&bt, arg_ref);
const result = if (func.liveness.isUnused(inst)) .unreach else call_ret;
return func.finishAirResult(inst, result);
}
fn genCall(
func: *Func,
info: union(enum) {
air: Air.Inst.Ref,
lib: struct {
return_type: InternPool.Index,
param_types: []const InternPool.Index,
lib: ?[]const u8 = null,
callee: []const u8,
},
},
arg_tys: []const Type,
args: []const MCValue,
) !MCValue {
const pt = func.pt;
const zcu = pt.zcu;
const fn_ty = switch (info) {
.air => |callee| fn_info: {
const callee_ty = func.typeOf(callee);
break :fn_info switch (callee_ty.zigTypeTag(zcu)) {
.@"fn" => callee_ty,
.pointer => callee_ty.childType(zcu),
else => unreachable,
};
},
.lib => |lib| try pt.funcType(.{
.param_types = lib.param_types,
.return_type = lib.return_type,
.cc = func.target.cCallingConvention().?,
}),
};
const fn_info = zcu.typeToFunc(fn_ty).?;
const allocator = func.gpa;
const var_args = try allocator.alloc(Type, args.len - fn_info.param_types.len);
defer allocator.free(var_args);
for (var_args, arg_tys[fn_info.param_types.len..]) |*var_arg, arg_ty| var_arg.* = arg_ty;
var call_info = try func.resolveCallingConventionValues(fn_info, var_args);
defer call_info.deinit(func);
// We need a properly aligned and sized call frame to be able to call this function.
{
const needed_call_frame = FrameAlloc.init(.{
.size = call_info.stack_byte_count,
.alignment = call_info.stack_align,
});
const frame_allocs_slice = func.frame_allocs.slice();
const stack_frame_size =
&frame_allocs_slice.items(.abi_size)[@intFromEnum(FrameIndex.call_frame)];
stack_frame_size.* = @max(stack_frame_size.*, needed_call_frame.abi_size);
const stack_frame_align =
&frame_allocs_slice.items(.abi_align)[@intFromEnum(FrameIndex.call_frame)];
stack_frame_align.* = stack_frame_align.max(needed_call_frame.abi_align);
}
var reg_locks = std.ArrayList(?RegisterLock).init(allocator);
defer reg_locks.deinit();
try reg_locks.ensureTotalCapacity(8);
defer for (reg_locks.items) |reg_lock| if (reg_lock) |lock| func.register_manager.unlockReg(lock);
const frame_indices = try allocator.alloc(FrameIndex, args.len);
defer allocator.free(frame_indices);
switch (call_info.return_value.long) {
.none, .unreach => {},
.indirect => |reg_off| try func.register_manager.getReg(reg_off.reg, null),
else => unreachable,
}
for (call_info.args, args, arg_tys, frame_indices) |dst_arg, src_arg, arg_ty, *frame_index| {
switch (dst_arg) {
.none => {},
.register => |reg| {
try func.register_manager.getReg(reg, null);
try reg_locks.append(func.register_manager.lockReg(reg));
},
.register_pair => |regs| {
for (regs) |reg| try func.register_manager.getReg(reg, null);
try reg_locks.appendSlice(&func.register_manager.lockRegs(2, regs));
},
.indirect => |reg_off| {
frame_index.* = try func.allocFrameIndex(FrameAlloc.initType(arg_ty, zcu));
try func.genSetMem(.{ .frame = frame_index.* }, 0, arg_ty, src_arg);
try func.register_manager.getReg(reg_off.reg, null);
try reg_locks.append(func.register_manager.lockReg(reg_off.reg));
},
else => return func.fail("TODO: genCall set arg {s}", .{@tagName(dst_arg)}),
}
}
switch (call_info.return_value.long) {
.none, .unreach => {},
.indirect => |reg_off| {
const ret_ty = Type.fromInterned(fn_info.return_type);
const frame_index = try func.allocFrameIndex(FrameAlloc.initSpill(ret_ty, zcu));
try func.genSetReg(Type.u64, reg_off.reg, .{
.lea_frame = .{ .index = frame_index, .off = -reg_off.off },
});
call_info.return_value.short = .{ .load_frame = .{ .index = frame_index } };
try reg_locks.append(func.register_manager.lockReg(reg_off.reg));
},
else => unreachable,
}
for (call_info.args, arg_tys, args, frame_indices) |dst_arg, arg_ty, src_arg, frame_index| {
switch (dst_arg) {
.none, .load_frame => {},
.register_pair => try func.genCopy(arg_ty, dst_arg, src_arg),
.register => |dst_reg| try func.genSetReg(
arg_ty,
dst_reg,
src_arg,
),
.indirect => |reg_off| try func.genSetReg(Type.u64, reg_off.reg, .{
.lea_frame = .{ .index = frame_index, .off = -reg_off.off },
}),
else => return func.fail("TODO: genCall actual set {s}", .{@tagName(dst_arg)}),
}
}
// Due to incremental compilation, how function calls are generated depends
// on linking.
switch (info) {
.air => |callee| {
if (try func.air.value(callee, pt)) |func_value| {
const func_key = zcu.intern_pool.indexToKey(func_value.ip_index);
switch (switch (func_key) {
else => func_key,
.ptr => |ptr| if (ptr.byte_offset == 0) switch (ptr.base_addr) {
.nav => |nav| zcu.intern_pool.indexToKey(zcu.navValue(nav).toIntern()),
else => func_key,
} else func_key,
}) {
.func => |func_val| {
if (func.bin_file.cast(.elf)) |elf_file| {
const zo = elf_file.zigObjectPtr().?;
const sym_index = try zo.getOrCreateMetadataForNav(zcu, func_val.owner_nav);
if (func.mod.pic) {
return func.fail("TODO: genCall pic", .{});
} else {
try func.genSetReg(Type.u64, .ra, .{ .lea_symbol = .{ .sym = sym_index } });
_ = try func.addInst(.{
.tag = .jalr,
.data = .{ .i_type = .{
.rd = .ra,
.rs1 = .ra,
.imm12 = Immediate.s(0),
} },
});
}
} else unreachable; // not a valid riscv64 format
},
.@"extern" => |@"extern"| {
const lib_name = @"extern".lib_name.toSlice(&zcu.intern_pool);
const name = @"extern".name.toSlice(&zcu.intern_pool);
const atom_index = try func.owner.getSymbolIndex(func);
const elf_file = func.bin_file.cast(.elf).?;
_ = try func.addInst(.{
.tag = .pseudo_extern_fn_reloc,
.data = .{ .reloc = .{
.register = .ra,
.atom_index = atom_index,
.sym_index = try elf_file.getGlobalSymbol(name, lib_name),
} },
});
},
else => return func.fail("TODO implement calling bitcasted functions", .{}),
}
} else {
assert(func.typeOf(callee).zigTypeTag(zcu) == .pointer);
const addr_reg, const addr_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(addr_lock);
try func.genSetReg(Type.u64, addr_reg, .{ .air_ref = callee });
_ = try func.addInst(.{
.tag = .jalr,
.data = .{ .i_type = .{
.rd = .ra,
.rs1 = addr_reg,
.imm12 = Immediate.s(0),
} },
});
}
},
.lib => return func.fail("TODO: lib func calls", .{}),
}
// reset the vector settings as they might have changed in the function
func.avl = null;
func.vtype = null;
return call_info.return_value.short;
}
fn airRet(func: *Func, inst: Air.Inst.Index, safety: bool) !void {
const pt = func.pt;
const zcu = pt.zcu;
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
if (safety) {
// safe
} else {
// not safe
}
const ret_ty = func.fn_type.fnReturnType(zcu);
switch (func.ret_mcv.short) {
.none => {},
.register,
.register_pair,
=> {
if (ret_ty.isVector(zcu)) {
const bit_size = ret_ty.totalVectorBits(zcu);
// set the vtype to hold the entire vector's contents in a single element
try func.setVl(.zero, 0, .{
.vsew = switch (bit_size) {
8 => .@"8",
16 => .@"16",
32 => .@"32",
64 => .@"64",
else => unreachable,
},
.vlmul = .m1,
.vma = true,
.vta = true,
});
}
try func.genCopy(ret_ty, func.ret_mcv.short, .{ .air_ref = un_op });
},
.indirect => |reg_off| {
try func.register_manager.getReg(reg_off.reg, null);
const lock = func.register_manager.lockRegAssumeUnused(reg_off.reg);
defer func.register_manager.unlockReg(lock);
try func.genSetReg(Type.u64, reg_off.reg, func.ret_mcv.long);
try func.genSetMem(
.{ .reg = reg_off.reg },
reg_off.off,
ret_ty,
.{ .air_ref = un_op },
);
},
else => unreachable,
}
func.ret_mcv.liveOut(func, inst);
try func.finishAir(inst, .unreach, .{ un_op, .none, .none });
// Just add space for an instruction, reloced this later
const index = try func.addInst(.{
.tag = .pseudo_j,
.data = .{ .j_type = .{
.rd = .zero,
.inst = undefined,
} },
});
try func.exitlude_jump_relocs.append(func.gpa, index);
}
fn airRetLoad(func: *Func, inst: Air.Inst.Index) !void {
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const ptr = try func.resolveInst(un_op);
const ptr_ty = func.typeOf(un_op);
switch (func.ret_mcv.short) {
.none => {},
.register, .register_pair => try func.load(func.ret_mcv.short, ptr, ptr_ty),
.indirect => |reg_off| try func.genSetReg(ptr_ty, reg_off.reg, ptr),
else => unreachable,
}
func.ret_mcv.liveOut(func, inst);
try func.finishAir(inst, .unreach, .{ un_op, .none, .none });
// Just add space for an instruction, reloced this later
const index = try func.addInst(.{
.tag = .pseudo_j,
.data = .{ .j_type = .{
.rd = .zero,
.inst = undefined,
} },
});
try func.exitlude_jump_relocs.append(func.gpa, index);
}
fn airCmp(func: *Func, inst: Air.Inst.Index, tag: Air.Inst.Tag) !void {
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const pt = func.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const lhs_ty = func.typeOf(bin_op.lhs);
switch (lhs_ty.zigTypeTag(zcu)) {
.int,
.@"enum",
.bool,
.pointer,
.error_set,
.optional,
.@"struct",
=> {
const int_ty = switch (lhs_ty.zigTypeTag(zcu)) {
.@"enum" => lhs_ty.intTagType(zcu),
.int => lhs_ty,
.bool => Type.u1,
.pointer => Type.u64,
.error_set => Type.anyerror,
.optional => blk: {
const payload_ty = lhs_ty.optionalChild(zcu);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
break :blk Type.u1;
} else if (lhs_ty.isPtrLikeOptional(zcu)) {
break :blk Type.u64;
} else {
return func.fail("TODO riscv cmp non-pointer optionals", .{});
}
},
.@"struct" => blk: {
const struct_obj = ip.loadStructType(lhs_ty.toIntern());
assert(struct_obj.layout == .@"packed");
const backing_index = struct_obj.backingIntTypeUnordered(ip);
break :blk Type.fromInterned(backing_index);
},
else => unreachable,
};
const int_info = int_ty.intInfo(zcu);
if (int_info.bits <= 64) {
break :result try func.binOp(inst, tag, bin_op.lhs, bin_op.rhs);
} else {
return func.fail("TODO riscv cmp for ints > 64 bits", .{});
}
},
.float => {
const float_bits = lhs_ty.floatBits(func.target);
const float_reg_size: u32 = if (func.hasFeature(.d)) 64 else 32;
if (float_bits > float_reg_size) {
return func.fail("TODO: airCmp float > 64/32 bits", .{});
}
break :result try func.binOp(inst, tag, bin_op.lhs, bin_op.rhs);
},
else => unreachable,
}
};
return func.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airCmpVector(func: *Func, inst: Air.Inst.Index) !void {
_ = inst;
return func.fail("TODO implement airCmpVector for {}", .{func.target.cpu.arch});
}
fn airCmpLtErrorsLen(func: *Func, inst: Air.Inst.Index) !void {
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try func.resolveInst(un_op);
_ = operand;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else return func.fail("TODO implement airCmpLtErrorsLen for {}", .{func.target.cpu.arch});
return func.finishAir(inst, result, .{ un_op, .none, .none });
}
fn airDbgStmt(func: *Func, inst: Air.Inst.Index) !void {
const dbg_stmt = func.air.instructions.items(.data)[@intFromEnum(inst)].dbg_stmt;
_ = try func.addInst(.{
.tag = .pseudo_dbg_line_column,
.data = .{ .pseudo_dbg_line_column = .{
.line = dbg_stmt.line,
.column = dbg_stmt.column,
} },
});
return func.finishAirBookkeeping();
}
fn airDbgInlineBlock(func: *Func, inst: Air.Inst.Index) !void {
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.DbgInlineBlock, ty_pl.payload);
try func.lowerBlock(inst, @ptrCast(func.air.extra.items[extra.end..][0..extra.data.body_len]));
}
fn airDbgVar(func: *Func, inst: Air.Inst.Index) InnerError!void {
const pl_op = func.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const operand = pl_op.operand;
const ty = func.typeOf(operand);
const mcv = try func.resolveInst(operand);
const name: Air.NullTerminatedString = @enumFromInt(pl_op.payload);
const tag = func.air.instructions.items(.tag)[@intFromEnum(inst)];
func.genVarDbgInfo(tag, ty, mcv, name.toSlice(func.air)) catch |err|
return func.fail("failed to generate variable debug info: {s}", .{@errorName(err)});
return func.finishAir(inst, .unreach, .{ operand, .none, .none });
}
fn genVarDbgInfo(
func: Func,
tag: Air.Inst.Tag,
ty: Type,
mcv: MCValue,
name: []const u8,
) !void {
// TODO: Add a pseudo-instruction or something to defer this work until Emit.
// We aren't allowed to interact with linker state here.
if (true) return;
switch (func.debug_output) {
.dwarf => |dwarf| {
const loc: link.File.Dwarf.Loc = switch (mcv) {
.register => |reg| .{ .reg = reg.dwarfNum() },
.memory => |address| .{ .constu = address },
.immediate => |x| .{ .constu = x },
.none => .empty,
else => blk: {
// log.warn("TODO generate debug info for {}", .{mcv});
break :blk .empty;
},
};
try dwarf.genLocalDebugInfo(switch (tag) {
else => unreachable,
.dbg_var_ptr, .dbg_var_val => .local_var,
.dbg_arg_inline => .local_arg,
}, name, ty, loc);
},
.plan9 => {},
.none => {},
}
}
fn airCondBr(func: *Func, inst: Air.Inst.Index) !void {
const pl_op = func.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const cond = try func.resolveInst(pl_op.operand);
const cond_ty = func.typeOf(pl_op.operand);
const extra = func.air.extraData(Air.CondBr, pl_op.payload);
const then_body: []const Air.Inst.Index = @ptrCast(func.air.extra.items[extra.end..][0..extra.data.then_body_len]);
const else_body: []const Air.Inst.Index = @ptrCast(func.air.extra.items[extra.end + then_body.len ..][0..extra.data.else_body_len]);
const liveness_cond_br = func.liveness.getCondBr(inst);
// If the condition dies here in this condbr instruction, process
// that death now instead of later as this has an effect on
// whether it needs to be spilled in the branches
if (func.liveness.operandDies(inst, 0)) {
if (pl_op.operand.toIndex()) |op_inst| try func.processDeath(op_inst);
}
func.scope_generation += 1;
const state = try func.saveState();
const reloc = try func.condBr(cond_ty, cond);
for (liveness_cond_br.then_deaths) |death| try func.processDeath(death);
try func.genBody(then_body);
try func.restoreState(state, &.{}, .{
.emit_instructions = false,
.update_tracking = true,
.resurrect = true,
.close_scope = true,
});
func.performReloc(reloc);
for (liveness_cond_br.else_deaths) |death| try func.processDeath(death);
try func.genBody(else_body);
try func.restoreState(state, &.{}, .{
.emit_instructions = false,
.update_tracking = true,
.resurrect = true,
.close_scope = true,
});
// We already took care of pl_op.operand earlier, so there's nothing left to do.
func.finishAirBookkeeping();
}
fn condBr(func: *Func, cond_ty: Type, condition: MCValue) !Mir.Inst.Index {
const cond_reg = try func.copyToTmpRegister(cond_ty, condition);
return try func.addInst(.{
.tag = .beq,
.data = .{
.b_type = .{
.rs1 = cond_reg,
.rs2 = .zero,
.inst = undefined,
},
},
});
}
fn isNull(func: *Func, inst: Air.Inst.Index, opt_ty: Type, opt_mcv: MCValue) !MCValue {
const pt = func.pt;
const zcu = pt.zcu;
const pl_ty = opt_ty.optionalChild(zcu);
const some_info: struct { off: i32, ty: Type } = if (opt_ty.optionalReprIsPayload(zcu))
.{ .off = 0, .ty = if (pl_ty.isSlice(zcu)) pl_ty.slicePtrFieldType(zcu) else pl_ty }
else
.{ .off = @intCast(pl_ty.abiSize(zcu)), .ty = Type.bool };
const return_mcv = try func.allocRegOrMem(func.typeOfIndex(inst), inst, true);
assert(return_mcv == .register); // should not be larger 8 bytes
const return_reg = return_mcv.register;
switch (opt_mcv) {
.none,
.unreach,
.dead,
.undef,
.immediate,
.register_offset,
.lea_frame,
.lea_symbol,
.reserved_frame,
.air_ref,
.register_pair,
=> unreachable,
.register => |opt_reg| {
if (some_info.off == 0) {
_ = try func.addInst(.{
.tag = .pseudo_compare,
.data = .{
.compare = .{
.op = .eq,
.rd = return_reg,
.rs1 = opt_reg,
.rs2 = try func.copyToTmpRegister(
some_info.ty,
.{ .immediate = 0 },
),
.ty = Type.bool,
},
},
});
return return_mcv;
}
assert(some_info.ty.ip_index == .bool_type);
const bit_offset: u7 = @intCast(some_info.off * 8);
try func.genBinOp(
.shr,
.{ .register = opt_reg },
Type.u64,
.{ .immediate = bit_offset },
Type.u8,
return_reg,
);
try func.truncateRegister(Type.u8, return_reg);
try func.genBinOp(
.cmp_eq,
.{ .register = return_reg },
Type.u64,
.{ .immediate = 0 },
Type.u8,
return_reg,
);
return return_mcv;
},
.load_frame => {
const opt_reg = try func.copyToTmpRegister(
some_info.ty,
opt_mcv.address().offset(some_info.off).deref(),
);
const opt_reg_lock = func.register_manager.lockRegAssumeUnused(opt_reg);
defer func.register_manager.unlockReg(opt_reg_lock);
_ = try func.addInst(.{
.tag = .pseudo_compare,
.data = .{
.compare = .{
.op = .eq,
.rd = return_reg,
.rs1 = opt_reg,
.rs2 = try func.copyToTmpRegister(
some_info.ty,
.{ .immediate = 0 },
),
.ty = Type.bool,
},
},
});
return return_mcv;
},
else => return func.fail("TODO: isNull {}", .{opt_mcv}),
}
}
fn airIsNull(func: *Func, inst: Air.Inst.Index) !void {
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try func.resolveInst(un_op);
const ty = func.typeOf(un_op);
const result = try func.isNull(inst, ty, operand);
return func.finishAir(inst, result, .{ un_op, .none, .none });
}
fn airIsNullPtr(func: *Func, inst: Air.Inst.Index) !void {
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try func.resolveInst(un_op);
_ = operand;
const ty = func.typeOf(un_op);
_ = ty;
if (true) return func.fail("TODO: airIsNullPtr", .{});
return func.finishAir(inst, .unreach, .{ un_op, .none, .none });
}
fn airIsNonNull(func: *Func, inst: Air.Inst.Index) !void {
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try func.resolveInst(un_op);
const ty = func.typeOf(un_op);
const result = try func.isNull(inst, ty, operand);
assert(result == .register);
_ = try func.addInst(.{
.tag = .pseudo_not,
.data = .{
.rr = .{
.rd = result.register,
.rs = result.register,
},
},
});
return func.finishAir(inst, result, .{ un_op, .none, .none });
}
fn airIsNonNullPtr(func: *Func, inst: Air.Inst.Index) !void {
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try func.resolveInst(un_op);
_ = operand;
const ty = func.typeOf(un_op);
_ = ty;
if (true) return func.fail("TODO: airIsNonNullPtr", .{});
return func.finishAir(inst, .unreach, .{ un_op, .none, .none });
}
fn airIsErr(func: *Func, inst: Air.Inst.Index) !void {
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const operand = try func.resolveInst(un_op);
const operand_ty = func.typeOf(un_op);
break :result try func.isErr(inst, operand_ty, operand);
};
return func.finishAir(inst, result, .{ un_op, .none, .none });
}
fn airIsErrPtr(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const operand_ptr = try func.resolveInst(un_op);
const operand: MCValue = blk: {
if (func.reuseOperand(inst, un_op, 0, operand_ptr)) {
// The MCValue that holds the pointer can be re-used as the value.
break :blk operand_ptr;
} else {
break :blk try func.allocRegOrMem(func.typeOfIndex(inst), inst, true);
}
};
try func.load(operand, operand_ptr, func.typeOf(un_op));
const operand_ptr_ty = func.typeOf(un_op);
const operand_ty = operand_ptr_ty.childType(zcu);
break :result try func.isErr(inst, operand_ty, operand);
};
return func.finishAir(inst, result, .{ un_op, .none, .none });
}
/// Generates a compare instruction which will indicate if `eu_mcv` is an error.
///
/// Result is in the return register.
fn isErr(func: *Func, maybe_inst: ?Air.Inst.Index, eu_ty: Type, eu_mcv: MCValue) !MCValue {
_ = maybe_inst;
const zcu = func.pt.zcu;
const err_ty = eu_ty.errorUnionSet(zcu);
if (err_ty.errorSetIsEmpty(zcu)) return MCValue{ .immediate = 0 }; // always false
const err_off: u31 = @intCast(errUnionErrorOffset(eu_ty.errorUnionPayload(zcu), zcu));
const return_reg, const return_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(return_lock);
switch (eu_mcv) {
.register => |reg| {
const eu_lock = func.register_manager.lockReg(reg);
defer if (eu_lock) |lock| func.register_manager.unlockReg(lock);
try func.genCopy(eu_ty, .{ .register = return_reg }, eu_mcv);
if (err_off > 0) {
try func.genBinOp(
.shr,
.{ .register = return_reg },
eu_ty,
.{ .immediate = @as(u6, @intCast(err_off * 8)) },
Type.u8,
return_reg,
);
}
try func.genBinOp(
.cmp_neq,
.{ .register = return_reg },
Type.anyerror,
.{ .immediate = 0 },
Type.u8,
return_reg,
);
},
.load_frame => |frame_addr| {
try func.genBinOp(
.cmp_neq,
.{ .load_frame = .{
.index = frame_addr.index,
.off = frame_addr.off + err_off,
} },
Type.anyerror,
.{ .immediate = 0 },
Type.anyerror,
return_reg,
);
},
else => return func.fail("TODO implement isErr for {}", .{eu_mcv}),
}
return .{ .register = return_reg };
}
fn airIsNonErr(func: *Func, inst: Air.Inst.Index) !void {
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const operand = try func.resolveInst(un_op);
const ty = func.typeOf(un_op);
break :result try func.isNonErr(inst, ty, operand);
};
return func.finishAir(inst, result, .{ un_op, .none, .none });
}
fn isNonErr(func: *Func, inst: Air.Inst.Index, eu_ty: Type, eu_mcv: MCValue) !MCValue {
const is_err_res = try func.isErr(inst, eu_ty, eu_mcv);
switch (is_err_res) {
.register => |reg| {
_ = try func.addInst(.{
.tag = .pseudo_not,
.data = .{
.rr = .{
.rd = reg,
.rs = reg,
},
},
});
return is_err_res;
},
// always false case
.immediate => |imm| {
assert(imm == 0);
return MCValue{ .immediate = @intFromBool(imm == 0) };
},
else => unreachable,
}
}
fn airIsNonErrPtr(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const operand_ptr = try func.resolveInst(un_op);
const operand: MCValue = blk: {
if (func.reuseOperand(inst, un_op, 0, operand_ptr)) {
// The MCValue that holds the pointer can be re-used as the value.
break :blk operand_ptr;
} else {
break :blk try func.allocRegOrMem(func.typeOfIndex(inst), inst, true);
}
};
const operand_ptr_ty = func.typeOf(un_op);
const operand_ty = operand_ptr_ty.childType(zcu);
try func.load(operand, operand_ptr, func.typeOf(un_op));
break :result try func.isNonErr(inst, operand_ty, operand);
};
return func.finishAir(inst, result, .{ un_op, .none, .none });
}
fn airLoop(func: *Func, inst: Air.Inst.Index) !void {
// A loop is a setup to be able to jump back to the beginning.
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const loop = func.air.extraData(Air.Block, ty_pl.payload);
const body: []const Air.Inst.Index = @ptrCast(func.air.extra.items[loop.end..][0..loop.data.body_len]);
func.scope_generation += 1;
const state = try func.saveState();
try func.loops.putNoClobber(func.gpa, inst, .{
.state = state,
.jmp_target = @intCast(func.mir_instructions.len),
});
defer assert(func.loops.remove(inst));
try func.genBody(body);
func.finishAirBookkeeping();
}
/// Send control flow to the `index` of `func.code`.
fn jump(func: *Func, index: Mir.Inst.Index) !Mir.Inst.Index {
return func.addInst(.{
.tag = .pseudo_j,
.data = .{ .j_type = .{
.rd = .zero,
.inst = index,
} },
});
}
fn airBlock(func: *Func, inst: Air.Inst.Index) !void {
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.Block, ty_pl.payload);
try func.lowerBlock(inst, @ptrCast(func.air.extra.items[extra.end..][0..extra.data.body_len]));
}
fn lowerBlock(func: *Func, inst: Air.Inst.Index, body: []const Air.Inst.Index) !void {
// A block is a setup to be able to jump to the end.
const inst_tracking_i = func.inst_tracking.count();
func.inst_tracking.putAssumeCapacityNoClobber(inst, InstTracking.init(.unreach));
func.scope_generation += 1;
try func.blocks.putNoClobber(func.gpa, inst, .{ .state = func.initRetroactiveState() });
const liveness = func.liveness.getBlock(inst);
// TODO emit debug info lexical block
try func.genBody(body);
var block_data = func.blocks.fetchRemove(inst).?;
defer block_data.value.deinit(func.gpa);
if (block_data.value.relocs.items.len > 0) {
try func.restoreState(block_data.value.state, liveness.deaths, .{
.emit_instructions = false,
.update_tracking = true,
.resurrect = true,
.close_scope = true,
});
for (block_data.value.relocs.items) |reloc| func.performReloc(reloc);
}
if (std.debug.runtime_safety) assert(func.inst_tracking.getIndex(inst).? == inst_tracking_i);
const tracking = &func.inst_tracking.values()[inst_tracking_i];
if (func.liveness.isUnused(inst)) try tracking.die(func, inst);
func.getValueIfFree(tracking.short, inst);
func.finishAirBookkeeping();
}
fn airSwitchBr(func: *Func, inst: Air.Inst.Index) !void {
const switch_br = func.air.unwrapSwitch(inst);
const condition = try func.resolveInst(switch_br.operand);
// If the condition dies here in this switch instruction, process
// that death now instead of later as this has an effect on
// whether it needs to be spilled in the branches
if (func.liveness.operandDies(inst, 0)) {
if (switch_br.operand.toIndex()) |op_inst| try func.processDeath(op_inst);
}
try func.lowerSwitchBr(inst, switch_br, condition);
// We already took care of pl_op.operand earlier, so there's nothing left to do
func.finishAirBookkeeping();
}
fn lowerSwitchBr(
func: *Func,
inst: Air.Inst.Index,
switch_br: Air.UnwrappedSwitch,
condition: MCValue,
) !void {
const condition_ty = func.typeOf(switch_br.operand);
const liveness = try func.liveness.getSwitchBr(func.gpa, inst, switch_br.cases_len + 1);
defer func.gpa.free(liveness.deaths);
func.scope_generation += 1;
const state = try func.saveState();
var it = switch_br.iterateCases();
while (it.next()) |case| {
var relocs = try func.gpa.alloc(Mir.Inst.Index, case.items.len + case.ranges.len);
defer func.gpa.free(relocs);
for (case.items, relocs[0..case.items.len]) |item, *reloc| {
const item_mcv = try func.resolveInst(item);
const cond_lock = switch (condition) {
.register => func.register_manager.lockRegAssumeUnused(condition.register),
else => null,
};
defer if (cond_lock) |lock| func.register_manager.unlockReg(lock);
const cmp_reg, const cmp_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(cmp_lock);
try func.genBinOp(
.cmp_neq,
condition,
condition_ty,
item_mcv,
condition_ty,
cmp_reg,
);
reloc.* = try func.condBr(condition_ty, .{ .register = cmp_reg });
}
for (case.ranges, relocs[case.items.len..]) |range, *reloc| {
const min_mcv = try func.resolveInst(range[0]);
const max_mcv = try func.resolveInst(range[1]);
const cond_lock = switch (condition) {
.register => func.register_manager.lockRegAssumeUnused(condition.register),
else => null,
};
defer if (cond_lock) |lock| func.register_manager.unlockReg(lock);
const temp_cmp_reg, const temp_cmp_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(temp_cmp_lock);
// is `condition` less than `min`? is "true", we've failed
try func.genBinOp(
.cmp_gte,
condition,
condition_ty,
min_mcv,
condition_ty,
temp_cmp_reg,
);
// if the compare was true, we will jump to the fail case and fall through
// to the next checks
const lt_fail_reloc = try func.condBr(condition_ty, .{ .register = temp_cmp_reg });
try func.genBinOp(
.cmp_gt,
condition,
condition_ty,
max_mcv,
condition_ty,
temp_cmp_reg,
);
reloc.* = try func.condBr(condition_ty, .{ .register = temp_cmp_reg });
func.performReloc(lt_fail_reloc);
}
const skip_case_reloc = try func.jump(undefined);
for (liveness.deaths[case.idx]) |operand| try func.processDeath(operand);
for (relocs) |reloc| func.performReloc(reloc);
try func.genBody(case.body);
try func.restoreState(state, &.{}, .{
.emit_instructions = false,
.update_tracking = true,
.resurrect = true,
.close_scope = true,
});
func.performReloc(skip_case_reloc);
}
if (switch_br.else_body_len > 0) {
const else_body = it.elseBody();
const else_deaths = liveness.deaths.len - 1;
for (liveness.deaths[else_deaths]) |operand| try func.processDeath(operand);
try func.genBody(else_body);
try func.restoreState(state, &.{}, .{
.emit_instructions = false,
.update_tracking = true,
.resurrect = true,
.close_scope = true,
});
}
}
fn airLoopSwitchBr(func: *Func, inst: Air.Inst.Index) !void {
const switch_br = func.air.unwrapSwitch(inst);
const condition = try func.resolveInst(switch_br.operand);
const mat_cond = if (condition.isMutable() and
func.reuseOperand(inst, switch_br.operand, 0, condition))
condition
else mat_cond: {
const ty = func.typeOf(switch_br.operand);
const mat_cond = try func.allocRegOrMem(ty, inst, true);
try func.genCopy(ty, mat_cond, condition);
break :mat_cond mat_cond;
};
func.inst_tracking.putAssumeCapacityNoClobber(inst, InstTracking.init(mat_cond));
// If the condition dies here in this switch instruction, process
// that death now instead of later as this has an effect on
// whether it needs to be spilled in the branches
if (func.liveness.operandDies(inst, 0)) {
if (switch_br.operand.toIndex()) |op_inst| try func.processDeath(op_inst);
}
func.scope_generation += 1;
const state = try func.saveState();
try func.loops.putNoClobber(func.gpa, inst, .{
.state = state,
.jmp_target = @intCast(func.mir_instructions.len),
});
defer assert(func.loops.remove(inst));
// Stop tracking block result without forgetting tracking info
try func.freeValue(mat_cond);
try func.lowerSwitchBr(inst, switch_br, mat_cond);
try func.processDeath(inst);
func.finishAirBookkeeping();
}
fn airSwitchDispatch(func: *Func, inst: Air.Inst.Index) !void {
const br = func.air.instructions.items(.data)[@intFromEnum(inst)].br;
const block_ty = func.typeOfIndex(br.block_inst);
const block_tracking = func.inst_tracking.getPtr(br.block_inst).?;
const loop_data = func.loops.getPtr(br.block_inst).?;
done: {
try func.getValue(block_tracking.short, null);
const src_mcv = try func.resolveInst(br.operand);
if (func.reuseOperandAdvanced(inst, br.operand, 0, src_mcv, br.block_inst)) {
try func.getValue(block_tracking.short, br.block_inst);
// .long = .none to avoid merging operand and block result stack frames.
const current_tracking: InstTracking = .{ .long = .none, .short = src_mcv };
try current_tracking.materializeUnsafe(func, br.block_inst, block_tracking.*);
for (current_tracking.getRegs()) |src_reg| func.register_manager.freeReg(src_reg);
break :done;
}
try func.getValue(block_tracking.short, br.block_inst);
const dst_mcv = block_tracking.short;
try func.genCopy(block_ty, dst_mcv, try func.resolveInst(br.operand));
break :done;
}
// Process operand death so that it is properly accounted for in the State below.
if (func.liveness.operandDies(inst, 0)) {
if (br.operand.toIndex()) |op_inst| try func.processDeath(op_inst);
}
try func.restoreState(loop_data.state, &.{}, .{
.emit_instructions = true,
.update_tracking = false,
.resurrect = false,
.close_scope = false,
});
// Emit a jump with a relocation. It will be patched up after the block ends.
// Leave the jump offset undefined
_ = try func.jump(loop_data.jmp_target);
// Stop tracking block result without forgetting tracking info
try func.freeValue(block_tracking.short);
func.finishAirBookkeeping();
}
fn performReloc(func: *Func, inst: Mir.Inst.Index) void {
const tag = func.mir_instructions.items(.tag)[inst];
const target: Mir.Inst.Index = @intCast(func.mir_instructions.len);
switch (tag) {
.beq,
.bne,
=> func.mir_instructions.items(.data)[inst].b_type.inst = target,
.jal => func.mir_instructions.items(.data)[inst].j_type.inst = target,
.pseudo_j => func.mir_instructions.items(.data)[inst].j_type.inst = target,
else => std.debug.panic("TODO: performReloc {s}", .{@tagName(tag)}),
}
}
fn airBr(func: *Func, inst: Air.Inst.Index) !void {
const zcu = func.pt.zcu;
const br = func.air.instructions.items(.data)[@intFromEnum(inst)].br;
const block_ty = func.typeOfIndex(br.block_inst);
const block_unused =
!block_ty.hasRuntimeBitsIgnoreComptime(zcu) or func.liveness.isUnused(br.block_inst);
const block_tracking = func.inst_tracking.getPtr(br.block_inst).?;
const block_data = func.blocks.getPtr(br.block_inst).?;
const first_br = block_data.relocs.items.len == 0;
const block_result = result: {
if (block_unused) break :result .none;
if (!first_br) try func.getValue(block_tracking.short, null);
const src_mcv = try func.resolveInst(br.operand);
if (func.reuseOperandAdvanced(inst, br.operand, 0, src_mcv, br.block_inst)) {
if (first_br) break :result src_mcv;
try func.getValue(block_tracking.short, br.block_inst);
try InstTracking.materializeUnsafe(
// .long = .none to avoid merging operand and block result stack frames.
.{ .long = .none, .short = src_mcv },
func,
br.block_inst,
block_tracking.*,
);
try func.freeValue(src_mcv);
break :result block_tracking.short;
}
const dst_mcv = if (first_br) try func.allocRegOrMem(block_ty, br.block_inst, true) else dst: {
try func.getValue(block_tracking.short, br.block_inst);
break :dst block_tracking.short;
};
try func.genCopy(block_ty, dst_mcv, try func.resolveInst(br.operand));
break :result dst_mcv;
};
// Process operand death so that it is properly accounted for in the State below.
if (func.liveness.operandDies(inst, 0)) {
if (br.operand.toIndex()) |op_inst| try func.processDeath(op_inst);
}
if (first_br) {
block_tracking.* = InstTracking.init(block_result);
try func.saveRetroactiveState(&block_data.state);
} else try func.restoreState(block_data.state, &.{}, .{
.emit_instructions = true,
.update_tracking = false,
.resurrect = false,
.close_scope = false,
});
// Emit a jump with a relocation. It will be patched up after the block ends.
// Leave the jump offset undefined
const jmp_reloc = try func.jump(undefined);
try block_data.relocs.append(func.gpa, jmp_reloc);
// Stop tracking block result without forgetting tracking info
try func.freeValue(block_tracking.short);
func.finishAirBookkeeping();
}
fn airRepeat(func: *Func, inst: Air.Inst.Index) !void {
const loop_inst = func.air.instructions.items(.data)[@intFromEnum(inst)].repeat.loop_inst;
const repeat_info = func.loops.get(loop_inst).?;
try func.restoreState(repeat_info.state, &.{}, .{
.emit_instructions = true,
.update_tracking = false,
.resurrect = false,
.close_scope = true,
});
_ = try func.jump(repeat_info.jmp_target);
func.finishAirBookkeeping();
}
fn airBoolOp(func: *Func, inst: Air.Inst.Index) !void {
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const tag: Air.Inst.Tag = func.air.instructions.items(.tag)[@intFromEnum(inst)];
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const lhs = try func.resolveInst(bin_op.lhs);
const rhs = try func.resolveInst(bin_op.rhs);
const lhs_ty = Type.bool;
const rhs_ty = Type.bool;
const lhs_reg, const lhs_lock = try func.promoteReg(lhs_ty, lhs);
defer if (lhs_lock) |lock| func.register_manager.unlockReg(lock);
const rhs_reg, const rhs_lock = try func.promoteReg(rhs_ty, rhs);
defer if (rhs_lock) |lock| func.register_manager.unlockReg(lock);
const result_reg, const result_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(result_lock);
_ = try func.addInst(.{
.tag = if (tag == .bool_or) .@"or" else .@"and",
.data = .{ .r_type = .{
.rd = result_reg,
.rs1 = lhs_reg,
.rs2 = rhs_reg,
} },
});
// safety truncate
if (func.wantSafety()) {
_ = try func.addInst(.{
.tag = .andi,
.data = .{ .i_type = .{
.rd = result_reg,
.rs1 = result_reg,
.imm12 = Immediate.s(1),
} },
});
}
break :result .{ .register = result_reg };
};
return func.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airAsm(func: *Func, inst: Air.Inst.Index) !void {
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.Asm, ty_pl.payload);
const clobbers_len: u31 = @truncate(extra.data.flags);
var extra_i: usize = extra.end;
const outputs: []const Air.Inst.Ref =
@ptrCast(func.air.extra.items[extra_i..][0..extra.data.outputs_len]);
extra_i += outputs.len;
const inputs: []const Air.Inst.Ref = @ptrCast(func.air.extra.items[extra_i..][0..extra.data.inputs_len]);
extra_i += inputs.len;
var result: MCValue = .none;
var args = std.ArrayList(MCValue).init(func.gpa);
try args.ensureTotalCapacity(outputs.len + inputs.len);
defer {
for (args.items) |arg| if (arg.getReg()) |reg| func.register_manager.unlockReg(.{
.tracked_index = RegisterManager.indexOfRegIntoTracked(reg) orelse continue,
});
args.deinit();
}
var arg_map = std.StringHashMap(u8).init(func.gpa);
try arg_map.ensureTotalCapacity(@intCast(outputs.len + inputs.len));
defer arg_map.deinit();
var outputs_extra_i = extra_i;
for (outputs) |output| {
const extra_bytes = mem.sliceAsBytes(func.air.extra.items[extra_i..]);
const constraint = mem.sliceTo(mem.sliceAsBytes(func.air.extra.items[extra_i..]), 0);
const name = mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
// This equation accounts for the fact that even if we have exactly 4 bytes
// for the string, we still use the next u32 for the null terminator.
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
const is_read = switch (constraint[0]) {
'=' => false,
'+' => read: {
if (output == .none) return func.fail(
"read-write constraint unsupported for asm result: '{s}'",
.{constraint},
);
break :read true;
},
else => return func.fail("invalid constraint: '{s}'", .{constraint}),
};
const is_early_clobber = constraint[1] == '&';
const rest = constraint[@as(usize, 1) + @intFromBool(is_early_clobber) ..];
const arg_mcv: MCValue = arg_mcv: {
const arg_maybe_reg: ?Register = if (mem.eql(u8, rest, "m"))
if (output != .none) null else return func.fail(
"memory constraint unsupported for asm result: '{s}'",
.{constraint},
)
else if (mem.startsWith(u8, rest, "{") and mem.endsWith(u8, rest, "}"))
parseRegName(rest["{".len .. rest.len - "}".len]) orelse
return func.fail("invalid register constraint: '{s}'", .{constraint})
else if (rest.len == 1 and std.ascii.isDigit(rest[0])) {
const index = std.fmt.charToDigit(rest[0], 10) catch unreachable;
if (index >= args.items.len) return func.fail("constraint out of bounds: '{s}'", .{
constraint,
});
break :arg_mcv args.items[index];
} else return func.fail("invalid constraint: '{s}'", .{constraint});
break :arg_mcv if (arg_maybe_reg) |reg| .{ .register = reg } else arg: {
const ptr_mcv = try func.resolveInst(output);
switch (ptr_mcv) {
.immediate => |addr| if (math.cast(i32, @as(i64, @bitCast(addr)))) |_|
break :arg ptr_mcv.deref(),
.register, .register_offset, .lea_frame => break :arg ptr_mcv.deref(),
else => {},
}
break :arg .{ .indirect = .{ .reg = try func.copyToTmpRegister(Type.usize, ptr_mcv) } };
};
};
if (arg_mcv.getReg()) |reg| if (RegisterManager.indexOfRegIntoTracked(reg)) |_| {
_ = func.register_manager.lockReg(reg);
};
if (!mem.eql(u8, name, "_"))
arg_map.putAssumeCapacityNoClobber(name, @intCast(args.items.len));
args.appendAssumeCapacity(arg_mcv);
if (output == .none) result = arg_mcv;
if (is_read) try func.load(arg_mcv, .{ .air_ref = output }, func.typeOf(output));
}
for (inputs) |input| {
const input_bytes = mem.sliceAsBytes(func.air.extra.items[extra_i..]);
const constraint = mem.sliceTo(input_bytes, 0);
const name = mem.sliceTo(input_bytes[constraint.len + 1 ..], 0);
// This equation accounts for the fact that even if we have exactly 4 bytes
// for the string, we still use the next u32 for the null terminator.
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
const ty = func.typeOf(input);
const input_mcv = try func.resolveInst(input);
const arg_mcv: MCValue = if (mem.eql(u8, constraint, "X"))
input_mcv
else if (mem.startsWith(u8, constraint, "{") and mem.endsWith(u8, constraint, "}")) arg: {
const reg = parseRegName(constraint["{".len .. constraint.len - "}".len]) orelse
return func.fail("invalid register constraint: '{s}'", .{constraint});
try func.register_manager.getReg(reg, null);
try func.genSetReg(ty, reg, input_mcv);
break :arg .{ .register = reg };
} else if (mem.eql(u8, constraint, "r")) arg: {
switch (input_mcv) {
.register => break :arg input_mcv,
else => {},
}
const temp_reg = try func.copyToTmpRegister(ty, input_mcv);
break :arg .{ .register = temp_reg };
} else return func.fail("invalid input constraint: '{s}'", .{constraint});
if (arg_mcv.getReg()) |reg| if (RegisterManager.indexOfRegIntoTracked(reg)) |_| {
_ = func.register_manager.lockReg(reg);
};
if (!mem.eql(u8, name, "_"))
arg_map.putAssumeCapacityNoClobber(name, @intCast(args.items.len));
args.appendAssumeCapacity(arg_mcv);
}
{
var clobber_i: u32 = 0;
while (clobber_i < clobbers_len) : (clobber_i += 1) {
const clobber = std.mem.sliceTo(std.mem.sliceAsBytes(func.air.extra.items[extra_i..]), 0);
// This equation accounts for the fact that even if we have exactly 4 bytes
// for the string, we still use the next u32 for the null terminator.
extra_i += clobber.len / 4 + 1;
if (std.mem.eql(u8, clobber, "") or std.mem.eql(u8, clobber, "memory")) {
// nothing really to do
} else {
try func.register_manager.getReg(parseRegName(clobber) orelse
return func.fail("invalid clobber: '{s}'", .{clobber}), null);
}
}
}
const Label = struct {
target: Mir.Inst.Index = undefined,
pending_relocs: std.ArrayListUnmanaged(Mir.Inst.Index) = .empty,
const Kind = enum { definition, reference };
fn isValid(kind: Kind, name: []const u8) bool {
for (name, 0..) |c, i| switch (c) {
else => return false,
'$' => if (i == 0) return false,
'.' => {},
'0'...'9' => if (i == 0) switch (kind) {
.definition => if (name.len != 1) return false,
.reference => {
if (name.len != 2) return false;
switch (name[1]) {
else => return false,
'B', 'F', 'b', 'f' => {},
}
},
},
'@', 'A'...'Z', '_', 'a'...'z' => {},
};
return name.len > 0;
}
};
var labels: std.StringHashMapUnmanaged(Label) = .empty;
defer {
var label_it = labels.valueIterator();
while (label_it.next()) |label| label.pending_relocs.deinit(func.gpa);
labels.deinit(func.gpa);
}
const asm_source = std.mem.sliceAsBytes(func.air.extra.items[extra_i..])[0..extra.data.source_len];
var line_it = mem.tokenizeAny(u8, asm_source, "\n\r;");
next_line: while (line_it.next()) |line| {
var mnem_it = mem.tokenizeAny(u8, line, " \t");
const mnem_str = while (mnem_it.next()) |mnem_str| {
if (mem.startsWith(u8, mnem_str, "#")) continue :next_line;
if (mem.startsWith(u8, mnem_str, "//")) continue :next_line;
if (!mem.endsWith(u8, mnem_str, ":")) break mnem_str;
const label_name = mnem_str[0 .. mnem_str.len - ":".len];
if (!Label.isValid(.definition, label_name))
return func.fail("invalid label: '{s}'", .{label_name});
const label_gop = try labels.getOrPut(func.gpa, label_name);
if (!label_gop.found_existing) label_gop.value_ptr.* = .{} else {
const anon = std.ascii.isDigit(label_name[0]);
if (!anon and label_gop.value_ptr.pending_relocs.items.len == 0)
return func.fail("redefined label: '{s}'", .{label_name});
for (label_gop.value_ptr.pending_relocs.items) |pending_reloc|
func.performReloc(pending_reloc);
if (anon)
label_gop.value_ptr.pending_relocs.clearRetainingCapacity()
else
label_gop.value_ptr.pending_relocs.clearAndFree(func.gpa);
}
label_gop.value_ptr.target = @intCast(func.mir_instructions.len);
} else continue;
const instruction: union(enum) { mnem: Mnemonic, pseudo: Pseudo } =
if (std.meta.stringToEnum(Mnemonic, mnem_str)) |mnem|
.{ .mnem = mnem }
else if (std.meta.stringToEnum(Pseudo, mnem_str)) |pseudo|
.{ .pseudo = pseudo }
else
return func.fail("invalid mnem str '{s}'", .{mnem_str});
const Operand = union(enum) {
none,
reg: Register,
imm: Immediate,
inst: Mir.Inst.Index,
sym: SymbolOffset,
};
var ops: [4]Operand = .{.none} ** 4;
var last_op = false;
var op_it = mem.splitAny(u8, mnem_it.rest(), ",(");
next_op: for (&ops) |*op| {
const op_str = while (!last_op) {
const full_str = op_it.next() orelse break :next_op;
const code_str = if (mem.indexOfScalar(u8, full_str, '#') orelse
mem.indexOf(u8, full_str, "//")) |comment|
code: {
last_op = true;
break :code full_str[0..comment];
} else full_str;
const trim_str = mem.trim(u8, code_str, " \t*");
if (trim_str.len > 0) break trim_str;
} else break;
if (parseRegName(op_str)) |reg| {
op.* = .{ .reg = reg };
} else if (std.fmt.parseInt(i12, op_str, 10)) |int| {
op.* = .{ .imm = Immediate.s(int) };
} else |_| if (mem.startsWith(u8, op_str, "%[")) {
const mod_index = mem.indexOf(u8, op_str, "]@");
const modifier = if (mod_index) |index|
op_str[index + "]@".len ..]
else
"";
op.* = switch (args.items[
arg_map.get(op_str["%[".len .. mod_index orelse op_str.len - "]".len]) orelse
return func.fail("no matching constraint: '{s}'", .{op_str})
]) {
.lea_symbol => |sym_off| if (mem.eql(u8, modifier, "plt")) blk: {
assert(sym_off.off == 0);
break :blk .{ .sym = sym_off };
} else return func.fail("invalid modifier: '{s}'", .{modifier}),
.register => |reg| if (modifier.len == 0)
.{ .reg = reg }
else
return func.fail("invalid modified '{s}'", .{modifier}),
else => return func.fail("invalid constraint: '{s}'", .{op_str}),
};
} else if (mem.endsWith(u8, op_str, ")")) {
const reg = op_str[0 .. op_str.len - ")".len];
const addr_reg = parseRegName(reg) orelse
return func.fail("expected valid register, found '{s}'", .{reg});
op.* = .{ .reg = addr_reg };
} else if (Label.isValid(.reference, op_str)) {
const anon = std.ascii.isDigit(op_str[0]);
const label_gop = try labels.getOrPut(func.gpa, op_str[0..if (anon) 1 else op_str.len]);
if (!label_gop.found_existing) label_gop.value_ptr.* = .{};
if (anon and (op_str[1] == 'b' or op_str[1] == 'B') and !label_gop.found_existing)
return func.fail("undefined label: '{s}'", .{op_str});
const pending_relocs = &label_gop.value_ptr.pending_relocs;
if (if (anon)
op_str[1] == 'f' or op_str[1] == 'F'
else
!label_gop.found_existing or pending_relocs.items.len > 0)
try pending_relocs.append(func.gpa, @intCast(func.mir_instructions.len));
op.* = .{ .inst = label_gop.value_ptr.target };
} else return func.fail("invalid operand: '{s}'", .{op_str});
} else if (op_it.next()) |op_str| return func.fail("extra operand: '{s}'", .{op_str});
switch (instruction) {
.mnem => |mnem| {
_ = (switch (ops[0]) {
.none => try func.addInst(.{
.tag = mnem,
.data = .none,
}),
.reg => |reg1| switch (ops[1]) {
.reg => |reg2| switch (ops[2]) {
.imm => |imm1| try func.addInst(.{
.tag = mnem,
.data = .{ .i_type = .{
.rd = reg1,
.rs1 = reg2,
.imm12 = imm1,
} },
}),
else => error.InvalidInstruction,
},
.imm => |imm1| switch (ops[2]) {
.reg => |reg2| switch (mnem) {
.sd => try func.addInst(.{
.tag = mnem,
.data = .{ .i_type = .{
.rd = reg2,
.rs1 = reg1,
.imm12 = imm1,
} },
}),
.ld => try func.addInst(.{
.tag = mnem,
.data = .{ .i_type = .{
.rd = reg1,
.rs1 = reg2,
.imm12 = imm1,
} },
}),
else => error.InvalidInstruction,
},
else => error.InvalidInstruction,
},
.none => switch (mnem) {
.jalr => try func.addInst(.{
.tag = mnem,
.data = .{ .i_type = .{
.rd = .ra,
.rs1 = reg1,
.imm12 = Immediate.s(0),
} },
}),
else => error.InvalidInstruction,
},
else => error.InvalidInstruction,
},
else => error.InvalidInstruction,
}) catch |err| {
switch (err) {
error.InvalidInstruction => return func.fail(
"invalid instruction: {s} {s} {s} {s} {s}",
.{
@tagName(mnem),
@tagName(ops[0]),
@tagName(ops[1]),
@tagName(ops[2]),
@tagName(ops[3]),
},
),
else => |e| return e,
}
};
},
.pseudo => |pseudo| {
(@as(error{InvalidInstruction}!void, switch (pseudo) {
.li => blk: {
if (ops[0] != .reg or ops[1] != .imm) {
break :blk error.InvalidInstruction;
}
const reg = ops[0].reg;
const imm = ops[1].imm;
try func.genSetReg(Type.usize, reg, .{ .immediate = imm.asBits(u64) });
},
.mv => blk: {
if (ops[0] != .reg or ops[1] != .reg) {
break :blk error.InvalidInstruction;
}
const dst = ops[0].reg;
const src = ops[1].reg;
if (dst.class() != .int or src.class() != .int) {
return func.fail("pseudo instruction 'mv' only works on integer registers", .{});
}
try func.genSetReg(Type.usize, dst, .{ .register = src });
},
.tail => blk: {
if (ops[0] != .sym) {
break :blk error.InvalidInstruction;
}
const sym_offset = ops[0].sym;
assert(sym_offset.off == 0);
const random_link_reg, const lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(lock);
_ = try func.addInst(.{
.tag = .pseudo_extern_fn_reloc,
.data = .{ .reloc = .{
.register = random_link_reg,
.atom_index = try func.owner.getSymbolIndex(func),
.sym_index = sym_offset.sym,
} },
});
},
.ret => _ = try func.addInst(.{
.tag = .jalr,
.data = .{ .i_type = .{
.rd = .zero,
.rs1 = .ra,
.imm12 = Immediate.s(0),
} },
}),
.beqz => blk: {
if (ops[0] != .reg or ops[1] != .inst) {
break :blk error.InvalidInstruction;
}
_ = try func.addInst(.{
.tag = .beq,
.data = .{ .b_type = .{
.rs1 = ops[0].reg,
.rs2 = .zero,
.inst = ops[1].inst,
} },
});
},
})) catch |err| {
switch (err) {
error.InvalidInstruction => return func.fail(
"invalid instruction: {s} {s} {s} {s} {s}",
.{
@tagName(pseudo),
@tagName(ops[0]),
@tagName(ops[1]),
@tagName(ops[2]),
@tagName(ops[3]),
},
),
else => |e| return e,
}
};
},
}
}
var label_it = labels.iterator();
while (label_it.next()) |label| if (label.value_ptr.pending_relocs.items.len > 0)
return func.fail("undefined label: '{s}'", .{label.key_ptr.*});
for (outputs, args.items[0..outputs.len]) |output, arg_mcv| {
const extra_bytes = mem.sliceAsBytes(func.air.extra.items[outputs_extra_i..]);
const constraint =
mem.sliceTo(mem.sliceAsBytes(func.air.extra.items[outputs_extra_i..]), 0);
const name = mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
// This equation accounts for the fact that even if we have exactly 4 bytes
// for the string, we still use the next u32 for the null terminator.
outputs_extra_i += (constraint.len + name.len + (2 + 3)) / 4;
if (output == .none) continue;
if (arg_mcv != .register) continue;
if (constraint.len == 2 and std.ascii.isDigit(constraint[1])) continue;
try func.store(.{ .air_ref = output }, arg_mcv, func.typeOf(output));
}
simple: {
var buf = [1]Air.Inst.Ref{.none} ** (Air.Liveness.bpi - 1);
var buf_index: usize = 0;
for (outputs) |output| {
if (output == .none) continue;
if (buf_index >= buf.len) break :simple;
buf[buf_index] = output;
buf_index += 1;
}
if (buf_index + inputs.len > buf.len) break :simple;
@memcpy(buf[buf_index..][0..inputs.len], inputs);
return func.finishAir(inst, result, buf);
}
var bt = func.liveness.iterateBigTomb(inst);
for (outputs) |output| if (output != .none) try func.feed(&bt, output);
for (inputs) |input| try func.feed(&bt, input);
return func.finishAirResult(inst, result);
}
/// Sets the value of `dst_mcv` to the value of `src_mcv`.
fn genCopy(func: *Func, ty: Type, dst_mcv: MCValue, src_mcv: MCValue) !void {
// There isn't anything to store
if (dst_mcv == .none) return;
if (!dst_mcv.isMutable()) {
// panic so we can see the trace
return std.debug.panic("tried to genCopy immutable: {s}", .{@tagName(dst_mcv)});
}
const zcu = func.pt.zcu;
switch (dst_mcv) {
.register => |reg| return func.genSetReg(ty, reg, src_mcv),
.register_offset => |dst_reg_off| try func.genSetReg(ty, dst_reg_off.reg, switch (src_mcv) {
.none,
.unreach,
.dead,
.undef,
=> unreachable,
.immediate,
.register,
.register_offset,
=> src_mcv.offset(-dst_reg_off.off),
else => .{ .register_offset = .{
.reg = try func.copyToTmpRegister(ty, src_mcv),
.off = -dst_reg_off.off,
} },
}),
.indirect => |reg_off| try func.genSetMem(
.{ .reg = reg_off.reg },
reg_off.off,
ty,
src_mcv,
),
.load_frame => |frame_addr| try func.genSetMem(
.{ .frame = frame_addr.index },
frame_addr.off,
ty,
src_mcv,
),
.load_symbol => {
const addr_reg, const addr_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(addr_lock);
try func.genSetReg(ty, addr_reg, dst_mcv.address());
try func.genCopy(ty, .{ .indirect = .{ .reg = addr_reg } }, src_mcv);
},
.memory => return func.fail("TODO: genCopy memory", .{}),
.register_pair => |dst_regs| {
const src_info: ?struct { addr_reg: Register, addr_lock: ?RegisterLock } = switch (src_mcv) {
.register_pair, .memory, .indirect, .load_frame => null,
.load_symbol => src: {
const src_addr_reg, const src_addr_lock = try func.promoteReg(Type.u64, src_mcv.address());
errdefer func.register_manager.unlockReg(src_addr_lock);
break :src .{ .addr_reg = src_addr_reg, .addr_lock = src_addr_lock };
},
.air_ref => |src_ref| return func.genCopy(
ty,
dst_mcv,
try func.resolveInst(src_ref),
),
else => return func.fail("genCopy register_pair src: {}", .{src_mcv}),
};
defer if (src_info) |info| {
if (info.addr_lock) |lock| {
func.register_manager.unlockReg(lock);
}
};
var part_disp: i32 = 0;
for (dst_regs, try func.splitType(ty), 0..) |dst_reg, dst_ty, part_i| {
try func.genSetReg(dst_ty, dst_reg, switch (src_mcv) {
.register_pair => |src_regs| .{ .register = src_regs[part_i] },
.memory, .indirect, .load_frame => src_mcv.address().offset(part_disp).deref(),
.load_symbol => .{ .indirect = .{
.reg = src_info.?.addr_reg,
.off = part_disp,
} },
else => unreachable,
});
part_disp += @intCast(dst_ty.abiSize(zcu));
}
},
else => return std.debug.panic("TODO: genCopy to {s} from {s}", .{ @tagName(dst_mcv), @tagName(src_mcv) }),
}
}
fn genInlineMemcpy(
func: *Func,
dst_ptr: MCValue,
src_ptr: MCValue,
len: MCValue,
) !void {
const regs = try func.register_manager.allocRegs(4, .{null} ** 4, abi.Registers.Integer.temporary);
const locks = func.register_manager.lockRegsAssumeUnused(4, regs);
defer for (locks) |lock| func.register_manager.unlockReg(lock);
const count = regs[0];
const tmp = regs[1];
const src = regs[2];
const dst = regs[3];
try func.genSetReg(Type.u64, count, len);
try func.genSetReg(Type.u64, src, src_ptr);
try func.genSetReg(Type.u64, dst, dst_ptr);
// if count is 0, there's nothing to copy
_ = try func.addInst(.{
.tag = .beq,
.data = .{ .b_type = .{
.rs1 = count,
.rs2 = .zero,
.inst = @intCast(func.mir_instructions.len + 9),
} },
});
// lb tmp, 0(src)
const first_inst = try func.addInst(.{
.tag = .lb,
.data = .{
.i_type = .{
.rd = tmp,
.rs1 = src,
.imm12 = Immediate.s(0),
},
},
});
// sb tmp, 0(dst)
_ = try func.addInst(.{
.tag = .sb,
.data = .{
.i_type = .{
.rd = dst,
.rs1 = tmp,
.imm12 = Immediate.s(0),
},
},
});
// dec count by 1
_ = try func.addInst(.{
.tag = .addi,
.data = .{
.i_type = .{
.rd = count,
.rs1 = count,
.imm12 = Immediate.s(-1),
},
},
});
// branch if count is 0
_ = try func.addInst(.{
.tag = .beq,
.data = .{
.b_type = .{
.inst = @intCast(func.mir_instructions.len + 4), // points after the last inst
.rs1 = count,
.rs2 = .zero,
},
},
});
// increment the pointers
_ = try func.addInst(.{
.tag = .addi,
.data = .{
.i_type = .{
.rd = src,
.rs1 = src,
.imm12 = Immediate.s(1),
},
},
});
_ = try func.addInst(.{
.tag = .addi,
.data = .{
.i_type = .{
.rd = dst,
.rs1 = dst,
.imm12 = Immediate.s(1),
},
},
});
// jump back to start of loop
_ = try func.addInst(.{
.tag = .pseudo_j,
.data = .{ .j_type = .{
.rd = .zero,
.inst = first_inst,
} },
});
}
fn genInlineMemset(
func: *Func,
dst_ptr: MCValue,
src_value: MCValue,
len: MCValue,
) !void {
const regs = try func.register_manager.allocRegs(3, .{null} ** 3, abi.Registers.Integer.temporary);
const locks = func.register_manager.lockRegsAssumeUnused(3, regs);
defer for (locks) |lock| func.register_manager.unlockReg(lock);
const count = regs[0];
const src = regs[1];
const dst = regs[2];
try func.genSetReg(Type.u64, count, len);
try func.genSetReg(Type.u64, src, src_value);
try func.genSetReg(Type.u64, dst, dst_ptr);
// sb src, 0(dst)
const first_inst = try func.addInst(.{
.tag = .sb,
.data = .{
.i_type = .{
.rd = dst,
.rs1 = src,
.imm12 = Immediate.s(0),
},
},
});
// dec count by 1
_ = try func.addInst(.{
.tag = .addi,
.data = .{
.i_type = .{
.rd = count,
.rs1 = count,
.imm12 = Immediate.s(-1),
},
},
});
// branch if count is 0
_ = try func.addInst(.{
.tag = .beq,
.data = .{
.b_type = .{
.inst = @intCast(func.mir_instructions.len + 3), // points after the last inst
.rs1 = count,
.rs2 = .zero,
},
},
});
// increment the pointers
_ = try func.addInst(.{
.tag = .addi,
.data = .{
.i_type = .{
.rd = dst,
.rs1 = dst,
.imm12 = Immediate.s(1),
},
},
});
// jump back to start of loop
_ = try func.addInst(.{
.tag = .pseudo_j,
.data = .{ .j_type = .{
.rd = .zero,
.inst = first_inst,
} },
});
}
/// Sets the value of `src_mcv` into `reg`. Assumes you have a lock on it.
fn genSetReg(func: *Func, ty: Type, reg: Register, src_mcv: MCValue) InnerError!void {
const pt = func.pt;
const zcu = pt.zcu;
const abi_size: u32 = @intCast(ty.abiSize(zcu));
const max_size: u32 = switch (reg.class()) {
.int => 64,
.float => if (func.hasFeature(.d)) 64 else 32,
.vector => 64, // TODO: calculate it from avl * vsew
};
if (abi_size > max_size) return std.debug.panic("tried to set reg with size {}", .{abi_size});
const dst_reg_class = reg.class();
switch (src_mcv) {
.unreach,
.none,
.dead,
=> unreachable,
.undef => |sym_index| {
if (!func.wantSafety())
return;
if (sym_index) |index| {
return func.genSetReg(ty, reg, .{ .load_symbol = .{ .sym = index } });
}
switch (abi_size) {
1 => return func.genSetReg(ty, reg, .{ .immediate = 0xAA }),
2 => return func.genSetReg(ty, reg, .{ .immediate = 0xAAAA }),
3...4 => return func.genSetReg(ty, reg, .{ .immediate = 0xAAAAAAAA }),
5...8 => return func.genSetReg(ty, reg, .{ .immediate = 0xAAAAAAAAAAAAAAAA }),
else => unreachable,
}
},
.immediate => |unsigned_x| {
assert(dst_reg_class == .int);
const x: i64 = @bitCast(unsigned_x);
if (math.minInt(i12) <= x and x <= math.maxInt(i12)) {
_ = try func.addInst(.{
.tag = .addi,
.data = .{ .i_type = .{
.rd = reg,
.rs1 = .zero,
.imm12 = Immediate.s(@intCast(x)),
} },
});
} else if (math.minInt(i32) <= x and x <= math.maxInt(i32)) {
const lo12: i12 = @truncate(x);
const carry: i32 = if (lo12 < 0) 1 else 0;
const hi20: i20 = @truncate((x >> 12) +% carry);
_ = try func.addInst(.{
.tag = .lui,
.data = .{ .u_type = .{
.rd = reg,
.imm20 = Immediate.s(hi20),
} },
});
_ = try func.addInst(.{
.tag = .addi,
.data = .{ .i_type = .{
.rd = reg,
.rs1 = reg,
.imm12 = Immediate.s(lo12),
} },
});
} else {
// TODO: use a more advanced myriad seq to do this without a reg.
// see: https://github.com/llvm/llvm-project/blob/081a66ffacfe85a37ff775addafcf3371e967328/llvm/lib/Target/RISCV/MCTargetDesc/RISCVMatInt.cpp#L224
const temp, const temp_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(temp_lock);
const lo32: i32 = @truncate(x);
const carry: i32 = if (lo32 < 0) 1 else 0;
const hi32: i32 = @truncate((x >> 32) +% carry);
try func.genSetReg(Type.i32, temp, .{ .immediate = @bitCast(@as(i64, lo32)) });
try func.genSetReg(Type.i32, reg, .{ .immediate = @bitCast(@as(i64, hi32)) });
_ = try func.addInst(.{
.tag = .slli,
.data = .{ .i_type = .{
.rd = reg,
.rs1 = reg,
.imm12 = Immediate.u(32),
} },
});
_ = try func.addInst(.{
.tag = .add,
.data = .{ .r_type = .{
.rd = reg,
.rs1 = reg,
.rs2 = temp,
} },
});
}
},
.register => |src_reg| {
// If the registers are the same, nothing to do.
if (src_reg.id() == reg.id())
return;
// there is no instruction for loading the contents of a vector register
// into an integer register, however we can cheat a bit by setting the element
// size to the total size of the vector, and vmv.x.s will work then
if (src_reg.class() == .vector) {
try func.setVl(.zero, 0, .{
.vsew = switch (ty.totalVectorBits(zcu)) {
8 => .@"8",
16 => .@"16",
32 => .@"32",
64 => .@"64",
else => |vec_bits| return func.fail("TODO: genSetReg vec -> {s} bits {d}", .{
@tagName(reg.class()),
vec_bits,
}),
},
.vlmul = .m1,
.vta = true,
.vma = true,
});
}
// mv reg, src_reg
_ = try func.addInst(.{
.tag = .pseudo_mv,
.data = .{ .rr = .{
.rd = reg,
.rs = src_reg,
} },
});
},
// useful in cases like slice_ptr, which can easily reuse the operand
// but we need to get only the pointer out.
.register_pair => |pair| try func.genSetReg(ty, reg, .{ .register = pair[0] }),
.load_frame => |frame| {
if (reg.class() == .vector) {
// vectors don't support an offset memory load so we need to put the true
// address into a register before loading from it.
const addr_reg, const addr_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(addr_lock);
try func.genCopy(ty, .{ .register = addr_reg }, src_mcv.address());
try func.genCopy(ty, .{ .register = reg }, .{ .indirect = .{ .reg = addr_reg } });
} else {
_ = try func.addInst(.{
.tag = .pseudo_load_rm,
.data = .{ .rm = .{
.r = reg,
.m = .{
.base = .{ .frame = frame.index },
.mod = .{
.size = func.memSize(ty),
.unsigned = ty.isUnsignedInt(zcu),
.disp = frame.off,
},
},
} },
});
}
},
.memory => |addr| {
try func.genSetReg(ty, reg, .{ .immediate = addr });
_ = try func.addInst(.{
.tag = .ld,
.data = .{ .i_type = .{
.rd = reg,
.rs1 = reg,
.imm12 = Immediate.u(0),
} },
});
},
.lea_frame, .register_offset => {
_ = try func.addInst(.{
.tag = .pseudo_lea_rm,
.data = .{
.rm = .{
.r = reg,
.m = switch (src_mcv) {
.register_offset => |reg_off| .{
.base = .{ .reg = reg_off.reg },
.mod = .{
.size = .byte, // the size doesn't matter
.disp = reg_off.off,
.unsigned = false,
},
},
.lea_frame => |frame| .{
.base = .{ .frame = frame.index },
.mod = .{
.size = .byte, // the size doesn't matter
.disp = frame.off,
.unsigned = false,
},
},
else => unreachable,
},
},
},
});
},
.indirect => |reg_off| {
const load_tag: Mnemonic = switch (reg.class()) {
.float => switch (abi_size) {
1 => unreachable, // Zig does not support 8-bit floats
2 => return func.fail("TODO: genSetReg indirect 16-bit float", .{}),
4 => .flw,
8 => .fld,
else => return std.debug.panic("TODO: genSetReg for float size {d}", .{abi_size}),
},
.int => switch (abi_size) {
1...1 => .lb,
2...2 => .lh,
3...4 => .lw,
5...8 => .ld,
else => return std.debug.panic("TODO: genSetReg for int size {d}", .{abi_size}),
},
.vector => {
assert(reg_off.off == 0);
// There is no vector instruction for loading with an offset to a base register,
// so we need to get an offset register containing the address of the vector first
// and load from it.
const len = ty.vectorLen(zcu);
const elem_ty = ty.childType(zcu);
const elem_size = elem_ty.abiSize(zcu);
try func.setVl(.zero, len, .{
.vsew = switch (elem_size) {
1 => .@"8",
2 => .@"16",
4 => .@"32",
8 => .@"64",
else => unreachable,
},
.vlmul = .m1,
.vma = true,
.vta = true,
});
_ = try func.addInst(.{
.tag = .pseudo_load_rm,
.data = .{ .rm = .{
.r = reg,
.m = .{
.base = .{ .reg = reg_off.reg },
.mod = .{
.size = func.memSize(elem_ty),
.unsigned = false,
.disp = 0,
},
},
} },
});
return;
},
};
_ = try func.addInst(.{
.tag = load_tag,
.data = .{ .i_type = .{
.rd = reg,
.rs1 = reg_off.reg,
.imm12 = Immediate.s(reg_off.off),
} },
});
},
.lea_symbol => |sym_off| {
assert(sym_off.off == 0);
const atom_index = try func.owner.getSymbolIndex(func);
_ = try func.addInst(.{
.tag = .pseudo_load_symbol,
.data = .{ .reloc = .{
.register = reg,
.atom_index = atom_index,
.sym_index = sym_off.sym,
} },
});
},
.load_symbol => {
const addr_reg, const addr_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(addr_lock);
try func.genSetReg(ty, addr_reg, src_mcv.address());
try func.genSetReg(ty, reg, .{ .indirect = .{ .reg = addr_reg } });
},
.air_ref => |ref| try func.genSetReg(ty, reg, try func.resolveInst(ref)),
else => return func.fail("TODO: genSetReg {s}", .{@tagName(src_mcv)}),
}
}
fn genSetMem(
func: *Func,
base: Memory.Base,
disp: i32,
ty: Type,
src_mcv: MCValue,
) InnerError!void {
const pt = func.pt;
const zcu = pt.zcu;
const abi_size: u32 = @intCast(ty.abiSize(zcu));
const dst_ptr_mcv: MCValue = switch (base) {
.reg => |base_reg| .{ .register_offset = .{ .reg = base_reg, .off = disp } },
.frame => |base_frame_index| .{ .lea_frame = .{ .index = base_frame_index, .off = disp } },
};
switch (src_mcv) {
.none,
.unreach,
.dead,
.reserved_frame,
=> unreachable,
.undef => |sym_index| {
if (sym_index) |index| {
return func.genSetMem(base, disp, ty, .{ .load_symbol = .{ .sym = index } });
}
try func.genInlineMemset(
dst_ptr_mcv,
src_mcv,
.{ .immediate = abi_size },
);
},
.register_offset,
.memory,
.indirect,
.load_frame,
.lea_frame,
.load_symbol,
.lea_symbol,
=> switch (abi_size) {
0 => {},
1, 2, 4, 8 => {
const reg = try func.register_manager.allocReg(null, abi.Registers.Integer.temporary);
const src_lock = func.register_manager.lockRegAssumeUnused(reg);
defer func.register_manager.unlockReg(src_lock);
try func.genSetReg(ty, reg, src_mcv);
try func.genSetMem(base, disp, ty, .{ .register = reg });
},
else => try func.genInlineMemcpy(
dst_ptr_mcv,
src_mcv.address(),
.{ .immediate = abi_size },
),
},
.register => |reg| {
if (reg.class() == .vector) {
const addr_reg = try func.copyToTmpRegister(Type.u64, dst_ptr_mcv);
const num_elem = ty.vectorLen(zcu);
const elem_size = ty.childType(zcu).bitSize(zcu);
try func.setVl(.zero, num_elem, .{
.vsew = switch (elem_size) {
8 => .@"8",
16 => .@"16",
32 => .@"32",
64 => .@"64",
else => unreachable,
},
.vlmul = .m1,
.vma = true,
.vta = true,
});
_ = try func.addInst(.{
.tag = .pseudo_store_rm,
.data = .{ .rm = .{
.r = reg,
.m = .{
.base = .{ .reg = addr_reg },
.mod = .{
.disp = 0,
.size = func.memSize(ty.childType(zcu)),
.unsigned = false,
},
},
} },
});
return;
}
const mem_size = switch (base) {
.frame => |base_fi| mem_size: {
assert(disp >= 0);
const frame_abi_size = func.frame_allocs.items(.abi_size)[@intFromEnum(base_fi)];
const frame_spill_pad = func.frame_allocs.items(.spill_pad)[@intFromEnum(base_fi)];
assert(frame_abi_size - frame_spill_pad - disp >= abi_size);
break :mem_size if (frame_abi_size - frame_spill_pad - disp == abi_size)
frame_abi_size
else
abi_size;
},
else => abi_size,
};
const src_size = math.ceilPowerOfTwoAssert(u32, abi_size);
const src_align = Alignment.fromNonzeroByteUnits(math.ceilPowerOfTwoAssert(u32, src_size));
if (src_size > mem_size) {
const frame_index = try func.allocFrameIndex(FrameAlloc.init(.{
.size = src_size,
.alignment = src_align,
}));
const frame_mcv: MCValue = .{ .load_frame = .{ .index = frame_index } };
_ = try func.addInst(.{
.tag = .pseudo_store_rm,
.data = .{ .rm = .{
.r = reg,
.m = .{
.base = .{ .frame = frame_index },
.mod = .{
.size = Memory.Size.fromByteSize(src_size),
.unsigned = false,
},
},
} },
});
try func.genSetMem(base, disp, ty, frame_mcv);
try func.freeValue(frame_mcv);
} else _ = try func.addInst(.{
.tag = .pseudo_store_rm,
.data = .{ .rm = .{
.r = reg,
.m = .{
.base = base,
.mod = .{
.size = func.memSize(ty),
.disp = disp,
.unsigned = false,
},
},
} },
});
},
.register_pair => |src_regs| {
var part_disp: i32 = disp;
for (try func.splitType(ty), src_regs) |src_ty, src_reg| {
try func.genSetMem(base, part_disp, src_ty, .{ .register = src_reg });
part_disp += @intCast(src_ty.abiSize(zcu));
}
},
.immediate => {
// TODO: remove this lock in favor of a copyToTmpRegister when we load 64 bit immediates with
// a register allocation.
const reg, const reg_lock = try func.promoteReg(ty, src_mcv);
defer if (reg_lock) |lock| func.register_manager.unlockReg(lock);
return func.genSetMem(base, disp, ty, .{ .register = reg });
},
.air_ref => |src_ref| try func.genSetMem(base, disp, ty, try func.resolveInst(src_ref)),
}
}
fn airBitCast(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result = if (func.liveness.isUnused(inst)) .unreach else result: {
const src_mcv = try func.resolveInst(ty_op.operand);
const src_ty = func.typeOf(ty_op.operand);
if (src_ty.toIntern() == .bool_type) break :result src_mcv;
const dst_ty = func.typeOfIndex(inst);
const src_lock = if (src_mcv.getReg()) |reg| func.register_manager.lockReg(reg) else null;
defer if (src_lock) |lock| func.register_manager.unlockReg(lock);
const dst_mcv = if (dst_ty.abiSize(zcu) <= src_ty.abiSize(zcu) and src_mcv != .register_pair and
func.reuseOperand(inst, ty_op.operand, 0, src_mcv)) src_mcv else dst: {
const dst_mcv = try func.allocRegOrMem(dst_ty, inst, true);
try func.genCopy(switch (math.order(dst_ty.abiSize(zcu), src_ty.abiSize(zcu))) {
.lt => dst_ty,
.eq => if (!dst_mcv.isMemory() or src_mcv.isMemory()) dst_ty else src_ty,
.gt => src_ty,
}, dst_mcv, src_mcv);
break :dst dst_mcv;
};
if (dst_ty.isAbiInt(zcu) and src_ty.isAbiInt(zcu) and
dst_ty.intInfo(zcu).signedness == src_ty.intInfo(zcu).signedness) break :result dst_mcv;
const abi_size = dst_ty.abiSize(zcu);
const bit_size = dst_ty.bitSize(zcu);
if (abi_size * 8 <= bit_size) break :result dst_mcv;
return func.fail("TODO: airBitCast {} to {}", .{ src_ty.fmt(pt), dst_ty.fmt(pt) });
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airArrayToSlice(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const slice_ty = func.typeOfIndex(inst);
const ptr_ty = func.typeOf(ty_op.operand);
const ptr = try func.resolveInst(ty_op.operand);
const array_ty = ptr_ty.childType(zcu);
const array_len = array_ty.arrayLen(zcu);
const frame_index = try func.allocFrameIndex(FrameAlloc.initSpill(slice_ty, zcu));
try func.genSetMem(.{ .frame = frame_index }, 0, ptr_ty, ptr);
try func.genSetMem(
.{ .frame = frame_index },
@intCast(ptr_ty.abiSize(zcu)),
Type.u64,
.{ .immediate = array_len },
);
const result = MCValue{ .load_frame = .{ .index = frame_index } };
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airFloatFromInt(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const pt = func.pt;
const zcu = pt.zcu;
const operand = try func.resolveInst(ty_op.operand);
const src_ty = func.typeOf(ty_op.operand);
const dst_ty = ty_op.ty.toType();
const src_reg, const src_lock = try func.promoteReg(src_ty, operand);
defer if (src_lock) |lock| func.register_manager.unlockReg(lock);
const is_unsigned = dst_ty.isUnsignedInt(zcu);
const src_bits = src_ty.bitSize(zcu);
const dst_bits = dst_ty.bitSize(zcu);
switch (src_bits) {
32, 64 => {},
else => try func.truncateRegister(src_ty, src_reg),
}
const int_zcu: Mir.FcvtOp = switch (src_bits) {
8, 16, 32 => if (is_unsigned) .wu else .w,
64 => if (is_unsigned) .lu else .l,
else => return func.fail("TODO: airFloatFromInt src size: {d}", .{src_bits}),
};
const float_zcu: enum { s, d } = switch (dst_bits) {
32 => .s,
64 => .d,
else => return func.fail("TODO: airFloatFromInt dst size {d}", .{dst_bits}),
};
const dst_reg, const dst_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(dst_lock);
_ = try func.addInst(.{
.tag = switch (float_zcu) {
.s => switch (int_zcu) {
.l => .fcvtsl,
.lu => .fcvtslu,
.w => .fcvtsw,
.wu => .fcvtswu,
},
.d => switch (int_zcu) {
.l => .fcvtdl,
.lu => .fcvtdlu,
.w => .fcvtdw,
.wu => .fcvtdwu,
},
},
.data = .{ .rr = .{
.rd = dst_reg,
.rs = src_reg,
} },
});
break :result .{ .register = dst_reg };
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airIntFromFloat(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const pt = func.pt;
const zcu = pt.zcu;
const operand = try func.resolveInst(ty_op.operand);
const src_ty = func.typeOf(ty_op.operand);
const dst_ty = ty_op.ty.toType();
const is_unsigned = dst_ty.isUnsignedInt(zcu);
const src_bits = src_ty.bitSize(zcu);
const dst_bits = dst_ty.bitSize(zcu);
const float_zcu: enum { s, d } = switch (src_bits) {
32 => .s,
64 => .d,
else => return func.fail("TODO: airIntFromFloat src size {d}", .{src_bits}),
};
const int_zcu: Mir.FcvtOp = switch (dst_bits) {
32 => if (is_unsigned) .wu else .w,
8, 16, 64 => if (is_unsigned) .lu else .l,
else => return func.fail("TODO: airIntFromFloat dst size: {d}", .{dst_bits}),
};
const src_reg, const src_lock = try func.promoteReg(src_ty, operand);
defer if (src_lock) |lock| func.register_manager.unlockReg(lock);
const dst_reg, const dst_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(dst_lock);
_ = try func.addInst(.{
.tag = switch (float_zcu) {
.s => switch (int_zcu) {
.l => .fcvtls,
.lu => .fcvtlus,
.w => .fcvtws,
.wu => .fcvtwus,
},
.d => switch (int_zcu) {
.l => .fcvtld,
.lu => .fcvtlud,
.w => .fcvtwd,
.wu => .fcvtwud,
},
},
.data = .{ .rr = .{
.rd = dst_reg,
.rs = src_reg,
} },
});
break :result .{ .register = dst_reg };
};
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airCmpxchg(func: *Func, inst: Air.Inst.Index, strength: enum { weak, strong }) !void {
_ = strength; // TODO: do something with this
const pt = func.pt;
const zcu = pt.zcu;
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.Cmpxchg, ty_pl.payload).data;
const ptr_ty = func.typeOf(extra.ptr);
const val_ty = func.typeOf(extra.expected_value);
const val_abi_size: u32 = @intCast(val_ty.abiSize(pt.zcu));
switch (val_abi_size) {
1, 2, 4, 8 => {},
else => return func.fail("TODO: airCmpxchg Int size {}", .{val_abi_size}),
}
const lr_order: struct { aq: Mir.Barrier, rl: Mir.Barrier } = switch (extra.successOrder()) {
.unordered,
=> unreachable,
.monotonic,
.release,
=> .{ .aq = .none, .rl = .none },
.acquire,
.acq_rel,
=> .{ .aq = .aq, .rl = .none },
.seq_cst => .{ .aq = .aq, .rl = .rl },
};
const sc_order: struct { aq: Mir.Barrier, rl: Mir.Barrier } = switch (extra.failureOrder()) {
.unordered,
.release,
.acq_rel,
=> unreachable,
.monotonic,
.acquire,
.seq_cst,
=> switch (extra.successOrder()) {
.release,
.seq_cst,
=> .{ .aq = .none, .rl = .rl },
else => .{ .aq = .none, .rl = .none },
},
};
const ptr_mcv = try func.resolveInst(extra.ptr);
const ptr_reg, const ptr_lock = try func.promoteReg(ptr_ty, ptr_mcv);
defer if (ptr_lock) |lock| func.register_manager.unlockReg(lock);
const exp_mcv = try func.resolveInst(extra.expected_value);
const exp_reg, const exp_lock = try func.promoteReg(val_ty, exp_mcv);
defer if (exp_lock) |lock| func.register_manager.unlockReg(lock);
try func.truncateRegister(val_ty, exp_reg);
const new_mcv = try func.resolveInst(extra.new_value);
const new_reg, const new_lock = try func.promoteReg(val_ty, new_mcv);
defer if (new_lock) |lock| func.register_manager.unlockReg(lock);
try func.truncateRegister(val_ty, new_reg);
const branch_reg, const branch_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(branch_lock);
const fallthrough_reg, const fallthrough_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(fallthrough_lock);
const jump_back = try func.addInst(.{
.tag = if (val_ty.bitSize(zcu) <= 32) .lrw else .lrd,
.data = .{ .amo = .{
.aq = lr_order.aq,
.rl = lr_order.rl,
.rd = branch_reg,
.rs1 = ptr_reg,
.rs2 = .zero,
} },
});
try func.truncateRegister(val_ty, branch_reg);
const jump_forward = try func.addInst(.{
.tag = .bne,
.data = .{ .b_type = .{
.rs1 = branch_reg,
.rs2 = exp_reg,
.inst = undefined,
} },
});
_ = try func.addInst(.{
.tag = if (val_ty.bitSize(zcu) <= 32) .scw else .scd,
.data = .{ .amo = .{
.aq = sc_order.aq,
.rl = sc_order.rl,
.rd = fallthrough_reg,
.rs1 = ptr_reg,
.rs2 = new_reg,
} },
});
try func.truncateRegister(Type.bool, fallthrough_reg);
_ = try func.addInst(.{
.tag = .bne,
.data = .{ .b_type = .{
.rs1 = fallthrough_reg,
.rs2 = .zero,
.inst = jump_back,
} },
});
func.performReloc(jump_forward);
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const dst_mcv = try func.allocRegOrMem(func.typeOfIndex(inst), inst, false);
const tmp_reg, const tmp_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(tmp_lock);
try func.genBinOp(
.cmp_neq,
.{ .register = branch_reg },
val_ty,
.{ .register = exp_reg },
val_ty,
tmp_reg,
);
try func.genCopy(val_ty, dst_mcv, .{ .register = branch_reg });
try func.genCopy(
Type.bool,
dst_mcv.address().offset(@intCast(val_abi_size)).deref(),
.{ .register = tmp_reg },
);
break :result dst_mcv;
};
return func.finishAir(inst, result, .{ extra.ptr, extra.expected_value, extra.new_value });
}
fn airAtomicRmw(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const pl_op = func.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = func.air.extraData(Air.AtomicRmw, pl_op.payload).data;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const op = extra.op();
const order = extra.ordering();
const ptr_ty = func.typeOf(pl_op.operand);
const ptr_mcv = try func.resolveInst(pl_op.operand);
const val_ty = func.typeOf(extra.operand);
const val_size = val_ty.abiSize(zcu);
const val_mcv = try func.resolveInst(extra.operand);
if (!math.isPowerOfTwo(val_size))
return func.fail("TODO: airAtomicRmw non-pow 2", .{});
switch (val_ty.zigTypeTag(pt.zcu)) {
.@"enum", .int => {},
inline .bool, .float, .pointer => |ty| return func.fail("TODO: airAtomicRmw {s}", .{@tagName(ty)}),
else => unreachable,
}
const method: enum { amo, loop } = switch (val_size) {
1, 2 => .loop,
4, 8 => .amo,
else => unreachable,
};
const ptr_register, const ptr_lock = try func.promoteReg(ptr_ty, ptr_mcv);
defer if (ptr_lock) |lock| func.register_manager.unlockReg(lock);
const val_register, const val_lock = try func.promoteReg(val_ty, val_mcv);
defer if (val_lock) |lock| func.register_manager.unlockReg(lock);
const result_mcv = try func.allocRegOrMem(val_ty, inst, true);
assert(result_mcv == .register); // should fit into 8 bytes
const result_reg = result_mcv.register;
const aq, const rl = switch (order) {
.unordered => unreachable,
.monotonic => .{ false, false },
.acquire => .{ true, false },
.release => .{ false, true },
.acq_rel => .{ true, true },
.seq_cst => .{ true, true },
};
switch (method) {
.amo => {
const is_d = val_ty.abiSize(zcu) == 8;
const is_un = val_ty.isUnsignedInt(zcu);
const mnem: Mnemonic = switch (op) {
// zig fmt: off
.Xchg => if (is_d) .amoswapd else .amoswapw,
.Add => if (is_d) .amoaddd else .amoaddw,
.And => if (is_d) .amoandd else .amoandw,
.Or => if (is_d) .amoord else .amoorw,
.Xor => if (is_d) .amoxord else .amoxorw,
.Max => if (is_d) if (is_un) .amomaxud else .amomaxd else if (is_un) .amomaxuw else .amomaxw,
.Min => if (is_d) if (is_un) .amominud else .amomind else if (is_un) .amominuw else .amominw,
else => return func.fail("TODO: airAtomicRmw amo {s}", .{@tagName(op)}),
// zig fmt: on
};
_ = try func.addInst(.{
.tag = mnem,
.data = .{ .amo = .{
.rd = result_reg,
.rs1 = ptr_register,
.rs2 = val_register,
.aq = if (aq) .aq else .none,
.rl = if (rl) .rl else .none,
} },
});
},
.loop => {
// where we'll jump back when the sc fails
const jump_back = try func.addInst(.{
.tag = .lrw,
.data = .{ .amo = .{
.rd = result_reg,
.rs1 = ptr_register,
.rs2 = .zero,
.aq = if (aq) .aq else .none,
.rl = if (rl) .rl else .none,
} },
});
const after_reg, const after_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(after_lock);
switch (op) {
.Add, .Sub => |tag| {
_ = try func.genBinOp(
switch (tag) {
.Add => .add,
.Sub => .sub,
else => unreachable,
},
.{ .register = result_reg },
val_ty,
.{ .register = val_register },
val_ty,
after_reg,
);
},
else => return func.fail("TODO: airAtomicRmw loop {s}", .{@tagName(op)}),
}
_ = try func.addInst(.{
.tag = .scw,
.data = .{ .amo = .{
.rd = after_reg,
.rs1 = ptr_register,
.rs2 = after_reg,
.aq = if (aq) .aq else .none,
.rl = if (rl) .rl else .none,
} },
});
_ = try func.addInst(.{
.tag = .bne,
.data = .{ .b_type = .{
.inst = jump_back,
.rs1 = after_reg,
.rs2 = .zero,
} },
});
},
}
break :result result_mcv;
};
return func.finishAir(inst, result, .{ pl_op.operand, extra.operand, .none });
}
fn airAtomicLoad(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const atomic_load = func.air.instructions.items(.data)[@intFromEnum(inst)].atomic_load;
const order: std.builtin.AtomicOrder = atomic_load.order;
const ptr_ty = func.typeOf(atomic_load.ptr);
const elem_ty = ptr_ty.childType(zcu);
const ptr_mcv = try func.resolveInst(atomic_load.ptr);
const bit_size = elem_ty.bitSize(zcu);
if (bit_size > 64) return func.fail("TODO: airAtomicLoad > 64 bits", .{});
const result_mcv: MCValue = if (func.liveness.isUnused(inst))
.{ .register = .zero }
else
try func.allocRegOrMem(elem_ty, inst, true);
assert(result_mcv == .register); // should be less than 8 bytes
if (order == .seq_cst) {
_ = try func.addInst(.{
.tag = .fence,
.data = .{ .fence = .{
.pred = .rw,
.succ = .rw,
} },
});
}
try func.load(result_mcv, ptr_mcv, ptr_ty);
switch (order) {
// Don't guarantee other memory operations to be ordered after the load.
.unordered, .monotonic => {},
// Make sure all previous reads happen before any reading or writing occurs.
.acquire, .seq_cst => {
_ = try func.addInst(.{
.tag = .fence,
.data = .{ .fence = .{
.pred = .r,
.succ = .rw,
} },
});
},
else => unreachable,
}
return func.finishAir(inst, result_mcv, .{ atomic_load.ptr, .none, .none });
}
fn airAtomicStore(func: *Func, inst: Air.Inst.Index, order: std.builtin.AtomicOrder) !void {
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ptr_ty = func.typeOf(bin_op.lhs);
const ptr_mcv = try func.resolveInst(bin_op.lhs);
const val_ty = func.typeOf(bin_op.rhs);
const val_mcv = try func.resolveInst(bin_op.rhs);
const bit_size = val_ty.bitSize(func.pt.zcu);
if (bit_size > 64) return func.fail("TODO: airAtomicStore > 64 bits", .{});
switch (order) {
.unordered, .monotonic => {},
.release, .seq_cst => {
_ = try func.addInst(.{
.tag = .fence,
.data = .{ .fence = .{
.pred = .rw,
.succ = .w,
} },
});
},
else => unreachable,
}
try func.store(ptr_mcv, val_mcv, ptr_ty);
if (order == .seq_cst) {
_ = try func.addInst(.{
.tag = .fence,
.data = .{ .fence = .{
.pred = .rw,
.succ = .rw,
} },
});
}
return func.finishAir(inst, .unreach, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airMemset(func: *Func, inst: Air.Inst.Index, safety: bool) !void {
const pt = func.pt;
const zcu = pt.zcu;
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
result: {
if (!safety and (try func.resolveInst(bin_op.rhs)) == .undef) break :result;
const dst_ptr = try func.resolveInst(bin_op.lhs);
const dst_ptr_ty = func.typeOf(bin_op.lhs);
const dst_ptr_lock: ?RegisterLock = switch (dst_ptr) {
.register => |reg| func.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (dst_ptr_lock) |lock| func.register_manager.unlockReg(lock);
const src_val = try func.resolveInst(bin_op.rhs);
const elem_ty = func.typeOf(bin_op.rhs);
const src_val_lock: ?RegisterLock = switch (src_val) {
.register => |reg| func.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (src_val_lock) |lock| func.register_manager.unlockReg(lock);
const elem_abi_size: u31 = @intCast(elem_ty.abiSize(zcu));
if (elem_abi_size == 1) {
const ptr: MCValue = switch (dst_ptr_ty.ptrSize(zcu)) {
// TODO: this only handles slices stored in the stack
.slice => dst_ptr,
.one => dst_ptr,
.c, .many => unreachable,
};
const len: MCValue = switch (dst_ptr_ty.ptrSize(zcu)) {
// TODO: this only handles slices stored in the stack
.slice => dst_ptr.address().offset(8).deref(),
.one => .{ .immediate = dst_ptr_ty.childType(zcu).arrayLen(zcu) },
.c, .many => unreachable,
};
const len_lock: ?RegisterLock = switch (len) {
.register => |reg| func.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (len_lock) |lock| func.register_manager.unlockReg(lock);
try func.genInlineMemset(ptr, src_val, len);
break :result;
}
// Store the first element, and then rely on memcpy copying forwards.
// Length zero requires a runtime check - so we handle arrays specially
// here to elide it.
switch (dst_ptr_ty.ptrSize(zcu)) {
.slice => return func.fail("TODO: airMemset Slices", .{}),
.one => {
const elem_ptr_ty = try pt.singleMutPtrType(elem_ty);
const len = dst_ptr_ty.childType(zcu).arrayLen(zcu);
assert(len != 0); // prevented by Sema
try func.store(dst_ptr, src_val, elem_ptr_ty);
const second_elem_ptr_reg, const second_elem_ptr_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(second_elem_ptr_lock);
const second_elem_ptr_mcv: MCValue = .{ .register = second_elem_ptr_reg };
try func.genSetReg(Type.u64, second_elem_ptr_reg, .{ .register_offset = .{
.reg = try func.copyToTmpRegister(Type.u64, dst_ptr),
.off = elem_abi_size,
} });
const bytes_to_copy: MCValue = .{ .immediate = elem_abi_size * (len - 1) };
try func.genInlineMemcpy(second_elem_ptr_mcv, dst_ptr, bytes_to_copy);
},
.c, .many => unreachable,
}
}
return func.finishAir(inst, .unreach, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airMemcpy(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const dst_ptr = try func.resolveInst(bin_op.lhs);
const src_ptr = try func.resolveInst(bin_op.rhs);
const dst_ty = func.typeOf(bin_op.lhs);
const len_mcv: MCValue = switch (dst_ty.ptrSize(zcu)) {
.slice => len: {
const len_reg, const len_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(len_lock);
const elem_size = dst_ty.childType(zcu).abiSize(zcu);
try func.genBinOp(
.mul,
.{ .immediate = elem_size },
Type.u64,
dst_ptr.address().offset(8).deref(),
Type.u64,
len_reg,
);
break :len .{ .register = len_reg };
},
.one => len: {
const array_ty = dst_ty.childType(zcu);
break :len .{ .immediate = array_ty.arrayLen(zcu) * array_ty.childType(zcu).abiSize(zcu) };
},
else => |size| return func.fail("TODO: airMemcpy size {s}", .{@tagName(size)}),
};
const len_lock: ?RegisterLock = switch (len_mcv) {
.register => |reg| func.register_manager.lockRegAssumeUnused(reg),
else => null,
};
defer if (len_lock) |lock| func.register_manager.unlockReg(lock);
try func.genInlineMemcpy(dst_ptr, src_ptr, len_mcv);
return func.finishAir(inst, .unreach, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airMemmove(func: *Func, inst: Air.Inst.Index) !void {
_ = inst;
return func.fail("TODO implement airMemmove for riscv64", .{});
}
fn airTagName(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else result: {
const enum_ty = func.typeOf(un_op);
// TODO: work out the bugs
if (true) return func.fail("TODO: airTagName", .{});
const param_regs = abi.Registers.Integer.function_arg_regs;
const dst_mcv = try func.allocRegOrMem(Type.u64, inst, false);
try func.genSetReg(Type.u64, param_regs[0], dst_mcv.address());
const operand = try func.resolveInst(un_op);
try func.genSetReg(enum_ty, param_regs[1], operand);
const lazy_sym: link.File.LazySymbol = .{ .kind = .code, .ty = enum_ty.toIntern() };
const elf_file = func.bin_file.cast(link.File.Elf).?;
const zo = elf_file.zigObjectPtr().?;
const sym_index = zo.getOrCreateMetadataForLazySymbol(elf_file, pt, lazy_sym) catch |err|
return func.fail("{s} creating lazy symbol", .{@errorName(err)});
if (func.mod.pic) {
return func.fail("TODO: airTagName pic", .{});
} else {
try func.genSetReg(Type.u64, .ra, .{ .load_symbol = .{ .sym = sym_index } });
_ = try func.addInst(.{
.tag = .jalr,
.data = .{ .i_type = .{
.rd = .ra,
.rs1 = .ra,
.imm12 = Immediate.s(0),
} },
});
}
break :result dst_mcv;
};
return func.finishAir(inst, result, .{ un_op, .none, .none });
}
fn airErrorName(func: *Func, inst: Air.Inst.Index) !void {
_ = inst;
return func.fail("TODO: airErrorName", .{});
}
fn airSplat(func: *Func, inst: Air.Inst.Index) !void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else return func.fail("TODO implement airSplat for riscv64", .{});
return func.finishAir(inst, result, .{ ty_op.operand, .none, .none });
}
fn airSelect(func: *Func, inst: Air.Inst.Index) !void {
const pl_op = func.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = func.air.extraData(Air.Bin, pl_op.payload).data;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else return func.fail("TODO implement airSelect for riscv64", .{});
return func.finishAir(inst, result, .{ pl_op.operand, extra.lhs, extra.rhs });
}
fn airShuffleOne(func: *Func, inst: Air.Inst.Index) !void {
_ = inst;
return func.fail("TODO implement airShuffleOne for riscv64", .{});
}
fn airShuffleTwo(func: *Func, inst: Air.Inst.Index) !void {
_ = inst;
return func.fail("TODO implement airShuffleTwo for riscv64", .{});
}
fn airReduce(func: *Func, inst: Air.Inst.Index) !void {
const reduce = func.air.instructions.items(.data)[@intFromEnum(inst)].reduce;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else return func.fail("TODO implement airReduce for riscv64", .{});
return func.finishAir(inst, result, .{ reduce.operand, .none, .none });
}
fn airAggregateInit(func: *Func, inst: Air.Inst.Index) !void {
const pt = func.pt;
const zcu = pt.zcu;
const result_ty = func.typeOfIndex(inst);
const len: usize = @intCast(result_ty.arrayLen(zcu));
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const elements: []const Air.Inst.Ref = @ptrCast(func.air.extra.items[ty_pl.payload..][0..len]);
const result: MCValue = result: {
switch (result_ty.zigTypeTag(zcu)) {
.@"struct" => {
const frame_index = try func.allocFrameIndex(FrameAlloc.initSpill(result_ty, zcu));
if (result_ty.containerLayout(zcu) == .@"packed") {
const struct_obj = zcu.typeToStruct(result_ty).?;
try func.genInlineMemset(
.{ .lea_frame = .{ .index = frame_index } },
.{ .immediate = 0 },
.{ .immediate = result_ty.abiSize(zcu) },
);
for (elements, 0..) |elem, elem_i_usize| {
const elem_i: u32 = @intCast(elem_i_usize);
if ((try result_ty.structFieldValueComptime(pt, elem_i)) != null) continue;
const elem_ty = result_ty.fieldType(elem_i, zcu);
const elem_bit_size: u32 = @intCast(elem_ty.bitSize(zcu));
if (elem_bit_size > 64) {
return func.fail(
"TODO airAggregateInit implement packed structs with large fields",
.{},
);
}
const elem_abi_size: u32 = @intCast(elem_ty.abiSize(zcu));
const elem_abi_bits = elem_abi_size * 8;
const elem_off = pt.structPackedFieldBitOffset(struct_obj, elem_i);
const elem_byte_off: i32 = @intCast(elem_off / elem_abi_bits * elem_abi_size);
const elem_bit_off = elem_off % elem_abi_bits;
const elem_mcv = try func.resolveInst(elem);
_ = elem_byte_off;
_ = elem_bit_off;
const elem_lock = switch (elem_mcv) {
.register => |reg| func.register_manager.lockReg(reg),
.immediate => |imm| lock: {
if (imm == 0) continue;
break :lock null;
},
else => null,
};
defer if (elem_lock) |lock| func.register_manager.unlockReg(lock);
return func.fail("TODO: airAggregateInit packed structs", .{});
}
} else for (elements, 0..) |elem, elem_i| {
if ((try result_ty.structFieldValueComptime(pt, elem_i)) != null) continue;
const elem_ty = result_ty.fieldType(elem_i, zcu);
const elem_off: i32 = @intCast(result_ty.structFieldOffset(elem_i, zcu));
const elem_mcv = try func.resolveInst(elem);
try func.genSetMem(.{ .frame = frame_index }, elem_off, elem_ty, elem_mcv);
}
break :result .{ .load_frame = .{ .index = frame_index } };
},
.array => {
const elem_ty = result_ty.childType(zcu);
const frame_index = try func.allocFrameIndex(FrameAlloc.initSpill(result_ty, zcu));
const elem_size: u32 = @intCast(elem_ty.abiSize(zcu));
for (elements, 0..) |elem, elem_i| {
const elem_mcv = try func.resolveInst(elem);
const elem_off: i32 = @intCast(elem_size * elem_i);
try func.genSetMem(
.{ .frame = frame_index },
elem_off,
elem_ty,
elem_mcv,
);
}
if (result_ty.sentinel(zcu)) |sentinel| try func.genSetMem(
.{ .frame = frame_index },
@intCast(elem_size * elements.len),
elem_ty,
try func.genTypedValue(sentinel),
);
break :result .{ .load_frame = .{ .index = frame_index } };
},
else => return func.fail("TODO: airAggregate {}", .{result_ty.fmt(pt)}),
}
};
if (elements.len <= Air.Liveness.bpi - 1) {
var buf = [1]Air.Inst.Ref{.none} ** (Air.Liveness.bpi - 1);
@memcpy(buf[0..elements.len], elements);
return func.finishAir(inst, result, buf);
}
var bt = func.liveness.iterateBigTomb(inst);
for (elements) |elem| try func.feed(&bt, elem);
return func.finishAirResult(inst, result);
}
fn airUnionInit(func: *Func, inst: Air.Inst.Index) !void {
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.UnionInit, ty_pl.payload).data;
_ = extra;
return func.fail("TODO implement airUnionInit for riscv64", .{});
// return func.finishAir(inst, result, .{ extra.ptr, extra.expected_value, extra.new_value });
}
fn airPrefetch(func: *Func, inst: Air.Inst.Index) !void {
const prefetch = func.air.instructions.items(.data)[@intFromEnum(inst)].prefetch;
// TODO: RISC-V does have prefetch instruction variants.
// see here: https://raw.githubusercontent.com/riscv/riscv-CMOs/master/specifications/cmobase-v1.0.1.pdf
return func.finishAir(inst, .unreach, .{ prefetch.ptr, .none, .none });
}
fn airMulAdd(func: *Func, inst: Air.Inst.Index) !void {
const pl_op = func.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = func.air.extraData(Air.Bin, pl_op.payload).data;
const result: MCValue = if (func.liveness.isUnused(inst)) .unreach else {
return func.fail("TODO implement airMulAdd for riscv64", .{});
};
return func.finishAir(inst, result, .{ extra.lhs, extra.rhs, pl_op.operand });
}
fn resolveInst(func: *Func, ref: Air.Inst.Ref) InnerError!MCValue {
const pt = func.pt;
const zcu = pt.zcu;
// If the type has no codegen bits, no need to store it.
const inst_ty = func.typeOf(ref);
if (!inst_ty.hasRuntimeBits(zcu))
return .none;
const mcv = if (ref.toIndex()) |inst| mcv: {
break :mcv func.inst_tracking.getPtr(inst).?.short;
} else mcv: {
const ip_index = ref.toInterned().?;
const gop = try func.const_tracking.getOrPut(func.gpa, ip_index);
if (!gop.found_existing) gop.value_ptr.* = InstTracking.init(
try func.genTypedValue(Value.fromInterned(ip_index)),
);
break :mcv gop.value_ptr.short;
};
return mcv;
}
fn getResolvedInstValue(func: *Func, inst: Air.Inst.Index) *InstTracking {
const tracking = func.inst_tracking.getPtr(inst).?;
return switch (tracking.short) {
.none, .unreach, .dead => unreachable,
else => tracking,
};
}
fn genTypedValue(func: *Func, val: Value) InnerError!MCValue {
const pt = func.pt;
const lf = func.bin_file;
const src_loc = func.src_loc;
const result: codegen.GenResult = if (val.isUndef(pt.zcu))
switch (try lf.lowerUav(pt, val.toIntern(), .none, src_loc)) {
.sym_index => |sym_index| .{ .mcv = .{ .load_symbol = sym_index } },
.fail => |em| .{ .fail = em },
}
else
try codegen.genTypedValue(lf, pt, src_loc, val, func.target);
const mcv: MCValue = switch (result) {
.mcv => |mcv| switch (mcv) {
.none => .none,
.undef => unreachable,
.lea_symbol => |sym_index| .{ .lea_symbol = .{ .sym = sym_index } },
.load_symbol => |sym_index| .{ .load_symbol = .{ .sym = sym_index } },
.immediate => |imm| .{ .immediate = imm },
.memory => |addr| .{ .memory = addr },
.load_got, .load_direct, .lea_direct => {
return func.fail("TODO: genTypedValue {s}", .{@tagName(mcv)});
},
},
.fail => |msg| return func.failMsg(msg),
};
return mcv;
}
const CallMCValues = struct {
args: []MCValue,
return_value: InstTracking,
stack_byte_count: u31,
stack_align: Alignment,
fn deinit(call: *CallMCValues, func: *Func) void {
func.gpa.free(call.args);
call.* = undefined;
}
};
/// Caller must call `CallMCValues.deinit`.
fn resolveCallingConventionValues(
func: *Func,
fn_info: InternPool.Key.FuncType,
var_args: []const Type,
) !CallMCValues {
const pt = func.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const param_types = try func.gpa.alloc(Type, fn_info.param_types.len + var_args.len);
defer func.gpa.free(param_types);
for (param_types[0..fn_info.param_types.len], fn_info.param_types.get(ip)) |*dest, src| {
dest.* = Type.fromInterned(src);
}
for (param_types[fn_info.param_types.len..], var_args) |*param_ty, arg_ty|
param_ty.* = func.promoteVarArg(arg_ty);
const cc = fn_info.cc;
var result: CallMCValues = .{
.args = try func.gpa.alloc(MCValue, param_types.len),
// These undefined values must be populated before returning from this function.
.return_value = undefined,
.stack_byte_count = 0,
.stack_align = undefined,
};
errdefer func.gpa.free(result.args);
const ret_ty = Type.fromInterned(fn_info.return_type);
switch (cc) {
.naked => {
assert(result.args.len == 0);
result.return_value = InstTracking.init(.unreach);
result.stack_align = .@"8";
},
.riscv64_lp64, .auto => {
if (result.args.len > 8) {
return func.fail("RISC-V calling convention does not support more than 8 arguments", .{});
}
var ret_int_reg_i: u32 = 0;
var param_int_reg_i: u32 = 0;
result.stack_align = .@"16";
// Return values
if (ret_ty.zigTypeTag(zcu) == .noreturn) {
result.return_value = InstTracking.init(.unreach);
} else if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
result.return_value = InstTracking.init(.none);
} else {
var ret_tracking: [2]InstTracking = undefined;
var ret_tracking_i: usize = 0;
var ret_float_reg_i: usize = 0;
const classes = mem.sliceTo(&abi.classifySystem(ret_ty, zcu), .none);
for (classes) |class| switch (class) {
.integer => {
const ret_int_reg = abi.Registers.Integer.function_ret_regs[ret_int_reg_i];
ret_int_reg_i += 1;
ret_tracking[ret_tracking_i] = InstTracking.init(.{ .register = ret_int_reg });
ret_tracking_i += 1;
},
.float => {
const ret_float_reg = abi.Registers.Float.function_ret_regs[ret_float_reg_i];
ret_float_reg_i += 1;
ret_tracking[ret_tracking_i] = InstTracking.init(.{ .register = ret_float_reg });
ret_tracking_i += 1;
},
.memory => {
const ret_int_reg = abi.Registers.Integer.function_ret_regs[ret_int_reg_i];
ret_int_reg_i += 1;
const ret_indirect_reg = abi.Registers.Integer.function_arg_regs[param_int_reg_i];
param_int_reg_i += 1;
ret_tracking[ret_tracking_i] = .{
.short = .{ .indirect = .{ .reg = ret_int_reg } },
.long = .{ .indirect = .{ .reg = ret_indirect_reg } },
};
ret_tracking_i += 1;
},
else => return func.fail("TODO: C calling convention return class {}", .{class}),
};
result.return_value = switch (ret_tracking_i) {
else => return func.fail("ty {} took {} tracking return indices", .{ ret_ty.fmt(pt), ret_tracking_i }),
1 => ret_tracking[0],
2 => InstTracking.init(.{ .register_pair = .{
ret_tracking[0].short.register, ret_tracking[1].short.register,
} }),
};
}
var param_float_reg_i: usize = 0;
for (param_types, result.args) |ty, *arg| {
if (!ty.hasRuntimeBitsIgnoreComptime(zcu)) {
assert(cc == .auto);
arg.* = .none;
continue;
}
var arg_mcv: [2]MCValue = undefined;
var arg_mcv_i: usize = 0;
const classes = mem.sliceTo(&abi.classifySystem(ty, zcu), .none);
for (classes) |class| switch (class) {
.integer => {
const param_int_regs = abi.Registers.Integer.function_arg_regs;
if (param_int_reg_i >= param_int_regs.len) break;
const param_int_reg = param_int_regs[param_int_reg_i];
param_int_reg_i += 1;
arg_mcv[arg_mcv_i] = .{ .register = param_int_reg };
arg_mcv_i += 1;
},
.float => {
const param_float_regs = abi.Registers.Float.function_arg_regs;
if (param_float_reg_i >= param_float_regs.len) break;
const param_float_reg = param_float_regs[param_float_reg_i];
param_float_reg_i += 1;
arg_mcv[arg_mcv_i] = .{ .register = param_float_reg };
arg_mcv_i += 1;
},
.memory => {
const param_int_regs = abi.Registers.Integer.function_arg_regs;
const param_int_reg = param_int_regs[param_int_reg_i];
param_int_reg_i += 1;
arg_mcv[arg_mcv_i] = .{ .indirect = .{ .reg = param_int_reg } };
arg_mcv_i += 1;
},
else => return func.fail("TODO: C calling convention arg class {}", .{class}),
} else {
arg.* = switch (arg_mcv_i) {
else => return func.fail("ty {} took {} tracking arg indices", .{ ty.fmt(pt), arg_mcv_i }),
1 => arg_mcv[0],
2 => .{ .register_pair = .{ arg_mcv[0].register, arg_mcv[1].register } },
};
continue;
}
return func.fail("TODO: pass args by stack", .{});
}
},
else => return func.fail("TODO implement function parameters for {} on riscv64", .{cc}),
}
result.stack_byte_count = @intCast(result.stack_align.forward(result.stack_byte_count));
return result;
}
fn wantSafety(func: *Func) bool {
return switch (func.mod.optimize_mode) {
.Debug => true,
.ReleaseSafe => true,
.ReleaseFast => false,
.ReleaseSmall => false,
};
}
fn fail(func: *const Func, comptime format: []const u8, args: anytype) error{ OutOfMemory, CodegenFail } {
@branchHint(.cold);
const zcu = func.pt.zcu;
switch (func.owner) {
.nav_index => |i| return zcu.codegenFail(i, format, args),
.lazy_sym => |s| return zcu.codegenFailType(s.ty, format, args),
}
return error.CodegenFail;
}
fn failMsg(func: *const Func, msg: *ErrorMsg) error{ OutOfMemory, CodegenFail } {
@branchHint(.cold);
const zcu = func.pt.zcu;
switch (func.owner) {
.nav_index => |i| return zcu.codegenFailMsg(i, msg),
.lazy_sym => |s| return zcu.codegenFailTypeMsg(s.ty, msg),
}
return error.CodegenFail;
}
fn parseRegName(name: []const u8) ?Register {
// The `fp` alias for `s0` is awkward to fit into the current `Register` scheme, so for now we
// special-case it here.
if (std.mem.eql(u8, name, "fp")) return .s0;
return std.meta.stringToEnum(Register, name);
}
fn typeOf(func: *Func, inst: Air.Inst.Ref) Type {
return func.air.typeOf(inst, &func.pt.zcu.intern_pool);
}
fn typeOfIndex(func: *Func, inst: Air.Inst.Index) Type {
const zcu = func.pt.zcu;
return switch (func.air.instructions.items(.tag)[@intFromEnum(inst)]) {
.loop_switch_br => func.typeOf(func.air.unwrapSwitch(inst).operand),
else => func.air.typeOfIndex(inst, &zcu.intern_pool),
};
}
fn hasFeature(func: *Func, feature: Target.riscv.Feature) bool {
return func.target.cpu.has(.riscv, feature);
}
pub fn errUnionPayloadOffset(payload_ty: Type, zcu: *Zcu) u64 {
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) return 0;
const payload_align = payload_ty.abiAlignment(zcu);
const error_align = Type.anyerror.abiAlignment(zcu);
if (payload_align.compare(.gte, error_align) or !payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
return 0;
} else {
return payload_align.forward(Type.anyerror.abiSize(zcu));
}
}
pub fn errUnionErrorOffset(payload_ty: Type, zcu: *Zcu) u64 {
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) return 0;
const payload_align = payload_ty.abiAlignment(zcu);
const error_align = Type.anyerror.abiAlignment(zcu);
if (payload_align.compare(.gte, error_align) and payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
return error_align.forward(payload_ty.abiSize(zcu));
} else {
return 0;
}
}
fn promoteInt(func: *Func, ty: Type) Type {
const pt = func.pt;
const zcu = pt.zcu;
const int_info: InternPool.Key.IntType = switch (ty.toIntern()) {
.bool_type => .{ .signedness = .unsigned, .bits = 1 },
else => if (ty.isAbiInt(zcu)) ty.intInfo(zcu) else return ty,
};
for ([_]Type{
Type.c_int, Type.c_uint,
Type.c_long, Type.c_ulong,
Type.c_longlong, Type.c_ulonglong,
}) |promote_ty| {
const promote_info = promote_ty.intInfo(zcu);
if (int_info.signedness == .signed and promote_info.signedness == .unsigned) continue;
if (int_info.bits + @intFromBool(int_info.signedness == .unsigned and
promote_info.signedness == .signed) <= promote_info.bits) return promote_ty;
}
return ty;
}
fn promoteVarArg(func: *Func, ty: Type) Type {
if (!ty.isRuntimeFloat()) return func.promoteInt(ty);
switch (ty.floatBits(func.target)) {
32, 64 => return Type.f64,
else => |float_bits| {
assert(float_bits == func.target.cTypeBitSize(.longdouble));
return Type.c_longdouble;
},
}
}