zig/lib/std/Build.zig
mlugg 000aa30086 std.Build: check for native CPU when serializing CrossTarget
When using `std.Build.dependency` with target options, dependencies
would sometimes get targets which are equivalent but have distinct
names, e.g. `native` vs `native-native`. This is a somewhat broad issue,
and it's unclear how to fix it more generally - perhaps we should
special-case CrossTarget in options passing, or maybe targets should
have a canonical name which we guarantee to use everywhere aside from
raw user input.

However, this commit fixes the most egregious issue, which was an active
blocker to using the package manager for some users. This was caused by
the CPU changing from `native` to a specific descriptor (e.g.
`skylake+sgx`), which then changed the behavior of `zigTriple`.

Resolves: #16856
2023-08-16 18:05:18 -07:00

2097 lines
73 KiB
Zig

const std = @import("std.zig");
const builtin = @import("builtin");
const io = std.io;
const fs = std.fs;
const mem = std.mem;
const debug = std.debug;
const panic = std.debug.panic;
const assert = debug.assert;
const log = std.log;
const ArrayList = std.ArrayList;
const StringHashMap = std.StringHashMap;
const Allocator = mem.Allocator;
const process = std.process;
const EnvMap = std.process.EnvMap;
const fmt_lib = std.fmt;
const File = std.fs.File;
const CrossTarget = std.zig.CrossTarget;
const NativeTargetInfo = std.zig.system.NativeTargetInfo;
const Sha256 = std.crypto.hash.sha2.Sha256;
const Build = @This();
pub const Cache = @import("Build/Cache.zig");
/// deprecated: use `Step.Compile`.
pub const LibExeObjStep = Step.Compile;
/// deprecated: use `Build`.
pub const Builder = Build;
/// deprecated: use `Step.InstallDir.Options`
pub const InstallDirectoryOptions = Step.InstallDir.Options;
pub const Step = @import("Build/Step.zig");
/// deprecated: use `Step.CheckFile`.
pub const CheckFileStep = @import("Build/Step/CheckFile.zig");
/// deprecated: use `Step.CheckObject`.
pub const CheckObjectStep = @import("Build/Step/CheckObject.zig");
/// deprecated: use `Step.ConfigHeader`.
pub const ConfigHeaderStep = @import("Build/Step/ConfigHeader.zig");
/// deprecated: use `Step.Fmt`.
pub const FmtStep = @import("Build/Step/Fmt.zig");
/// deprecated: use `Step.InstallArtifact`.
pub const InstallArtifactStep = @import("Build/Step/InstallArtifact.zig");
/// deprecated: use `Step.InstallDir`.
pub const InstallDirStep = @import("Build/Step/InstallDir.zig");
/// deprecated: use `Step.InstallFile`.
pub const InstallFileStep = @import("Build/Step/InstallFile.zig");
/// deprecated: use `Step.ObjCopy`.
pub const ObjCopyStep = @import("Build/Step/ObjCopy.zig");
/// deprecated: use `Step.Compile`.
pub const CompileStep = @import("Build/Step/Compile.zig");
/// deprecated: use `Step.Options`.
pub const OptionsStep = @import("Build/Step/Options.zig");
/// deprecated: use `Step.RemoveDir`.
pub const RemoveDirStep = @import("Build/Step/RemoveDir.zig");
/// deprecated: use `Step.Run`.
pub const RunStep = @import("Build/Step/Run.zig");
/// deprecated: use `Step.TranslateC`.
pub const TranslateCStep = @import("Build/Step/TranslateC.zig");
/// deprecated: use `Step.WriteFile`.
pub const WriteFileStep = @import("Build/Step/WriteFile.zig");
/// deprecated: use `LazyPath`.
pub const FileSource = LazyPath;
install_tls: TopLevelStep,
uninstall_tls: TopLevelStep,
allocator: Allocator,
user_input_options: UserInputOptionsMap,
available_options_map: AvailableOptionsMap,
available_options_list: ArrayList(AvailableOption),
verbose: bool,
verbose_link: bool,
verbose_cc: bool,
verbose_air: bool,
verbose_llvm_ir: ?[]const u8,
verbose_llvm_bc: ?[]const u8,
verbose_cimport: bool,
verbose_llvm_cpu_features: bool,
reference_trace: ?u32 = null,
invalid_user_input: bool,
zig_exe: [:0]const u8,
default_step: *Step,
env_map: *EnvMap,
top_level_steps: std.StringArrayHashMapUnmanaged(*TopLevelStep),
install_prefix: []const u8,
dest_dir: ?[]const u8,
lib_dir: []const u8,
exe_dir: []const u8,
h_dir: []const u8,
install_path: []const u8,
sysroot: ?[]const u8 = null,
search_prefixes: ArrayList([]const u8),
libc_file: ?[]const u8 = null,
installed_files: ArrayList(InstalledFile),
/// Path to the directory containing build.zig.
build_root: Cache.Directory,
cache_root: Cache.Directory,
global_cache_root: Cache.Directory,
cache: *Cache,
zig_lib_dir: ?LazyPath,
vcpkg_root: VcpkgRoot = .unattempted,
pkg_config_pkg_list: ?(PkgConfigError![]const PkgConfigPkg) = null,
args: ?[][]const u8 = null,
debug_log_scopes: []const []const u8 = &.{},
debug_compile_errors: bool = false,
debug_pkg_config: bool = false,
/// Number of stack frames captured when a `StackTrace` is recorded for debug purposes,
/// in particular at `Step` creation.
/// Set to 0 to disable stack collection.
debug_stack_frames_count: u8 = 8,
/// Experimental. Use system Darling installation to run cross compiled macOS build artifacts.
enable_darling: bool = false,
/// Use system QEMU installation to run cross compiled foreign architecture build artifacts.
enable_qemu: bool = false,
/// Darwin. Use Rosetta to run x86_64 macOS build artifacts on arm64 macOS.
enable_rosetta: bool = false,
/// Use system Wasmtime installation to run cross compiled wasm/wasi build artifacts.
enable_wasmtime: bool = false,
/// Use system Wine installation to run cross compiled Windows build artifacts.
enable_wine: bool = false,
/// After following the steps in https://github.com/ziglang/zig/wiki/Updating-libc#glibc,
/// this will be the directory $glibc-build-dir/install/glibcs
/// Given the example of the aarch64 target, this is the directory
/// that contains the path `aarch64-linux-gnu/lib/ld-linux-aarch64.so.1`.
glibc_runtimes_dir: ?[]const u8 = null,
/// Information about the native target. Computed before build() is invoked.
host: NativeTargetInfo,
dep_prefix: []const u8 = "",
modules: std.StringArrayHashMap(*Module),
/// A map from build root dirs to the corresponding `*Dependency`. This is shared with all child
/// `Build`s.
initialized_deps: *InitializedDepMap,
const InitializedDepMap = std.HashMap(InitializedDepKey, *Dependency, InitializedDepContext, std.hash_map.default_max_load_percentage);
const InitializedDepKey = struct {
build_root_string: []const u8,
user_input_options: UserInputOptionsMap,
};
const InitializedDepContext = struct {
allocator: Allocator,
pub fn hash(self: @This(), k: InitializedDepKey) u64 {
var hasher = std.hash.Wyhash.init(0);
hasher.update(k.build_root_string);
hashUserInputOptionsMap(self.allocator, k.user_input_options, &hasher);
return hasher.final();
}
pub fn eql(self: @This(), lhs: InitializedDepKey, rhs: InitializedDepKey) bool {
_ = self;
if (!std.mem.eql(u8, lhs.build_root_string, rhs.build_root_string))
return false;
if (lhs.user_input_options.count() != rhs.user_input_options.count())
return false;
var it = lhs.user_input_options.iterator();
while (it.next()) |lhs_entry| {
const rhs_value = rhs.user_input_options.get(lhs_entry.key_ptr.*) orelse return false;
if (!userValuesAreSame(lhs_entry.value_ptr.*.value, rhs_value.value))
return false;
}
return true;
}
};
pub const ExecError = error{
ReadFailure,
ExitCodeFailure,
ProcessTerminated,
ExecNotSupported,
} || std.ChildProcess.SpawnError;
pub const PkgConfigError = error{
PkgConfigCrashed,
PkgConfigFailed,
PkgConfigNotInstalled,
PkgConfigInvalidOutput,
};
pub const PkgConfigPkg = struct {
name: []const u8,
desc: []const u8,
};
pub const CStd = enum {
C89,
C99,
C11,
};
const UserInputOptionsMap = StringHashMap(UserInputOption);
const AvailableOptionsMap = StringHashMap(AvailableOption);
const AvailableOption = struct {
name: []const u8,
type_id: TypeId,
description: []const u8,
/// If the `type_id` is `enum` this provides the list of enum options
enum_options: ?[]const []const u8,
};
const UserInputOption = struct {
name: []const u8,
value: UserValue,
used: bool,
};
const UserValue = union(enum) {
flag: void,
scalar: []const u8,
list: ArrayList([]const u8),
map: StringHashMap(*const UserValue),
};
const TypeId = enum {
bool,
int,
float,
@"enum",
string,
list,
build_id,
};
const TopLevelStep = struct {
pub const base_id = .top_level;
step: Step,
description: []const u8,
};
pub const DirList = struct {
lib_dir: ?[]const u8 = null,
exe_dir: ?[]const u8 = null,
include_dir: ?[]const u8 = null,
};
pub fn create(
allocator: Allocator,
zig_exe: [:0]const u8,
build_root: Cache.Directory,
cache_root: Cache.Directory,
global_cache_root: Cache.Directory,
host: NativeTargetInfo,
cache: *Cache,
) !*Build {
const env_map = try allocator.create(EnvMap);
env_map.* = try process.getEnvMap(allocator);
const initialized_deps = try allocator.create(InitializedDepMap);
initialized_deps.* = InitializedDepMap.initContext(allocator, .{ .allocator = allocator });
const self = try allocator.create(Build);
self.* = .{
.zig_exe = zig_exe,
.build_root = build_root,
.cache_root = cache_root,
.global_cache_root = global_cache_root,
.cache = cache,
.verbose = false,
.verbose_link = false,
.verbose_cc = false,
.verbose_air = false,
.verbose_llvm_ir = null,
.verbose_llvm_bc = null,
.verbose_cimport = false,
.verbose_llvm_cpu_features = false,
.invalid_user_input = false,
.allocator = allocator,
.user_input_options = UserInputOptionsMap.init(allocator),
.available_options_map = AvailableOptionsMap.init(allocator),
.available_options_list = ArrayList(AvailableOption).init(allocator),
.top_level_steps = .{},
.default_step = undefined,
.env_map = env_map,
.search_prefixes = ArrayList([]const u8).init(allocator),
.install_prefix = undefined,
.lib_dir = undefined,
.exe_dir = undefined,
.h_dir = undefined,
.dest_dir = env_map.get("DESTDIR"),
.installed_files = ArrayList(InstalledFile).init(allocator),
.install_tls = .{
.step = Step.init(.{
.id = .top_level,
.name = "install",
.owner = self,
}),
.description = "Copy build artifacts to prefix path",
},
.uninstall_tls = .{
.step = Step.init(.{
.id = .top_level,
.name = "uninstall",
.owner = self,
.makeFn = makeUninstall,
}),
.description = "Remove build artifacts from prefix path",
},
.zig_lib_dir = null,
.install_path = undefined,
.args = null,
.host = host,
.modules = std.StringArrayHashMap(*Module).init(allocator),
.initialized_deps = initialized_deps,
};
try self.top_level_steps.put(allocator, self.install_tls.step.name, &self.install_tls);
try self.top_level_steps.put(allocator, self.uninstall_tls.step.name, &self.uninstall_tls);
self.default_step = &self.install_tls.step;
return self;
}
fn createChild(
parent: *Build,
dep_name: []const u8,
build_root: Cache.Directory,
user_input_options: UserInputOptionsMap,
) !*Build {
const child = try createChildOnly(parent, dep_name, build_root, user_input_options);
try determineAndApplyInstallPrefix(child);
return child;
}
fn createChildOnly(parent: *Build, dep_name: []const u8, build_root: Cache.Directory, user_input_options: UserInputOptionsMap) !*Build {
const allocator = parent.allocator;
const child = try allocator.create(Build);
child.* = .{
.allocator = allocator,
.install_tls = .{
.step = Step.init(.{
.id = .top_level,
.name = "install",
.owner = child,
}),
.description = "Copy build artifacts to prefix path",
},
.uninstall_tls = .{
.step = Step.init(.{
.id = .top_level,
.name = "uninstall",
.owner = child,
.makeFn = makeUninstall,
}),
.description = "Remove build artifacts from prefix path",
},
.user_input_options = user_input_options,
.available_options_map = AvailableOptionsMap.init(allocator),
.available_options_list = ArrayList(AvailableOption).init(allocator),
.verbose = parent.verbose,
.verbose_link = parent.verbose_link,
.verbose_cc = parent.verbose_cc,
.verbose_air = parent.verbose_air,
.verbose_llvm_ir = parent.verbose_llvm_ir,
.verbose_llvm_bc = parent.verbose_llvm_bc,
.verbose_cimport = parent.verbose_cimport,
.verbose_llvm_cpu_features = parent.verbose_llvm_cpu_features,
.reference_trace = parent.reference_trace,
.invalid_user_input = false,
.zig_exe = parent.zig_exe,
.default_step = undefined,
.env_map = parent.env_map,
.top_level_steps = .{},
.install_prefix = undefined,
.dest_dir = parent.dest_dir,
.lib_dir = parent.lib_dir,
.exe_dir = parent.exe_dir,
.h_dir = parent.h_dir,
.install_path = parent.install_path,
.sysroot = parent.sysroot,
.search_prefixes = ArrayList([]const u8).init(allocator),
.libc_file = parent.libc_file,
.installed_files = ArrayList(InstalledFile).init(allocator),
.build_root = build_root,
.cache_root = parent.cache_root,
.global_cache_root = parent.global_cache_root,
.cache = parent.cache,
.zig_lib_dir = parent.zig_lib_dir,
.debug_log_scopes = parent.debug_log_scopes,
.debug_compile_errors = parent.debug_compile_errors,
.debug_pkg_config = parent.debug_pkg_config,
.enable_darling = parent.enable_darling,
.enable_qemu = parent.enable_qemu,
.enable_rosetta = parent.enable_rosetta,
.enable_wasmtime = parent.enable_wasmtime,
.enable_wine = parent.enable_wine,
.glibc_runtimes_dir = parent.glibc_runtimes_dir,
.host = parent.host,
.dep_prefix = parent.fmt("{s}{s}.", .{ parent.dep_prefix, dep_name }),
.modules = std.StringArrayHashMap(*Module).init(allocator),
.initialized_deps = parent.initialized_deps,
};
try child.top_level_steps.put(allocator, child.install_tls.step.name, &child.install_tls);
try child.top_level_steps.put(allocator, child.uninstall_tls.step.name, &child.uninstall_tls);
child.default_step = &child.install_tls.step;
return child;
}
fn userInputOptionsFromArgs(allocator: Allocator, args: anytype) UserInputOptionsMap {
var user_input_options = UserInputOptionsMap.init(allocator);
inline for (@typeInfo(@TypeOf(args)).Struct.fields) |field| {
const v = @field(args, field.name);
const T = @TypeOf(v);
switch (T) {
CrossTarget => {
user_input_options.put(field.name, .{
.name = field.name,
.value = .{ .scalar = v.zigTriple(allocator) catch @panic("OOM") },
.used = false,
}) catch @panic("OOM");
user_input_options.put("cpu", .{
.name = "cpu",
.value = .{
.scalar = if (v.isNativeCpu())
"native"
else
serializeCpu(allocator, v.getCpu()) catch unreachable,
},
.used = false,
}) catch @panic("OOM");
},
[]const u8 => {
user_input_options.put(field.name, .{
.name = field.name,
.value = .{ .scalar = v },
.used = false,
}) catch @panic("OOM");
},
else => switch (@typeInfo(T)) {
.Bool => {
user_input_options.put(field.name, .{
.name = field.name,
.value = .{ .scalar = if (v) "true" else "false" },
.used = false,
}) catch @panic("OOM");
},
.Enum, .EnumLiteral => {
user_input_options.put(field.name, .{
.name = field.name,
.value = .{ .scalar = @tagName(v) },
.used = false,
}) catch @panic("OOM");
},
.Int => {
user_input_options.put(field.name, .{
.name = field.name,
.value = .{ .scalar = std.fmt.allocPrint(allocator, "{d}", .{v}) catch @panic("OOM") },
.used = false,
}) catch @panic("OOM");
},
else => @compileError("option '" ++ field.name ++ "' has unsupported type: " ++ @typeName(T)),
},
}
}
return user_input_options;
}
const OrderedUserValue = union(enum) {
flag: void,
scalar: []const u8,
list: ArrayList([]const u8),
map: ArrayList(Pair),
const Pair = struct {
name: []const u8,
value: OrderedUserValue,
fn lessThan(_: void, lhs: Pair, rhs: Pair) bool {
return std.ascii.lessThanIgnoreCase(lhs.name, rhs.name);
}
};
fn hash(self: OrderedUserValue, hasher: *std.hash.Wyhash) void {
switch (self) {
.flag => {},
.scalar => |scalar| hasher.update(scalar),
// lists are already ordered
.list => |list| for (list.items) |list_entry|
hasher.update(list_entry),
.map => |map| for (map.items) |map_entry| {
hasher.update(map_entry.name);
map_entry.value.hash(hasher);
},
}
}
fn mapFromUnordered(allocator: Allocator, unordered: std.StringHashMap(*const UserValue)) ArrayList(Pair) {
var ordered = ArrayList(Pair).init(allocator);
var it = unordered.iterator();
while (it.next()) |entry| {
ordered.append(.{
.name = entry.key_ptr.*,
.value = OrderedUserValue.fromUnordered(allocator, entry.value_ptr.*.*),
}) catch @panic("OOM");
}
std.mem.sortUnstable(Pair, ordered.items, {}, Pair.lessThan);
return ordered;
}
fn fromUnordered(allocator: Allocator, unordered: UserValue) OrderedUserValue {
return switch (unordered) {
.flag => .{ .flag = {} },
.scalar => |scalar| .{ .scalar = scalar },
.list => |list| .{ .list = list },
.map => |map| .{ .map = OrderedUserValue.mapFromUnordered(allocator, map) },
};
}
};
const OrderedUserInputOption = struct {
name: []const u8,
value: OrderedUserValue,
used: bool,
fn hash(self: OrderedUserInputOption, hasher: *std.hash.Wyhash) void {
hasher.update(self.name);
self.value.hash(hasher);
}
fn fromUnordered(allocator: Allocator, user_input_option: UserInputOption) OrderedUserInputOption {
return OrderedUserInputOption{
.name = user_input_option.name,
.used = user_input_option.used,
.value = OrderedUserValue.fromUnordered(allocator, user_input_option.value),
};
}
fn lessThan(_: void, lhs: OrderedUserInputOption, rhs: OrderedUserInputOption) bool {
return std.ascii.lessThanIgnoreCase(lhs.name, rhs.name);
}
};
// The hash should be consistent with the same values given a different order.
// This function takes a user input map, orders it, then hashes the contents.
fn hashUserInputOptionsMap(allocator: Allocator, user_input_options: UserInputOptionsMap, hasher: *std.hash.Wyhash) void {
var ordered = ArrayList(OrderedUserInputOption).init(allocator);
var it = user_input_options.iterator();
while (it.next()) |entry|
ordered.append(OrderedUserInputOption.fromUnordered(allocator, entry.value_ptr.*)) catch @panic("OOM");
std.mem.sortUnstable(OrderedUserInputOption, ordered.items, {}, OrderedUserInputOption.lessThan);
// juice it
for (ordered.items) |user_option|
user_option.hash(hasher);
}
fn determineAndApplyInstallPrefix(b: *Build) !void {
// Create an installation directory local to this package. This will be used when
// dependant packages require a standard prefix, such as include directories for C headers.
var hash = b.cache.hash;
// Random bytes to make unique. Refresh this with new random bytes when
// implementation is modified in a non-backwards-compatible way.
hash.add(@as(u32, 0xd8cb0055));
hash.addBytes(b.dep_prefix);
var wyhash = std.hash.Wyhash.init(0);
hashUserInputOptionsMap(b.allocator, b.user_input_options, &wyhash);
hash.add(wyhash.final());
const digest = hash.final();
const install_prefix = try b.cache_root.join(b.allocator, &.{ "i", &digest });
b.resolveInstallPrefix(install_prefix, .{});
}
pub fn destroy(b: *Build) void {
b.env_map.deinit();
b.top_level_steps.deinit(b.allocator);
b.allocator.destroy(b);
}
/// This function is intended to be called by lib/build_runner.zig, not a build.zig file.
pub fn resolveInstallPrefix(self: *Build, install_prefix: ?[]const u8, dir_list: DirList) void {
if (self.dest_dir) |dest_dir| {
self.install_prefix = install_prefix orelse "/usr";
self.install_path = self.pathJoin(&.{ dest_dir, self.install_prefix });
} else {
self.install_prefix = install_prefix orelse
(self.build_root.join(self.allocator, &.{"zig-out"}) catch @panic("unhandled error"));
self.install_path = self.install_prefix;
}
var lib_list = [_][]const u8{ self.install_path, "lib" };
var exe_list = [_][]const u8{ self.install_path, "bin" };
var h_list = [_][]const u8{ self.install_path, "include" };
if (dir_list.lib_dir) |dir| {
if (std.fs.path.isAbsolute(dir)) lib_list[0] = self.dest_dir orelse "";
lib_list[1] = dir;
}
if (dir_list.exe_dir) |dir| {
if (std.fs.path.isAbsolute(dir)) exe_list[0] = self.dest_dir orelse "";
exe_list[1] = dir;
}
if (dir_list.include_dir) |dir| {
if (std.fs.path.isAbsolute(dir)) h_list[0] = self.dest_dir orelse "";
h_list[1] = dir;
}
self.lib_dir = self.pathJoin(&lib_list);
self.exe_dir = self.pathJoin(&exe_list);
self.h_dir = self.pathJoin(&h_list);
}
pub fn addOptions(self: *Build) *Step.Options {
return Step.Options.create(self);
}
pub const ExecutableOptions = struct {
name: []const u8,
root_source_file: ?LazyPath = null,
version: ?std.SemanticVersion = null,
target: CrossTarget = .{},
optimize: std.builtin.OptimizeMode = .Debug,
linkage: ?Step.Compile.Linkage = null,
max_rss: usize = 0,
link_libc: ?bool = null,
single_threaded: ?bool = null,
use_llvm: ?bool = null,
use_lld: ?bool = null,
zig_lib_dir: ?LazyPath = null,
main_pkg_path: ?LazyPath = null,
};
pub fn addExecutable(b: *Build, options: ExecutableOptions) *Step.Compile {
return Step.Compile.create(b, .{
.name = options.name,
.root_source_file = options.root_source_file,
.version = options.version,
.target = options.target,
.optimize = options.optimize,
.kind = .exe,
.linkage = options.linkage,
.max_rss = options.max_rss,
.link_libc = options.link_libc,
.single_threaded = options.single_threaded,
.use_llvm = options.use_llvm,
.use_lld = options.use_lld,
.zig_lib_dir = options.zig_lib_dir orelse b.zig_lib_dir,
.main_pkg_path = options.main_pkg_path,
});
}
pub const ObjectOptions = struct {
name: []const u8,
root_source_file: ?LazyPath = null,
target: CrossTarget,
optimize: std.builtin.OptimizeMode,
max_rss: usize = 0,
link_libc: ?bool = null,
single_threaded: ?bool = null,
use_llvm: ?bool = null,
use_lld: ?bool = null,
zig_lib_dir: ?LazyPath = null,
main_pkg_path: ?LazyPath = null,
};
pub fn addObject(b: *Build, options: ObjectOptions) *Step.Compile {
return Step.Compile.create(b, .{
.name = options.name,
.root_source_file = options.root_source_file,
.target = options.target,
.optimize = options.optimize,
.kind = .obj,
.max_rss = options.max_rss,
.link_libc = options.link_libc,
.single_threaded = options.single_threaded,
.use_llvm = options.use_llvm,
.use_lld = options.use_lld,
.zig_lib_dir = options.zig_lib_dir orelse b.zig_lib_dir,
.main_pkg_path = options.main_pkg_path,
});
}
pub const SharedLibraryOptions = struct {
name: []const u8,
root_source_file: ?LazyPath = null,
version: ?std.SemanticVersion = null,
target: CrossTarget,
optimize: std.builtin.OptimizeMode,
max_rss: usize = 0,
link_libc: ?bool = null,
single_threaded: ?bool = null,
use_llvm: ?bool = null,
use_lld: ?bool = null,
zig_lib_dir: ?LazyPath = null,
main_pkg_path: ?LazyPath = null,
};
pub fn addSharedLibrary(b: *Build, options: SharedLibraryOptions) *Step.Compile {
return Step.Compile.create(b, .{
.name = options.name,
.root_source_file = options.root_source_file,
.kind = .lib,
.linkage = .dynamic,
.version = options.version,
.target = options.target,
.optimize = options.optimize,
.max_rss = options.max_rss,
.link_libc = options.link_libc,
.single_threaded = options.single_threaded,
.use_llvm = options.use_llvm,
.use_lld = options.use_lld,
.zig_lib_dir = options.zig_lib_dir orelse b.zig_lib_dir,
.main_pkg_path = options.main_pkg_path,
});
}
pub const StaticLibraryOptions = struct {
name: []const u8,
root_source_file: ?LazyPath = null,
target: CrossTarget,
optimize: std.builtin.OptimizeMode,
version: ?std.SemanticVersion = null,
max_rss: usize = 0,
link_libc: ?bool = null,
single_threaded: ?bool = null,
use_llvm: ?bool = null,
use_lld: ?bool = null,
zig_lib_dir: ?LazyPath = null,
main_pkg_path: ?LazyPath = null,
};
pub fn addStaticLibrary(b: *Build, options: StaticLibraryOptions) *Step.Compile {
return Step.Compile.create(b, .{
.name = options.name,
.root_source_file = options.root_source_file,
.kind = .lib,
.linkage = .static,
.version = options.version,
.target = options.target,
.optimize = options.optimize,
.max_rss = options.max_rss,
.link_libc = options.link_libc,
.single_threaded = options.single_threaded,
.use_llvm = options.use_llvm,
.use_lld = options.use_lld,
.zig_lib_dir = options.zig_lib_dir orelse b.zig_lib_dir,
.main_pkg_path = options.main_pkg_path,
});
}
pub const TestOptions = struct {
name: []const u8 = "test",
root_source_file: LazyPath,
target: CrossTarget = .{},
optimize: std.builtin.OptimizeMode = .Debug,
version: ?std.SemanticVersion = null,
max_rss: usize = 0,
filter: ?[]const u8 = null,
test_runner: ?[]const u8 = null,
link_libc: ?bool = null,
single_threaded: ?bool = null,
use_llvm: ?bool = null,
use_lld: ?bool = null,
zig_lib_dir: ?LazyPath = null,
main_pkg_path: ?LazyPath = null,
};
pub fn addTest(b: *Build, options: TestOptions) *Step.Compile {
return Step.Compile.create(b, .{
.name = options.name,
.kind = .@"test",
.root_source_file = options.root_source_file,
.target = options.target,
.optimize = options.optimize,
.max_rss = options.max_rss,
.filter = options.filter,
.test_runner = options.test_runner,
.link_libc = options.link_libc,
.single_threaded = options.single_threaded,
.use_llvm = options.use_llvm,
.use_lld = options.use_lld,
.zig_lib_dir = options.zig_lib_dir orelse b.zig_lib_dir,
.main_pkg_path = options.main_pkg_path,
});
}
pub const AssemblyOptions = struct {
name: []const u8,
source_file: LazyPath,
target: CrossTarget,
optimize: std.builtin.OptimizeMode,
max_rss: usize = 0,
zig_lib_dir: ?LazyPath = null,
};
pub fn addAssembly(b: *Build, options: AssemblyOptions) *Step.Compile {
const obj_step = Step.Compile.create(b, .{
.name = options.name,
.kind = .obj,
.root_source_file = null,
.target = options.target,
.optimize = options.optimize,
.max_rss = options.max_rss,
.zig_lib_dir = options.zig_lib_dir orelse b.zig_lib_dir,
});
obj_step.addAssemblyLazyPath(options.source_file.dupe(b));
return obj_step;
}
/// This function creates a module and adds it to the package's module set, making
/// it available to other packages which depend on this one.
/// `createModule` can be used instead to create a private module.
pub fn addModule(b: *Build, name: []const u8, options: CreateModuleOptions) *Module {
const module = b.createModule(options);
b.modules.put(b.dupe(name), module) catch @panic("OOM");
return module;
}
pub const ModuleDependency = struct {
name: []const u8,
module: *Module,
};
pub const CreateModuleOptions = struct {
source_file: LazyPath,
dependencies: []const ModuleDependency = &.{},
};
/// This function creates a private module, to be used by the current package,
/// but not exposed to other packages depending on this one.
/// `addModule` can be used instead to create a public module.
pub fn createModule(b: *Build, options: CreateModuleOptions) *Module {
const module = b.allocator.create(Module) catch @panic("OOM");
module.* = .{
.builder = b,
.source_file = options.source_file,
.dependencies = moduleDependenciesToArrayHashMap(b.allocator, options.dependencies),
};
return module;
}
fn moduleDependenciesToArrayHashMap(arena: Allocator, deps: []const ModuleDependency) std.StringArrayHashMap(*Module) {
var result = std.StringArrayHashMap(*Module).init(arena);
for (deps) |dep| {
result.put(dep.name, dep.module) catch @panic("OOM");
}
return result;
}
/// Initializes a `Step.Run` with argv, which must at least have the path to the
/// executable. More command line arguments can be added with `addArg`,
/// `addArgs`, and `addArtifactArg`.
/// Be careful using this function, as it introduces a system dependency.
/// To run an executable built with zig build, see `Step.Compile.run`.
pub fn addSystemCommand(self: *Build, argv: []const []const u8) *Step.Run {
assert(argv.len >= 1);
const run_step = Step.Run.create(self, self.fmt("run {s}", .{argv[0]}));
run_step.addArgs(argv);
return run_step;
}
/// Creates a `Step.Run` with an executable built with `addExecutable`.
/// Add command line arguments with methods of `Step.Run`.
pub fn addRunArtifact(b: *Build, exe: *Step.Compile) *Step.Run {
// It doesn't have to be native. We catch that if you actually try to run it.
// Consider that this is declarative; the run step may not be run unless a user
// option is supplied.
const run_step = Step.Run.create(b, b.fmt("run {s}", .{exe.name}));
run_step.addArtifactArg(exe);
if (exe.kind == .@"test") {
run_step.enableTestRunnerMode();
}
if (exe.vcpkg_bin_path) |path| {
run_step.addPathDir(path);
}
return run_step;
}
/// Using the `values` provided, produces a C header file, possibly based on a
/// template input file (e.g. config.h.in).
/// When an input template file is provided, this function will fail the build
/// when an option not found in the input file is provided in `values`, and
/// when an option found in the input file is missing from `values`.
pub fn addConfigHeader(
b: *Build,
options: Step.ConfigHeader.Options,
values: anytype,
) *Step.ConfigHeader {
var options_copy = options;
if (options_copy.first_ret_addr == null)
options_copy.first_ret_addr = @returnAddress();
const config_header_step = Step.ConfigHeader.create(b, options_copy);
config_header_step.addValues(values);
return config_header_step;
}
/// Allocator.dupe without the need to handle out of memory.
pub fn dupe(self: *Build, bytes: []const u8) []u8 {
return self.allocator.dupe(u8, bytes) catch @panic("OOM");
}
/// Duplicates an array of strings without the need to handle out of memory.
pub fn dupeStrings(self: *Build, strings: []const []const u8) [][]u8 {
const array = self.allocator.alloc([]u8, strings.len) catch @panic("OOM");
for (strings, 0..) |s, i| {
array[i] = self.dupe(s);
}
return array;
}
/// Duplicates a path and converts all slashes to the OS's canonical path separator.
pub fn dupePath(self: *Build, bytes: []const u8) []u8 {
const the_copy = self.dupe(bytes);
for (the_copy) |*byte| {
switch (byte.*) {
'/', '\\' => byte.* = fs.path.sep,
else => {},
}
}
return the_copy;
}
pub fn addWriteFile(self: *Build, file_path: []const u8, data: []const u8) *Step.WriteFile {
const write_file_step = self.addWriteFiles();
_ = write_file_step.add(file_path, data);
return write_file_step;
}
pub fn addWriteFiles(b: *Build) *Step.WriteFile {
return Step.WriteFile.create(b);
}
pub fn addRemoveDirTree(self: *Build, dir_path: []const u8) *Step.RemoveDir {
const remove_dir_step = self.allocator.create(Step.RemoveDir) catch @panic("OOM");
remove_dir_step.* = Step.RemoveDir.init(self, dir_path);
return remove_dir_step;
}
pub fn addFmt(b: *Build, options: Step.Fmt.Options) *Step.Fmt {
return Step.Fmt.create(b, options);
}
pub fn addTranslateC(self: *Build, options: Step.TranslateC.Options) *Step.TranslateC {
return Step.TranslateC.create(self, options);
}
pub fn getInstallStep(self: *Build) *Step {
return &self.install_tls.step;
}
pub fn getUninstallStep(self: *Build) *Step {
return &self.uninstall_tls.step;
}
fn makeUninstall(uninstall_step: *Step, prog_node: *std.Progress.Node) anyerror!void {
_ = prog_node;
const uninstall_tls = @fieldParentPtr(TopLevelStep, "step", uninstall_step);
const self = @fieldParentPtr(Build, "uninstall_tls", uninstall_tls);
for (self.installed_files.items) |installed_file| {
const full_path = self.getInstallPath(installed_file.dir, installed_file.path);
if (self.verbose) {
log.info("rm {s}", .{full_path});
}
fs.cwd().deleteTree(full_path) catch {};
}
// TODO remove empty directories
}
pub fn option(self: *Build, comptime T: type, name_raw: []const u8, description_raw: []const u8) ?T {
const name = self.dupe(name_raw);
const description = self.dupe(description_raw);
const type_id = comptime typeToEnum(T);
const enum_options = if (type_id == .@"enum") blk: {
const fields = comptime std.meta.fields(T);
var options = ArrayList([]const u8).initCapacity(self.allocator, fields.len) catch @panic("OOM");
inline for (fields) |field| {
options.appendAssumeCapacity(field.name);
}
break :blk options.toOwnedSlice() catch @panic("OOM");
} else null;
const available_option = AvailableOption{
.name = name,
.type_id = type_id,
.description = description,
.enum_options = enum_options,
};
if ((self.available_options_map.fetchPut(name, available_option) catch @panic("OOM")) != null) {
panic("Option '{s}' declared twice", .{name});
}
self.available_options_list.append(available_option) catch @panic("OOM");
const option_ptr = self.user_input_options.getPtr(name) orelse return null;
option_ptr.used = true;
switch (type_id) {
.bool => switch (option_ptr.value) {
.flag => return true,
.scalar => |s| {
if (mem.eql(u8, s, "true")) {
return true;
} else if (mem.eql(u8, s, "false")) {
return false;
} else {
log.err("Expected -D{s} to be a boolean, but received '{s}'", .{ name, s });
self.markInvalidUserInput();
return null;
}
},
.list, .map => {
log.err("Expected -D{s} to be a boolean, but received a {s}.", .{
name, @tagName(option_ptr.value),
});
self.markInvalidUserInput();
return null;
},
},
.int => switch (option_ptr.value) {
.flag, .list, .map => {
log.err("Expected -D{s} to be an integer, but received a {s}.", .{
name, @tagName(option_ptr.value),
});
self.markInvalidUserInput();
return null;
},
.scalar => |s| {
const n = std.fmt.parseInt(T, s, 10) catch |err| switch (err) {
error.Overflow => {
log.err("-D{s} value {s} cannot fit into type {s}.", .{ name, s, @typeName(T) });
self.markInvalidUserInput();
return null;
},
else => {
log.err("Expected -D{s} to be an integer of type {s}.", .{ name, @typeName(T) });
self.markInvalidUserInput();
return null;
},
};
return n;
},
},
.float => switch (option_ptr.value) {
.flag, .map, .list => {
log.err("Expected -D{s} to be a float, but received a {s}.", .{
name, @tagName(option_ptr.value),
});
self.markInvalidUserInput();
return null;
},
.scalar => |s| {
const n = std.fmt.parseFloat(T, s) catch {
log.err("Expected -D{s} to be a float of type {s}.", .{ name, @typeName(T) });
self.markInvalidUserInput();
return null;
};
return n;
},
},
.@"enum" => switch (option_ptr.value) {
.flag, .map, .list => {
log.err("Expected -D{s} to be an enum, but received a {s}.", .{
name, @tagName(option_ptr.value),
});
self.markInvalidUserInput();
return null;
},
.scalar => |s| {
if (std.meta.stringToEnum(T, s)) |enum_lit| {
return enum_lit;
} else {
log.err("Expected -D{s} to be of type {s}.", .{ name, @typeName(T) });
self.markInvalidUserInput();
return null;
}
},
},
.string => switch (option_ptr.value) {
.flag, .list, .map => {
log.err("Expected -D{s} to be a string, but received a {s}.", .{
name, @tagName(option_ptr.value),
});
self.markInvalidUserInput();
return null;
},
.scalar => |s| return s,
},
.build_id => switch (option_ptr.value) {
.flag, .map, .list => {
log.err("Expected -D{s} to be an enum, but received a {s}.", .{
name, @tagName(option_ptr.value),
});
self.markInvalidUserInput();
return null;
},
.scalar => |s| {
if (Step.Compile.BuildId.parse(s)) |build_id| {
return build_id;
} else |err| {
log.err("unable to parse option '-D{s}': {s}", .{ name, @errorName(err) });
self.markInvalidUserInput();
return null;
}
},
},
.list => switch (option_ptr.value) {
.flag, .map => {
log.err("Expected -D{s} to be a list, but received a {s}.", .{
name, @tagName(option_ptr.value),
});
self.markInvalidUserInput();
return null;
},
.scalar => |s| {
return self.allocator.dupe([]const u8, &[_][]const u8{s}) catch @panic("OOM");
},
.list => |lst| return lst.items,
},
}
}
pub fn step(self: *Build, name: []const u8, description: []const u8) *Step {
const step_info = self.allocator.create(TopLevelStep) catch @panic("OOM");
step_info.* = .{
.step = Step.init(.{
.id = .top_level,
.name = name,
.owner = self,
}),
.description = self.dupe(description),
};
const gop = self.top_level_steps.getOrPut(self.allocator, name) catch @panic("OOM");
if (gop.found_existing) std.debug.panic("A top-level step with name \"{s}\" already exists", .{name});
gop.key_ptr.* = step_info.step.name;
gop.value_ptr.* = step_info;
return &step_info.step;
}
pub const StandardOptimizeOptionOptions = struct {
preferred_optimize_mode: ?std.builtin.OptimizeMode = null,
};
pub fn standardOptimizeOption(self: *Build, options: StandardOptimizeOptionOptions) std.builtin.OptimizeMode {
if (options.preferred_optimize_mode) |mode| {
if (self.option(bool, "release", "optimize for end users") orelse false) {
return mode;
} else {
return .Debug;
}
} else {
return self.option(
std.builtin.OptimizeMode,
"optimize",
"Prioritize performance, safety, or binary size (-O flag)",
) orelse .Debug;
}
}
pub const StandardTargetOptionsArgs = struct {
whitelist: ?[]const CrossTarget = null,
default_target: CrossTarget = CrossTarget{},
};
/// Exposes standard `zig build` options for choosing a target.
pub fn standardTargetOptions(self: *Build, args: StandardTargetOptionsArgs) CrossTarget {
const maybe_triple = self.option(
[]const u8,
"target",
"The CPU architecture, OS, and ABI to build for",
);
const mcpu = self.option([]const u8, "cpu", "Target CPU features to add or subtract");
if (maybe_triple == null and mcpu == null) {
return args.default_target;
}
const triple = maybe_triple orelse "native";
var diags: CrossTarget.ParseOptions.Diagnostics = .{};
const selected_target = CrossTarget.parse(.{
.arch_os_abi = triple,
.cpu_features = mcpu,
.diagnostics = &diags,
}) catch |err| switch (err) {
error.UnknownCpuModel => {
log.err("Unknown CPU: '{s}'\nAvailable CPUs for architecture '{s}':", .{
diags.cpu_name.?,
@tagName(diags.arch.?),
});
for (diags.arch.?.allCpuModels()) |cpu| {
log.err(" {s}", .{cpu.name});
}
self.markInvalidUserInput();
return args.default_target;
},
error.UnknownCpuFeature => {
log.err(
\\Unknown CPU feature: '{s}'
\\Available CPU features for architecture '{s}':
\\
, .{
diags.unknown_feature_name.?,
@tagName(diags.arch.?),
});
for (diags.arch.?.allFeaturesList()) |feature| {
log.err(" {s}: {s}", .{ feature.name, feature.description });
}
self.markInvalidUserInput();
return args.default_target;
},
error.UnknownOperatingSystem => {
log.err(
\\Unknown OS: '{s}'
\\Available operating systems:
\\
, .{diags.os_name.?});
inline for (std.meta.fields(std.Target.Os.Tag)) |field| {
log.err(" {s}", .{field.name});
}
self.markInvalidUserInput();
return args.default_target;
},
else => |e| {
log.err("Unable to parse target '{s}': {s}\n", .{ triple, @errorName(e) });
self.markInvalidUserInput();
return args.default_target;
},
};
const selected_canonicalized_triple = selected_target.zigTriple(self.allocator) catch @panic("OOM");
if (args.whitelist) |list| whitelist_check: {
// Make sure it's a match of one of the list.
var mismatch_triple = true;
var mismatch_cpu_features = true;
var whitelist_item = CrossTarget{};
for (list) |t| {
mismatch_cpu_features = true;
mismatch_triple = true;
const t_triple = t.zigTriple(self.allocator) catch @panic("OOM");
if (mem.eql(u8, t_triple, selected_canonicalized_triple)) {
mismatch_triple = false;
whitelist_item = t;
if (t.getCpuFeatures().isSuperSetOf(selected_target.getCpuFeatures())) {
mismatch_cpu_features = false;
break :whitelist_check;
} else {
break;
}
}
}
if (mismatch_triple) {
log.err("Chosen target '{s}' does not match one of the supported targets:", .{
selected_canonicalized_triple,
});
for (list) |t| {
const t_triple = t.zigTriple(self.allocator) catch @panic("OOM");
log.err(" {s}", .{t_triple});
}
} else {
assert(mismatch_cpu_features);
const whitelist_cpu = whitelist_item.getCpu();
const selected_cpu = selected_target.getCpu();
log.err("Chosen CPU model '{s}' does not match one of the supported targets:", .{
selected_cpu.model.name,
});
log.err(" Supported feature Set: ", .{});
const all_features = whitelist_cpu.arch.allFeaturesList();
var populated_cpu_features = whitelist_cpu.model.features;
populated_cpu_features.populateDependencies(all_features);
for (all_features, 0..) |feature, i_usize| {
const i = @as(std.Target.Cpu.Feature.Set.Index, @intCast(i_usize));
const in_cpu_set = populated_cpu_features.isEnabled(i);
if (in_cpu_set) {
log.err("{s} ", .{feature.name});
}
}
log.err(" Remove: ", .{});
for (all_features, 0..) |feature, i_usize| {
const i = @as(std.Target.Cpu.Feature.Set.Index, @intCast(i_usize));
const in_cpu_set = populated_cpu_features.isEnabled(i);
const in_actual_set = selected_cpu.features.isEnabled(i);
if (in_actual_set and !in_cpu_set) {
log.err("{s} ", .{feature.name});
}
}
}
self.markInvalidUserInput();
return args.default_target;
}
return selected_target;
}
pub fn addUserInputOption(self: *Build, name_raw: []const u8, value_raw: []const u8) !bool {
const name = self.dupe(name_raw);
const value = self.dupe(value_raw);
const gop = try self.user_input_options.getOrPut(name);
if (!gop.found_existing) {
gop.value_ptr.* = UserInputOption{
.name = name,
.value = .{ .scalar = value },
.used = false,
};
return false;
}
// option already exists
switch (gop.value_ptr.value) {
.scalar => |s| {
// turn it into a list
var list = ArrayList([]const u8).init(self.allocator);
try list.append(s);
try list.append(value);
try self.user_input_options.put(name, .{
.name = name,
.value = .{ .list = list },
.used = false,
});
},
.list => |*list| {
// append to the list
try list.append(value);
try self.user_input_options.put(name, .{
.name = name,
.value = .{ .list = list.* },
.used = false,
});
},
.flag => {
log.warn("Option '-D{s}={s}' conflicts with flag '-D{s}'.", .{ name, value, name });
return true;
},
.map => |*map| {
_ = map;
log.warn("TODO maps as command line arguments is not implemented yet.", .{});
return true;
},
}
return false;
}
pub fn addUserInputFlag(self: *Build, name_raw: []const u8) !bool {
const name = self.dupe(name_raw);
const gop = try self.user_input_options.getOrPut(name);
if (!gop.found_existing) {
gop.value_ptr.* = .{
.name = name,
.value = .{ .flag = {} },
.used = false,
};
return false;
}
// option already exists
switch (gop.value_ptr.value) {
.scalar => |s| {
log.err("Flag '-D{s}' conflicts with option '-D{s}={s}'.", .{ name, name, s });
return true;
},
.list, .map => {
log.err("Flag '-D{s}' conflicts with multiple options of the same name.", .{name});
return true;
},
.flag => {},
}
return false;
}
fn typeToEnum(comptime T: type) TypeId {
return switch (T) {
Step.Compile.BuildId => .build_id,
else => return switch (@typeInfo(T)) {
.Int => .int,
.Float => .float,
.Bool => .bool,
.Enum => .@"enum",
else => switch (T) {
[]const u8 => .string,
[]const []const u8 => .list,
else => @compileError("Unsupported type: " ++ @typeName(T)),
},
},
};
}
fn markInvalidUserInput(self: *Build) void {
self.invalid_user_input = true;
}
pub fn validateUserInputDidItFail(self: *Build) bool {
// make sure all args are used
var it = self.user_input_options.iterator();
while (it.next()) |entry| {
if (!entry.value_ptr.used) {
log.err("Invalid option: -D{s}", .{entry.key_ptr.*});
self.markInvalidUserInput();
}
}
return self.invalid_user_input;
}
fn allocPrintCmd(ally: Allocator, opt_cwd: ?[]const u8, argv: []const []const u8) ![]u8 {
var buf = ArrayList(u8).init(ally);
if (opt_cwd) |cwd| try buf.writer().print("cd {s} && ", .{cwd});
for (argv) |arg| {
try buf.writer().print("{s} ", .{arg});
}
return buf.toOwnedSlice();
}
fn printCmd(ally: Allocator, cwd: ?[]const u8, argv: []const []const u8) void {
const text = allocPrintCmd(ally, cwd, argv) catch @panic("OOM");
std.debug.print("{s}\n", .{text});
}
/// This creates the install step and adds it to the dependencies of the
/// top-level install step, using all the default options.
/// See `addInstallArtifact` for a more flexible function.
pub fn installArtifact(self: *Build, artifact: *Step.Compile) void {
self.getInstallStep().dependOn(&self.addInstallArtifact(artifact, .{}).step);
}
/// This merely creates the step; it does not add it to the dependencies of the
/// top-level install step.
pub fn addInstallArtifact(
self: *Build,
artifact: *Step.Compile,
options: Step.InstallArtifact.Options,
) *Step.InstallArtifact {
return Step.InstallArtifact.create(self, artifact, options);
}
///`dest_rel_path` is relative to prefix path
pub fn installFile(self: *Build, src_path: []const u8, dest_rel_path: []const u8) void {
self.getInstallStep().dependOn(&self.addInstallFileWithDir(.{ .path = src_path }, .prefix, dest_rel_path).step);
}
pub fn installDirectory(self: *Build, options: InstallDirectoryOptions) void {
self.getInstallStep().dependOn(&self.addInstallDirectory(options).step);
}
///`dest_rel_path` is relative to bin path
pub fn installBinFile(self: *Build, src_path: []const u8, dest_rel_path: []const u8) void {
self.getInstallStep().dependOn(&self.addInstallFileWithDir(.{ .path = src_path }, .bin, dest_rel_path).step);
}
///`dest_rel_path` is relative to lib path
pub fn installLibFile(self: *Build, src_path: []const u8, dest_rel_path: []const u8) void {
self.getInstallStep().dependOn(&self.addInstallFileWithDir(.{ .path = src_path }, .lib, dest_rel_path).step);
}
pub fn addObjCopy(b: *Build, source: LazyPath, options: Step.ObjCopy.Options) *Step.ObjCopy {
return Step.ObjCopy.create(b, source, options);
}
///`dest_rel_path` is relative to install prefix path
pub fn addInstallFile(self: *Build, source: LazyPath, dest_rel_path: []const u8) *Step.InstallFile {
return self.addInstallFileWithDir(source.dupe(self), .prefix, dest_rel_path);
}
///`dest_rel_path` is relative to bin path
pub fn addInstallBinFile(self: *Build, source: LazyPath, dest_rel_path: []const u8) *Step.InstallFile {
return self.addInstallFileWithDir(source.dupe(self), .bin, dest_rel_path);
}
///`dest_rel_path` is relative to lib path
pub fn addInstallLibFile(self: *Build, source: LazyPath, dest_rel_path: []const u8) *Step.InstallFile {
return self.addInstallFileWithDir(source.dupe(self), .lib, dest_rel_path);
}
pub fn addInstallHeaderFile(b: *Build, src_path: []const u8, dest_rel_path: []const u8) *Step.InstallFile {
return b.addInstallFileWithDir(.{ .path = src_path }, .header, dest_rel_path);
}
pub fn addInstallFileWithDir(
self: *Build,
source: LazyPath,
install_dir: InstallDir,
dest_rel_path: []const u8,
) *Step.InstallFile {
return Step.InstallFile.create(self, source.dupe(self), install_dir, dest_rel_path);
}
pub fn addInstallDirectory(self: *Build, options: InstallDirectoryOptions) *Step.InstallDir {
return Step.InstallDir.create(self, options);
}
pub fn addCheckFile(
b: *Build,
file_source: LazyPath,
options: Step.CheckFile.Options,
) *Step.CheckFile {
return Step.CheckFile.create(b, file_source, options);
}
/// deprecated: https://github.com/ziglang/zig/issues/14943
pub fn pushInstalledFile(self: *Build, dir: InstallDir, dest_rel_path: []const u8) void {
const file = InstalledFile{
.dir = dir,
.path = dest_rel_path,
};
self.installed_files.append(file.dupe(self)) catch @panic("OOM");
}
pub fn truncateFile(self: *Build, dest_path: []const u8) !void {
if (self.verbose) {
log.info("truncate {s}", .{dest_path});
}
const cwd = fs.cwd();
var src_file = cwd.createFile(dest_path, .{}) catch |err| switch (err) {
error.FileNotFound => blk: {
if (fs.path.dirname(dest_path)) |dirname| {
try cwd.makePath(dirname);
}
break :blk try cwd.createFile(dest_path, .{});
},
else => |e| return e,
};
src_file.close();
}
pub fn pathFromRoot(b: *Build, p: []const u8) []u8 {
return fs.path.resolve(b.allocator, &.{ b.build_root.path orelse ".", p }) catch @panic("OOM");
}
fn pathFromCwd(b: *Build, p: []const u8) []u8 {
const cwd = process.getCwdAlloc(b.allocator) catch @panic("OOM");
return fs.path.resolve(b.allocator, &.{ cwd, p }) catch @panic("OOM");
}
pub fn pathJoin(self: *Build, paths: []const []const u8) []u8 {
return fs.path.join(self.allocator, paths) catch @panic("OOM");
}
pub fn fmt(self: *Build, comptime format: []const u8, args: anytype) []u8 {
return fmt_lib.allocPrint(self.allocator, format, args) catch @panic("OOM");
}
pub fn findProgram(self: *Build, names: []const []const u8, paths: []const []const u8) ![]const u8 {
// TODO report error for ambiguous situations
const exe_extension = @as(CrossTarget, .{}).exeFileExt();
for (self.search_prefixes.items) |search_prefix| {
for (names) |name| {
if (fs.path.isAbsolute(name)) {
return name;
}
const full_path = self.pathJoin(&.{
search_prefix,
"bin",
self.fmt("{s}{s}", .{ name, exe_extension }),
});
return fs.realpathAlloc(self.allocator, full_path) catch continue;
}
}
if (self.env_map.get("PATH")) |PATH| {
for (names) |name| {
if (fs.path.isAbsolute(name)) {
return name;
}
var it = mem.tokenizeScalar(u8, PATH, fs.path.delimiter);
while (it.next()) |path| {
const full_path = self.pathJoin(&.{
path,
self.fmt("{s}{s}", .{ name, exe_extension }),
});
return fs.realpathAlloc(self.allocator, full_path) catch continue;
}
}
}
for (names) |name| {
if (fs.path.isAbsolute(name)) {
return name;
}
for (paths) |path| {
const full_path = self.pathJoin(&.{
path,
self.fmt("{s}{s}", .{ name, exe_extension }),
});
return fs.realpathAlloc(self.allocator, full_path) catch continue;
}
}
return error.FileNotFound;
}
pub fn execAllowFail(
self: *Build,
argv: []const []const u8,
out_code: *u8,
stderr_behavior: std.ChildProcess.StdIo,
) ExecError![]u8 {
assert(argv.len != 0);
if (!process.can_spawn)
return error.ExecNotSupported;
const max_output_size = 400 * 1024;
var child = std.ChildProcess.init(argv, self.allocator);
child.stdin_behavior = .Ignore;
child.stdout_behavior = .Pipe;
child.stderr_behavior = stderr_behavior;
child.env_map = self.env_map;
try child.spawn();
const stdout = child.stdout.?.reader().readAllAlloc(self.allocator, max_output_size) catch {
return error.ReadFailure;
};
errdefer self.allocator.free(stdout);
const term = try child.wait();
switch (term) {
.Exited => |code| {
if (code != 0) {
out_code.* = @as(u8, @truncate(code));
return error.ExitCodeFailure;
}
return stdout;
},
.Signal, .Stopped, .Unknown => |code| {
out_code.* = @as(u8, @truncate(code));
return error.ProcessTerminated;
},
}
}
/// This is a helper function to be called from build.zig scripts, *not* from
/// inside step make() functions. If any errors occur, it fails the build with
/// a helpful message.
pub fn exec(b: *Build, argv: []const []const u8) []u8 {
if (!process.can_spawn) {
std.debug.print("unable to spawn the following command: cannot spawn child process\n{s}\n", .{
try allocPrintCmd(b.allocator, null, argv),
});
process.exit(1);
}
var code: u8 = undefined;
return b.execAllowFail(argv, &code, .Inherit) catch |err| {
const printed_cmd = allocPrintCmd(b.allocator, null, argv) catch @panic("OOM");
std.debug.print("unable to spawn the following command: {s}\n{s}\n", .{
@errorName(err), printed_cmd,
});
process.exit(1);
};
}
pub fn addSearchPrefix(self: *Build, search_prefix: []const u8) void {
self.search_prefixes.append(self.dupePath(search_prefix)) catch @panic("OOM");
}
pub fn getInstallPath(self: *Build, dir: InstallDir, dest_rel_path: []const u8) []const u8 {
assert(!fs.path.isAbsolute(dest_rel_path)); // Install paths must be relative to the prefix
const base_dir = switch (dir) {
.prefix => self.install_path,
.bin => self.exe_dir,
.lib => self.lib_dir,
.header => self.h_dir,
.custom => |path| self.pathJoin(&.{ self.install_path, path }),
};
return fs.path.resolve(
self.allocator,
&[_][]const u8{ base_dir, dest_rel_path },
) catch @panic("OOM");
}
pub const Dependency = struct {
builder: *Build,
pub fn artifact(d: *Dependency, name: []const u8) *Step.Compile {
var found: ?*Step.Compile = null;
for (d.builder.install_tls.step.dependencies.items) |dep_step| {
const inst = dep_step.cast(Step.InstallArtifact) orelse continue;
if (mem.eql(u8, inst.artifact.name, name)) {
if (found != null) panic("artifact name '{s}' is ambiguous", .{name});
found = inst.artifact;
}
}
return found orelse {
for (d.builder.install_tls.step.dependencies.items) |dep_step| {
const inst = dep_step.cast(Step.InstallArtifact) orelse continue;
log.info("available artifact: '{s}'", .{inst.artifact.name});
}
panic("unable to find artifact '{s}'", .{name});
};
}
pub fn module(d: *Dependency, name: []const u8) *Module {
return d.builder.modules.get(name) orelse {
panic("unable to find module '{s}'", .{name});
};
}
};
pub fn dependency(b: *Build, name: []const u8, args: anytype) *Dependency {
const build_runner = @import("root");
const deps = build_runner.dependencies;
inline for (@typeInfo(deps.imports).Struct.decls) |decl| {
if (mem.startsWith(u8, decl.name, b.dep_prefix) and
mem.endsWith(u8, decl.name, name) and
decl.name.len == b.dep_prefix.len + name.len)
{
const build_zig = @field(deps.imports, decl.name);
const build_root = @field(deps.build_root, decl.name);
return dependencyInner(b, name, build_root, build_zig, args);
}
}
const full_path = b.pathFromRoot("build.zig.zon");
std.debug.print("no dependency named '{s}' in '{s}'. All packages used in build.zig must be declared in this file.\n", .{ name, full_path });
process.exit(1);
}
pub fn anonymousDependency(
b: *Build,
/// The path to the directory containing the dependency's build.zig file,
/// relative to the current package's build.zig.
relative_build_root: []const u8,
/// A direct `@import` of the build.zig of the dependency.
comptime build_zig: type,
args: anytype,
) *Dependency {
const arena = b.allocator;
const build_root = b.build_root.join(arena, &.{relative_build_root}) catch @panic("OOM");
const name = arena.dupe(u8, relative_build_root) catch @panic("OOM");
for (name) |*byte| switch (byte.*) {
'/', '\\' => byte.* = '.',
else => continue,
};
return dependencyInner(b, name, build_root, build_zig, args);
}
fn userValuesAreSame(lhs: UserValue, rhs: UserValue) bool {
switch (lhs) {
.flag => {},
.scalar => |lhs_scalar| {
const rhs_scalar = switch (rhs) {
.scalar => |scalar| scalar,
else => return false,
};
if (!std.mem.eql(u8, lhs_scalar, rhs_scalar))
return false;
},
.list => |lhs_list| {
const rhs_list = switch (rhs) {
.list => |list| list,
else => return false,
};
if (lhs_list.items.len != rhs_list.items.len)
return false;
for (lhs_list.items, rhs_list.items) |lhs_list_entry, rhs_list_entry| {
if (!std.mem.eql(u8, lhs_list_entry, rhs_list_entry))
return false;
}
},
.map => |lhs_map| {
const rhs_map = switch (rhs) {
.map => |map| map,
else => return false,
};
if (lhs_map.count() != rhs_map.count())
return false;
var lhs_it = lhs_map.iterator();
while (lhs_it.next()) |lhs_entry| {
const rhs_value = rhs_map.get(lhs_entry.key_ptr.*) orelse return false;
if (!userValuesAreSame(lhs_entry.value_ptr.*.*, rhs_value.*))
return false;
}
},
}
return true;
}
pub fn dependencyInner(
b: *Build,
name: []const u8,
build_root_string: []const u8,
comptime build_zig: type,
args: anytype,
) *Dependency {
const user_input_options = userInputOptionsFromArgs(b.allocator, args);
if (b.initialized_deps.get(.{
.build_root_string = build_root_string,
.user_input_options = user_input_options,
})) |dep|
return dep;
const build_root: std.Build.Cache.Directory = .{
.path = build_root_string,
.handle = std.fs.cwd().openDir(build_root_string, .{}) catch |err| {
std.debug.print("unable to open '{s}': {s}\n", .{
build_root_string, @errorName(err),
});
process.exit(1);
},
};
const sub_builder = b.createChild(name, build_root, user_input_options) catch @panic("unhandled error");
sub_builder.runBuild(build_zig) catch @panic("unhandled error");
if (sub_builder.validateUserInputDidItFail()) {
std.debug.dumpCurrentStackTrace(@returnAddress());
}
const dep = b.allocator.create(Dependency) catch @panic("OOM");
dep.* = .{ .builder = sub_builder };
b.initialized_deps.put(.{
.build_root_string = build_root_string,
.user_input_options = user_input_options,
}, dep) catch @panic("OOM");
return dep;
}
pub fn runBuild(b: *Build, build_zig: anytype) anyerror!void {
switch (@typeInfo(@typeInfo(@TypeOf(build_zig.build)).Fn.return_type.?)) {
.Void => build_zig.build(b),
.ErrorUnion => try build_zig.build(b),
else => @compileError("expected return type of build to be 'void' or '!void'"),
}
}
pub const Module = struct {
builder: *Build,
/// This could either be a generated file, in which case the module
/// contains exactly one file, or it could be a path to the root source
/// file of directory of files which constitute the module.
source_file: LazyPath,
dependencies: std.StringArrayHashMap(*Module),
};
/// A file that is generated by a build step.
/// This struct is an interface that is meant to be used with `@fieldParentPtr` to implement the actual path logic.
pub const GeneratedFile = struct {
/// The step that generates the file
step: *Step,
/// The path to the generated file. Must be either absolute or relative to the build root.
/// This value must be set in the `fn make()` of the `step` and must not be `null` afterwards.
path: ?[]const u8 = null,
pub fn getPath(self: GeneratedFile) []const u8 {
return self.path orelse std.debug.panic(
"getPath() was called on a GeneratedFile that wasn't built yet. Is there a missing Step dependency on step '{s}'?",
.{self.step.name},
);
}
};
/// A reference to an existing or future path.
pub const LazyPath = union(enum) {
/// A source file path relative to build root.
/// This should not be an absolute path, but in an older iteration of the zig build
/// system API, it was allowed to be absolute. Absolute paths should use `cwd_relative`.
path: []const u8,
/// A file that is generated by an interface. Those files usually are
/// not available until built by a build step.
generated: *const GeneratedFile,
/// An absolute path or a path relative to the current working directory of
/// the build runner process.
/// This is uncommon but used for system environment paths such as `--zig-lib-dir` which
/// ignore the file system path of build.zig and instead are relative to the directory from
/// which `zig build` was invoked.
/// Use of this tag indicates a dependency on the host system.
cwd_relative: []const u8,
/// Returns a new file source that will have a relative path to the build root guaranteed.
/// Asserts the parameter is not an absolute path.
pub fn relative(path: []const u8) LazyPath {
std.debug.assert(!std.fs.path.isAbsolute(path));
return LazyPath{ .path = path };
}
/// Returns a string that can be shown to represent the file source.
/// Either returns the path or `"generated"`.
pub fn getDisplayName(self: LazyPath) []const u8 {
return switch (self) {
.path, .cwd_relative => self.path,
.generated => "generated",
};
}
/// Adds dependencies this file source implies to the given step.
pub fn addStepDependencies(self: LazyPath, other_step: *Step) void {
switch (self) {
.path, .cwd_relative => {},
.generated => |gen| other_step.dependOn(gen.step),
}
}
/// Returns an absolute path.
/// Intended to be used during the make phase only.
pub fn getPath(self: LazyPath, src_builder: *Build) []const u8 {
return getPath2(self, src_builder, null);
}
/// Returns an absolute path.
/// Intended to be used during the make phase only.
///
/// `asking_step` is only used for debugging purposes; it's the step being
/// run that is asking for the path.
pub fn getPath2(self: LazyPath, src_builder: *Build, asking_step: ?*Step) []const u8 {
switch (self) {
.path => |p| return src_builder.pathFromRoot(p),
.cwd_relative => |p| return src_builder.pathFromCwd(p),
.generated => |gen| return gen.path orelse {
std.debug.getStderrMutex().lock();
const stderr = std.io.getStdErr();
dumpBadGetPathHelp(gen.step, stderr, src_builder, asking_step) catch {};
@panic("misconfigured build script");
},
}
}
/// Duplicates the file source for a given builder.
pub fn dupe(self: LazyPath, b: *Build) LazyPath {
return switch (self) {
.path => |p| .{ .path = b.dupePath(p) },
.cwd_relative => |p| .{ .cwd_relative = b.dupePath(p) },
.generated => |gen| .{ .generated = gen },
};
}
};
/// In this function the stderr mutex has already been locked.
pub fn dumpBadGetPathHelp(
s: *Step,
stderr: fs.File,
src_builder: *Build,
asking_step: ?*Step,
) anyerror!void {
const w = stderr.writer();
try w.print(
\\getPath() was called on a GeneratedFile that wasn't built yet.
\\ source package path: {s}
\\ Is there a missing Step dependency on step '{s}'?
\\
, .{
src_builder.build_root.path orelse ".",
s.name,
});
const tty_config = std.io.tty.detectConfig(stderr);
tty_config.setColor(w, .red) catch {};
try stderr.writeAll(" The step was created by this stack trace:\n");
tty_config.setColor(w, .reset) catch {};
s.dump(stderr);
if (asking_step) |as| {
tty_config.setColor(w, .red) catch {};
try stderr.writer().print(" The step '{s}' that is missing a dependency on the above step was created by this stack trace:\n", .{as.name});
tty_config.setColor(w, .reset) catch {};
as.dump(stderr);
}
tty_config.setColor(w, .red) catch {};
try stderr.writeAll(" Hope that helps. Proceeding to panic.\n");
tty_config.setColor(w, .reset) catch {};
}
/// Allocates a new string for assigning a value to a named macro.
/// If the value is omitted, it is set to 1.
/// `name` and `value` need not live longer than the function call.
pub fn constructCMacro(allocator: Allocator, name: []const u8, value: ?[]const u8) []const u8 {
var macro = allocator.alloc(
u8,
name.len + if (value) |value_slice| value_slice.len + 1 else 0,
) catch |err| if (err == error.OutOfMemory) @panic("Out of memory") else unreachable;
@memcpy(macro[0..name.len], name);
if (value) |value_slice| {
macro[name.len] = '=';
@memcpy(macro[name.len + 1 ..][0..value_slice.len], value_slice);
}
return macro;
}
pub const VcpkgRoot = union(VcpkgRootStatus) {
unattempted: void,
not_found: void,
found: []const u8,
};
pub const VcpkgRootStatus = enum {
unattempted,
not_found,
found,
};
pub const InstallDir = union(enum) {
prefix: void,
lib: void,
bin: void,
header: void,
/// A path relative to the prefix
custom: []const u8,
/// Duplicates the install directory including the path if set to custom.
pub fn dupe(self: InstallDir, builder: *Build) InstallDir {
if (self == .custom) {
return .{ .custom = builder.dupe(self.custom) };
} else {
return self;
}
}
};
pub const InstalledFile = struct {
dir: InstallDir,
path: []const u8,
/// Duplicates the installed file path and directory.
pub fn dupe(self: InstalledFile, builder: *Build) InstalledFile {
return .{
.dir = self.dir.dupe(builder),
.path = builder.dupe(self.path),
};
}
};
pub fn serializeCpu(allocator: Allocator, cpu: std.Target.Cpu) ![]const u8 {
// TODO this logic can disappear if cpu model + features becomes part of the target triple
const all_features = cpu.arch.allFeaturesList();
var populated_cpu_features = cpu.model.features;
populated_cpu_features.populateDependencies(all_features);
if (populated_cpu_features.eql(cpu.features)) {
// The CPU name alone is sufficient.
return cpu.model.name;
} else {
var mcpu_buffer = ArrayList(u8).init(allocator);
try mcpu_buffer.appendSlice(cpu.model.name);
for (all_features, 0..) |feature, i_usize| {
const i = @as(std.Target.Cpu.Feature.Set.Index, @intCast(i_usize));
const in_cpu_set = populated_cpu_features.isEnabled(i);
const in_actual_set = cpu.features.isEnabled(i);
if (in_cpu_set and !in_actual_set) {
try mcpu_buffer.writer().print("-{s}", .{feature.name});
} else if (!in_cpu_set and in_actual_set) {
try mcpu_buffer.writer().print("+{s}", .{feature.name});
}
}
return try mcpu_buffer.toOwnedSlice();
}
}
/// This function is intended to be called in the `configure` phase only.
/// It returns an absolute directory path, which is potentially going to be a
/// source of API breakage in the future, so keep that in mind when using this
/// function.
pub fn makeTempPath(b: *Build) []const u8 {
const rand_int = std.crypto.random.int(u64);
const tmp_dir_sub_path = "tmp" ++ fs.path.sep_str ++ hex64(rand_int);
const result_path = b.cache_root.join(b.allocator, &.{tmp_dir_sub_path}) catch @panic("OOM");
b.cache_root.handle.makePath(tmp_dir_sub_path) catch |err| {
std.debug.print("unable to make tmp path '{s}': {s}\n", .{
result_path, @errorName(err),
});
};
return result_path;
}
/// There are a few copies of this function in miscellaneous places. Would be nice to find
/// a home for them.
pub fn hex64(x: u64) [16]u8 {
const hex_charset = "0123456789abcdef";
var result: [16]u8 = undefined;
var i: usize = 0;
while (i < 8) : (i += 1) {
const byte: u8 = @truncate(x >> @as(u6, @intCast(8 * i)));
result[i * 2 + 0] = hex_charset[byte >> 4];
result[i * 2 + 1] = hex_charset[byte & 15];
}
return result;
}
test {
_ = Step;
}