zig/lib/std/Build.zig
Andrew Kelley 26196be344 rename std.Build.InstallRawStep to ObjCopyStep
And make it not do any installation, only objcopying. We already have
install steps for doing installation.

This commit also makes ObjCopyStep properly integrate with caching.
2023-02-24 23:48:03 -05:00

1775 lines
60 KiB
Zig

const std = @import("std.zig");
const builtin = @import("builtin");
const io = std.io;
const fs = std.fs;
const mem = std.mem;
const debug = std.debug;
const panic = std.debug.panic;
const assert = debug.assert;
const log = std.log;
const ArrayList = std.ArrayList;
const StringHashMap = std.StringHashMap;
const Allocator = mem.Allocator;
const process = std.process;
const EnvMap = std.process.EnvMap;
const fmt_lib = std.fmt;
const File = std.fs.File;
const CrossTarget = std.zig.CrossTarget;
const NativeTargetInfo = std.zig.system.NativeTargetInfo;
const Sha256 = std.crypto.hash.sha2.Sha256;
const Build = @This();
pub const Cache = @import("Build/Cache.zig");
/// deprecated: use `CompileStep`.
pub const LibExeObjStep = CompileStep;
/// deprecated: use `Build`.
pub const Builder = Build;
/// deprecated: use `InstallDirStep.Options`
pub const InstallDirectoryOptions = InstallDirStep.Options;
pub const Step = @import("Build/Step.zig");
pub const CheckFileStep = @import("Build/CheckFileStep.zig");
pub const CheckObjectStep = @import("Build/CheckObjectStep.zig");
pub const ConfigHeaderStep = @import("Build/ConfigHeaderStep.zig");
pub const EmulatableRunStep = @import("Build/EmulatableRunStep.zig");
pub const FmtStep = @import("Build/FmtStep.zig");
pub const InstallArtifactStep = @import("Build/InstallArtifactStep.zig");
pub const InstallDirStep = @import("Build/InstallDirStep.zig");
pub const InstallFileStep = @import("Build/InstallFileStep.zig");
pub const ObjCopyStep = @import("Build/ObjCopyStep.zig");
pub const CompileStep = @import("Build/CompileStep.zig");
pub const LogStep = @import("Build/LogStep.zig");
pub const OptionsStep = @import("Build/OptionsStep.zig");
pub const RemoveDirStep = @import("Build/RemoveDirStep.zig");
pub const RunStep = @import("Build/RunStep.zig");
pub const TranslateCStep = @import("Build/TranslateCStep.zig");
pub const WriteFileStep = @import("Build/WriteFileStep.zig");
install_tls: TopLevelStep,
uninstall_tls: TopLevelStep,
allocator: Allocator,
user_input_options: UserInputOptionsMap,
available_options_map: AvailableOptionsMap,
available_options_list: ArrayList(AvailableOption),
verbose: bool,
verbose_link: bool,
verbose_cc: bool,
verbose_air: bool,
verbose_llvm_ir: bool,
verbose_cimport: bool,
verbose_llvm_cpu_features: bool,
/// The purpose of executing the command is for a human to read compile errors from the terminal
prominent_compile_errors: bool,
color: enum { auto, on, off } = .auto,
reference_trace: ?u32 = null,
invalid_user_input: bool,
zig_exe: []const u8,
default_step: *Step,
env_map: *EnvMap,
top_level_steps: ArrayList(*TopLevelStep),
install_prefix: []const u8,
dest_dir: ?[]const u8,
lib_dir: []const u8,
exe_dir: []const u8,
h_dir: []const u8,
install_path: []const u8,
sysroot: ?[]const u8 = null,
search_prefixes: ArrayList([]const u8),
libc_file: ?[]const u8 = null,
installed_files: ArrayList(InstalledFile),
/// Path to the directory containing build.zig.
build_root: Cache.Directory,
cache_root: Cache.Directory,
global_cache_root: Cache.Directory,
cache: *Cache,
/// If non-null, overrides the default zig lib dir.
zig_lib_dir: ?[]const u8,
vcpkg_root: VcpkgRoot = .unattempted,
pkg_config_pkg_list: ?(PkgConfigError![]const PkgConfigPkg) = null,
args: ?[][]const u8 = null,
debug_log_scopes: []const []const u8 = &.{},
debug_compile_errors: bool = false,
/// Experimental. Use system Darling installation to run cross compiled macOS build artifacts.
enable_darling: bool = false,
/// Use system QEMU installation to run cross compiled foreign architecture build artifacts.
enable_qemu: bool = false,
/// Darwin. Use Rosetta to run x86_64 macOS build artifacts on arm64 macOS.
enable_rosetta: bool = false,
/// Use system Wasmtime installation to run cross compiled wasm/wasi build artifacts.
enable_wasmtime: bool = false,
/// Use system Wine installation to run cross compiled Windows build artifacts.
enable_wine: bool = false,
/// After following the steps in https://github.com/ziglang/zig/wiki/Updating-libc#glibc,
/// this will be the directory $glibc-build-dir/install/glibcs
/// Given the example of the aarch64 target, this is the directory
/// that contains the path `aarch64-linux-gnu/lib/ld-linux-aarch64.so.1`.
glibc_runtimes_dir: ?[]const u8 = null,
/// Information about the native target. Computed before build() is invoked.
host: NativeTargetInfo,
dep_prefix: []const u8 = "",
modules: std.StringArrayHashMap(*Module),
pub const ExecError = error{
ReadFailure,
ExitCodeFailure,
ProcessTerminated,
ExecNotSupported,
} || std.ChildProcess.SpawnError;
pub const PkgConfigError = error{
PkgConfigCrashed,
PkgConfigFailed,
PkgConfigNotInstalled,
PkgConfigInvalidOutput,
};
pub const PkgConfigPkg = struct {
name: []const u8,
desc: []const u8,
};
pub const CStd = enum {
C89,
C99,
C11,
};
const UserInputOptionsMap = StringHashMap(UserInputOption);
const AvailableOptionsMap = StringHashMap(AvailableOption);
const AvailableOption = struct {
name: []const u8,
type_id: TypeId,
description: []const u8,
/// If the `type_id` is `enum` this provides the list of enum options
enum_options: ?[]const []const u8,
};
const UserInputOption = struct {
name: []const u8,
value: UserValue,
used: bool,
};
const UserValue = union(enum) {
flag: void,
scalar: []const u8,
list: ArrayList([]const u8),
map: StringHashMap(*const UserValue),
};
const TypeId = enum {
bool,
int,
float,
@"enum",
string,
list,
};
const TopLevelStep = struct {
pub const base_id = .top_level;
step: Step,
description: []const u8,
};
pub const DirList = struct {
lib_dir: ?[]const u8 = null,
exe_dir: ?[]const u8 = null,
include_dir: ?[]const u8 = null,
};
pub fn create(
allocator: Allocator,
zig_exe: []const u8,
build_root: Cache.Directory,
cache_root: Cache.Directory,
global_cache_root: Cache.Directory,
host: NativeTargetInfo,
cache: *Cache,
) !*Build {
const env_map = try allocator.create(EnvMap);
env_map.* = try process.getEnvMap(allocator);
const self = try allocator.create(Build);
self.* = Build{
.zig_exe = zig_exe,
.build_root = build_root,
.cache_root = cache_root,
.global_cache_root = global_cache_root,
.cache = cache,
.verbose = false,
.verbose_link = false,
.verbose_cc = false,
.verbose_air = false,
.verbose_llvm_ir = false,
.verbose_cimport = false,
.verbose_llvm_cpu_features = false,
.prominent_compile_errors = false,
.invalid_user_input = false,
.allocator = allocator,
.user_input_options = UserInputOptionsMap.init(allocator),
.available_options_map = AvailableOptionsMap.init(allocator),
.available_options_list = ArrayList(AvailableOption).init(allocator),
.top_level_steps = ArrayList(*TopLevelStep).init(allocator),
.default_step = undefined,
.env_map = env_map,
.search_prefixes = ArrayList([]const u8).init(allocator),
.install_prefix = undefined,
.lib_dir = undefined,
.exe_dir = undefined,
.h_dir = undefined,
.dest_dir = env_map.get("DESTDIR"),
.installed_files = ArrayList(InstalledFile).init(allocator),
.install_tls = TopLevelStep{
.step = Step.initNoOp(.top_level, "install", allocator),
.description = "Copy build artifacts to prefix path",
},
.uninstall_tls = TopLevelStep{
.step = Step.init(.top_level, "uninstall", allocator, makeUninstall),
.description = "Remove build artifacts from prefix path",
},
.zig_lib_dir = null,
.install_path = undefined,
.args = null,
.host = host,
.modules = std.StringArrayHashMap(*Module).init(allocator),
};
try self.top_level_steps.append(&self.install_tls);
try self.top_level_steps.append(&self.uninstall_tls);
self.default_step = &self.install_tls.step;
return self;
}
fn createChild(
parent: *Build,
dep_name: []const u8,
build_root: Cache.Directory,
args: anytype,
) !*Build {
const child = try createChildOnly(parent, dep_name, build_root);
try applyArgs(child, args);
return child;
}
fn createChildOnly(parent: *Build, dep_name: []const u8, build_root: Cache.Directory) !*Build {
const allocator = parent.allocator;
const child = try allocator.create(Build);
child.* = .{
.allocator = allocator,
.install_tls = .{
.step = Step.initNoOp(.top_level, "install", allocator),
.description = "Copy build artifacts to prefix path",
},
.uninstall_tls = .{
.step = Step.init(.top_level, "uninstall", allocator, makeUninstall),
.description = "Remove build artifacts from prefix path",
},
.user_input_options = UserInputOptionsMap.init(allocator),
.available_options_map = AvailableOptionsMap.init(allocator),
.available_options_list = ArrayList(AvailableOption).init(allocator),
.verbose = parent.verbose,
.verbose_link = parent.verbose_link,
.verbose_cc = parent.verbose_cc,
.verbose_air = parent.verbose_air,
.verbose_llvm_ir = parent.verbose_llvm_ir,
.verbose_cimport = parent.verbose_cimport,
.verbose_llvm_cpu_features = parent.verbose_llvm_cpu_features,
.prominent_compile_errors = parent.prominent_compile_errors,
.color = parent.color,
.reference_trace = parent.reference_trace,
.invalid_user_input = false,
.zig_exe = parent.zig_exe,
.default_step = undefined,
.env_map = parent.env_map,
.top_level_steps = ArrayList(*TopLevelStep).init(allocator),
.install_prefix = undefined,
.dest_dir = parent.dest_dir,
.lib_dir = parent.lib_dir,
.exe_dir = parent.exe_dir,
.h_dir = parent.h_dir,
.install_path = parent.install_path,
.sysroot = parent.sysroot,
.search_prefixes = ArrayList([]const u8).init(allocator),
.libc_file = parent.libc_file,
.installed_files = ArrayList(InstalledFile).init(allocator),
.build_root = build_root,
.cache_root = parent.cache_root,
.global_cache_root = parent.global_cache_root,
.cache = parent.cache,
.zig_lib_dir = parent.zig_lib_dir,
.debug_log_scopes = parent.debug_log_scopes,
.debug_compile_errors = parent.debug_compile_errors,
.enable_darling = parent.enable_darling,
.enable_qemu = parent.enable_qemu,
.enable_rosetta = parent.enable_rosetta,
.enable_wasmtime = parent.enable_wasmtime,
.enable_wine = parent.enable_wine,
.glibc_runtimes_dir = parent.glibc_runtimes_dir,
.host = parent.host,
.dep_prefix = parent.fmt("{s}{s}.", .{ parent.dep_prefix, dep_name }),
.modules = std.StringArrayHashMap(*Module).init(allocator),
};
try child.top_level_steps.append(&child.install_tls);
try child.top_level_steps.append(&child.uninstall_tls);
child.default_step = &child.install_tls.step;
return child;
}
fn applyArgs(b: *Build, args: anytype) !void {
inline for (@typeInfo(@TypeOf(args)).Struct.fields) |field| {
const v = @field(args, field.name);
const T = @TypeOf(v);
switch (T) {
CrossTarget => {
try b.user_input_options.put(field.name, .{
.name = field.name,
.value = .{ .scalar = try v.zigTriple(b.allocator) },
.used = false,
});
try b.user_input_options.put("cpu", .{
.name = "cpu",
.value = .{ .scalar = try serializeCpu(b.allocator, v.getCpu()) },
.used = false,
});
},
[]const u8 => {
try b.user_input_options.put(field.name, .{
.name = field.name,
.value = .{ .scalar = v },
.used = false,
});
},
else => switch (@typeInfo(T)) {
.Bool => {
try b.user_input_options.put(field.name, .{
.name = field.name,
.value = .{ .scalar = if (v) "true" else "false" },
.used = false,
});
},
.Enum, .EnumLiteral => {
try b.user_input_options.put(field.name, .{
.name = field.name,
.value = .{ .scalar = @tagName(v) },
.used = false,
});
},
.Int => {
try b.user_input_options.put(field.name, .{
.name = field.name,
.value = .{ .scalar = try std.fmt.allocPrint(b.allocator, "{d}", .{v}) },
.used = false,
});
},
else => @compileError("option '" ++ field.name ++ "' has unsupported type: " ++ @typeName(T)),
},
}
}
const Hasher = std.crypto.auth.siphash.SipHash128(1, 3);
// Random bytes to make unique. Refresh this with new random bytes when
// implementation is modified in a non-backwards-compatible way.
var hash = Hasher.init("ZaEsvQ5ClaA2IdH9");
hash.update(b.dep_prefix);
// TODO additionally update the hash with `args`.
var digest: [16]u8 = undefined;
hash.final(&digest);
var hash_basename: [digest.len * 2]u8 = undefined;
_ = std.fmt.bufPrint(&hash_basename, "{s}", .{std.fmt.fmtSliceHexLower(&digest)}) catch
unreachable;
const install_prefix = try b.cache_root.join(b.allocator, &.{ "i", &hash_basename });
b.resolveInstallPrefix(install_prefix, .{});
}
pub fn destroy(self: *Build) void {
self.env_map.deinit();
self.top_level_steps.deinit();
self.allocator.destroy(self);
}
/// This function is intended to be called by lib/build_runner.zig, not a build.zig file.
pub fn resolveInstallPrefix(self: *Build, install_prefix: ?[]const u8, dir_list: DirList) void {
if (self.dest_dir) |dest_dir| {
self.install_prefix = install_prefix orelse "/usr";
self.install_path = self.pathJoin(&.{ dest_dir, self.install_prefix });
} else {
self.install_prefix = install_prefix orelse
(self.build_root.join(self.allocator, &.{"zig-out"}) catch @panic("unhandled error"));
self.install_path = self.install_prefix;
}
var lib_list = [_][]const u8{ self.install_path, "lib" };
var exe_list = [_][]const u8{ self.install_path, "bin" };
var h_list = [_][]const u8{ self.install_path, "include" };
if (dir_list.lib_dir) |dir| {
if (std.fs.path.isAbsolute(dir)) lib_list[0] = self.dest_dir orelse "";
lib_list[1] = dir;
}
if (dir_list.exe_dir) |dir| {
if (std.fs.path.isAbsolute(dir)) exe_list[0] = self.dest_dir orelse "";
exe_list[1] = dir;
}
if (dir_list.include_dir) |dir| {
if (std.fs.path.isAbsolute(dir)) h_list[0] = self.dest_dir orelse "";
h_list[1] = dir;
}
self.lib_dir = self.pathJoin(&lib_list);
self.exe_dir = self.pathJoin(&exe_list);
self.h_dir = self.pathJoin(&h_list);
}
pub fn addOptions(self: *Build) *OptionsStep {
return OptionsStep.create(self);
}
pub const ExecutableOptions = struct {
name: []const u8,
root_source_file: ?FileSource = null,
version: ?std.builtin.Version = null,
target: CrossTarget = .{},
optimize: std.builtin.Mode = .Debug,
linkage: ?CompileStep.Linkage = null,
};
pub fn addExecutable(b: *Build, options: ExecutableOptions) *CompileStep {
return CompileStep.create(b, .{
.name = options.name,
.root_source_file = options.root_source_file,
.version = options.version,
.target = options.target,
.optimize = options.optimize,
.kind = .exe,
.linkage = options.linkage,
});
}
pub const ObjectOptions = struct {
name: []const u8,
root_source_file: ?FileSource = null,
target: CrossTarget,
optimize: std.builtin.Mode,
};
pub fn addObject(b: *Build, options: ObjectOptions) *CompileStep {
return CompileStep.create(b, .{
.name = options.name,
.root_source_file = options.root_source_file,
.target = options.target,
.optimize = options.optimize,
.kind = .obj,
});
}
pub const SharedLibraryOptions = struct {
name: []const u8,
root_source_file: ?FileSource = null,
version: ?std.builtin.Version = null,
target: CrossTarget,
optimize: std.builtin.Mode,
};
pub fn addSharedLibrary(b: *Build, options: SharedLibraryOptions) *CompileStep {
return CompileStep.create(b, .{
.name = options.name,
.root_source_file = options.root_source_file,
.kind = .lib,
.linkage = .dynamic,
.version = options.version,
.target = options.target,
.optimize = options.optimize,
});
}
pub const StaticLibraryOptions = struct {
name: []const u8,
root_source_file: ?FileSource = null,
target: CrossTarget,
optimize: std.builtin.Mode,
version: ?std.builtin.Version = null,
};
pub fn addStaticLibrary(b: *Build, options: StaticLibraryOptions) *CompileStep {
return CompileStep.create(b, .{
.name = options.name,
.root_source_file = options.root_source_file,
.kind = .lib,
.linkage = .static,
.version = options.version,
.target = options.target,
.optimize = options.optimize,
});
}
pub const TestOptions = struct {
name: []const u8 = "test",
kind: CompileStep.Kind = .@"test",
root_source_file: FileSource,
target: CrossTarget = .{},
optimize: std.builtin.Mode = .Debug,
version: ?std.builtin.Version = null,
};
pub fn addTest(b: *Build, options: TestOptions) *CompileStep {
return CompileStep.create(b, .{
.name = options.name,
.kind = options.kind,
.root_source_file = options.root_source_file,
.target = options.target,
.optimize = options.optimize,
});
}
pub const AssemblyOptions = struct {
name: []const u8,
source_file: FileSource,
target: CrossTarget,
optimize: std.builtin.Mode,
};
pub fn addAssembly(b: *Build, options: AssemblyOptions) *CompileStep {
const obj_step = CompileStep.create(b, .{
.name = options.name,
.kind = .obj,
.root_source_file = null,
.target = options.target,
.optimize = options.optimize,
});
obj_step.addAssemblyFileSource(options.source_file.dupe(b));
return obj_step;
}
pub const AddModuleOptions = struct {
name: []const u8,
source_file: FileSource,
dependencies: []const ModuleDependency = &.{},
};
pub fn addModule(b: *Build, options: AddModuleOptions) void {
b.modules.put(b.dupe(options.name), b.createModule(.{
.source_file = options.source_file,
.dependencies = options.dependencies,
})) catch @panic("OOM");
}
pub const ModuleDependency = struct {
name: []const u8,
module: *Module,
};
pub const CreateModuleOptions = struct {
source_file: FileSource,
dependencies: []const ModuleDependency = &.{},
};
/// Prefer to use `addModule` which will make the module available to other
/// packages which depend on this package.
pub fn createModule(b: *Build, options: CreateModuleOptions) *Module {
const module = b.allocator.create(Module) catch @panic("OOM");
module.* = .{
.builder = b,
.source_file = options.source_file,
.dependencies = moduleDependenciesToArrayHashMap(b.allocator, options.dependencies),
};
return module;
}
fn moduleDependenciesToArrayHashMap(arena: Allocator, deps: []const ModuleDependency) std.StringArrayHashMap(*Module) {
var result = std.StringArrayHashMap(*Module).init(arena);
for (deps) |dep| {
result.put(dep.name, dep.module) catch @panic("OOM");
}
return result;
}
/// Initializes a RunStep with argv, which must at least have the path to the
/// executable. More command line arguments can be added with `addArg`,
/// `addArgs`, and `addArtifactArg`.
/// Be careful using this function, as it introduces a system dependency.
/// To run an executable built with zig build, see `CompileStep.run`.
pub fn addSystemCommand(self: *Build, argv: []const []const u8) *RunStep {
assert(argv.len >= 1);
const run_step = RunStep.create(self, self.fmt("run {s}", .{argv[0]}));
run_step.addArgs(argv);
return run_step;
}
/// Creates a `RunStep` with an executable built with `addExecutable`.
/// Add command line arguments with methods of `RunStep`.
pub fn addRunArtifact(b: *Build, exe: *CompileStep) *RunStep {
assert(exe.kind == .exe or exe.kind == .test_exe);
// It doesn't have to be native. We catch that if you actually try to run it.
// Consider that this is declarative; the run step may not be run unless a user
// option is supplied.
const run_step = RunStep.create(b, b.fmt("run {s}", .{exe.step.name}));
run_step.addArtifactArg(exe);
if (exe.kind == .test_exe) {
run_step.addArg(b.zig_exe);
}
if (exe.vcpkg_bin_path) |path| {
run_step.addPathDir(path);
}
return run_step;
}
/// Using the `values` provided, produces a C header file, possibly based on a
/// template input file (e.g. config.h.in).
/// When an input template file is provided, this function will fail the build
/// when an option not found in the input file is provided in `values`, and
/// when an option found in the input file is missing from `values`.
pub fn addConfigHeader(
b: *Build,
options: ConfigHeaderStep.Options,
values: anytype,
) *ConfigHeaderStep {
const config_header_step = ConfigHeaderStep.create(b, options);
config_header_step.addValues(values);
return config_header_step;
}
/// Allocator.dupe without the need to handle out of memory.
pub fn dupe(self: *Build, bytes: []const u8) []u8 {
return self.allocator.dupe(u8, bytes) catch @panic("OOM");
}
/// Duplicates an array of strings without the need to handle out of memory.
pub fn dupeStrings(self: *Build, strings: []const []const u8) [][]u8 {
const array = self.allocator.alloc([]u8, strings.len) catch @panic("OOM");
for (strings, 0..) |s, i| {
array[i] = self.dupe(s);
}
return array;
}
/// Duplicates a path and converts all slashes to the OS's canonical path separator.
pub fn dupePath(self: *Build, bytes: []const u8) []u8 {
const the_copy = self.dupe(bytes);
for (the_copy) |*byte| {
switch (byte.*) {
'/', '\\' => byte.* = fs.path.sep,
else => {},
}
}
return the_copy;
}
pub fn addWriteFile(self: *Build, file_path: []const u8, data: []const u8) *WriteFileStep {
const write_file_step = self.addWriteFiles();
write_file_step.add(file_path, data);
return write_file_step;
}
pub fn addWriteFiles(self: *Build) *WriteFileStep {
const write_file_step = self.allocator.create(WriteFileStep) catch @panic("OOM");
write_file_step.* = WriteFileStep.init(self);
return write_file_step;
}
pub fn addLog(self: *Build, comptime format: []const u8, args: anytype) *LogStep {
const data = self.fmt(format, args);
const log_step = self.allocator.create(LogStep) catch @panic("OOM");
log_step.* = LogStep.init(self, data);
return log_step;
}
pub fn addRemoveDirTree(self: *Build, dir_path: []const u8) *RemoveDirStep {
const remove_dir_step = self.allocator.create(RemoveDirStep) catch @panic("OOM");
remove_dir_step.* = RemoveDirStep.init(self, dir_path);
return remove_dir_step;
}
pub fn addFmt(self: *Build, paths: []const []const u8) *FmtStep {
return FmtStep.create(self, paths);
}
pub fn addTranslateC(self: *Build, options: TranslateCStep.Options) *TranslateCStep {
return TranslateCStep.create(self, options);
}
pub fn make(self: *Build, step_names: []const []const u8) !void {
var wanted_steps = ArrayList(*Step).init(self.allocator);
defer wanted_steps.deinit();
if (step_names.len == 0) {
try wanted_steps.append(self.default_step);
} else {
for (step_names) |step_name| {
const s = try self.getTopLevelStepByName(step_name);
try wanted_steps.append(s);
}
}
for (wanted_steps.items) |s| {
try self.makeOneStep(s);
}
}
pub fn getInstallStep(self: *Build) *Step {
return &self.install_tls.step;
}
pub fn getUninstallStep(self: *Build) *Step {
return &self.uninstall_tls.step;
}
fn makeUninstall(uninstall_step: *Step) anyerror!void {
const uninstall_tls = @fieldParentPtr(TopLevelStep, "step", uninstall_step);
const self = @fieldParentPtr(Build, "uninstall_tls", uninstall_tls);
for (self.installed_files.items) |installed_file| {
const full_path = self.getInstallPath(installed_file.dir, installed_file.path);
if (self.verbose) {
log.info("rm {s}", .{full_path});
}
fs.cwd().deleteTree(full_path) catch {};
}
// TODO remove empty directories
}
fn makeOneStep(self: *Build, s: *Step) anyerror!void {
if (s.loop_flag) {
log.err("Dependency loop detected:\n {s}", .{s.name});
return error.DependencyLoopDetected;
}
s.loop_flag = true;
for (s.dependencies.items) |dep| {
self.makeOneStep(dep) catch |err| {
if (err == error.DependencyLoopDetected) {
log.err(" {s}", .{s.name});
}
return err;
};
}
s.loop_flag = false;
try s.make();
}
fn getTopLevelStepByName(self: *Build, name: []const u8) !*Step {
for (self.top_level_steps.items) |top_level_step| {
if (mem.eql(u8, top_level_step.step.name, name)) {
return &top_level_step.step;
}
}
log.err("Cannot run step '{s}' because it does not exist", .{name});
return error.InvalidStepName;
}
pub fn option(self: *Build, comptime T: type, name_raw: []const u8, description_raw: []const u8) ?T {
const name = self.dupe(name_raw);
const description = self.dupe(description_raw);
const type_id = comptime typeToEnum(T);
const enum_options = if (type_id == .@"enum") blk: {
const fields = comptime std.meta.fields(T);
var options = ArrayList([]const u8).initCapacity(self.allocator, fields.len) catch @panic("OOM");
inline for (fields) |field| {
options.appendAssumeCapacity(field.name);
}
break :blk options.toOwnedSlice() catch @panic("OOM");
} else null;
const available_option = AvailableOption{
.name = name,
.type_id = type_id,
.description = description,
.enum_options = enum_options,
};
if ((self.available_options_map.fetchPut(name, available_option) catch @panic("OOM")) != null) {
panic("Option '{s}' declared twice", .{name});
}
self.available_options_list.append(available_option) catch @panic("OOM");
const option_ptr = self.user_input_options.getPtr(name) orelse return null;
option_ptr.used = true;
switch (type_id) {
.bool => switch (option_ptr.value) {
.flag => return true,
.scalar => |s| {
if (mem.eql(u8, s, "true")) {
return true;
} else if (mem.eql(u8, s, "false")) {
return false;
} else {
log.err("Expected -D{s} to be a boolean, but received '{s}'\n", .{ name, s });
self.markInvalidUserInput();
return null;
}
},
.list, .map => {
log.err("Expected -D{s} to be a boolean, but received a {s}.\n", .{
name, @tagName(option_ptr.value),
});
self.markInvalidUserInput();
return null;
},
},
.int => switch (option_ptr.value) {
.flag, .list, .map => {
log.err("Expected -D{s} to be an integer, but received a {s}.\n", .{
name, @tagName(option_ptr.value),
});
self.markInvalidUserInput();
return null;
},
.scalar => |s| {
const n = std.fmt.parseInt(T, s, 10) catch |err| switch (err) {
error.Overflow => {
log.err("-D{s} value {s} cannot fit into type {s}.\n", .{ name, s, @typeName(T) });
self.markInvalidUserInput();
return null;
},
else => {
log.err("Expected -D{s} to be an integer of type {s}.\n", .{ name, @typeName(T) });
self.markInvalidUserInput();
return null;
},
};
return n;
},
},
.float => switch (option_ptr.value) {
.flag, .map, .list => {
log.err("Expected -D{s} to be a float, but received a {s}.\n", .{
name, @tagName(option_ptr.value),
});
self.markInvalidUserInput();
return null;
},
.scalar => |s| {
const n = std.fmt.parseFloat(T, s) catch {
log.err("Expected -D{s} to be a float of type {s}.\n", .{ name, @typeName(T) });
self.markInvalidUserInput();
return null;
};
return n;
},
},
.@"enum" => switch (option_ptr.value) {
.flag, .map, .list => {
log.err("Expected -D{s} to be an enum, but received a {s}.\n", .{
name, @tagName(option_ptr.value),
});
self.markInvalidUserInput();
return null;
},
.scalar => |s| {
if (std.meta.stringToEnum(T, s)) |enum_lit| {
return enum_lit;
} else {
log.err("Expected -D{s} to be of type {s}.\n", .{ name, @typeName(T) });
self.markInvalidUserInput();
return null;
}
},
},
.string => switch (option_ptr.value) {
.flag, .list, .map => {
log.err("Expected -D{s} to be a string, but received a {s}.\n", .{
name, @tagName(option_ptr.value),
});
self.markInvalidUserInput();
return null;
},
.scalar => |s| return s,
},
.list => switch (option_ptr.value) {
.flag, .map => {
log.err("Expected -D{s} to be a list, but received a {s}.\n", .{
name, @tagName(option_ptr.value),
});
self.markInvalidUserInput();
return null;
},
.scalar => |s| {
return self.allocator.dupe([]const u8, &[_][]const u8{s}) catch @panic("OOM");
},
.list => |lst| return lst.items,
},
}
}
pub fn step(self: *Build, name: []const u8, description: []const u8) *Step {
const step_info = self.allocator.create(TopLevelStep) catch @panic("OOM");
step_info.* = TopLevelStep{
.step = Step.initNoOp(.top_level, name, self.allocator),
.description = self.dupe(description),
};
self.top_level_steps.append(step_info) catch @panic("OOM");
return &step_info.step;
}
pub const StandardOptimizeOptionOptions = struct {
preferred_optimize_mode: ?std.builtin.Mode = null,
};
pub fn standardOptimizeOption(self: *Build, options: StandardOptimizeOptionOptions) std.builtin.Mode {
if (options.preferred_optimize_mode) |mode| {
if (self.option(bool, "release", "optimize for end users") orelse false) {
return mode;
} else {
return .Debug;
}
} else {
return self.option(
std.builtin.Mode,
"optimize",
"Prioritize performance, safety, or binary size (-O flag)",
) orelse .Debug;
}
}
pub const StandardTargetOptionsArgs = struct {
whitelist: ?[]const CrossTarget = null,
default_target: CrossTarget = CrossTarget{},
};
/// Exposes standard `zig build` options for choosing a target.
pub fn standardTargetOptions(self: *Build, args: StandardTargetOptionsArgs) CrossTarget {
const maybe_triple = self.option(
[]const u8,
"target",
"The CPU architecture, OS, and ABI to build for",
);
const mcpu = self.option([]const u8, "cpu", "Target CPU features to add or subtract");
if (maybe_triple == null and mcpu == null) {
return args.default_target;
}
const triple = maybe_triple orelse "native";
var diags: CrossTarget.ParseOptions.Diagnostics = .{};
const selected_target = CrossTarget.parse(.{
.arch_os_abi = triple,
.cpu_features = mcpu,
.diagnostics = &diags,
}) catch |err| switch (err) {
error.UnknownCpuModel => {
log.err("Unknown CPU: '{s}'\nAvailable CPUs for architecture '{s}':", .{
diags.cpu_name.?,
@tagName(diags.arch.?),
});
for (diags.arch.?.allCpuModels()) |cpu| {
log.err(" {s}", .{cpu.name});
}
self.markInvalidUserInput();
return args.default_target;
},
error.UnknownCpuFeature => {
log.err(
\\Unknown CPU feature: '{s}'
\\Available CPU features for architecture '{s}':
\\
, .{
diags.unknown_feature_name.?,
@tagName(diags.arch.?),
});
for (diags.arch.?.allFeaturesList()) |feature| {
log.err(" {s}: {s}", .{ feature.name, feature.description });
}
self.markInvalidUserInput();
return args.default_target;
},
error.UnknownOperatingSystem => {
log.err(
\\Unknown OS: '{s}'
\\Available operating systems:
\\
, .{diags.os_name.?});
inline for (std.meta.fields(std.Target.Os.Tag)) |field| {
log.err(" {s}", .{field.name});
}
self.markInvalidUserInput();
return args.default_target;
},
else => |e| {
log.err("Unable to parse target '{s}': {s}\n", .{ triple, @errorName(e) });
self.markInvalidUserInput();
return args.default_target;
},
};
const selected_canonicalized_triple = selected_target.zigTriple(self.allocator) catch @panic("OOM");
if (args.whitelist) |list| whitelist_check: {
// Make sure it's a match of one of the list.
var mismatch_triple = true;
var mismatch_cpu_features = true;
var whitelist_item = CrossTarget{};
for (list) |t| {
mismatch_cpu_features = true;
mismatch_triple = true;
const t_triple = t.zigTriple(self.allocator) catch @panic("OOM");
if (mem.eql(u8, t_triple, selected_canonicalized_triple)) {
mismatch_triple = false;
whitelist_item = t;
if (t.getCpuFeatures().isSuperSetOf(selected_target.getCpuFeatures())) {
mismatch_cpu_features = false;
break :whitelist_check;
} else {
break;
}
}
}
if (mismatch_triple) {
log.err("Chosen target '{s}' does not match one of the supported targets:", .{
selected_canonicalized_triple,
});
for (list) |t| {
const t_triple = t.zigTriple(self.allocator) catch @panic("OOM");
log.err(" {s}", .{t_triple});
}
} else {
assert(mismatch_cpu_features);
const whitelist_cpu = whitelist_item.getCpu();
const selected_cpu = selected_target.getCpu();
log.err("Chosen CPU model '{s}' does not match one of the supported targets:", .{
selected_cpu.model.name,
});
log.err(" Supported feature Set: ", .{});
const all_features = whitelist_cpu.arch.allFeaturesList();
var populated_cpu_features = whitelist_cpu.model.features;
populated_cpu_features.populateDependencies(all_features);
for (all_features, 0..) |feature, i_usize| {
const i = @intCast(std.Target.Cpu.Feature.Set.Index, i_usize);
const in_cpu_set = populated_cpu_features.isEnabled(i);
if (in_cpu_set) {
log.err("{s} ", .{feature.name});
}
}
log.err(" Remove: ", .{});
for (all_features, 0..) |feature, i_usize| {
const i = @intCast(std.Target.Cpu.Feature.Set.Index, i_usize);
const in_cpu_set = populated_cpu_features.isEnabled(i);
const in_actual_set = selected_cpu.features.isEnabled(i);
if (in_actual_set and !in_cpu_set) {
log.err("{s} ", .{feature.name});
}
}
}
self.markInvalidUserInput();
return args.default_target;
}
return selected_target;
}
pub fn addUserInputOption(self: *Build, name_raw: []const u8, value_raw: []const u8) !bool {
const name = self.dupe(name_raw);
const value = self.dupe(value_raw);
const gop = try self.user_input_options.getOrPut(name);
if (!gop.found_existing) {
gop.value_ptr.* = UserInputOption{
.name = name,
.value = .{ .scalar = value },
.used = false,
};
return false;
}
// option already exists
switch (gop.value_ptr.value) {
.scalar => |s| {
// turn it into a list
var list = ArrayList([]const u8).init(self.allocator);
try list.append(s);
try list.append(value);
try self.user_input_options.put(name, .{
.name = name,
.value = .{ .list = list },
.used = false,
});
},
.list => |*list| {
// append to the list
try list.append(value);
try self.user_input_options.put(name, .{
.name = name,
.value = .{ .list = list.* },
.used = false,
});
},
.flag => {
log.warn("Option '-D{s}={s}' conflicts with flag '-D{s}'.", .{ name, value, name });
return true;
},
.map => |*map| {
_ = map;
log.warn("TODO maps as command line arguments is not implemented yet.", .{});
return true;
},
}
return false;
}
pub fn addUserInputFlag(self: *Build, name_raw: []const u8) !bool {
const name = self.dupe(name_raw);
const gop = try self.user_input_options.getOrPut(name);
if (!gop.found_existing) {
gop.value_ptr.* = .{
.name = name,
.value = .{ .flag = {} },
.used = false,
};
return false;
}
// option already exists
switch (gop.value_ptr.value) {
.scalar => |s| {
log.err("Flag '-D{s}' conflicts with option '-D{s}={s}'.", .{ name, name, s });
return true;
},
.list, .map => {
log.err("Flag '-D{s}' conflicts with multiple options of the same name.", .{name});
return true;
},
.flag => {},
}
return false;
}
fn typeToEnum(comptime T: type) TypeId {
return switch (@typeInfo(T)) {
.Int => .int,
.Float => .float,
.Bool => .bool,
.Enum => .@"enum",
else => switch (T) {
[]const u8 => .string,
[]const []const u8 => .list,
else => @compileError("Unsupported type: " ++ @typeName(T)),
},
};
}
fn markInvalidUserInput(self: *Build) void {
self.invalid_user_input = true;
}
pub fn validateUserInputDidItFail(self: *Build) bool {
// make sure all args are used
var it = self.user_input_options.iterator();
while (it.next()) |entry| {
if (!entry.value_ptr.used) {
log.err("Invalid option: -D{s}", .{entry.key_ptr.*});
self.markInvalidUserInput();
}
}
return self.invalid_user_input;
}
pub fn spawnChild(self: *Build, argv: []const []const u8) !void {
return self.spawnChildEnvMap(null, self.env_map, argv);
}
fn printCmd(cwd: ?[]const u8, argv: []const []const u8) void {
if (cwd) |yes_cwd| std.debug.print("cd {s} && ", .{yes_cwd});
for (argv) |arg| {
std.debug.print("{s} ", .{arg});
}
std.debug.print("\n", .{});
}
pub fn spawnChildEnvMap(self: *Build, cwd: ?[]const u8, env_map: *const EnvMap, argv: []const []const u8) !void {
if (self.verbose) {
printCmd(cwd, argv);
}
if (!std.process.can_spawn)
return error.ExecNotSupported;
var child = std.ChildProcess.init(argv, self.allocator);
child.cwd = cwd;
child.env_map = env_map;
const term = child.spawnAndWait() catch |err| {
log.err("Unable to spawn {s}: {s}", .{ argv[0], @errorName(err) });
return err;
};
switch (term) {
.Exited => |code| {
if (code != 0) {
log.err("The following command exited with error code {}:", .{code});
printCmd(cwd, argv);
return error.UncleanExit;
}
},
else => {
log.err("The following command terminated unexpectedly:", .{});
printCmd(cwd, argv);
return error.UncleanExit;
},
}
}
pub fn installArtifact(self: *Build, artifact: *CompileStep) void {
self.getInstallStep().dependOn(&self.addInstallArtifact(artifact).step);
}
pub fn addInstallArtifact(self: *Build, artifact: *CompileStep) *InstallArtifactStep {
return InstallArtifactStep.create(self, artifact);
}
///`dest_rel_path` is relative to prefix path
pub fn installFile(self: *Build, src_path: []const u8, dest_rel_path: []const u8) void {
self.getInstallStep().dependOn(&self.addInstallFileWithDir(.{ .path = src_path }, .prefix, dest_rel_path).step);
}
pub fn installDirectory(self: *Build, options: InstallDirectoryOptions) void {
self.getInstallStep().dependOn(&self.addInstallDirectory(options).step);
}
///`dest_rel_path` is relative to bin path
pub fn installBinFile(self: *Build, src_path: []const u8, dest_rel_path: []const u8) void {
self.getInstallStep().dependOn(&self.addInstallFileWithDir(.{ .path = src_path }, .bin, dest_rel_path).step);
}
///`dest_rel_path` is relative to lib path
pub fn installLibFile(self: *Build, src_path: []const u8, dest_rel_path: []const u8) void {
self.getInstallStep().dependOn(&self.addInstallFileWithDir(.{ .path = src_path }, .lib, dest_rel_path).step);
}
pub fn addObjCopy(b: *Build, source: FileSource, options: ObjCopyStep.Options) *ObjCopyStep {
return ObjCopyStep.create(b, source, options);
}
///`dest_rel_path` is relative to install prefix path
pub fn addInstallFile(self: *Build, source: FileSource, dest_rel_path: []const u8) *InstallFileStep {
return self.addInstallFileWithDir(source.dupe(self), .prefix, dest_rel_path);
}
///`dest_rel_path` is relative to bin path
pub fn addInstallBinFile(self: *Build, source: FileSource, dest_rel_path: []const u8) *InstallFileStep {
return self.addInstallFileWithDir(source.dupe(self), .bin, dest_rel_path);
}
///`dest_rel_path` is relative to lib path
pub fn addInstallLibFile(self: *Build, source: FileSource, dest_rel_path: []const u8) *InstallFileStep {
return self.addInstallFileWithDir(source.dupe(self), .lib, dest_rel_path);
}
pub fn addInstallHeaderFile(b: *Build, src_path: []const u8, dest_rel_path: []const u8) *InstallFileStep {
return b.addInstallFileWithDir(.{ .path = src_path }, .header, dest_rel_path);
}
pub fn addInstallFileWithDir(
self: *Build,
source: FileSource,
install_dir: InstallDir,
dest_rel_path: []const u8,
) *InstallFileStep {
if (dest_rel_path.len == 0) {
panic("dest_rel_path must be non-empty", .{});
}
const install_step = self.allocator.create(InstallFileStep) catch @panic("OOM");
install_step.* = InstallFileStep.init(self, source.dupe(self), install_dir, dest_rel_path);
return install_step;
}
pub fn addInstallDirectory(self: *Build, options: InstallDirectoryOptions) *InstallDirStep {
const install_step = self.allocator.create(InstallDirStep) catch @panic("OOM");
install_step.* = InstallDirStep.init(self, options);
return install_step;
}
pub fn pushInstalledFile(self: *Build, dir: InstallDir, dest_rel_path: []const u8) void {
const file = InstalledFile{
.dir = dir,
.path = dest_rel_path,
};
self.installed_files.append(file.dupe(self)) catch @panic("OOM");
}
pub fn updateFile(self: *Build, source_path: []const u8, dest_path: []const u8) !void {
if (self.verbose) {
log.info("cp {s} {s} ", .{ source_path, dest_path });
}
const cwd = fs.cwd();
const prev_status = try fs.Dir.updateFile(cwd, source_path, cwd, dest_path, .{});
if (self.verbose) switch (prev_status) {
.stale => log.info("# installed", .{}),
.fresh => log.info("# up-to-date", .{}),
};
}
pub fn truncateFile(self: *Build, dest_path: []const u8) !void {
if (self.verbose) {
log.info("truncate {s}", .{dest_path});
}
const cwd = fs.cwd();
var src_file = cwd.createFile(dest_path, .{}) catch |err| switch (err) {
error.FileNotFound => blk: {
if (fs.path.dirname(dest_path)) |dirname| {
try cwd.makePath(dirname);
}
break :blk try cwd.createFile(dest_path, .{});
},
else => |e| return e,
};
src_file.close();
}
pub fn pathFromRoot(b: *Build, p: []const u8) []u8 {
return fs.path.resolve(b.allocator, &.{ b.build_root.path orelse ".", p }) catch @panic("OOM");
}
pub fn pathJoin(self: *Build, paths: []const []const u8) []u8 {
return fs.path.join(self.allocator, paths) catch @panic("OOM");
}
pub fn fmt(self: *Build, comptime format: []const u8, args: anytype) []u8 {
return fmt_lib.allocPrint(self.allocator, format, args) catch @panic("OOM");
}
pub fn findProgram(self: *Build, names: []const []const u8, paths: []const []const u8) ![]const u8 {
// TODO report error for ambiguous situations
const exe_extension = @as(CrossTarget, .{}).exeFileExt();
for (self.search_prefixes.items) |search_prefix| {
for (names) |name| {
if (fs.path.isAbsolute(name)) {
return name;
}
const full_path = self.pathJoin(&.{
search_prefix,
"bin",
self.fmt("{s}{s}", .{ name, exe_extension }),
});
return fs.realpathAlloc(self.allocator, full_path) catch continue;
}
}
if (self.env_map.get("PATH")) |PATH| {
for (names) |name| {
if (fs.path.isAbsolute(name)) {
return name;
}
var it = mem.tokenize(u8, PATH, &[_]u8{fs.path.delimiter});
while (it.next()) |path| {
const full_path = self.pathJoin(&.{
path,
self.fmt("{s}{s}", .{ name, exe_extension }),
});
return fs.realpathAlloc(self.allocator, full_path) catch continue;
}
}
}
for (names) |name| {
if (fs.path.isAbsolute(name)) {
return name;
}
for (paths) |path| {
const full_path = self.pathJoin(&.{
path,
self.fmt("{s}{s}", .{ name, exe_extension }),
});
return fs.realpathAlloc(self.allocator, full_path) catch continue;
}
}
return error.FileNotFound;
}
pub fn execAllowFail(
self: *Build,
argv: []const []const u8,
out_code: *u8,
stderr_behavior: std.ChildProcess.StdIo,
) ExecError![]u8 {
assert(argv.len != 0);
if (!std.process.can_spawn)
return error.ExecNotSupported;
const max_output_size = 400 * 1024;
var child = std.ChildProcess.init(argv, self.allocator);
child.stdin_behavior = .Ignore;
child.stdout_behavior = .Pipe;
child.stderr_behavior = stderr_behavior;
child.env_map = self.env_map;
try child.spawn();
const stdout = child.stdout.?.reader().readAllAlloc(self.allocator, max_output_size) catch {
return error.ReadFailure;
};
errdefer self.allocator.free(stdout);
const term = try child.wait();
switch (term) {
.Exited => |code| {
if (code != 0) {
out_code.* = @truncate(u8, code);
return error.ExitCodeFailure;
}
return stdout;
},
.Signal, .Stopped, .Unknown => |code| {
out_code.* = @truncate(u8, code);
return error.ProcessTerminated;
},
}
}
pub fn execFromStep(self: *Build, argv: []const []const u8, src_step: ?*Step) ![]u8 {
assert(argv.len != 0);
if (self.verbose) {
printCmd(null, argv);
}
if (!std.process.can_spawn) {
if (src_step) |s| log.err("{s}...", .{s.name});
log.err("Unable to spawn the following command: cannot spawn child process", .{});
printCmd(null, argv);
std.os.abort();
}
var code: u8 = undefined;
return self.execAllowFail(argv, &code, .Inherit) catch |err| switch (err) {
error.ExecNotSupported => {
if (src_step) |s| log.err("{s}...", .{s.name});
log.err("Unable to spawn the following command: cannot spawn child process", .{});
printCmd(null, argv);
std.os.abort();
},
error.FileNotFound => {
if (src_step) |s| log.err("{s}...", .{s.name});
log.err("Unable to spawn the following command: file not found", .{});
printCmd(null, argv);
std.os.exit(@truncate(u8, code));
},
error.ExitCodeFailure => {
if (src_step) |s| log.err("{s}...", .{s.name});
if (self.prominent_compile_errors) {
log.err("The step exited with error code {d}", .{code});
} else {
log.err("The following command exited with error code {d}:", .{code});
printCmd(null, argv);
}
std.os.exit(@truncate(u8, code));
},
error.ProcessTerminated => {
if (src_step) |s| log.err("{s}...", .{s.name});
log.err("The following command terminated unexpectedly:", .{});
printCmd(null, argv);
std.os.exit(@truncate(u8, code));
},
else => |e| return e,
};
}
pub fn exec(self: *Build, argv: []const []const u8) ![]u8 {
return self.execFromStep(argv, null);
}
pub fn addSearchPrefix(self: *Build, search_prefix: []const u8) void {
self.search_prefixes.append(self.dupePath(search_prefix)) catch @panic("OOM");
}
pub fn getInstallPath(self: *Build, dir: InstallDir, dest_rel_path: []const u8) []const u8 {
assert(!fs.path.isAbsolute(dest_rel_path)); // Install paths must be relative to the prefix
const base_dir = switch (dir) {
.prefix => self.install_path,
.bin => self.exe_dir,
.lib => self.lib_dir,
.header => self.h_dir,
.custom => |path| self.pathJoin(&.{ self.install_path, path }),
};
return fs.path.resolve(
self.allocator,
&[_][]const u8{ base_dir, dest_rel_path },
) catch @panic("OOM");
}
pub const Dependency = struct {
builder: *Build,
pub fn artifact(d: *Dependency, name: []const u8) *CompileStep {
var found: ?*CompileStep = null;
for (d.builder.install_tls.step.dependencies.items) |dep_step| {
const inst = dep_step.cast(InstallArtifactStep) orelse continue;
if (mem.eql(u8, inst.artifact.name, name)) {
if (found != null) panic("artifact name '{s}' is ambiguous", .{name});
found = inst.artifact;
}
}
return found orelse {
for (d.builder.install_tls.step.dependencies.items) |dep_step| {
const inst = dep_step.cast(InstallArtifactStep) orelse continue;
log.info("available artifact: '{s}'", .{inst.artifact.name});
}
panic("unable to find artifact '{s}'", .{name});
};
}
pub fn module(d: *Dependency, name: []const u8) *Module {
return d.builder.modules.get(name) orelse {
panic("unable to find module '{s}'", .{name});
};
}
};
pub fn dependency(b: *Build, name: []const u8, args: anytype) *Dependency {
const build_runner = @import("root");
const deps = build_runner.dependencies;
inline for (@typeInfo(deps.imports).Struct.decls) |decl| {
if (mem.startsWith(u8, decl.name, b.dep_prefix) and
mem.endsWith(u8, decl.name, name) and
decl.name.len == b.dep_prefix.len + name.len)
{
const build_zig = @field(deps.imports, decl.name);
const build_root = @field(deps.build_root, decl.name);
return dependencyInner(b, name, build_root, build_zig, args);
}
}
const full_path = b.pathFromRoot("build.zig.zon");
std.debug.print("no dependency named '{s}' in '{s}'. All packages used in build.zig must be declared in this file.\n", .{ name, full_path });
std.process.exit(1);
}
fn dependencyInner(
b: *Build,
name: []const u8,
build_root_string: []const u8,
comptime build_zig: type,
args: anytype,
) *Dependency {
const build_root: std.Build.Cache.Directory = .{
.path = build_root_string,
.handle = std.fs.cwd().openDir(build_root_string, .{}) catch |err| {
std.debug.print("unable to open '{s}': {s}\n", .{
build_root_string, @errorName(err),
});
std.process.exit(1);
},
};
const sub_builder = b.createChild(name, build_root, args) catch @panic("unhandled error");
sub_builder.runBuild(build_zig) catch @panic("unhandled error");
if (sub_builder.validateUserInputDidItFail()) {
std.debug.dumpCurrentStackTrace(@returnAddress());
}
const dep = b.allocator.create(Dependency) catch @panic("OOM");
dep.* = .{ .builder = sub_builder };
return dep;
}
pub fn runBuild(b: *Build, build_zig: anytype) anyerror!void {
switch (@typeInfo(@typeInfo(@TypeOf(build_zig.build)).Fn.return_type.?)) {
.Void => build_zig.build(b),
.ErrorUnion => try build_zig.build(b),
else => @compileError("expected return type of build to be 'void' or '!void'"),
}
}
pub const Module = struct {
builder: *Build,
/// This could either be a generated file, in which case the module
/// contains exactly one file, or it could be a path to the root source
/// file of directory of files which constitute the module.
source_file: FileSource,
dependencies: std.StringArrayHashMap(*Module),
};
/// A file that is generated by a build step.
/// This struct is an interface that is meant to be used with `@fieldParentPtr` to implement the actual path logic.
pub const GeneratedFile = struct {
/// The step that generates the file
step: *Step,
/// The path to the generated file. Must be either absolute or relative to the build root.
/// This value must be set in the `fn make()` of the `step` and must not be `null` afterwards.
path: ?[]const u8 = null,
pub fn getPath(self: GeneratedFile) []const u8 {
return self.path orelse std.debug.panic(
"getPath() was called on a GeneratedFile that wasn't build yet. Is there a missing Step dependency on step '{s}'?",
.{self.step.name},
);
}
};
/// A file source is a reference to an existing or future file.
pub const FileSource = union(enum) {
/// A plain file path, relative to build root or absolute.
path: []const u8,
/// A file that is generated by an interface. Those files usually are
/// not available until built by a build step.
generated: *const GeneratedFile,
/// Returns a new file source that will have a relative path to the build root guaranteed.
/// This should be preferred over setting `.path` directly as it documents that the files are in the project directory.
pub fn relative(path: []const u8) FileSource {
std.debug.assert(!std.fs.path.isAbsolute(path));
return FileSource{ .path = path };
}
/// Returns a string that can be shown to represent the file source.
/// Either returns the path or `"generated"`.
pub fn getDisplayName(self: FileSource) []const u8 {
return switch (self) {
.path => self.path,
.generated => "generated",
};
}
/// Adds dependencies this file source implies to the given step.
pub fn addStepDependencies(self: FileSource, other_step: *Step) void {
switch (self) {
.path => {},
.generated => |gen| other_step.dependOn(gen.step),
}
}
/// Should only be called during make(), returns a path relative to the build root or absolute.
pub fn getPath(self: FileSource, builder: *Build) []const u8 {
const path = switch (self) {
.path => |p| builder.pathFromRoot(p),
.generated => |gen| gen.getPath(),
};
return path;
}
/// Duplicates the file source for a given builder.
pub fn dupe(self: FileSource, b: *Build) FileSource {
return switch (self) {
.path => |p| .{ .path = b.dupePath(p) },
.generated => |gen| .{ .generated = gen },
};
}
};
/// Allocates a new string for assigning a value to a named macro.
/// If the value is omitted, it is set to 1.
/// `name` and `value` need not live longer than the function call.
pub fn constructCMacro(allocator: Allocator, name: []const u8, value: ?[]const u8) []const u8 {
var macro = allocator.alloc(
u8,
name.len + if (value) |value_slice| value_slice.len + 1 else 0,
) catch |err| if (err == error.OutOfMemory) @panic("Out of memory") else unreachable;
mem.copy(u8, macro, name);
if (value) |value_slice| {
macro[name.len] = '=';
mem.copy(u8, macro[name.len + 1 ..], value_slice);
}
return macro;
}
pub const VcpkgRoot = union(VcpkgRootStatus) {
unattempted: void,
not_found: void,
found: []const u8,
};
pub const VcpkgRootStatus = enum {
unattempted,
not_found,
found,
};
pub const InstallDir = union(enum) {
prefix: void,
lib: void,
bin: void,
header: void,
/// A path relative to the prefix
custom: []const u8,
/// Duplicates the install directory including the path if set to custom.
pub fn dupe(self: InstallDir, builder: *Build) InstallDir {
if (self == .custom) {
// Written with this temporary to avoid RLS problems
const duped_path = builder.dupe(self.custom);
return .{ .custom = duped_path };
} else {
return self;
}
}
};
pub const InstalledFile = struct {
dir: InstallDir,
path: []const u8,
/// Duplicates the installed file path and directory.
pub fn dupe(self: InstalledFile, builder: *Build) InstalledFile {
return .{
.dir = self.dir.dupe(builder),
.path = builder.dupe(self.path),
};
}
};
pub fn serializeCpu(allocator: Allocator, cpu: std.Target.Cpu) ![]const u8 {
// TODO this logic can disappear if cpu model + features becomes part of the target triple
const all_features = cpu.arch.allFeaturesList();
var populated_cpu_features = cpu.model.features;
populated_cpu_features.populateDependencies(all_features);
if (populated_cpu_features.eql(cpu.features)) {
// The CPU name alone is sufficient.
return cpu.model.name;
} else {
var mcpu_buffer = ArrayList(u8).init(allocator);
try mcpu_buffer.appendSlice(cpu.model.name);
for (all_features, 0..) |feature, i_usize| {
const i = @intCast(std.Target.Cpu.Feature.Set.Index, i_usize);
const in_cpu_set = populated_cpu_features.isEnabled(i);
const in_actual_set = cpu.features.isEnabled(i);
if (in_cpu_set and !in_actual_set) {
try mcpu_buffer.writer().print("-{s}", .{feature.name});
} else if (!in_cpu_set and in_actual_set) {
try mcpu_buffer.writer().print("+{s}", .{feature.name});
}
}
return try mcpu_buffer.toOwnedSlice();
}
}
test {
_ = CheckFileStep;
_ = CheckObjectStep;
_ = EmulatableRunStep;
_ = FmtStep;
_ = InstallArtifactStep;
_ = InstallDirStep;
_ = InstallFileStep;
_ = ObjCopyStep;
_ = CompileStep;
_ = LogStep;
_ = OptionsStep;
_ = RemoveDirStep;
_ = RunStep;
_ = TranslateCStep;
_ = WriteFileStep;
}