zig/src/codegen/spirv.zig
2024-02-04 19:09:26 +01:00

5124 lines
219 KiB
Zig

const std = @import("std");
const Allocator = std.mem.Allocator;
const Target = std.Target;
const log = std.log.scoped(.codegen);
const assert = std.debug.assert;
const Module = @import("../Module.zig");
const Decl = Module.Decl;
const Type = @import("../type.zig").Type;
const Value = @import("../value.zig").Value;
const LazySrcLoc = Module.LazySrcLoc;
const Air = @import("../Air.zig");
const Zir = @import("../Zir.zig");
const Liveness = @import("../Liveness.zig");
const InternPool = @import("../InternPool.zig");
const spec = @import("spirv/spec.zig");
const Opcode = spec.Opcode;
const Word = spec.Word;
const IdRef = spec.IdRef;
const IdResult = spec.IdResult;
const IdResultType = spec.IdResultType;
const StorageClass = spec.StorageClass;
const SpvModule = @import("spirv/Module.zig");
const CacheRef = SpvModule.CacheRef;
const CacheString = SpvModule.CacheString;
const SpvSection = @import("spirv/Section.zig");
const SpvAssembler = @import("spirv/Assembler.zig");
const InstMap = std.AutoHashMapUnmanaged(Air.Inst.Index, IdRef);
/// We want to store some extra facts about types as mapped from Zig to SPIR-V.
/// This structure is used to keep that extra information, as well as
/// the cached reference to the type.
const SpvTypeInfo = struct {
ty_ref: CacheRef,
};
const TypeMap = std.AutoHashMapUnmanaged(InternPool.Index, SpvTypeInfo);
const ControlFlow = union(enum) {
const Structured = struct {
/// This type indicates the way that a block is terminated. The
/// state of a particular block is used to track how a jump from
/// inside the block must reach the outside.
const Block = union(enum) {
const Incoming = struct {
src_label: IdRef,
/// Instruction that returns an u32 value of the
/// `Air.Inst.Index` that control flow should jump to.
next_block: IdRef,
};
const SelectionMerge = struct {
/// Incoming block from the `then` label.
/// Note that hte incoming block from the `else` label is
/// either given by the next element in the stack.
incoming: Incoming,
/// The label id of the cond_br's merge block.
/// For the top-most element in the stack, this
/// value is undefined.
merge_block: IdRef,
};
/// For a `selection` type block, we cannot use early exits, and we
/// must generate a 'merge ladder' of OpSelection instructions. To that end,
/// we keep a stack of the merges that still must be closed at the end of
/// a block.
///
/// This entire structure basically just resembles a tree like
/// a x
/// \ /
/// b o merge
/// \ /
/// c o merge
/// \ /
/// o merge
/// /
/// o jump to next block
selection: struct {
/// In order to know which merges we still need to do, we need to keep
/// a stack of those.
merge_stack: std.ArrayListUnmanaged(SelectionMerge) = .{},
},
/// For a `loop` type block, we can early-exit the block by
/// jumping to the loop exit node, and we don't need to generate
/// an entire stack of merges.
loop: struct {
/// The next block to jump to can be determined from any number
/// of conditions that jump to the loop exit.
merges: std.ArrayListUnmanaged(Incoming) = .{},
/// The label id of the loop's merge block.
merge_block: IdRef,
},
fn deinit(self: *Structured.Block, a: Allocator) void {
switch (self.*) {
.selection => |*merge| merge.merge_stack.deinit(a),
.loop => |*merge| merge.merges.deinit(a),
}
self.* = undefined;
}
};
/// The stack of (structured) blocks that we are currently in. This determines
/// how exits from the current block must be handled.
block_stack: std.ArrayListUnmanaged(*Structured.Block) = .{},
/// Maps `block` inst indices to the variable that the block's result
/// value must be written to.
block_results: std.AutoHashMapUnmanaged(Air.Inst.Index, IdRef) = .{},
};
const Unstructured = struct {
const Incoming = struct {
src_label: IdRef,
break_value_id: IdRef,
};
const Block = struct {
label: ?IdRef = null,
incoming_blocks: std.ArrayListUnmanaged(Incoming) = .{},
};
/// We need to keep track of result ids for block labels, as well as the 'incoming'
/// blocks for a block.
blocks: std.AutoHashMapUnmanaged(Air.Inst.Index, *Block) = .{},
};
structured: Structured,
unstructured: Unstructured,
pub fn deinit(self: *ControlFlow, a: Allocator) void {
switch (self.*) {
.structured => |*cf| {
cf.block_stack.deinit(a);
cf.block_results.deinit(a);
},
.unstructured => |*cf| {
cf.blocks.deinit(a);
},
}
self.* = undefined;
}
};
/// This structure holds information that is relevant to the entire compilation,
/// in contrast to `DeclGen`, which only holds relevant information about a
/// single decl.
pub const Object = struct {
/// A general-purpose allocator that can be used for any allocation for this Object.
gpa: Allocator,
/// the SPIR-V module that represents the final binary.
spv: SpvModule,
/// The Zig module that this object file is generated for.
/// A map of Zig decl indices to SPIR-V decl indices.
decl_link: std.AutoHashMapUnmanaged(InternPool.DeclIndex, SpvModule.Decl.Index) = .{},
/// A map of Zig InternPool indices for anonymous decls to SPIR-V decl indices.
anon_decl_link: std.AutoHashMapUnmanaged(struct { InternPool.Index, StorageClass }, SpvModule.Decl.Index) = .{},
/// A map that maps AIR intern pool indices to SPIR-V cache references (which
/// is basically the same thing except for SPIR-V).
/// This map is typically only used for structures that are deemed heavy enough
/// that it is worth to store them here. The SPIR-V module also interns types,
/// and so the main purpose of this map is to avoid recomputation and to
/// cache extra information about the type rather than to aid in validity
/// of the SPIR-V module.
type_map: TypeMap = .{},
pub fn init(gpa: Allocator) Object {
return .{
.gpa = gpa,
.spv = SpvModule.init(gpa),
};
}
pub fn deinit(self: *Object) void {
self.spv.deinit();
self.decl_link.deinit(self.gpa);
self.anon_decl_link.deinit(self.gpa);
self.type_map.deinit(self.gpa);
}
fn genDecl(
self: *Object,
mod: *Module,
decl_index: InternPool.DeclIndex,
air: Air,
liveness: Liveness,
) !void {
const decl = mod.declPtr(decl_index);
const namespace = mod.namespacePtr(decl.src_namespace);
const structured_cfg = namespace.file_scope.mod.structured_cfg;
var decl_gen = DeclGen{
.gpa = self.gpa,
.object = self,
.module = mod,
.spv = &self.spv,
.decl_index = decl_index,
.air = air,
.liveness = liveness,
.type_map = &self.type_map,
.control_flow = switch (structured_cfg) {
true => .{ .structured = .{} },
false => .{ .unstructured = .{} },
},
.current_block_label = undefined,
};
defer decl_gen.deinit();
decl_gen.genDecl() catch |err| switch (err) {
error.CodegenFail => {
try mod.failed_decls.put(mod.gpa, decl_index, decl_gen.error_msg.?);
},
else => |other| {
// There might be an error that happened *after* self.error_msg
// was already allocated, so be sure to free it.
if (decl_gen.error_msg) |error_msg| {
error_msg.deinit(mod.gpa);
}
return other;
},
};
}
pub fn updateFunc(
self: *Object,
mod: *Module,
func_index: InternPool.Index,
air: Air,
liveness: Liveness,
) !void {
const decl_index = mod.funcInfo(func_index).owner_decl;
// TODO: Separate types for generating decls and functions?
try self.genDecl(mod, decl_index, air, liveness);
}
pub fn updateDecl(
self: *Object,
mod: *Module,
decl_index: InternPool.DeclIndex,
) !void {
try self.genDecl(mod, decl_index, undefined, undefined);
}
/// Fetch or allocate a result id for decl index. This function also marks the decl as alive.
/// Note: Function does not actually generate the decl, it just allocates an index.
pub fn resolveDecl(self: *Object, mod: *Module, decl_index: InternPool.DeclIndex) !SpvModule.Decl.Index {
const decl = mod.declPtr(decl_index);
try mod.markDeclAlive(decl);
const entry = try self.decl_link.getOrPut(self.gpa, decl_index);
if (!entry.found_existing) {
// TODO: Extern fn?
const kind: SpvModule.DeclKind = if (decl.val.isFuncBody(mod))
.func
else
.global;
entry.value_ptr.* = try self.spv.allocDecl(kind);
}
return entry.value_ptr.*;
}
};
/// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that.
const DeclGen = struct {
/// A general-purpose allocator that can be used for any allocations for this DeclGen.
gpa: Allocator,
/// The object that this decl is generated into.
object: *Object,
/// The Zig module that we are generating decls for.
module: *Module,
/// The SPIR-V module that instructions should be emitted into.
/// This is the same as `self.object.spv`, repeated here for brevity.
spv: *SpvModule,
/// The decl we are currently generating code for.
decl_index: InternPool.DeclIndex,
/// The intermediate code of the declaration we are currently generating. Note: If
/// the declaration is not a function, this value will be undefined!
air: Air,
/// The liveness analysis of the intermediate code for the declaration we are currently generating.
/// Note: If the declaration is not a function, this value will be undefined!
liveness: Liveness,
/// An array of function argument result-ids. Each index corresponds with the
/// function argument of the same index.
args: std.ArrayListUnmanaged(IdRef) = .{},
/// A counter to keep track of how many `arg` instructions we've seen yet.
next_arg_index: u32 = 0,
/// A map keeping track of which instruction generated which result-id.
inst_results: InstMap = .{},
/// A map that maps AIR intern pool indices to SPIR-V cache references.
/// See Object.type_map
type_map: *TypeMap,
/// Child types of pointers that are currently in progress of being resolved. If a pointer
/// is already in this map, its recursive.
wip_pointers: std.AutoHashMapUnmanaged(struct { InternPool.Index, StorageClass }, CacheRef) = .{},
/// This field keeps track of the current state wrt structured or unstructured control flow.
control_flow: ControlFlow,
/// The label of the SPIR-V block we are currently generating.
current_block_label: IdRef,
/// The code (prologue and body) for the function we are currently generating code for.
func: SpvModule.Fn = .{},
/// Stack of the base offsets of the current decl, which is what `dbg_stmt` is relative to.
/// This is a stack to keep track of inline functions.
base_line_stack: std.ArrayListUnmanaged(u32) = .{},
/// If `gen` returned `Error.CodegenFail`, this contains an explanatory message.
/// Memory is owned by `module.gpa`.
error_msg: ?*Module.ErrorMsg = null,
/// Possible errors the `genDecl` function may return.
const Error = error{ CodegenFail, OutOfMemory };
/// This structure is used to return information about a type typically used for
/// arithmetic operations. These types may either be integers, floats, or a vector
/// of these. Most scalar operations also work on vectors, so we can easily represent
/// those as arithmetic types. If the type is a scalar, 'inner type' refers to the
/// scalar type. Otherwise, if its a vector, it refers to the vector's element type.
const ArithmeticTypeInfo = struct {
/// A classification of the inner type.
const Class = enum {
/// A boolean.
bool,
/// A regular, **native**, integer.
/// This is only returned when the backend supports this int as a native type (when
/// the relevant capability is enabled).
integer,
/// A regular float. These are all required to be natively supported. Floating points
/// for which the relevant capability is not enabled are not emulated.
float,
/// An integer of a 'strange' size (which' bit size is not the same as its backing
/// type. **Note**: this may **also** include power-of-2 integers for which the
/// relevant capability is not enabled), but still within the limits of the largest
/// natively supported integer type.
strange_integer,
/// An integer with more bits than the largest natively supported integer type.
composite_integer,
};
/// The number of bits in the inner type.
/// This is the actual number of bits of the type, not the size of the backing integer.
bits: u16,
/// The number of bits required to store the type.
/// For `integer` and `float`, this is equal to `bits`.
/// For `strange_integer` and `bool` this is the size of the backing integer.
/// For `composite_integer` this is 0 (TODO)
backing_bits: u16,
/// Whether the type is a vector.
is_vector: bool,
/// Whether the inner type is signed. Only relevant for integers.
signedness: std.builtin.Signedness,
/// A classification of the inner type. These scenarios
/// will all have to be handled slightly different.
class: Class,
};
/// Data can be lowered into in two basic representations: indirect, which is when
/// a type is stored in memory, and direct, which is how a type is stored when its
/// a direct SPIR-V value.
const Repr = enum {
/// A SPIR-V value as it would be used in operations.
direct,
/// A SPIR-V value as it is stored in memory.
indirect,
};
/// Free resources owned by the DeclGen.
pub fn deinit(self: *DeclGen) void {
self.args.deinit(self.gpa);
self.inst_results.deinit(self.gpa);
self.wip_pointers.deinit(self.gpa);
self.control_flow.deinit(self.gpa);
self.func.deinit(self.gpa);
self.base_line_stack.deinit(self.gpa);
}
/// Return the target which we are currently compiling for.
pub fn getTarget(self: *DeclGen) std.Target {
return self.module.getTarget();
}
pub fn fail(self: *DeclGen, comptime format: []const u8, args: anytype) Error {
@setCold(true);
const mod = self.module;
const src = LazySrcLoc.nodeOffset(0);
const src_loc = src.toSrcLoc(self.module.declPtr(self.decl_index), mod);
assert(self.error_msg == null);
self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, format, args);
return error.CodegenFail;
}
pub fn todo(self: *DeclGen, comptime format: []const u8, args: anytype) Error {
return self.fail("TODO (SPIR-V): " ++ format, args);
}
/// Fetch the result-id for a previously generated instruction or constant.
fn resolve(self: *DeclGen, inst: Air.Inst.Ref) !IdRef {
const mod = self.module;
if (try self.air.value(inst, mod)) |val| {
const ty = self.typeOf(inst);
if (ty.zigTypeTag(mod) == .Fn) {
const fn_decl_index = switch (mod.intern_pool.indexToKey(val.ip_index)) {
.extern_func => |extern_func| extern_func.decl,
.func => |func| func.owner_decl,
else => unreachable,
};
const spv_decl_index = try self.object.resolveDecl(mod, fn_decl_index);
try self.func.decl_deps.put(self.spv.gpa, spv_decl_index, {});
return self.spv.declPtr(spv_decl_index).result_id;
}
return try self.constant(ty, val, .direct);
}
const index = inst.toIndex().?;
return self.inst_results.get(index).?; // Assertion means instruction does not dominate usage.
}
fn resolveAnonDecl(self: *DeclGen, val: InternPool.Index, storage_class: StorageClass) !IdRef {
// TODO: This cannot be a function at this point, but it should probably be handled anyway.
const spv_decl_index = blk: {
const entry = try self.object.anon_decl_link.getOrPut(self.object.gpa, .{ val, storage_class });
if (entry.found_existing) {
try self.func.decl_deps.put(self.spv.gpa, entry.value_ptr.*, {});
return self.spv.declPtr(entry.value_ptr.*).result_id;
}
const spv_decl_index = try self.spv.allocDecl(.global);
try self.func.decl_deps.put(self.spv.gpa, spv_decl_index, {});
entry.value_ptr.* = spv_decl_index;
break :blk spv_decl_index;
};
const mod = self.module;
const ty = Type.fromInterned(mod.intern_pool.typeOf(val));
const ptr_ty_ref = try self.ptrType(ty, storage_class);
const var_id = self.spv.declPtr(spv_decl_index).result_id;
const section = &self.spv.sections.types_globals_constants;
try section.emit(self.spv.gpa, .OpVariable, .{
.id_result_type = self.typeId(ptr_ty_ref),
.id_result = var_id,
.storage_class = storage_class,
});
// TODO: At some point we will be able to generate this all constant here, but then all of
// constant() will need to be implemented such that it doesn't generate any at-runtime code.
// NOTE: Because this is a global, we really only want to initialize it once. Therefore the
// constant lowering of this value will need to be deferred to some other function, which
// is then added to the list of initializers using endGlobal().
// Save the current state so that we can temporarily generate into a different function.
// TODO: This should probably be made a little more robust.
const func = self.func;
defer self.func = func;
const block_label = self.current_block_label;
defer self.current_block_label = block_label;
self.func = .{};
defer self.func.deinit(self.gpa);
// TODO: Merge this with genDecl?
const begin = self.spv.beginGlobal();
const void_ty_ref = try self.resolveType(Type.void, .direct);
const initializer_proto_ty_ref = try self.spv.resolve(.{ .function_type = .{
.return_type = void_ty_ref,
.parameters = &.{},
} });
const initializer_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{
.id_result_type = self.typeId(void_ty_ref),
.id_result = initializer_id,
.function_control = .{},
.function_type = self.typeId(initializer_proto_ty_ref),
});
const root_block_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{
.id_result = root_block_id,
});
self.current_block_label = root_block_id;
const val_id = try self.constant(ty, Value.fromInterned(val), .indirect);
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = var_id,
.object = val_id,
});
self.spv.endGlobal(spv_decl_index, begin, var_id, initializer_id);
try self.func.body.emit(self.spv.gpa, .OpReturn, {});
try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {});
try self.spv.addFunction(spv_decl_index, self.func);
try self.spv.debugNameFmt(var_id, "__anon_{d}", .{@intFromEnum(val)});
try self.spv.debugNameFmt(initializer_id, "initializer of __anon_{d}", .{@intFromEnum(val)});
return var_id;
}
/// Start a new SPIR-V block, Emits the label of the new block, and stores which
/// block we are currently generating.
/// Note that there is no such thing as nested blocks like in ZIR or AIR, so we don't need to
/// keep track of the previous block.
fn beginSpvBlock(self: *DeclGen, label: IdResult) !void {
try self.func.body.emit(self.spv.gpa, .OpLabel, .{ .id_result = label });
self.current_block_label = label;
}
/// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need
/// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign
/// included), the width of the underlying type which represents it, given the enabled features for the current target.
/// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using
/// that size. In this case, multiple elements of the largest type should be used.
/// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits.
/// The result is valid to be used with OpTypeInt.
/// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
/// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers).
/// TODO: Should the result of this function be cached?
fn backingIntBits(self: *DeclGen, bits: u16) ?u16 {
const target = self.getTarget();
// The backend will never be asked to compiler a 0-bit integer, so we won't have to handle those in this function.
assert(bits != 0);
// 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively.
// 32-bit integers are always supported (see spec, 2.16.1, Data rules).
const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{
.{ .bits = 8, .feature = .Int8 },
.{ .bits = 16, .feature = .Int16 },
.{ .bits = 32, .feature = null },
.{ .bits = 64, .feature = .Int64 },
};
for (ints) |int| {
const has_feature = if (int.feature) |feature|
Target.spirv.featureSetHas(target.cpu.features, feature)
else
true;
if (bits <= int.bits and has_feature) {
return int.bits;
}
}
return null;
}
/// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if
/// the Int64 capability is enabled).
/// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
/// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there
/// is no way of knowing whether those are actually supported.
/// TODO: Maybe this should be cached?
fn largestSupportedIntBits(self: *DeclGen) u16 {
const target = self.getTarget();
return if (Target.spirv.featureSetHas(target.cpu.features, .Int64))
64
else
32;
}
/// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by
/// arrays of largestSupportedIntBits().
/// Asserts `ty` is an integer.
fn isCompositeInt(self: *DeclGen, ty: Type) bool {
return self.backingIntBits(ty) == null;
}
fn arithmeticTypeInfo(self: *DeclGen, ty: Type) !ArithmeticTypeInfo {
const mod = self.module;
const target = self.getTarget();
return switch (ty.zigTypeTag(mod)) {
.Bool => ArithmeticTypeInfo{
.bits = 1, // Doesn't matter for this class.
.backing_bits = self.backingIntBits(1).?,
.is_vector = false,
.signedness = .unsigned, // Technically, but doesn't matter for this class.
.class = .bool,
},
.Float => ArithmeticTypeInfo{
.bits = ty.floatBits(target),
.backing_bits = ty.floatBits(target), // TODO: F80?
.is_vector = false,
.signedness = .signed, // Technically, but doesn't matter for this class.
.class = .float,
},
.Int => blk: {
const int_info = ty.intInfo(mod);
// TODO: Maybe it's useful to also return this value.
const maybe_backing_bits = self.backingIntBits(int_info.bits);
break :blk ArithmeticTypeInfo{
.bits = int_info.bits,
.backing_bits = maybe_backing_bits orelse 0,
.is_vector = false,
.signedness = int_info.signedness,
.class = if (maybe_backing_bits) |backing_bits|
if (backing_bits == int_info.bits)
ArithmeticTypeInfo.Class.integer
else
ArithmeticTypeInfo.Class.strange_integer
else
.composite_integer,
};
},
.Enum => return self.arithmeticTypeInfo(ty.intTagType(mod)),
// As of yet, there is no vector support in the self-hosted compiler.
.Vector => blk: {
const child_type = ty.childType(mod);
const child_ty_info = try self.arithmeticTypeInfo(child_type);
break :blk ArithmeticTypeInfo{
.bits = child_ty_info.bits,
.backing_bits = child_ty_info.backing_bits,
.is_vector = true,
.signedness = child_ty_info.signedness,
.class = child_ty_info.class,
};
},
// TODO: For which types is this the case?
// else => self.todo("implement arithmeticTypeInfo for {}", .{ty.fmt(self.module)}),
else => unreachable,
};
}
/// Emits a bool constant in a particular representation.
fn constBool(self: *DeclGen, value: bool, repr: Repr) !IdRef {
switch (repr) {
.indirect => {
const int_ty_ref = try self.intType(.unsigned, 1);
return self.constInt(int_ty_ref, @intFromBool(value));
},
.direct => {
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
return self.spv.constBool(bool_ty_ref, value);
},
}
}
/// Emits an integer constant.
/// This function, unlike SpvModule.constInt, takes care to bitcast
/// the value to an unsigned int first for Kernels.
fn constInt(self: *DeclGen, ty_ref: CacheRef, value: anytype) !IdRef {
if (value < 0) {
const ty = self.spv.cache.lookup(ty_ref).int_type;
// Manually truncate the value so that the resulting value
// fits within the unsigned type.
const bits: u64 = @bitCast(@as(i64, @intCast(value)));
const truncated_bits = if (ty.bits == 64)
bits
else
bits & (@as(u64, 1) << @intCast(ty.bits)) - 1;
return try self.spv.constInt(ty_ref, truncated_bits);
} else {
return try self.spv.constInt(ty_ref, value);
}
}
/// Construct a struct at runtime.
/// ty must be a struct type.
/// Constituents should be in `indirect` representation (as the elements of a struct should be).
/// Result is in `direct` representation.
fn constructStruct(self: *DeclGen, ty: Type, types: []const Type, constituents: []const IdRef) !IdRef {
assert(types.len == constituents.len);
// The Khronos LLVM-SPIRV translator crashes because it cannot construct structs which'
// operands are not constant.
// See https://github.com/KhronosGroup/SPIRV-LLVM-Translator/issues/1349
// For now, just initialize the struct by setting the fields manually...
// TODO: Make this OpCompositeConstruct when we can
const ptr_composite_id = try self.alloc(ty, .{ .storage_class = .Function });
for (constituents, types, 0..) |constitent_id, member_ty, index| {
const ptr_member_ty_ref = try self.ptrType(member_ty, .Function);
const ptr_id = try self.accessChain(ptr_member_ty_ref, ptr_composite_id, &.{@as(u32, @intCast(index))});
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = ptr_id,
.object = constitent_id,
});
}
return try self.load(ty, ptr_composite_id, .{});
}
/// Construct an array at runtime.
/// ty must be an array type.
/// Constituents should be in `indirect` representation (as the elements of an array should be).
/// Result is in `direct` representation.
fn constructArray(self: *DeclGen, ty: Type, constituents: []const IdRef) !IdRef {
// The Khronos LLVM-SPIRV translator crashes because it cannot construct structs which'
// operands are not constant.
// See https://github.com/KhronosGroup/SPIRV-LLVM-Translator/issues/1349
// For now, just initialize the struct by setting the fields manually...
// TODO: Make this OpCompositeConstruct when we can
const mod = self.module;
const ptr_composite_id = try self.alloc(ty, .{ .storage_class = .Function });
const ptr_elem_ty_ref = try self.ptrType(ty.elemType2(mod), .Function);
for (constituents, 0..) |constitent_id, index| {
const ptr_id = try self.accessChain(ptr_elem_ty_ref, ptr_composite_id, &.{@as(u32, @intCast(index))});
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = ptr_id,
.object = constitent_id,
});
}
return try self.load(ty, ptr_composite_id, .{});
}
/// This function generates a load for a constant in direct (ie, non-memory) representation.
/// When the constant is simple, it can be generated directly using OpConstant instructions.
/// When the constant is more complicated however, it needs to be constructed using multiple values. This
/// is done by emitting a sequence of instructions that initialize the value.
//
/// This function should only be called during function code generation.
fn constant(self: *DeclGen, ty: Type, arg_val: Value, repr: Repr) !IdRef {
const mod = self.module;
const target = self.getTarget();
const result_ty_ref = try self.resolveType(ty, repr);
const ip = &mod.intern_pool;
const val = arg_val;
log.debug("constant: ty = {}, val = {}", .{ ty.fmt(mod), val.fmtValue(ty, mod) });
if (val.isUndefDeep(mod)) {
return self.spv.constUndef(result_ty_ref);
}
switch (ip.indexToKey(val.toIntern())) {
.int_type,
.ptr_type,
.array_type,
.vector_type,
.opt_type,
.anyframe_type,
.error_union_type,
.simple_type,
.struct_type,
.anon_struct_type,
.union_type,
.opaque_type,
.enum_type,
.func_type,
.error_set_type,
.inferred_error_set_type,
=> unreachable, // types, not values
.undef => unreachable, // handled above
.variable,
.extern_func,
.func,
.enum_literal,
.empty_enum_value,
=> unreachable, // non-runtime values
.simple_value => |simple_value| switch (simple_value) {
.undefined,
.void,
.null,
.empty_struct,
.@"unreachable",
.generic_poison,
=> unreachable, // non-runtime values
.false, .true => return try self.constBool(val.toBool(), repr),
},
.int => {
if (ty.isSignedInt(mod)) {
return try self.constInt(result_ty_ref, val.toSignedInt(mod));
} else {
return try self.constInt(result_ty_ref, val.toUnsignedInt(mod));
}
},
.float => return switch (ty.floatBits(target)) {
16 => try self.spv.resolveId(.{ .float = .{ .ty = result_ty_ref, .value = .{ .float16 = val.toFloat(f16, mod) } } }),
32 => try self.spv.resolveId(.{ .float = .{ .ty = result_ty_ref, .value = .{ .float32 = val.toFloat(f32, mod) } } }),
64 => try self.spv.resolveId(.{ .float = .{ .ty = result_ty_ref, .value = .{ .float64 = val.toFloat(f64, mod) } } }),
80, 128 => unreachable, // TODO
else => unreachable,
},
.err => |err| {
const value = try mod.getErrorValue(err.name);
return try self.constInt(result_ty_ref, value);
},
.error_union => |error_union| {
// TODO: Error unions may be constructed with constant instructions if the payload type
// allows it. For now, just generate it here regardless.
const err_int_ty = try mod.errorIntType();
const err_ty = switch (error_union.val) {
.err_name => ty.errorUnionSet(mod),
.payload => err_int_ty,
};
const err_val = switch (error_union.val) {
.err_name => |err_name| Value.fromInterned((try mod.intern(.{ .err = .{
.ty = ty.errorUnionSet(mod).toIntern(),
.name = err_name,
} }))),
.payload => try mod.intValue(err_int_ty, 0),
};
const payload_ty = ty.errorUnionPayload(mod);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
// We use the error type directly as the type.
return try self.constant(err_ty, err_val, .indirect);
}
const payload_val = Value.fromInterned(switch (error_union.val) {
.err_name => try mod.intern(.{ .undef = payload_ty.toIntern() }),
.payload => |payload| payload,
});
var constituents: [2]IdRef = undefined;
var types: [2]Type = undefined;
if (eu_layout.error_first) {
constituents[0] = try self.constant(err_ty, err_val, .indirect);
constituents[1] = try self.constant(payload_ty, payload_val, .indirect);
types = .{ err_ty, payload_ty };
} else {
constituents[0] = try self.constant(payload_ty, payload_val, .indirect);
constituents[1] = try self.constant(err_ty, err_val, .indirect);
types = .{ payload_ty, err_ty };
}
return try self.constructStruct(ty, &types, &constituents);
},
.enum_tag => {
const int_val = try val.intFromEnum(ty, mod);
const int_ty = ty.intTagType(mod);
return try self.constant(int_ty, int_val, repr);
},
.ptr => return self.constantPtr(ty, val),
.slice => |slice| {
const ptr_ty = ty.slicePtrFieldType(mod);
const ptr_id = try self.constantPtr(ptr_ty, Value.fromInterned(slice.ptr));
const len_id = try self.constant(Type.usize, Value.fromInterned(slice.len), .indirect);
return self.constructStruct(
ty,
&.{ ptr_ty, Type.usize },
&.{ ptr_id, len_id },
);
},
.opt => {
const payload_ty = ty.optionalChild(mod);
const maybe_payload_val = val.optionalValue(mod);
if (!payload_ty.hasRuntimeBits(mod)) {
return try self.constBool(maybe_payload_val != null, .indirect);
} else if (ty.optionalReprIsPayload(mod)) {
// Optional representation is a nullable pointer or slice.
if (maybe_payload_val) |payload_val| {
return try self.constant(payload_ty, payload_val, .indirect);
} else {
const ptr_ty_ref = try self.resolveType(ty, .indirect);
return self.spv.constNull(ptr_ty_ref);
}
}
// Optional representation is a structure.
// { Payload, Bool }
const has_pl_id = try self.constBool(maybe_payload_val != null, .indirect);
const payload_id = if (maybe_payload_val) |payload_val|
try self.constant(payload_ty, payload_val, .indirect)
else
try self.spv.constUndef(try self.resolveType(payload_ty, .indirect));
return try self.constructStruct(
ty,
&.{ payload_ty, Type.bool },
&.{ payload_id, has_pl_id },
);
},
.aggregate => |aggregate| switch (ip.indexToKey(ty.ip_index)) {
inline .array_type, .vector_type => |array_type, tag| {
const elem_ty = Type.fromInterned(array_type.child);
const elem_ty_ref = try self.resolveType(elem_ty, .indirect);
const constituents = try self.gpa.alloc(IdRef, @as(u32, @intCast(ty.arrayLenIncludingSentinel(mod))));
defer self.gpa.free(constituents);
switch (aggregate.storage) {
.bytes => |bytes| {
// TODO: This is really space inefficient, perhaps there is a better
// way to do it?
for (bytes, 0..) |byte, i| {
constituents[i] = try self.constInt(elem_ty_ref, byte);
}
},
.elems => |elems| {
for (0..@as(usize, @intCast(array_type.len))) |i| {
constituents[i] = try self.constant(elem_ty, Value.fromInterned(elems[i]), .indirect);
}
},
.repeated_elem => |elem| {
const val_id = try self.constant(elem_ty, Value.fromInterned(elem), .indirect);
for (0..@as(usize, @intCast(array_type.len))) |i| {
constituents[i] = val_id;
}
},
}
switch (tag) {
inline .array_type => if (array_type.sentinel != .none) {
constituents[constituents.len - 1] = try self.constant(elem_ty, Value.fromInterned(array_type.sentinel), .indirect);
},
else => {},
}
return try self.constructArray(ty, constituents);
},
.struct_type => {
const struct_type = mod.typeToStruct(ty).?;
if (struct_type.layout == .Packed) {
return self.todo("packed struct constants", .{});
}
var types = std.ArrayList(Type).init(self.gpa);
defer types.deinit();
var constituents = std.ArrayList(IdRef).init(self.gpa);
defer constituents.deinit();
var it = struct_type.iterateRuntimeOrder(ip);
while (it.next()) |field_index| {
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[field_index]);
if (!field_ty.hasRuntimeBitsIgnoreComptime(mod)) {
// This is a zero-bit field - we only needed it for the alignment.
continue;
}
// TODO: Padding?
const field_val = try val.fieldValue(mod, field_index);
const field_id = try self.constant(field_ty, field_val, .indirect);
try types.append(field_ty);
try constituents.append(field_id);
}
return try self.constructStruct(ty, types.items, constituents.items);
},
.anon_struct_type => unreachable, // TODO
else => unreachable,
},
.un => |un| {
const active_field = ty.unionTagFieldIndex(Value.fromInterned(un.tag), mod).?;
const union_obj = mod.typeToUnion(ty).?;
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[active_field]);
const payload = if (field_ty.hasRuntimeBitsIgnoreComptime(mod))
try self.constant(field_ty, Value.fromInterned(un.val), .direct)
else
null;
return try self.unionInit(ty, active_field, payload);
},
.memoized_call => unreachable,
}
}
fn constantPtr(self: *DeclGen, ptr_ty: Type, ptr_val: Value) Error!IdRef {
const result_ty_ref = try self.resolveType(ptr_ty, .direct);
const mod = self.module;
switch (mod.intern_pool.indexToKey(ptr_val.toIntern()).ptr.addr) {
.decl => |decl| return try self.constantDeclRef(ptr_ty, decl),
.mut_decl => |decl_mut| return try self.constantDeclRef(ptr_ty, decl_mut.decl),
.anon_decl => |anon_decl| return try self.constantAnonDeclRef(ptr_ty, anon_decl),
.int => |int| {
const ptr_id = self.spv.allocId();
// TODO: This can probably be an OpSpecConstantOp Bitcast, but
// that is not implemented by Mesa yet. Therefore, just generate it
// as a runtime operation.
try self.func.body.emit(self.spv.gpa, .OpConvertUToPtr, .{
.id_result_type = self.typeId(result_ty_ref),
.id_result = ptr_id,
.integer_value = try self.constant(Type.usize, Value.fromInterned(int), .direct),
});
return ptr_id;
},
.eu_payload => unreachable, // TODO
.opt_payload => unreachable, // TODO
.comptime_field => unreachable,
.elem => |elem_ptr| {
const parent_ptr_ty = Type.fromInterned(mod.intern_pool.typeOf(elem_ptr.base));
const parent_ptr_id = try self.constantPtr(parent_ptr_ty, Value.fromInterned(elem_ptr.base));
const size_ty_ref = try self.sizeType();
const index_id = try self.constInt(size_ty_ref, elem_ptr.index);
const elem_ptr_id = try self.ptrElemPtr(parent_ptr_ty, parent_ptr_id, index_id);
// TODO: Can we consolidate this in ptrElemPtr?
const elem_ty = parent_ptr_ty.elemType2(mod); // use elemType() so that we get T for *[N]T.
const elem_ptr_ty_ref = try self.ptrType(elem_ty, spvStorageClass(parent_ptr_ty.ptrAddressSpace(mod)));
if (elem_ptr_ty_ref == result_ty_ref) {
return elem_ptr_id;
}
// This may happen when we have pointer-to-array and the result is
// another pointer-to-array instead of a pointer-to-element.
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = self.typeId(result_ty_ref),
.id_result = result_id,
.operand = elem_ptr_id,
});
return result_id;
},
.field => |field| {
const base_ptr_ty = Type.fromInterned(mod.intern_pool.typeOf(field.base));
const base_ptr = try self.constantPtr(base_ptr_ty, Value.fromInterned(field.base));
const field_index: u32 = @intCast(field.index);
return try self.structFieldPtr(ptr_ty, base_ptr_ty, base_ptr, field_index);
},
}
}
fn constantAnonDeclRef(
self: *DeclGen,
ty: Type,
anon_decl: InternPool.Key.Ptr.Addr.AnonDecl,
) !IdRef {
// TODO: Merge this function with constantDeclRef.
const mod = self.module;
const ip = &mod.intern_pool;
const ty_ref = try self.resolveType(ty, .direct);
const decl_val = anon_decl.val;
const decl_ty = Type.fromInterned(ip.typeOf(decl_val));
if (Value.fromInterned(decl_val).getFunction(mod)) |func| {
_ = func;
unreachable; // TODO
} else if (Value.fromInterned(decl_val).getExternFunc(mod)) |func| {
_ = func;
unreachable;
}
// const is_fn_body = decl_ty.zigTypeTag(mod) == .Fn;
if (!decl_ty.isFnOrHasRuntimeBitsIgnoreComptime(mod)) {
// Pointer to nothing - return undefoined
return self.spv.constUndef(ty_ref);
}
if (decl_ty.zigTypeTag(mod) == .Fn) {
unreachable; // TODO
}
const final_storage_class = spvStorageClass(ty.ptrAddressSpace(mod));
const actual_storage_class = switch (final_storage_class) {
.Generic => .CrossWorkgroup,
else => |other| other,
};
const decl_id = try self.resolveAnonDecl(decl_val, actual_storage_class);
const decl_ptr_ty_ref = try self.ptrType(decl_ty, final_storage_class);
const ptr_id = switch (final_storage_class) {
.Generic => blk: {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpPtrCastToGeneric, .{
.id_result_type = self.typeId(decl_ptr_ty_ref),
.id_result = result_id,
.pointer = decl_id,
});
break :blk result_id;
},
else => decl_id,
};
if (decl_ptr_ty_ref != ty_ref) {
// Differing pointer types, insert a cast.
const casted_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = self.typeId(ty_ref),
.id_result = casted_ptr_id,
.operand = ptr_id,
});
return casted_ptr_id;
} else {
return ptr_id;
}
}
fn constantDeclRef(self: *DeclGen, ty: Type, decl_index: InternPool.DeclIndex) !IdRef {
const mod = self.module;
const ty_ref = try self.resolveType(ty, .direct);
const ty_id = self.typeId(ty_ref);
const decl = mod.declPtr(decl_index);
switch (mod.intern_pool.indexToKey(decl.val.ip_index)) {
.func => {
// TODO: Properly lower function pointers. For now we are going to hack around it and
// just generate an empty pointer. Function pointers are represented by a pointer to usize.
return try self.spv.constUndef(ty_ref);
},
.extern_func => unreachable, // TODO
else => {},
}
if (!decl.ty.isFnOrHasRuntimeBitsIgnoreComptime(mod)) {
// Pointer to nothing - return undefined.
return self.spv.constUndef(ty_ref);
}
const spv_decl_index = try self.object.resolveDecl(mod, decl_index);
const decl_id = self.spv.declPtr(spv_decl_index).result_id;
try self.func.decl_deps.put(self.spv.gpa, spv_decl_index, {});
const final_storage_class = spvStorageClass(decl.@"addrspace");
const decl_ptr_ty_ref = try self.ptrType(decl.ty, final_storage_class);
const ptr_id = switch (final_storage_class) {
.Generic => blk: {
// Pointer should be Generic, but is actually placed in CrossWorkgroup.
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpPtrCastToGeneric, .{
.id_result_type = self.typeId(decl_ptr_ty_ref),
.id_result = result_id,
.pointer = decl_id,
});
break :blk result_id;
},
else => decl_id,
};
if (decl_ptr_ty_ref != ty_ref) {
// Differing pointer types, insert a cast.
const casted_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = ty_id,
.id_result = casted_ptr_id,
.operand = ptr_id,
});
return casted_ptr_id;
} else {
return ptr_id;
}
}
// Turn a Zig type's name into a cache reference.
fn resolveTypeName(self: *DeclGen, ty: Type) !CacheString {
var name = std.ArrayList(u8).init(self.gpa);
defer name.deinit();
try ty.print(name.writer(), self.module);
return try self.spv.resolveString(name.items);
}
/// Turn a Zig type into a SPIR-V Type, and return its type result-id.
fn resolveTypeId(self: *DeclGen, ty: Type) !IdResultType {
const type_ref = try self.resolveType(ty, .direct);
return self.spv.resultId(type_ref);
}
fn typeId(self: *DeclGen, ty_ref: CacheRef) IdRef {
return self.spv.resultId(ty_ref);
}
/// Create an integer type suitable for storing at least 'bits' bits.
/// The integer type that is returned by this function is the type that is used to perform
/// actual operations (as well as store) a Zig type of a particular number of bits. To create
/// a type with an exact size, use SpvModule.intType.
fn intType(self: *DeclGen, signedness: std.builtin.Signedness, bits: u16) !CacheRef {
const backing_bits = self.backingIntBits(bits) orelse {
// TODO: Integers too big for any native type are represented as "composite integers":
// An array of largestSupportedIntBits.
return self.todo("Implement {s} composite int type of {} bits", .{ @tagName(signedness), bits });
};
// Kernel only supports unsigned ints.
// TODO: Only do this with Kernels
return self.spv.intType(.unsigned, backing_bits);
}
/// Create an integer type that represents 'usize'.
fn sizeType(self: *DeclGen) !CacheRef {
return try self.intType(.unsigned, self.getTarget().ptrBitWidth());
}
fn ptrType(self: *DeclGen, child_ty: Type, storage_class: StorageClass) !CacheRef {
const key = .{ child_ty.toIntern(), storage_class };
const entry = try self.wip_pointers.getOrPut(self.gpa, key);
if (entry.found_existing) {
const fwd_ref = entry.value_ptr.*;
try self.spv.cache.recursive_ptrs.put(self.spv.gpa, fwd_ref, {});
return fwd_ref;
}
const fwd_ref = try self.spv.resolve(.{ .fwd_ptr_type = .{
.zig_child_type = child_ty.toIntern(),
.storage_class = storage_class,
} });
entry.value_ptr.* = fwd_ref;
const child_ty_ref = try self.resolveType(child_ty, .indirect);
_ = try self.spv.resolve(.{ .ptr_type = .{
.storage_class = storage_class,
.child_type = child_ty_ref,
.fwd = fwd_ref,
} });
assert(self.wip_pointers.remove(key));
return fwd_ref;
}
/// Generate a union type. Union types are always generated with the
/// most aligned field active. If the tag alignment is greater
/// than that of the payload, a regular union (non-packed, with both tag and
/// payload), will be generated as follows:
/// struct {
/// tag: TagType,
/// payload: MostAlignedFieldType,
/// payload_padding: [payload_size - @sizeOf(MostAlignedFieldType)]u8,
/// padding: [padding_size]u8,
/// }
/// If the payload alignment is greater than that of the tag:
/// struct {
/// payload: MostAlignedFieldType,
/// payload_padding: [payload_size - @sizeOf(MostAlignedFieldType)]u8,
/// tag: TagType,
/// padding: [padding_size]u8,
/// }
/// If any of the fields' size is 0, it will be omitted.
fn resolveUnionType(self: *DeclGen, ty: Type) !CacheRef {
const mod = self.module;
const ip = &mod.intern_pool;
const union_obj = mod.typeToUnion(ty).?;
if (union_obj.getLayout(ip) == .Packed) {
return self.todo("packed union types", .{});
}
const layout = self.unionLayout(ty);
if (!layout.has_payload) {
// No payload, so represent this as just the tag type.
return try self.resolveType(Type.fromInterned(union_obj.enum_tag_ty), .indirect);
}
if (self.type_map.get(ty.toIntern())) |info| return info.ty_ref;
var member_types: [4]CacheRef = undefined;
var member_names: [4]CacheString = undefined;
const u8_ty_ref = try self.intType(.unsigned, 8); // TODO: What if Int8Type is not enabled?
if (layout.tag_size != 0) {
const tag_ty_ref = try self.resolveType(Type.fromInterned(union_obj.enum_tag_ty), .indirect);
member_types[layout.tag_index] = tag_ty_ref;
member_names[layout.tag_index] = try self.spv.resolveString("(tag)");
}
if (layout.payload_size != 0) {
const payload_ty_ref = try self.resolveType(layout.payload_ty, .indirect);
member_types[layout.payload_index] = payload_ty_ref;
member_names[layout.payload_index] = try self.spv.resolveString("(payload)");
}
if (layout.payload_padding_size != 0) {
const payload_padding_ty_ref = try self.spv.arrayType(@intCast(layout.payload_padding_size), u8_ty_ref);
member_types[layout.payload_padding_index] = payload_padding_ty_ref;
member_names[layout.payload_padding_index] = try self.spv.resolveString("(payload padding)");
}
if (layout.padding_size != 0) {
const padding_ty_ref = try self.spv.arrayType(@intCast(layout.padding_size), u8_ty_ref);
member_types[layout.padding_index] = padding_ty_ref;
member_names[layout.padding_index] = try self.spv.resolveString("(padding)");
}
const ty_ref = try self.spv.resolve(.{ .struct_type = .{
.name = try self.resolveTypeName(ty),
.member_types = member_types[0..layout.total_fields],
.member_names = member_names[0..layout.total_fields],
} });
try self.type_map.put(self.gpa, ty.toIntern(), .{ .ty_ref = ty_ref });
return ty_ref;
}
fn resolveFnReturnType(self: *DeclGen, ret_ty: Type) !CacheRef {
const mod = self.module;
if (!ret_ty.hasRuntimeBitsIgnoreComptime(mod)) {
// If the return type is an error set or an error union, then we make this
// anyerror return type instead, so that it can be coerced into a function
// pointer type which has anyerror as the return type.
if (ret_ty.isError(mod)) {
return self.resolveType(Type.anyerror, .direct);
} else {
return self.resolveType(Type.void, .direct);
}
}
return try self.resolveType(ret_ty, .direct);
}
/// Turn a Zig type into a SPIR-V Type, and return a reference to it.
fn resolveType(self: *DeclGen, ty: Type, repr: Repr) Error!CacheRef {
const mod = self.module;
const ip = &mod.intern_pool;
log.debug("resolveType: ty = {}", .{ty.fmt(mod)});
const target = self.getTarget();
switch (ty.zigTypeTag(mod)) {
.NoReturn => {
assert(repr == .direct);
return try self.spv.resolve(.void_type);
},
.Void => switch (repr) {
.direct => return try self.spv.resolve(.void_type),
// Pointers to void
.indirect => return try self.spv.resolve(.{ .opaque_type = .{
.name = try self.spv.resolveString("void"),
} }),
},
.Bool => switch (repr) {
.direct => return try self.spv.resolve(.bool_type),
.indirect => return try self.intType(.unsigned, 1),
},
.Int => {
const int_info = ty.intInfo(mod);
if (int_info.bits == 0) {
// Some times, the backend will be asked to generate a pointer to i0. OpTypeInt
// with 0 bits is invalid, so return an opaque type in this case.
assert(repr == .indirect);
return try self.spv.resolve(.{ .opaque_type = .{
.name = try self.spv.resolveString("u0"),
} });
}
return try self.intType(int_info.signedness, int_info.bits);
},
.Enum => {
const tag_ty = ty.intTagType(mod);
return self.resolveType(tag_ty, repr);
},
.Float => {
// We can (and want) not really emulate floating points with other floating point types like with the integer types,
// so if the float is not supported, just return an error.
const bits = ty.floatBits(target);
const supported = switch (bits) {
16 => Target.spirv.featureSetHas(target.cpu.features, .Float16),
// 32-bit floats are always supported (see spec, 2.16.1, Data rules).
32 => true,
64 => Target.spirv.featureSetHas(target.cpu.features, .Float64),
else => false,
};
if (!supported) {
return self.fail("Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits});
}
return try self.spv.resolve(.{ .float_type = .{ .bits = bits } });
},
.Array => {
if (self.type_map.get(ty.toIntern())) |info| return info.ty_ref;
const elem_ty = ty.childType(mod);
const elem_ty_ref = try self.resolveType(elem_ty, .indirect);
const total_len = std.math.cast(u32, ty.arrayLenIncludingSentinel(mod)) orelse {
return self.fail("array type of {} elements is too large", .{ty.arrayLenIncludingSentinel(mod)});
};
const ty_ref = if (!elem_ty.hasRuntimeBitsIgnoreComptime(mod)) blk: {
// The size of the array would be 0, but that is not allowed in SPIR-V.
// This path can be reached when the backend is asked to generate a pointer to
// an array of some zero-bit type. This should always be an indirect path.
assert(repr == .indirect);
// We cannot use the child type here, so just use an opaque type.
break :blk try self.spv.resolve(.{ .opaque_type = .{
.name = try self.spv.resolveString("zero-sized array"),
} });
} else if (total_len == 0) blk: {
// The size of the array would be 0, but that is not allowed in SPIR-V.
// This path can be reached for example when there is a slicing of a pointer
// that produces a zero-length array. In all cases where this type can be generated,
// this should be an indirect path.
assert(repr == .indirect);
// In this case, we have an array of a non-zero sized type. In this case,
// generate an array of 1 element instead, so that ptr_elem_ptr instructions
// can be lowered to ptrAccessChain instead of manually performing the math.
break :blk try self.spv.arrayType(1, elem_ty_ref);
} else try self.spv.arrayType(total_len, elem_ty_ref);
try self.type_map.put(self.gpa, ty.toIntern(), .{ .ty_ref = ty_ref });
return ty_ref;
},
.Fn => switch (repr) {
.direct => {
if (self.type_map.get(ty.toIntern())) |info| return info.ty_ref;
const fn_info = mod.typeToFunc(ty).?;
// TODO: Put this somewhere in Sema.zig
if (fn_info.is_var_args)
return self.fail("VarArgs functions are unsupported for SPIR-V", .{});
const param_ty_refs = try self.gpa.alloc(CacheRef, fn_info.param_types.len);
defer self.gpa.free(param_ty_refs);
var param_index: usize = 0;
for (fn_info.param_types.get(ip)) |param_ty_index| {
const param_ty = Type.fromInterned(param_ty_index);
if (!param_ty.hasRuntimeBitsIgnoreComptime(mod)) continue;
param_ty_refs[param_index] = try self.resolveType(param_ty, .direct);
param_index += 1;
}
const return_ty_ref = try self.resolveFnReturnType(Type.fromInterned(fn_info.return_type));
const ty_ref = try self.spv.resolve(.{ .function_type = .{
.return_type = return_ty_ref,
.parameters = param_ty_refs[0..param_index],
} });
try self.type_map.put(self.gpa, ty.toIntern(), .{ .ty_ref = ty_ref });
return ty_ref;
},
.indirect => {
// TODO: Represent function pointers properly.
// For now, just use an usize type.
return try self.sizeType();
},
},
.Pointer => {
const ptr_info = ty.ptrInfo(mod);
// Note: Don't cache this pointer type, it would mess up the recursive pointer functionality
// in ptrType()!
const storage_class = spvStorageClass(ptr_info.flags.address_space);
const ptr_ty_ref = try self.ptrType(Type.fromInterned(ptr_info.child), storage_class);
if (ptr_info.flags.size != .Slice) {
return ptr_ty_ref;
}
const size_ty_ref = try self.sizeType();
return self.spv.resolve(.{ .struct_type = .{
.member_types = &.{ ptr_ty_ref, size_ty_ref },
.member_names = &.{
try self.spv.resolveString("ptr"),
try self.spv.resolveString("len"),
},
} });
},
.Vector => {
if (self.type_map.get(ty.toIntern())) |info| return info.ty_ref;
const elem_ty = ty.childType(mod);
const elem_ty_ref = try self.resolveType(elem_ty, .indirect);
const ty_ref = try self.spv.arrayType(ty.vectorLen(mod), elem_ty_ref);
try self.type_map.put(self.gpa, ty.toIntern(), .{ .ty_ref = ty_ref });
return ty_ref;
},
.Struct => {
if (self.type_map.get(ty.toIntern())) |info| return info.ty_ref;
const struct_type = switch (ip.indexToKey(ty.toIntern())) {
.anon_struct_type => |tuple| {
const member_types = try self.gpa.alloc(CacheRef, tuple.values.len);
defer self.gpa.free(member_types);
var member_index: usize = 0;
for (tuple.types.get(ip), tuple.values.get(ip)) |field_ty, field_val| {
if (field_val != .none or !Type.fromInterned(field_ty).hasRuntimeBits(mod)) continue;
member_types[member_index] = try self.resolveType(Type.fromInterned(field_ty), .indirect);
member_index += 1;
}
const ty_ref = try self.spv.resolve(.{ .struct_type = .{
.name = try self.resolveTypeName(ty),
.member_types = member_types[0..member_index],
} });
try self.type_map.put(self.gpa, ty.toIntern(), .{ .ty_ref = ty_ref });
return ty_ref;
},
.struct_type => |struct_type| struct_type,
else => unreachable,
};
if (struct_type.layout == .Packed) {
return try self.resolveType(Type.fromInterned(struct_type.backingIntType(ip).*), .direct);
}
var member_types = std.ArrayList(CacheRef).init(self.gpa);
defer member_types.deinit();
var member_names = std.ArrayList(CacheString).init(self.gpa);
defer member_names.deinit();
var it = struct_type.iterateRuntimeOrder(ip);
while (it.next()) |field_index| {
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[field_index]);
if (!field_ty.hasRuntimeBitsIgnoreComptime(mod)) {
// This is a zero-bit field - we only needed it for the alignment.
continue;
}
const field_name = struct_type.fieldName(ip, field_index).unwrap() orelse
try ip.getOrPutStringFmt(mod.gpa, "{d}", .{field_index});
try member_types.append(try self.resolveType(field_ty, .indirect));
try member_names.append(try self.spv.resolveString(ip.stringToSlice(field_name)));
}
const ty_ref = try self.spv.resolve(.{ .struct_type = .{
.name = try self.resolveTypeName(ty),
.member_types = member_types.items,
.member_names = member_names.items,
} });
try self.type_map.put(self.gpa, ty.toIntern(), .{ .ty_ref = ty_ref });
return ty_ref;
},
.Optional => {
const payload_ty = ty.optionalChild(mod);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(mod)) {
// Just use a bool.
// Note: Always generate the bool with indirect format, to save on some sanity
// Perform the conversion to a direct bool when the field is extracted.
return try self.resolveType(Type.bool, .indirect);
}
const payload_ty_ref = try self.resolveType(payload_ty, .indirect);
if (ty.optionalReprIsPayload(mod)) {
// Optional is actually a pointer or a slice.
return payload_ty_ref;
}
if (self.type_map.get(ty.toIntern())) |info| return info.ty_ref;
const bool_ty_ref = try self.resolveType(Type.bool, .indirect);
const ty_ref = try self.spv.resolve(.{ .struct_type = .{
.member_types = &.{ payload_ty_ref, bool_ty_ref },
.member_names = &.{
try self.spv.resolveString("payload"),
try self.spv.resolveString("valid"),
},
} });
try self.type_map.put(self.gpa, ty.toIntern(), .{ .ty_ref = ty_ref });
return ty_ref;
},
.Union => return try self.resolveUnionType(ty),
.ErrorSet => return try self.intType(.unsigned, 16),
.ErrorUnion => {
const payload_ty = ty.errorUnionPayload(mod);
const error_ty_ref = try self.resolveType(Type.anyerror, .indirect);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
return error_ty_ref;
}
if (self.type_map.get(ty.toIntern())) |info| return info.ty_ref;
const payload_ty_ref = try self.resolveType(payload_ty, .indirect);
var member_types: [2]CacheRef = undefined;
var member_names: [2]CacheString = undefined;
if (eu_layout.error_first) {
// Put the error first
member_types = .{ error_ty_ref, payload_ty_ref };
member_names = .{
try self.spv.resolveString("error"),
try self.spv.resolveString("payload"),
};
// TODO: ABI padding?
} else {
// Put the payload first.
member_types = .{ payload_ty_ref, error_ty_ref };
member_names = .{
try self.spv.resolveString("payload"),
try self.spv.resolveString("error"),
};
// TODO: ABI padding?
}
const ty_ref = try self.spv.resolve(.{ .struct_type = .{
.name = try self.resolveTypeName(ty),
.member_types = &member_types,
.member_names = &member_names,
} });
try self.type_map.put(self.gpa, ty.toIntern(), .{ .ty_ref = ty_ref });
return ty_ref;
},
.Opaque => {
return try self.spv.resolve(.{
.opaque_type = .{
.name = .none, // TODO
},
});
},
.Null,
.Undefined,
.EnumLiteral,
.ComptimeFloat,
.ComptimeInt,
.Type,
=> unreachable, // Must be comptime.
else => |tag| return self.todo("Implement zig type '{}'", .{tag}),
}
}
fn spvStorageClass(as: std.builtin.AddressSpace) StorageClass {
return switch (as) {
.generic => .Generic,
.shared => .Workgroup,
.local => .Private,
.global => .CrossWorkgroup,
.constant => .UniformConstant,
.gs,
.fs,
.ss,
.param,
.flash,
.flash1,
.flash2,
.flash3,
.flash4,
.flash5,
=> unreachable,
};
}
const ErrorUnionLayout = struct {
payload_has_bits: bool,
error_first: bool,
fn errorFieldIndex(self: @This()) u32 {
assert(self.payload_has_bits);
return if (self.error_first) 0 else 1;
}
fn payloadFieldIndex(self: @This()) u32 {
assert(self.payload_has_bits);
return if (self.error_first) 1 else 0;
}
};
fn errorUnionLayout(self: *DeclGen, payload_ty: Type) ErrorUnionLayout {
const mod = self.module;
const error_align = Type.anyerror.abiAlignment(mod);
const payload_align = payload_ty.abiAlignment(mod);
const error_first = error_align.compare(.gt, payload_align);
return .{
.payload_has_bits = payload_ty.hasRuntimeBitsIgnoreComptime(mod),
.error_first = error_first,
};
}
const UnionLayout = struct {
/// If false, this union is represented
/// by only an integer of the tag type.
has_payload: bool,
tag_size: u32,
tag_index: u32,
/// Note: This is the size of the payload type itself, NOT the size of the ENTIRE payload.
/// Use `has_payload` instead!!
payload_ty: Type,
payload_size: u32,
payload_index: u32,
payload_padding_size: u32,
payload_padding_index: u32,
padding_size: u32,
padding_index: u32,
total_fields: u32,
};
fn unionLayout(self: *DeclGen, ty: Type) UnionLayout {
const mod = self.module;
const ip = &mod.intern_pool;
const layout = ty.unionGetLayout(self.module);
const union_obj = mod.typeToUnion(ty).?;
var union_layout = UnionLayout{
.has_payload = layout.payload_size != 0,
.tag_size = @intCast(layout.tag_size),
.tag_index = undefined,
.payload_ty = undefined,
.payload_size = undefined,
.payload_index = undefined,
.payload_padding_size = undefined,
.payload_padding_index = undefined,
.padding_size = @intCast(layout.padding),
.padding_index = undefined,
.total_fields = undefined,
};
if (union_layout.has_payload) {
const most_aligned_field = layout.most_aligned_field;
const most_aligned_field_ty = Type.fromInterned(union_obj.field_types.get(ip)[most_aligned_field]);
union_layout.payload_ty = most_aligned_field_ty;
union_layout.payload_size = @intCast(most_aligned_field_ty.abiSize(mod));
} else {
union_layout.payload_size = 0;
}
union_layout.payload_padding_size = @intCast(layout.payload_size - union_layout.payload_size);
const tag_first = layout.tag_align.compare(.gte, layout.payload_align);
var field_index: u32 = 0;
if (union_layout.tag_size != 0 and tag_first) {
union_layout.tag_index = field_index;
field_index += 1;
}
if (union_layout.payload_size != 0) {
union_layout.payload_index = field_index;
field_index += 1;
}
if (union_layout.payload_padding_size != 0) {
union_layout.payload_padding_index = field_index;
field_index += 1;
}
if (union_layout.tag_size != 0 and !tag_first) {
union_layout.tag_index = field_index;
field_index += 1;
}
if (union_layout.padding_size != 0) {
union_layout.padding_index = field_index;
field_index += 1;
}
union_layout.total_fields = field_index;
return union_layout;
}
/// This structure is used as helper for element-wise operations. It is intended
/// to be used with both vectors and single elements.
const WipElementWise = struct {
dg: *DeclGen,
result_ty: Type,
/// Always in direct representation.
result_ty_ref: CacheRef,
scalar_ty: Type,
/// Always in direct representation.
scalar_ty_ref: CacheRef,
scalar_ty_id: IdRef,
/// True if the input is actually a vector type.
is_vector: bool,
/// The element-wise operation should fill these results before calling finalize().
/// These should all be in **direct** representation! `finalize()` will convert
/// them to indirect if required.
results: []IdRef,
fn deinit(wip: *WipElementWise) void {
wip.dg.gpa.free(wip.results);
}
/// Utility function to extract the element at a particular index in an
/// input vector. This type is expected to be a vector if `wip.is_vector`, and
/// a scalar otherwise.
fn elementAt(wip: WipElementWise, ty: Type, value: IdRef, index: usize) !IdRef {
const mod = wip.dg.module;
if (wip.is_vector) {
assert(ty.isVector(mod));
return try wip.dg.extractField(ty.childType(mod), value, @intCast(index));
} else {
assert(!ty.isVector(mod));
assert(index == 0);
return value;
}
}
/// Turns the results of this WipElementWise into a result. This can either
/// be a vector or single element, depending on `result_ty`.
/// After calling this function, this WIP is no longer usable.
/// Results is in `direct` representation.
fn finalize(wip: *WipElementWise) !IdRef {
if (wip.is_vector) {
// Convert all the constituents to indirect, as required for the array.
for (wip.results) |*result| {
result.* = try wip.dg.convertToIndirect(wip.scalar_ty, result.*);
}
return try wip.dg.constructArray(wip.result_ty, wip.results);
} else {
return wip.results[0];
}
}
/// Allocate a result id at a particular index, and return it.
fn allocId(wip: *WipElementWise, index: usize) IdRef {
assert(wip.is_vector or index == 0);
wip.results[index] = wip.dg.spv.allocId();
return wip.results[index];
}
};
/// Create a new element-wise operation.
fn elementWise(self: *DeclGen, result_ty: Type) !WipElementWise {
const mod = self.module;
// For now, this operation also reasons in terms of `.direct` representation.
const result_ty_ref = try self.resolveType(result_ty, .direct);
const is_vector = result_ty.isVector(mod);
const num_results = if (is_vector) result_ty.vectorLen(mod) else 1;
const results = try self.gpa.alloc(IdRef, num_results);
for (results) |*result| result.* = undefined;
const scalar_ty = result_ty.scalarType(mod);
const scalar_ty_ref = try self.resolveType(scalar_ty, .direct);
return .{
.dg = self,
.result_ty = result_ty,
.result_ty_ref = result_ty_ref,
.scalar_ty = scalar_ty,
.scalar_ty_ref = scalar_ty_ref,
.scalar_ty_id = self.typeId(scalar_ty_ref),
.is_vector = is_vector,
.results = results,
};
}
/// The SPIR-V backend is not yet advanced enough to support the std testing infrastructure.
/// In order to be able to run tests, we "temporarily" lower test kernels into separate entry-
/// points. The test executor will then be able to invoke these to run the tests.
/// Note that tests are lowered according to std.builtin.TestFn, which is `fn () anyerror!void`.
/// (anyerror!void has the same layout as anyerror).
/// Each test declaration generates a function like.
/// %anyerror = OpTypeInt 0 16
/// %p_anyerror = OpTypePointer CrossWorkgroup %anyerror
/// %K = OpTypeFunction %void %p_anyerror
///
/// %test = OpFunction %void %K
/// %p_err = OpFunctionParameter %p_anyerror
/// %lbl = OpLabel
/// %result = OpFunctionCall %anyerror %func
/// OpStore %p_err %result
/// OpFunctionEnd
/// TODO is to also write out the error as a function call parameter, and to somehow fetch
/// the name of an error in the text executor.
fn generateTestEntryPoint(self: *DeclGen, name: []const u8, spv_test_decl_index: SpvModule.Decl.Index) !void {
const anyerror_ty_ref = try self.resolveType(Type.anyerror, .direct);
const ptr_anyerror_ty_ref = try self.ptrType(Type.anyerror, .CrossWorkgroup);
const void_ty_ref = try self.resolveType(Type.void, .direct);
const kernel_proto_ty_ref = try self.spv.resolve(.{ .function_type = .{
.return_type = void_ty_ref,
.parameters = &.{ptr_anyerror_ty_ref},
} });
const test_id = self.spv.declPtr(spv_test_decl_index).result_id;
const spv_decl_index = try self.spv.allocDecl(.func);
const kernel_id = self.spv.declPtr(spv_decl_index).result_id;
const error_id = self.spv.allocId();
const p_error_id = self.spv.allocId();
const section = &self.spv.sections.functions;
try section.emit(self.spv.gpa, .OpFunction, .{
.id_result_type = self.typeId(void_ty_ref),
.id_result = kernel_id,
.function_control = .{},
.function_type = self.typeId(kernel_proto_ty_ref),
});
try section.emit(self.spv.gpa, .OpFunctionParameter, .{
.id_result_type = self.typeId(ptr_anyerror_ty_ref),
.id_result = p_error_id,
});
try section.emit(self.spv.gpa, .OpLabel, .{
.id_result = self.spv.allocId(),
});
try section.emit(self.spv.gpa, .OpFunctionCall, .{
.id_result_type = self.typeId(anyerror_ty_ref),
.id_result = error_id,
.function = test_id,
});
// Note: Convert to direct not required.
try section.emit(self.spv.gpa, .OpStore, .{
.pointer = p_error_id,
.object = error_id,
});
try section.emit(self.spv.gpa, .OpReturn, {});
try section.emit(self.spv.gpa, .OpFunctionEnd, {});
try self.spv.declareDeclDeps(spv_decl_index, &.{spv_test_decl_index});
// Just generate a quick other name because the intel runtime crashes when the entry-
// point name is the same as a different OpName.
const test_name = try std.fmt.allocPrint(self.gpa, "test {s}", .{name});
defer self.gpa.free(test_name);
try self.spv.declareEntryPoint(spv_decl_index, test_name);
}
fn genDecl(self: *DeclGen) !void {
const mod = self.module;
const ip = &mod.intern_pool;
const decl = mod.declPtr(self.decl_index);
const spv_decl_index = try self.object.resolveDecl(mod, self.decl_index);
const decl_id = self.spv.declPtr(spv_decl_index).result_id;
try self.base_line_stack.append(self.gpa, decl.src_line);
if (decl.val.getFunction(mod)) |_| {
assert(decl.ty.zigTypeTag(mod) == .Fn);
const fn_info = mod.typeToFunc(decl.ty).?;
const return_ty_ref = try self.resolveFnReturnType(Type.fromInterned(fn_info.return_type));
const prototype_id = try self.resolveTypeId(decl.ty);
try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{
.id_result_type = self.typeId(return_ty_ref),
.id_result = decl_id,
.function_control = .{}, // TODO: We can set inline here if the type requires it.
.function_type = prototype_id,
});
try self.args.ensureUnusedCapacity(self.gpa, fn_info.param_types.len);
for (fn_info.param_types.get(ip)) |param_ty_index| {
const param_ty = Type.fromInterned(param_ty_index);
if (!param_ty.hasRuntimeBitsIgnoreComptime(mod)) continue;
const param_type_id = try self.resolveTypeId(param_ty);
const arg_result_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpFunctionParameter, .{
.id_result_type = param_type_id,
.id_result = arg_result_id,
});
self.args.appendAssumeCapacity(arg_result_id);
}
// TODO: This could probably be done in a better way...
const root_block_id = self.spv.allocId();
// The root block of a function declaration should appear before OpVariable instructions,
// so it is generated into the function's prologue.
try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{
.id_result = root_block_id,
});
self.current_block_label = root_block_id;
const main_body = self.air.getMainBody();
switch (self.control_flow) {
.structured => {
_ = try self.genStructuredBody(.selection, main_body);
// We always expect paths to here to end, but we still need the block
// to act as a dummy merge block.
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
},
.unstructured => {
try self.genBody(main_body);
},
}
try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {});
// Append the actual code into the functions section.
try self.spv.addFunction(spv_decl_index, self.func);
const fqn = ip.stringToSlice(try decl.getFullyQualifiedName(self.module));
try self.spv.debugName(decl_id, fqn);
// Temporarily generate a test kernel declaration if this is a test function.
if (self.module.test_functions.contains(self.decl_index)) {
try self.generateTestEntryPoint(fqn, spv_decl_index);
}
} else {
const init_val = if (decl.val.getVariable(mod)) |payload|
Value.fromInterned(payload.init)
else
decl.val;
if (init_val.ip_index == .unreachable_value) {
return self.todo("importing extern variables", .{});
}
// Currently, initializers for CrossWorkgroup variables is not implemented
// in Mesa. Therefore we generate an initialization kernel instead.
const void_ty_ref = try self.resolveType(Type.void, .direct);
const initializer_proto_ty_ref = try self.spv.resolve(.{ .function_type = .{
.return_type = void_ty_ref,
.parameters = &.{},
} });
// Generate the actual variable for the global...
const final_storage_class = spvStorageClass(decl.@"addrspace");
const actual_storage_class = switch (final_storage_class) {
.Generic => .CrossWorkgroup,
else => final_storage_class,
};
const ptr_ty_ref = try self.ptrType(decl.ty, actual_storage_class);
const begin = self.spv.beginGlobal();
try self.spv.globals.section.emit(self.spv.gpa, .OpVariable, .{
.id_result_type = self.typeId(ptr_ty_ref),
.id_result = decl_id,
.storage_class = actual_storage_class,
});
// Now emit the instructions that initialize the variable.
const initializer_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{
.id_result_type = self.typeId(void_ty_ref),
.id_result = initializer_id,
.function_control = .{},
.function_type = self.typeId(initializer_proto_ty_ref),
});
const root_block_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{
.id_result = root_block_id,
});
self.current_block_label = root_block_id;
const val_id = try self.constant(decl.ty, init_val, .indirect);
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = decl_id,
.object = val_id,
});
// TODO: We should be able to get rid of this by now...
self.spv.endGlobal(spv_decl_index, begin, decl_id, initializer_id);
try self.func.body.emit(self.spv.gpa, .OpReturn, {});
try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {});
try self.spv.addFunction(spv_decl_index, self.func);
const fqn = ip.stringToSlice(try decl.getFullyQualifiedName(self.module));
try self.spv.debugName(decl_id, fqn);
try self.spv.debugNameFmt(initializer_id, "initializer of {s}", .{fqn});
}
}
fn intFromBool(self: *DeclGen, result_ty_ref: CacheRef, condition_id: IdRef) !IdRef {
const zero_id = try self.constInt(result_ty_ref, 0);
const one_id = try self.constInt(result_ty_ref, 1);
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpSelect, .{
.id_result_type = self.typeId(result_ty_ref),
.id_result = result_id,
.condition = condition_id,
.object_1 = one_id,
.object_2 = zero_id,
});
return result_id;
}
/// Convert representation from indirect (in memory) to direct (in 'register')
/// This converts the argument type from resolveType(ty, .indirect) to resolveType(ty, .direct).
fn convertToDirect(self: *DeclGen, ty: Type, operand_id: IdRef) !IdRef {
const mod = self.module;
return switch (ty.zigTypeTag(mod)) {
.Bool => blk: {
const direct_bool_ty_ref = try self.resolveType(ty, .direct);
const indirect_bool_ty_ref = try self.resolveType(ty, .indirect);
const zero_id = try self.constInt(indirect_bool_ty_ref, 0);
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpINotEqual, .{
.id_result_type = self.typeId(direct_bool_ty_ref),
.id_result = result_id,
.operand_1 = operand_id,
.operand_2 = zero_id,
});
break :blk result_id;
},
else => operand_id,
};
}
/// Convert representation from direct (in 'register) to direct (in memory)
/// This converts the argument type from resolveType(ty, .direct) to resolveType(ty, .indirect).
fn convertToIndirect(self: *DeclGen, ty: Type, operand_id: IdRef) !IdRef {
const mod = self.module;
return switch (ty.zigTypeTag(mod)) {
.Bool => blk: {
const indirect_bool_ty_ref = try self.resolveType(ty, .indirect);
break :blk self.intFromBool(indirect_bool_ty_ref, operand_id);
},
else => operand_id,
};
}
fn extractField(self: *DeclGen, result_ty: Type, object: IdRef, field: u32) !IdRef {
const result_ty_ref = try self.resolveType(result_ty, .indirect);
const result_id = self.spv.allocId();
const indexes = [_]u32{field};
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
.id_result_type = self.typeId(result_ty_ref),
.id_result = result_id,
.composite = object,
.indexes = &indexes,
});
// Convert bools; direct structs have their field types as indirect values.
return try self.convertToDirect(result_ty, result_id);
}
const MemoryOptions = struct {
is_volatile: bool = false,
};
fn load(self: *DeclGen, value_ty: Type, ptr_id: IdRef, options: MemoryOptions) !IdRef {
const indirect_value_ty_ref = try self.resolveType(value_ty, .indirect);
const result_id = self.spv.allocId();
const access = spec.MemoryAccess.Extended{
.Volatile = options.is_volatile,
};
try self.func.body.emit(self.spv.gpa, .OpLoad, .{
.id_result_type = self.typeId(indirect_value_ty_ref),
.id_result = result_id,
.pointer = ptr_id,
.memory_access = access,
});
return try self.convertToDirect(value_ty, result_id);
}
fn store(self: *DeclGen, value_ty: Type, ptr_id: IdRef, value_id: IdRef, options: MemoryOptions) !void {
const indirect_value_id = try self.convertToIndirect(value_ty, value_id);
const access = spec.MemoryAccess.Extended{
.Volatile = options.is_volatile,
};
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = ptr_id,
.object = indirect_value_id,
.memory_access = access,
});
}
fn genBody(self: *DeclGen, body: []const Air.Inst.Index) Error!void {
for (body) |inst| {
try self.genInst(inst);
}
}
fn genInst(self: *DeclGen, inst: Air.Inst.Index) !void {
const mod = self.module;
const ip = &mod.intern_pool;
// TODO: remove now-redundant isUnused calls from AIR handler functions
if (self.liveness.isUnused(inst) and !self.air.mustLower(inst, ip))
return;
const air_tags = self.air.instructions.items(.tag);
const maybe_result_id: ?IdRef = switch (air_tags[@intFromEnum(inst)]) {
// zig fmt: off
.add, .add_wrap => try self.airArithOp(inst, .OpFAdd, .OpIAdd, .OpIAdd, true),
.sub, .sub_wrap => try self.airArithOp(inst, .OpFSub, .OpISub, .OpISub, true),
.mul, .mul_wrap => try self.airArithOp(inst, .OpFMul, .OpIMul, .OpIMul, true),
.div_float,
.div_float_optimized,
// TODO: Check that this is the right operation.
.div_trunc,
.div_trunc_optimized,
=> try self.airArithOp(inst, .OpFDiv, .OpSDiv, .OpUDiv, false),
// TODO: Check if this is the right operation
// TODO: Make airArithOp for rem not emit a mask for the LHS.
.rem,
.rem_optimized,
=> try self.airArithOp(inst, .OpFRem, .OpSRem, .OpSRem, false),
.add_with_overflow => try self.airAddSubOverflow(inst, .OpIAdd, .OpULessThan, .OpSLessThan),
.sub_with_overflow => try self.airAddSubOverflow(inst, .OpISub, .OpUGreaterThan, .OpSGreaterThan),
.shl_with_overflow => try self.airShlOverflow(inst),
.shuffle => try self.airShuffle(inst),
.ptr_add => try self.airPtrAdd(inst),
.ptr_sub => try self.airPtrSub(inst),
.bit_and => try self.airBinOpSimple(inst, .OpBitwiseAnd),
.bit_or => try self.airBinOpSimple(inst, .OpBitwiseOr),
.xor => try self.airBinOpSimple(inst, .OpBitwiseXor),
.bool_and => try self.airBinOpSimple(inst, .OpLogicalAnd),
.bool_or => try self.airBinOpSimple(inst, .OpLogicalOr),
.shl, .shl_exact => try self.airShift(inst, .OpShiftLeftLogical, .OpShiftLeftLogical),
.shr, .shr_exact => try self.airShift(inst, .OpShiftRightLogical, .OpShiftRightArithmetic),
.min => try self.airMinMax(inst, .lt),
.max => try self.airMinMax(inst, .gt),
.bitcast => try self.airBitCast(inst),
.intcast, .trunc => try self.airIntCast(inst),
.int_from_ptr => try self.airIntFromPtr(inst),
.float_from_int => try self.airFloatFromInt(inst),
.int_from_float => try self.airIntFromFloat(inst),
.fpext, .fptrunc => try self.airFloatCast(inst),
.not => try self.airNot(inst),
.array_to_slice => try self.airArrayToSlice(inst),
.slice => try self.airSlice(inst),
.aggregate_init => try self.airAggregateInit(inst),
.memcpy => return self.airMemcpy(inst),
.slice_ptr => try self.airSliceField(inst, 0),
.slice_len => try self.airSliceField(inst, 1),
.slice_elem_ptr => try self.airSliceElemPtr(inst),
.slice_elem_val => try self.airSliceElemVal(inst),
.ptr_elem_ptr => try self.airPtrElemPtr(inst),
.ptr_elem_val => try self.airPtrElemVal(inst),
.array_elem_val => try self.airArrayElemVal(inst),
.set_union_tag => return self.airSetUnionTag(inst),
.get_union_tag => try self.airGetUnionTag(inst),
.union_init => try self.airUnionInit(inst),
.struct_field_val => try self.airStructFieldVal(inst),
.field_parent_ptr => try self.airFieldParentPtr(inst),
.struct_field_ptr_index_0 => try self.airStructFieldPtrIndex(inst, 0),
.struct_field_ptr_index_1 => try self.airStructFieldPtrIndex(inst, 1),
.struct_field_ptr_index_2 => try self.airStructFieldPtrIndex(inst, 2),
.struct_field_ptr_index_3 => try self.airStructFieldPtrIndex(inst, 3),
.cmp_eq => try self.airCmp(inst, .eq),
.cmp_neq => try self.airCmp(inst, .neq),
.cmp_gt => try self.airCmp(inst, .gt),
.cmp_gte => try self.airCmp(inst, .gte),
.cmp_lt => try self.airCmp(inst, .lt),
.cmp_lte => try self.airCmp(inst, .lte),
.cmp_vector => try self.airVectorCmp(inst),
.arg => self.airArg(),
.alloc => try self.airAlloc(inst),
// TODO: We probably need to have a special implementation of this for the C abi.
.ret_ptr => try self.airAlloc(inst),
.block => try self.airBlock(inst),
.load => try self.airLoad(inst),
.store, .store_safe => return self.airStore(inst),
.br => return self.airBr(inst),
.breakpoint => return,
.cond_br => return self.airCondBr(inst),
.loop => return self.airLoop(inst),
.ret => return self.airRet(inst),
.ret_safe => return self.airRet(inst), // TODO
.ret_load => return self.airRetLoad(inst),
.@"try" => try self.airTry(inst),
.switch_br => return self.airSwitchBr(inst),
.unreach, .trap => return self.airUnreach(),
.dbg_stmt => return self.airDbgStmt(inst),
.dbg_inline_begin => return self.airDbgInlineBegin(inst),
.dbg_inline_end => return self.airDbgInlineEnd(inst),
.dbg_var_ptr, .dbg_var_val => return self.airDbgVar(inst),
.dbg_block_begin => return,
.dbg_block_end => return,
.unwrap_errunion_err => try self.airErrUnionErr(inst),
.unwrap_errunion_payload => try self.airErrUnionPayload(inst),
.wrap_errunion_err => try self.airWrapErrUnionErr(inst),
.wrap_errunion_payload => try self.airWrapErrUnionPayload(inst),
.is_null => try self.airIsNull(inst, .is_null),
.is_non_null => try self.airIsNull(inst, .is_non_null),
.is_err => try self.airIsErr(inst, .is_err),
.is_non_err => try self.airIsErr(inst, .is_non_err),
.optional_payload => try self.airUnwrapOptional(inst),
.wrap_optional => try self.airWrapOptional(inst),
.assembly => try self.airAssembly(inst),
.call => try self.airCall(inst, .auto),
.call_always_tail => try self.airCall(inst, .always_tail),
.call_never_tail => try self.airCall(inst, .never_tail),
.call_never_inline => try self.airCall(inst, .never_inline),
// zig fmt: on
else => |tag| return self.todo("implement AIR tag {s}", .{@tagName(tag)}),
};
const result_id = maybe_result_id orelse return;
try self.inst_results.putNoClobber(self.gpa, inst, result_id);
}
fn binOpSimple(self: *DeclGen, ty: Type, lhs_id: IdRef, rhs_id: IdRef, comptime opcode: Opcode) !IdRef {
var wip = try self.elementWise(ty);
defer wip.deinit();
for (0..wip.results.len) |i| {
try self.func.body.emit(self.spv.gpa, opcode, .{
.id_result_type = wip.scalar_ty_id,
.id_result = wip.allocId(i),
.operand_1 = try wip.elementAt(ty, lhs_id, i),
.operand_2 = try wip.elementAt(ty, rhs_id, i),
});
}
return try wip.finalize();
}
fn airBinOpSimple(self: *DeclGen, inst: Air.Inst.Index, comptime opcode: Opcode) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs_id = try self.resolve(bin_op.lhs);
const rhs_id = try self.resolve(bin_op.rhs);
const ty = self.typeOf(bin_op.lhs);
return try self.binOpSimple(ty, lhs_id, rhs_id, opcode);
}
fn airShift(self: *DeclGen, inst: Air.Inst.Index, comptime unsigned: Opcode, comptime signed: Opcode) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs_id = try self.resolve(bin_op.lhs);
const rhs_id = try self.resolve(bin_op.rhs);
const result_ty = self.typeOfIndex(inst);
const shift_ty = self.typeOf(bin_op.rhs);
const scalar_shift_ty_ref = try self.resolveType(shift_ty.scalarType(mod), .direct);
const info = try self.arithmeticTypeInfo(result_ty);
switch (info.class) {
.composite_integer => return self.todo("shift ops for composite integers", .{}),
.integer, .strange_integer => {},
.float, .bool => unreachable,
}
var wip = try self.elementWise(result_ty);
defer wip.deinit();
for (0..wip.results.len) |i| {
const lhs_elem_id = try wip.elementAt(result_ty, lhs_id, i);
const rhs_elem_id = try wip.elementAt(shift_ty, rhs_id, i);
// TODO: Can we omit normalizing lhs?
const lhs_norm_id = try self.normalizeInt(wip.scalar_ty_ref, lhs_elem_id, info);
// Sometimes Zig doesn't make both of the arguments the same types here. SPIR-V expects that,
// so just manually upcast it if required.
const shift_id = if (scalar_shift_ty_ref != wip.scalar_ty_ref) blk: {
const shift_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpUConvert, .{
.id_result_type = wip.scalar_ty_id,
.id_result = shift_id,
.unsigned_value = rhs_elem_id,
});
break :blk shift_id;
} else rhs_elem_id;
const shift_norm_id = try self.normalizeInt(wip.scalar_ty_ref, shift_id, info);
const args = .{
.id_result_type = wip.scalar_ty_id,
.id_result = wip.allocId(i),
.base = lhs_norm_id,
.shift = shift_norm_id,
};
if (result_ty.isSignedInt(mod)) {
try self.func.body.emit(self.spv.gpa, signed, args);
} else {
try self.func.body.emit(self.spv.gpa, unsigned, args);
}
}
return try wip.finalize();
}
fn airMinMax(self: *DeclGen, inst: Air.Inst.Index, op: std.math.CompareOperator) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs_id = try self.resolve(bin_op.lhs);
const rhs_id = try self.resolve(bin_op.rhs);
const result_ty = self.typeOfIndex(inst);
const result_ty_ref = try self.resolveType(result_ty, .direct);
const info = try self.arithmeticTypeInfo(result_ty);
// TODO: Use fmin for OpenCL
const cmp_id = try self.cmp(op, Type.bool, result_ty, lhs_id, rhs_id);
const selection_id = switch (info.class) {
.float => blk: {
// cmp uses OpFOrd. When we have 0 [<>] nan this returns false,
// but we want it to pick lhs. Therefore we also have to check if
// rhs is nan. We don't need to care about the result when both
// are nan.
const rhs_is_nan_id = self.spv.allocId();
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
try self.func.body.emit(self.spv.gpa, .OpIsNan, .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = rhs_is_nan_id,
.x = rhs_id,
});
const float_cmp_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpLogicalOr, .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = float_cmp_id,
.operand_1 = cmp_id,
.operand_2 = rhs_is_nan_id,
});
break :blk float_cmp_id;
},
else => cmp_id,
};
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpSelect, .{
.id_result_type = self.typeId(result_ty_ref),
.id_result = result_id,
.condition = selection_id,
.object_1 = lhs_id,
.object_2 = rhs_id,
});
return result_id;
}
/// This function canonicalizes a "strange" integer value:
/// For unsigned integers, the value is masked so that only the relevant bits can contain
/// non-zeros.
/// For signed integers, the value is also sign extended.
fn normalizeInt(self: *DeclGen, ty_ref: CacheRef, value_id: IdRef, info: ArithmeticTypeInfo) !IdRef {
assert(info.class != .composite_integer); // TODO
if (info.bits == info.backing_bits) {
return value_id;
}
switch (info.signedness) {
.unsigned => {
const mask_value = if (info.bits == 64) 0xFFFF_FFFF_FFFF_FFFF else (@as(u64, 1) << @as(u6, @intCast(info.bits))) - 1;
const result_id = self.spv.allocId();
const mask_id = try self.constInt(ty_ref, mask_value);
try self.func.body.emit(self.spv.gpa, .OpBitwiseAnd, .{
.id_result_type = self.typeId(ty_ref),
.id_result = result_id,
.operand_1 = value_id,
.operand_2 = mask_id,
});
return result_id;
},
.signed => {
// Shift left and right so that we can copy the sight bit that way.
const shift_amt_id = try self.constInt(ty_ref, info.backing_bits - info.bits);
const left_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpShiftLeftLogical, .{
.id_result_type = self.typeId(ty_ref),
.id_result = left_id,
.base = value_id,
.shift = shift_amt_id,
});
const right_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpShiftRightArithmetic, .{
.id_result_type = self.typeId(ty_ref),
.id_result = right_id,
.base = left_id,
.shift = shift_amt_id,
});
return right_id;
},
}
}
fn airArithOp(
self: *DeclGen,
inst: Air.Inst.Index,
comptime fop: Opcode,
comptime sop: Opcode,
comptime uop: Opcode,
/// true if this operation holds under modular arithmetic.
comptime modular: bool,
) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
// LHS and RHS are guaranteed to have the same type, and AIR guarantees
// the result to be the same as the LHS and RHS, which matches SPIR-V.
const ty = self.typeOfIndex(inst);
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs_id = try self.resolve(bin_op.lhs);
const rhs_id = try self.resolve(bin_op.rhs);
assert(self.typeOf(bin_op.lhs).eql(ty, self.module));
assert(self.typeOf(bin_op.rhs).eql(ty, self.module));
return try self.arithOp(ty, lhs_id, rhs_id, fop, sop, uop, modular);
}
fn arithOp(
self: *DeclGen,
ty: Type,
lhs_id: IdRef,
rhs_id: IdRef,
comptime fop: Opcode,
comptime sop: Opcode,
comptime uop: Opcode,
/// true if this operation holds under modular arithmetic.
comptime modular: bool,
) !IdRef {
// Binary operations are generally applicable to both scalar and vector operations
// in SPIR-V, but int and float versions of operations require different opcodes.
const info = try self.arithmeticTypeInfo(ty);
const opcode_index: usize = switch (info.class) {
.composite_integer => {
return self.todo("binary operations for composite integers", .{});
},
.integer, .strange_integer => switch (info.signedness) {
.signed => @as(usize, 1),
.unsigned => @as(usize, 2),
},
.float => 0,
.bool => unreachable,
};
var wip = try self.elementWise(ty);
defer wip.deinit();
for (0..wip.results.len) |i| {
const lhs_elem_id = try wip.elementAt(ty, lhs_id, i);
const rhs_elem_id = try wip.elementAt(ty, rhs_id, i);
const lhs_norm_id = if (modular and info.class == .strange_integer)
try self.normalizeInt(wip.scalar_ty_ref, lhs_elem_id, info)
else
lhs_elem_id;
const rhs_norm_id = if (modular and info.class == .strange_integer)
try self.normalizeInt(wip.scalar_ty_ref, rhs_elem_id, info)
else
rhs_elem_id;
const operands = .{
.id_result_type = wip.scalar_ty_id,
.id_result = wip.allocId(i),
.operand_1 = lhs_norm_id,
.operand_2 = rhs_norm_id,
};
switch (opcode_index) {
0 => try self.func.body.emit(self.spv.gpa, fop, operands),
1 => try self.func.body.emit(self.spv.gpa, sop, operands),
2 => try self.func.body.emit(self.spv.gpa, uop, operands),
else => unreachable,
}
// TODO: Trap on overflow? Probably going to be annoying.
// TODO: Look into SPV_KHR_no_integer_wrap_decoration which provides NoSignedWrap/NoUnsignedWrap.
}
return try wip.finalize();
}
fn airAddSubOverflow(
self: *DeclGen,
inst: Air.Inst.Index,
comptime add: Opcode,
comptime ucmp: Opcode,
comptime scmp: Opcode,
) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
const lhs = try self.resolve(extra.lhs);
const rhs = try self.resolve(extra.rhs);
const operand_ty = self.typeOf(extra.lhs);
const result_ty = self.typeOfIndex(inst);
const info = try self.arithmeticTypeInfo(operand_ty);
switch (info.class) {
.composite_integer => return self.todo("overflow ops for composite integers", .{}),
.strange_integer => return self.todo("overflow ops for strange integers", .{}),
.integer => {},
.float, .bool => unreachable,
}
// The operand type must be the same as the result type in SPIR-V, which
// is the same as in Zig.
const operand_ty_ref = try self.resolveType(operand_ty, .direct);
const operand_ty_id = self.typeId(operand_ty_ref);
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
const ov_ty = result_ty.structFieldType(1, self.module);
// Note: result is stored in a struct, so indirect representation.
const ov_ty_ref = try self.resolveType(ov_ty, .indirect);
// TODO: Operations other than addition.
const value_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, add, .{
.id_result_type = operand_ty_id,
.id_result = value_id,
.operand_1 = lhs,
.operand_2 = rhs,
});
const overflowed_id = switch (info.signedness) {
.unsigned => blk: {
// Overflow happened if the result is smaller than either of the operands. It doesn't matter which.
// For subtraction the conditions need to be swapped.
const overflowed_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, ucmp, .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = overflowed_id,
.operand_1 = value_id,
.operand_2 = lhs,
});
break :blk overflowed_id;
},
.signed => blk: {
// lhs - rhs
// For addition, overflow happened if:
// - rhs is negative and value > lhs
// - rhs is positive and value < lhs
// This can be shortened to:
// (rhs < 0 and value > lhs) or (rhs >= 0 and value <= lhs)
// = (rhs < 0) == (value > lhs)
// = (rhs < 0) == (lhs < value)
// Note that signed overflow is also wrapping in spir-v.
// For subtraction, overflow happened if:
// - rhs is negative and value < lhs
// - rhs is positive and value > lhs
// This can be shortened to:
// (rhs < 0 and value < lhs) or (rhs >= 0 and value >= lhs)
// = (rhs < 0) == (value < lhs)
// = (rhs < 0) == (lhs > value)
const rhs_lt_zero_id = self.spv.allocId();
const zero_id = try self.constInt(operand_ty_ref, 0);
try self.func.body.emit(self.spv.gpa, .OpSLessThan, .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = rhs_lt_zero_id,
.operand_1 = rhs,
.operand_2 = zero_id,
});
const value_gt_lhs_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, scmp, .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = value_gt_lhs_id,
.operand_1 = lhs,
.operand_2 = value_id,
});
const overflowed_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpLogicalEqual, .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = overflowed_id,
.operand_1 = rhs_lt_zero_id,
.operand_2 = value_gt_lhs_id,
});
break :blk overflowed_id;
},
};
// Construct the struct that Zig wants as result.
// The value should already be the correct type.
const ov_id = try self.intFromBool(ov_ty_ref, overflowed_id);
return try self.constructStruct(
result_ty,
&.{ operand_ty, ov_ty },
&.{ value_id, ov_id },
);
}
fn airShlOverflow(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
const lhs = try self.resolve(extra.lhs);
const rhs = try self.resolve(extra.rhs);
const result_ty = self.typeOfIndex(inst);
const operand_ty = self.typeOf(extra.lhs);
const shift_ty = self.typeOf(extra.rhs);
const scalar_shift_ty_ref = try self.resolveType(shift_ty.scalarType(mod), .direct);
const ov_ty = result_ty.structFieldType(1, self.module);
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
const info = try self.arithmeticTypeInfo(operand_ty);
switch (info.class) {
.composite_integer => return self.todo("overflow shift for composite integers", .{}),
.integer, .strange_integer => {},
.float, .bool => unreachable,
}
var wip_result = try self.elementWise(operand_ty);
defer wip_result.deinit();
var wip_ov = try self.elementWise(ov_ty);
defer wip_ov.deinit();
for (0..wip_result.results.len, wip_ov.results) |i, *ov_id| {
const lhs_elem_id = try wip_result.elementAt(operand_ty, lhs, i);
const rhs_elem_id = try wip_result.elementAt(shift_ty, rhs, i);
// Normalize both so that we can shift back and check if the result is the same.
const lhs_norm_id = try self.normalizeInt(wip_result.scalar_ty_ref, lhs_elem_id, info);
// Sometimes Zig doesn't make both of the arguments the same types here. SPIR-V expects that,
// so just manually upcast it if required.
const shift_id = if (scalar_shift_ty_ref != wip_result.scalar_ty_ref) blk: {
const shift_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpUConvert, .{
.id_result_type = wip_result.scalar_ty_id,
.id_result = shift_id,
.unsigned_value = rhs_elem_id,
});
break :blk shift_id;
} else rhs_elem_id;
const shift_norm_id = try self.normalizeInt(wip_result.scalar_ty_ref, shift_id, info);
try self.func.body.emit(self.spv.gpa, .OpShiftLeftLogical, .{
.id_result_type = wip_result.scalar_ty_id,
.id_result = wip_result.allocId(i),
.base = lhs_norm_id,
.shift = shift_norm_id,
});
// To check if overflow happened, just check if the right-shifted result is the same value.
const right_shift_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpShiftRightLogical, .{
.id_result_type = wip_result.scalar_ty_id,
.id_result = right_shift_id,
.base = try self.normalizeInt(wip_result.scalar_ty_ref, wip_result.results[i], info),
.shift = shift_norm_id,
});
const overflowed_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpINotEqual, .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = overflowed_id,
.operand_1 = lhs_norm_id,
.operand_2 = right_shift_id,
});
ov_id.* = try self.intFromBool(wip_ov.scalar_ty_ref, overflowed_id);
}
return try self.constructStruct(
result_ty,
&.{ operand_ty, ov_ty },
&.{ try wip_result.finalize(), try wip_ov.finalize() },
);
}
fn airShuffle(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
const mod = self.module;
if (self.liveness.isUnused(inst)) return null;
const ty = self.typeOfIndex(inst);
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Shuffle, ty_pl.payload).data;
const a = try self.resolve(extra.a);
const b = try self.resolve(extra.b);
const mask = Value.fromInterned(extra.mask);
const mask_len = extra.mask_len;
const a_len = self.typeOf(extra.a).vectorLen(mod);
const result_id = self.spv.allocId();
const result_type_id = try self.resolveTypeId(ty);
// Similar to LLVM, SPIR-V uses indices larger than the length of the first vector
// to index into the second vector.
try self.func.body.emitRaw(self.spv.gpa, .OpVectorShuffle, 4 + mask_len);
self.func.body.writeOperand(spec.IdResultType, result_type_id);
self.func.body.writeOperand(spec.IdResult, result_id);
self.func.body.writeOperand(spec.IdRef, a);
self.func.body.writeOperand(spec.IdRef, b);
var i: usize = 0;
while (i < mask_len) : (i += 1) {
const elem = try mask.elemValue(mod, i);
if (elem.isUndef(mod)) {
self.func.body.writeOperand(spec.LiteralInteger, 0xFFFF_FFFF);
} else {
const int = elem.toSignedInt(mod);
const unsigned = if (int >= 0) @as(u32, @intCast(int)) else @as(u32, @intCast(~int + a_len));
self.func.body.writeOperand(spec.LiteralInteger, unsigned);
}
}
return result_id;
}
fn indicesToIds(self: *DeclGen, indices: []const u32) ![]IdRef {
const index_ty_ref = try self.intType(.unsigned, 32);
const ids = try self.gpa.alloc(IdRef, indices.len);
errdefer self.gpa.free(ids);
for (indices, ids) |index, *id| {
id.* = try self.constInt(index_ty_ref, index);
}
return ids;
}
fn accessChainId(
self: *DeclGen,
result_ty_ref: CacheRef,
base: IdRef,
indices: []const IdRef,
) !IdRef {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpInBoundsAccessChain, .{
.id_result_type = self.typeId(result_ty_ref),
.id_result = result_id,
.base = base,
.indexes = indices,
});
return result_id;
}
/// AccessChain is essentially PtrAccessChain with 0 as initial argument. The effective
/// difference lies in whether the resulting type of the first dereference will be the
/// same as that of the base pointer, or that of a dereferenced base pointer. AccessChain
/// is the latter and PtrAccessChain is the former.
fn accessChain(
self: *DeclGen,
result_ty_ref: CacheRef,
base: IdRef,
indices: []const u32,
) !IdRef {
const ids = try self.indicesToIds(indices);
defer self.gpa.free(ids);
return try self.accessChainId(result_ty_ref, base, ids);
}
fn ptrAccessChain(
self: *DeclGen,
result_ty_ref: CacheRef,
base: IdRef,
element: IdRef,
indices: []const u32,
) !IdRef {
const ids = try self.indicesToIds(indices);
defer self.gpa.free(ids);
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpInBoundsPtrAccessChain, .{
.id_result_type = self.typeId(result_ty_ref),
.id_result = result_id,
.base = base,
.element = element,
.indexes = ids,
});
return result_id;
}
fn ptrAdd(self: *DeclGen, result_ty: Type, ptr_ty: Type, ptr_id: IdRef, offset_id: IdRef) !IdRef {
const mod = self.module;
const result_ty_ref = try self.resolveType(result_ty, .direct);
switch (ptr_ty.ptrSize(mod)) {
.One => {
// Pointer to array
// TODO: Is this correct?
return try self.accessChainId(result_ty_ref, ptr_id, &.{offset_id});
},
.C, .Many => {
return try self.ptrAccessChain(result_ty_ref, ptr_id, offset_id, &.{});
},
.Slice => {
// TODO: This is probably incorrect. A slice should be returned here, though this is what llvm does.
const slice_ptr_id = try self.extractField(result_ty, ptr_id, 0);
return try self.ptrAccessChain(result_ty_ref, slice_ptr_id, offset_id, &.{});
},
}
}
fn airPtrAdd(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const ptr_id = try self.resolve(bin_op.lhs);
const offset_id = try self.resolve(bin_op.rhs);
const ptr_ty = self.typeOf(bin_op.lhs);
const result_ty = self.typeOfIndex(inst);
return try self.ptrAdd(result_ty, ptr_ty, ptr_id, offset_id);
}
fn airPtrSub(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const ptr_id = try self.resolve(bin_op.lhs);
const ptr_ty = self.typeOf(bin_op.lhs);
const offset_id = try self.resolve(bin_op.rhs);
const offset_ty = self.typeOf(bin_op.rhs);
const offset_ty_ref = try self.resolveType(offset_ty, .direct);
const result_ty = self.typeOfIndex(inst);
const negative_offset_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpSNegate, .{
.id_result_type = self.typeId(offset_ty_ref),
.id_result = negative_offset_id,
.operand = offset_id,
});
return try self.ptrAdd(result_ty, ptr_ty, ptr_id, negative_offset_id);
}
fn cmp(
self: *DeclGen,
op: std.math.CompareOperator,
result_ty: Type,
ty: Type,
lhs_id: IdRef,
rhs_id: IdRef,
) !IdRef {
const mod = self.module;
var cmp_lhs_id = lhs_id;
var cmp_rhs_id = rhs_id;
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
const op_ty = switch (ty.zigTypeTag(mod)) {
.Int, .Bool, .Float => ty,
.Enum => ty.intTagType(mod),
.ErrorSet => Type.u16,
.Pointer => blk: {
// Note that while SPIR-V offers OpPtrEqual and OpPtrNotEqual, they are
// currently not implemented in the SPIR-V LLVM translator. Thus, we emit these using
// OpConvertPtrToU...
cmp_lhs_id = self.spv.allocId();
cmp_rhs_id = self.spv.allocId();
const usize_ty_id = self.typeId(try self.sizeType());
try self.func.body.emit(self.spv.gpa, .OpConvertPtrToU, .{
.id_result_type = usize_ty_id,
.id_result = cmp_lhs_id,
.pointer = lhs_id,
});
try self.func.body.emit(self.spv.gpa, .OpConvertPtrToU, .{
.id_result_type = usize_ty_id,
.id_result = cmp_rhs_id,
.pointer = rhs_id,
});
break :blk Type.usize;
},
.Optional => {
const payload_ty = ty.optionalChild(mod);
if (ty.optionalReprIsPayload(mod)) {
assert(payload_ty.hasRuntimeBitsIgnoreComptime(mod));
assert(!payload_ty.isSlice(mod));
return self.cmp(op, Type.bool, payload_ty, lhs_id, rhs_id);
}
const lhs_valid_id = if (payload_ty.hasRuntimeBitsIgnoreComptime(mod))
try self.extractField(Type.bool, lhs_id, 1)
else
try self.convertToDirect(Type.bool, lhs_id);
const rhs_valid_id = if (payload_ty.hasRuntimeBitsIgnoreComptime(mod))
try self.extractField(Type.bool, rhs_id, 1)
else
try self.convertToDirect(Type.bool, rhs_id);
const valid_cmp_id = try self.cmp(op, Type.bool, Type.bool, lhs_valid_id, rhs_valid_id);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(mod)) {
return valid_cmp_id;
}
// TODO: Should we short circuit here? It shouldn't affect correctness, but
// perhaps it will generate more efficient code.
const lhs_pl_id = try self.extractField(payload_ty, lhs_id, 0);
const rhs_pl_id = try self.extractField(payload_ty, rhs_id, 0);
const pl_cmp_id = try self.cmp(op, Type.bool, payload_ty, lhs_pl_id, rhs_pl_id);
// op == .eq => lhs_valid == rhs_valid && lhs_pl == rhs_pl
// op == .neq => lhs_valid != rhs_valid || lhs_pl != rhs_pl
const result_id = self.spv.allocId();
const args = .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = result_id,
.operand_1 = valid_cmp_id,
.operand_2 = pl_cmp_id,
};
switch (op) {
.eq => try self.func.body.emit(self.spv.gpa, .OpLogicalAnd, args),
.neq => try self.func.body.emit(self.spv.gpa, .OpLogicalOr, args),
else => unreachable,
}
return result_id;
},
.Vector => {
const child_ty = ty.childType(mod);
const vector_len = ty.vectorLen(mod);
const constituents = try self.gpa.alloc(IdRef, vector_len);
defer self.gpa.free(constituents);
for (constituents, 0..) |*constituent, i| {
const lhs_index_id = try self.extractField(child_ty, cmp_lhs_id, @intCast(i));
const rhs_index_id = try self.extractField(child_ty, cmp_rhs_id, @intCast(i));
const result_id = try self.cmp(op, Type.bool, child_ty, lhs_index_id, rhs_index_id);
constituent.* = try self.convertToIndirect(Type.bool, result_id);
}
return try self.constructArray(result_ty, constituents);
},
else => unreachable,
};
const opcode: Opcode = opcode: {
const info = try self.arithmeticTypeInfo(op_ty);
const signedness = switch (info.class) {
.composite_integer => {
return self.todo("binary operations for composite integers", .{});
},
.float => break :opcode switch (op) {
.eq => .OpFOrdEqual,
.neq => .OpFUnordNotEqual,
.lt => .OpFOrdLessThan,
.lte => .OpFOrdLessThanEqual,
.gt => .OpFOrdGreaterThan,
.gte => .OpFOrdGreaterThanEqual,
},
.bool => break :opcode switch (op) {
.eq => .OpLogicalEqual,
.neq => .OpLogicalNotEqual,
else => unreachable,
},
.strange_integer => sign: {
const op_ty_ref = try self.resolveType(op_ty, .direct);
// Mask operands before performing comparison.
cmp_lhs_id = try self.normalizeInt(op_ty_ref, cmp_lhs_id, info);
cmp_rhs_id = try self.normalizeInt(op_ty_ref, cmp_rhs_id, info);
break :sign info.signedness;
},
.integer => info.signedness,
};
break :opcode switch (signedness) {
.unsigned => switch (op) {
.eq => .OpIEqual,
.neq => .OpINotEqual,
.lt => .OpULessThan,
.lte => .OpULessThanEqual,
.gt => .OpUGreaterThan,
.gte => .OpUGreaterThanEqual,
},
.signed => switch (op) {
.eq => .OpIEqual,
.neq => .OpINotEqual,
.lt => .OpSLessThan,
.lte => .OpSLessThanEqual,
.gt => .OpSGreaterThan,
.gte => .OpSGreaterThanEqual,
},
};
};
const result_id = self.spv.allocId();
try self.func.body.emitRaw(self.spv.gpa, opcode, 4);
self.func.body.writeOperand(spec.IdResultType, self.typeId(bool_ty_ref));
self.func.body.writeOperand(spec.IdResult, result_id);
self.func.body.writeOperand(spec.IdResultType, cmp_lhs_id);
self.func.body.writeOperand(spec.IdResultType, cmp_rhs_id);
return result_id;
}
fn airCmp(
self: *DeclGen,
inst: Air.Inst.Index,
comptime op: std.math.CompareOperator,
) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs_id = try self.resolve(bin_op.lhs);
const rhs_id = try self.resolve(bin_op.rhs);
const ty = self.typeOf(bin_op.lhs);
const result_ty = self.typeOfIndex(inst);
return try self.cmp(op, result_ty, ty, lhs_id, rhs_id);
}
fn airVectorCmp(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const vec_cmp = self.air.extraData(Air.VectorCmp, ty_pl.payload).data;
const lhs_id = try self.resolve(vec_cmp.lhs);
const rhs_id = try self.resolve(vec_cmp.rhs);
const op = vec_cmp.compareOperator();
const ty = self.typeOf(vec_cmp.lhs);
const result_ty = self.typeOfIndex(inst);
return try self.cmp(op, result_ty, ty, lhs_id, rhs_id);
}
fn bitCast(
self: *DeclGen,
dst_ty: Type,
src_ty: Type,
src_id: IdRef,
) !IdRef {
const mod = self.module;
const src_ty_ref = try self.resolveType(src_ty, .direct);
const dst_ty_ref = try self.resolveType(dst_ty, .direct);
if (src_ty_ref == dst_ty_ref) {
return src_id;
}
// TODO: Some more cases are missing here
// See fn bitCast in llvm.zig
if (src_ty.zigTypeTag(mod) == .Int and dst_ty.isPtrAtRuntime(mod)) {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpConvertUToPtr, .{
.id_result_type = self.typeId(dst_ty_ref),
.id_result = result_id,
.integer_value = src_id,
});
return result_id;
}
// We can only use OpBitcast for specific conversions: between numerical types, and
// between pointers. If the resolved spir-v types fall into this category then emit OpBitcast,
// otherwise use a temporary and perform a pointer cast.
const src_key = self.spv.cache.lookup(src_ty_ref);
const dst_key = self.spv.cache.lookup(dst_ty_ref);
if ((src_key.isNumericalType() and dst_key.isNumericalType()) or (src_key == .ptr_type and dst_key == .ptr_type)) {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = self.typeId(dst_ty_ref),
.id_result = result_id,
.operand = src_id,
});
return result_id;
}
const dst_ptr_ty_ref = try self.ptrType(dst_ty, .Function);
const tmp_id = try self.alloc(src_ty, .{ .storage_class = .Function });
try self.store(src_ty, tmp_id, src_id, .{});
const casted_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = self.typeId(dst_ptr_ty_ref),
.id_result = casted_ptr_id,
.operand = tmp_id,
});
return try self.load(dst_ty, casted_ptr_id, .{});
}
fn airBitCast(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const operand_ty = self.typeOf(ty_op.operand);
const result_ty = self.typeOfIndex(inst);
return try self.bitCast(result_ty, operand_ty, operand_id);
}
fn airIntCast(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const src_ty = self.typeOf(ty_op.operand);
const dst_ty = self.typeOfIndex(inst);
const src_ty_ref = try self.resolveType(src_ty, .direct);
const dst_ty_ref = try self.resolveType(dst_ty, .direct);
const src_info = try self.arithmeticTypeInfo(src_ty);
const dst_info = try self.arithmeticTypeInfo(dst_ty);
// While intcast promises that the value already fits, the upper bits of a
// strange integer may contain garbage. Therefore, mask/sign extend it before.
const src_id = try self.normalizeInt(src_ty_ref, operand_id, src_info);
if (src_info.backing_bits == dst_info.backing_bits) {
return src_id;
}
const result_id = self.spv.allocId();
switch (dst_info.signedness) {
.signed => try self.func.body.emit(self.spv.gpa, .OpSConvert, .{
.id_result_type = self.typeId(dst_ty_ref),
.id_result = result_id,
.signed_value = src_id,
}),
.unsigned => try self.func.body.emit(self.spv.gpa, .OpUConvert, .{
.id_result_type = self.typeId(dst_ty_ref),
.id_result = result_id,
.unsigned_value = src_id,
}),
}
return result_id;
}
fn intFromPtr(self: *DeclGen, operand_id: IdRef) !IdRef {
const result_type_id = try self.resolveTypeId(Type.usize);
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpConvertPtrToU, .{
.id_result_type = result_type_id,
.id_result = result_id,
.pointer = operand_id,
});
return result_id;
}
fn airIntFromPtr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand_id = try self.resolve(un_op);
return try self.intFromPtr(operand_id);
}
fn airFloatFromInt(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_ty = self.typeOf(ty_op.operand);
const operand_id = try self.resolve(ty_op.operand);
const operand_info = try self.arithmeticTypeInfo(operand_ty);
const dest_ty = self.typeOfIndex(inst);
const dest_ty_id = try self.resolveTypeId(dest_ty);
const result_id = self.spv.allocId();
switch (operand_info.signedness) {
.signed => try self.func.body.emit(self.spv.gpa, .OpConvertSToF, .{
.id_result_type = dest_ty_id,
.id_result = result_id,
.signed_value = operand_id,
}),
.unsigned => try self.func.body.emit(self.spv.gpa, .OpConvertUToF, .{
.id_result_type = dest_ty_id,
.id_result = result_id,
.unsigned_value = operand_id,
}),
}
return result_id;
}
fn airIntFromFloat(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const dest_ty = self.typeOfIndex(inst);
const dest_info = try self.arithmeticTypeInfo(dest_ty);
const dest_ty_id = try self.resolveTypeId(dest_ty);
const result_id = self.spv.allocId();
switch (dest_info.signedness) {
.signed => try self.func.body.emit(self.spv.gpa, .OpConvertFToS, .{
.id_result_type = dest_ty_id,
.id_result = result_id,
.float_value = operand_id,
}),
.unsigned => try self.func.body.emit(self.spv.gpa, .OpConvertFToU, .{
.id_result_type = dest_ty_id,
.id_result = result_id,
.float_value = operand_id,
}),
}
return result_id;
}
fn airFloatCast(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const dest_ty = self.typeOfIndex(inst);
const dest_ty_id = try self.resolveTypeId(dest_ty);
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpFConvert, .{
.id_result_type = dest_ty_id,
.id_result = result_id,
.float_value = operand_id,
});
return result_id;
}
fn airNot(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const result_ty = self.typeOfIndex(inst);
const info = try self.arithmeticTypeInfo(result_ty);
var wip = try self.elementWise(result_ty);
defer wip.deinit();
for (0..wip.results.len) |i| {
const args = .{
.id_result_type = wip.scalar_ty_id,
.id_result = wip.allocId(i),
.operand = try wip.elementAt(result_ty, operand_id, i),
};
switch (info.class) {
.bool => {
try self.func.body.emit(self.spv.gpa, .OpLogicalNot, args);
},
.float => unreachable,
.composite_integer => unreachable, // TODO
.strange_integer, .integer => {
// Note: strange integer bits will be masked before operations that do not hold under modulo.
try self.func.body.emit(self.spv.gpa, .OpNot, args);
},
}
}
return try wip.finalize();
}
fn airArrayToSlice(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const array_ptr_ty = self.typeOf(ty_op.operand);
const array_ty = array_ptr_ty.childType(mod);
const slice_ty = self.typeOfIndex(inst);
const elem_ptr_ty = slice_ty.slicePtrFieldType(mod);
const elem_ptr_ty_ref = try self.resolveType(elem_ptr_ty, .direct);
const size_ty_ref = try self.sizeType();
const array_ptr_id = try self.resolve(ty_op.operand);
const len_id = try self.constInt(size_ty_ref, array_ty.arrayLen(mod));
const elem_ptr_id = if (!array_ty.hasRuntimeBitsIgnoreComptime(mod))
// Note: The pointer is something like *opaque{}, so we need to bitcast it to the element type.
try self.bitCast(elem_ptr_ty, array_ptr_ty, array_ptr_id)
else
// Convert the pointer-to-array to a pointer to the first element.
try self.accessChain(elem_ptr_ty_ref, array_ptr_id, &.{0});
return try self.constructStruct(
slice_ty,
&.{ elem_ptr_ty, Type.usize },
&.{ elem_ptr_id, len_id },
);
}
fn airSlice(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const ptr_id = try self.resolve(bin_op.lhs);
const len_id = try self.resolve(bin_op.rhs);
const ptr_ty = self.typeOf(bin_op.lhs);
const slice_ty = self.typeOfIndex(inst);
// Note: Types should not need to be converted to direct, these types
// dont need to be converted.
return try self.constructStruct(
slice_ty,
&.{ ptr_ty, Type.usize },
&.{ ptr_id, len_id },
);
}
fn airAggregateInit(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ip = &mod.intern_pool;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const result_ty = self.typeOfIndex(inst);
const len: usize = @intCast(result_ty.arrayLen(mod));
const elements: []const Air.Inst.Ref = @ptrCast(self.air.extra[ty_pl.payload..][0..len]);
switch (result_ty.zigTypeTag(mod)) {
.Struct => {
if (mod.typeToPackedStruct(result_ty)) |struct_type| {
_ = struct_type;
unreachable; // TODO
}
const types = try self.gpa.alloc(Type, elements.len);
defer self.gpa.free(types);
const constituents = try self.gpa.alloc(IdRef, elements.len);
defer self.gpa.free(constituents);
var index: usize = 0;
switch (ip.indexToKey(result_ty.toIntern())) {
.anon_struct_type => |tuple| {
for (tuple.types.get(ip), elements, 0..) |field_ty, element, i| {
if ((try result_ty.structFieldValueComptime(mod, i)) != null) continue;
assert(Type.fromInterned(field_ty).hasRuntimeBits(mod));
const id = try self.resolve(element);
types[index] = Type.fromInterned(field_ty);
constituents[index] = try self.convertToIndirect(Type.fromInterned(field_ty), id);
index += 1;
}
},
.struct_type => |struct_type| {
var it = struct_type.iterateRuntimeOrder(ip);
for (elements, 0..) |element, i| {
const field_index = it.next().?;
if ((try result_ty.structFieldValueComptime(mod, i)) != null) continue;
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[field_index]);
assert(field_ty.hasRuntimeBitsIgnoreComptime(mod));
const id = try self.resolve(element);
types[index] = field_ty;
constituents[index] = try self.convertToIndirect(field_ty, id);
index += 1;
}
},
else => unreachable,
}
return try self.constructStruct(
result_ty,
types[0..index],
constituents[0..index],
);
},
.Vector, .Array => {
const array_info = result_ty.arrayInfo(mod);
const n_elems: usize = @intCast(result_ty.arrayLenIncludingSentinel(mod));
const elem_ids = try self.gpa.alloc(IdRef, n_elems);
defer self.gpa.free(elem_ids);
for (elements, 0..) |element, i| {
const id = try self.resolve(element);
elem_ids[i] = try self.convertToIndirect(array_info.elem_type, id);
}
if (array_info.sentinel) |sentinel_val| {
elem_ids[n_elems - 1] = try self.constant(array_info.elem_type, sentinel_val, .indirect);
}
return try self.constructArray(result_ty, elem_ids);
},
else => unreachable,
}
}
fn sliceOrArrayLen(self: *DeclGen, operand_id: IdRef, ty: Type) !IdRef {
const mod = self.module;
switch (ty.ptrSize(mod)) {
.Slice => return self.extractField(Type.usize, operand_id, 1),
.One => {
const array_ty = ty.childType(mod);
const elem_ty = array_ty.childType(mod);
const abi_size = elem_ty.abiSize(mod);
const usize_ty_ref = try self.resolveType(Type.usize, .direct);
return self.spv.constInt(usize_ty_ref, array_ty.arrayLenIncludingSentinel(mod) * abi_size);
},
.Many, .C => unreachable,
}
}
fn sliceOrArrayPtr(self: *DeclGen, operand_id: IdRef, ty: Type) !IdRef {
const mod = self.module;
if (ty.isSlice(mod)) {
const ptr_ty = ty.slicePtrFieldType(mod);
return self.extractField(ptr_ty, operand_id, 0);
}
return operand_id;
}
fn airMemcpy(self: *DeclGen, inst: Air.Inst.Index) !void {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const dest_slice = try self.resolve(bin_op.lhs);
const src_slice = try self.resolve(bin_op.rhs);
const dest_ty = self.typeOf(bin_op.lhs);
const src_ty = self.typeOf(bin_op.rhs);
const dest_ptr = try self.sliceOrArrayPtr(dest_slice, dest_ty);
const src_ptr = try self.sliceOrArrayPtr(src_slice, src_ty);
const len = try self.sliceOrArrayLen(dest_slice, dest_ty);
try self.func.body.emit(self.spv.gpa, .OpCopyMemorySized, .{
.target = dest_ptr,
.source = src_ptr,
.size = len,
});
}
fn airSliceField(self: *DeclGen, inst: Air.Inst.Index, field: u32) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const field_ty = self.typeOfIndex(inst);
const operand_id = try self.resolve(ty_op.operand);
return try self.extractField(field_ty, operand_id, field);
}
fn airSliceElemPtr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
const mod = self.module;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const slice_ty = self.typeOf(bin_op.lhs);
if (!slice_ty.isVolatilePtr(mod) and self.liveness.isUnused(inst)) return null;
const slice_id = try self.resolve(bin_op.lhs);
const index_id = try self.resolve(bin_op.rhs);
const ptr_ty = self.typeOfIndex(inst);
const ptr_ty_ref = try self.resolveType(ptr_ty, .direct);
const slice_ptr = try self.extractField(ptr_ty, slice_id, 0);
return try self.ptrAccessChain(ptr_ty_ref, slice_ptr, index_id, &.{});
}
fn airSliceElemVal(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
const mod = self.module;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const slice_ty = self.typeOf(bin_op.lhs);
if (!slice_ty.isVolatilePtr(mod) and self.liveness.isUnused(inst)) return null;
const slice_id = try self.resolve(bin_op.lhs);
const index_id = try self.resolve(bin_op.rhs);
const ptr_ty = slice_ty.slicePtrFieldType(mod);
const ptr_ty_ref = try self.resolveType(ptr_ty, .direct);
const slice_ptr = try self.extractField(ptr_ty, slice_id, 0);
const elem_ptr = try self.ptrAccessChain(ptr_ty_ref, slice_ptr, index_id, &.{});
return try self.load(slice_ty.childType(mod), elem_ptr, .{ .is_volatile = slice_ty.isVolatilePtr(mod) });
}
fn ptrElemPtr(self: *DeclGen, ptr_ty: Type, ptr_id: IdRef, index_id: IdRef) !IdRef {
const mod = self.module;
// Construct new pointer type for the resulting pointer
const elem_ty = ptr_ty.elemType2(mod); // use elemType() so that we get T for *[N]T.
const elem_ptr_ty_ref = try self.ptrType(elem_ty, spvStorageClass(ptr_ty.ptrAddressSpace(mod)));
if (ptr_ty.isSinglePointer(mod)) {
// Pointer-to-array. In this case, the resulting pointer is not of the same type
// as the ptr_ty (we want a *T, not a *[N]T), and hence we need to use accessChain.
return try self.accessChainId(elem_ptr_ty_ref, ptr_id, &.{index_id});
} else {
// Resulting pointer type is the same as the ptr_ty, so use ptrAccessChain
return try self.ptrAccessChain(elem_ptr_ty_ref, ptr_id, index_id, &.{});
}
}
fn airPtrElemPtr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const src_ptr_ty = self.typeOf(bin_op.lhs);
const elem_ty = src_ptr_ty.childType(mod);
const ptr_id = try self.resolve(bin_op.lhs);
if (!elem_ty.hasRuntimeBitsIgnoreComptime(mod)) {
const dst_ptr_ty = self.typeOfIndex(inst);
return try self.bitCast(dst_ptr_ty, src_ptr_ty, ptr_id);
}
const index_id = try self.resolve(bin_op.rhs);
return try self.ptrElemPtr(src_ptr_ty, ptr_id, index_id);
}
fn airArrayElemVal(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const array_ty = self.typeOf(bin_op.lhs);
const elem_ty = array_ty.childType(mod);
const array_id = try self.resolve(bin_op.lhs);
const index_id = try self.resolve(bin_op.rhs);
// SPIR-V doesn't have an array indexing function for some damn reason.
// For now, just generate a temporary and use that.
// TODO: This backend probably also should use isByRef from llvm...
const elem_ptr_ty_ref = try self.ptrType(elem_ty, .Function);
const tmp_id = try self.alloc(array_ty, .{ .storage_class = .Function });
try self.store(array_ty, tmp_id, array_id, .{});
const elem_ptr_id = try self.accessChainId(elem_ptr_ty_ref, tmp_id, &.{index_id});
return try self.load(elem_ty, elem_ptr_id, .{});
}
fn airPtrElemVal(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ptr_ty = self.typeOf(bin_op.lhs);
const elem_ty = self.typeOfIndex(inst);
const ptr_id = try self.resolve(bin_op.lhs);
const index_id = try self.resolve(bin_op.rhs);
const elem_ptr_id = try self.ptrElemPtr(ptr_ty, ptr_id, index_id);
return try self.load(elem_ty, elem_ptr_id, .{ .is_volatile = ptr_ty.isVolatilePtr(mod) });
}
fn airSetUnionTag(self: *DeclGen, inst: Air.Inst.Index) !void {
const mod = self.module;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const un_ptr_ty = self.typeOf(bin_op.lhs);
const un_ty = un_ptr_ty.childType(mod);
const layout = self.unionLayout(un_ty);
if (layout.tag_size == 0) return;
const tag_ty = un_ty.unionTagTypeSafety(mod).?;
const tag_ptr_ty_ref = try self.ptrType(tag_ty, spvStorageClass(un_ptr_ty.ptrAddressSpace(mod)));
const union_ptr_id = try self.resolve(bin_op.lhs);
const new_tag_id = try self.resolve(bin_op.rhs);
if (!layout.has_payload) {
try self.store(tag_ty, union_ptr_id, new_tag_id, .{ .is_volatile = un_ptr_ty.isVolatilePtr(mod) });
} else {
const ptr_id = try self.accessChain(tag_ptr_ty_ref, union_ptr_id, &.{layout.tag_index});
try self.store(tag_ty, ptr_id, new_tag_id, .{ .is_volatile = un_ptr_ty.isVolatilePtr(mod) });
}
}
fn airGetUnionTag(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const un_ty = self.typeOf(ty_op.operand);
const mod = self.module;
const layout = self.unionLayout(un_ty);
if (layout.tag_size == 0) return null;
const union_handle = try self.resolve(ty_op.operand);
if (!layout.has_payload) return union_handle;
const tag_ty = un_ty.unionTagTypeSafety(mod).?;
return try self.extractField(tag_ty, union_handle, layout.tag_index);
}
fn unionInit(
self: *DeclGen,
ty: Type,
active_field: u32,
payload: ?IdRef,
) !IdRef {
// To initialize a union, generate a temporary variable with the
// union type, then get the field pointer and pointer-cast it to the
// right type to store it. Finally load the entire union.
const mod = self.module;
const ip = &mod.intern_pool;
const union_ty = mod.typeToUnion(ty).?;
if (union_ty.getLayout(ip) == .Packed) {
unreachable; // TODO
}
const maybe_tag_ty = ty.unionTagTypeSafety(mod);
const layout = self.unionLayout(ty);
const tag_int = if (layout.tag_size != 0) blk: {
const tag_ty = maybe_tag_ty.?;
const union_field_name = union_ty.field_names.get(ip)[active_field];
const enum_field_index = tag_ty.enumFieldIndex(union_field_name, mod).?;
const tag_val = try mod.enumValueFieldIndex(tag_ty, enum_field_index);
const tag_int_val = try tag_val.intFromEnum(tag_ty, mod);
break :blk tag_int_val.toUnsignedInt(mod);
} else 0;
if (!layout.has_payload) {
const tag_ty_ref = try self.resolveType(maybe_tag_ty.?, .direct);
return try self.constInt(tag_ty_ref, tag_int);
}
const tmp_id = try self.alloc(ty, .{ .storage_class = .Function });
if (layout.tag_size != 0) {
const tag_ty_ref = try self.resolveType(maybe_tag_ty.?, .direct);
const tag_ptr_ty_ref = try self.ptrType(maybe_tag_ty.?, .Function);
const ptr_id = try self.accessChain(tag_ptr_ty_ref, tmp_id, &.{@as(u32, @intCast(layout.tag_index))});
const tag_id = try self.constInt(tag_ty_ref, tag_int);
try self.store(maybe_tag_ty.?, ptr_id, tag_id, .{});
}
const payload_ty = Type.fromInterned(union_ty.field_types.get(ip)[active_field]);
if (payload_ty.hasRuntimeBitsIgnoreComptime(mod)) {
const pl_ptr_ty_ref = try self.ptrType(layout.payload_ty, .Function);
const pl_ptr_id = try self.accessChain(pl_ptr_ty_ref, tmp_id, &.{layout.payload_index});
const active_pl_ptr_ty_ref = try self.ptrType(payload_ty, .Function);
const active_pl_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = self.typeId(active_pl_ptr_ty_ref),
.id_result = active_pl_ptr_id,
.operand = pl_ptr_id,
});
try self.store(payload_ty, active_pl_ptr_id, payload.?, .{});
} else {
assert(payload == null);
}
// Just leave the padding fields uninitialized...
// TODO: Or should we initialize them with undef explicitly?
return try self.load(ty, tmp_id, .{});
}
fn airUnionInit(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ip = &mod.intern_pool;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.UnionInit, ty_pl.payload).data;
const ty = self.typeOfIndex(inst);
const union_obj = mod.typeToUnion(ty).?;
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[extra.field_index]);
const payload = if (field_ty.hasRuntimeBitsIgnoreComptime(mod))
try self.resolve(extra.init)
else
null;
return try self.unionInit(ty, extra.field_index, payload);
}
fn airStructFieldVal(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const struct_field = self.air.extraData(Air.StructField, ty_pl.payload).data;
const object_ty = self.typeOf(struct_field.struct_operand);
const object_id = try self.resolve(struct_field.struct_operand);
const field_index = struct_field.field_index;
const field_ty = object_ty.structFieldType(field_index, mod);
if (!field_ty.hasRuntimeBitsIgnoreComptime(mod)) return null;
switch (object_ty.zigTypeTag(mod)) {
.Struct => switch (object_ty.containerLayout(mod)) {
.Packed => unreachable, // TODO
else => return try self.extractField(field_ty, object_id, field_index),
},
.Union => switch (object_ty.containerLayout(mod)) {
.Packed => unreachable, // TODO
else => {
// Store, ptr-elem-ptr, pointer-cast, load
const layout = self.unionLayout(object_ty);
assert(layout.has_payload);
const tmp_id = try self.alloc(object_ty, .{ .storage_class = .Function });
try self.store(object_ty, tmp_id, object_id, .{});
const pl_ptr_ty_ref = try self.ptrType(layout.payload_ty, .Function);
const pl_ptr_id = try self.accessChain(pl_ptr_ty_ref, tmp_id, &.{layout.payload_index});
const active_pl_ptr_ty_ref = try self.ptrType(field_ty, .Function);
const active_pl_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = self.typeId(active_pl_ptr_ty_ref),
.id_result = active_pl_ptr_id,
.operand = pl_ptr_id,
});
return try self.load(field_ty, active_pl_ptr_id, .{});
},
},
else => unreachable,
}
}
fn airFieldParentPtr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
const mod = self.module;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.FieldParentPtr, ty_pl.payload).data;
const parent_ty = ty_pl.ty.toType().childType(mod);
const res_ty = try self.resolveType(ty_pl.ty.toType(), .indirect);
const usize_ty = Type.usize;
const usize_ty_ref = try self.resolveType(usize_ty, .direct);
const field_ptr = try self.resolve(extra.field_ptr);
const field_ptr_int = try self.intFromPtr(field_ptr);
const field_offset = parent_ty.structFieldOffset(extra.field_index, mod);
const base_ptr_int = base_ptr_int: {
if (field_offset == 0) break :base_ptr_int field_ptr_int;
const field_offset_id = try self.constInt(usize_ty_ref, field_offset);
break :base_ptr_int try self.binOpSimple(usize_ty, field_ptr_int, field_offset_id, .OpISub);
};
const base_ptr = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpConvertUToPtr, .{
.id_result_type = self.spv.resultId(res_ty),
.id_result = base_ptr,
.integer_value = base_ptr_int,
});
return base_ptr;
}
fn structFieldPtr(
self: *DeclGen,
result_ptr_ty: Type,
object_ptr_ty: Type,
object_ptr: IdRef,
field_index: u32,
) !IdRef {
const result_ty_ref = try self.resolveType(result_ptr_ty, .direct);
const mod = self.module;
const object_ty = object_ptr_ty.childType(mod);
switch (object_ty.zigTypeTag(mod)) {
.Struct => switch (object_ty.containerLayout(mod)) {
.Packed => unreachable, // TODO
else => {
return try self.accessChain(result_ty_ref, object_ptr, &.{field_index});
},
},
.Union => switch (object_ty.containerLayout(mod)) {
.Packed => unreachable, // TODO
else => {
const layout = self.unionLayout(object_ty);
if (!layout.has_payload) {
// Asked to get a pointer to a zero-sized field. Just lower this
// to undefined, there is no reason to make it be a valid pointer.
return try self.spv.constUndef(result_ty_ref);
}
const storage_class = spvStorageClass(object_ptr_ty.ptrAddressSpace(mod));
const pl_ptr_ty_ref = try self.ptrType(layout.payload_ty, storage_class);
const pl_ptr_id = try self.accessChain(pl_ptr_ty_ref, object_ptr, &.{layout.payload_index});
const active_pl_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = self.typeId(result_ty_ref),
.id_result = active_pl_ptr_id,
.operand = pl_ptr_id,
});
return active_pl_ptr_id;
},
},
else => unreachable,
}
}
fn airStructFieldPtrIndex(self: *DeclGen, inst: Air.Inst.Index, field_index: u32) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const struct_ptr = try self.resolve(ty_op.operand);
const struct_ptr_ty = self.typeOf(ty_op.operand);
const result_ptr_ty = self.typeOfIndex(inst);
return try self.structFieldPtr(result_ptr_ty, struct_ptr_ty, struct_ptr, field_index);
}
const AllocOptions = struct {
initializer: ?IdRef = null,
/// The final storage class of the pointer. This may be either `.Generic` or `.Function`.
/// In either case, the local is allocated in the `.Function` storage class, and optionally
/// cast back to `.Generic`.
storage_class: StorageClass = .Generic,
};
// Allocate a function-local variable, with possible initializer.
// This function returns a pointer to a variable of type `ty_ref`,
// which is in the Generic address space. The variable is actually
// placed in the Function address space.
fn alloc(
self: *DeclGen,
ty: Type,
options: AllocOptions,
) !IdRef {
const ptr_fn_ty_ref = try self.ptrType(ty, .Function);
// SPIR-V requires that OpVariable declarations for locals go into the first block, so we are just going to
// directly generate them into func.prologue instead of the body.
const var_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpVariable, .{
.id_result_type = self.typeId(ptr_fn_ty_ref),
.id_result = var_id,
.storage_class = .Function,
.initializer = options.initializer,
});
switch (options.storage_class) {
.Generic => {
const ptr_gn_ty_ref = try self.ptrType(ty, .Generic);
// Convert to a generic pointer
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpPtrCastToGeneric, .{
.id_result_type = self.typeId(ptr_gn_ty_ref),
.id_result = result_id,
.pointer = var_id,
});
return result_id;
},
.Function => return var_id,
else => unreachable,
}
}
fn airAlloc(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ptr_ty = self.typeOfIndex(inst);
assert(ptr_ty.ptrAddressSpace(mod) == .generic);
const child_ty = ptr_ty.childType(mod);
return try self.alloc(child_ty, .{});
}
fn airArg(self: *DeclGen) IdRef {
defer self.next_arg_index += 1;
return self.args.items[self.next_arg_index];
}
/// Given a slice of incoming block connections, returns the block-id of the next
/// block to jump to. This function emits instructions, so it should be emitted
/// inside the merge block of the block.
/// This function should only be called with structured control flow generation.
fn structuredNextBlock(self: *DeclGen, incoming: []const ControlFlow.Structured.Block.Incoming) !IdRef {
assert(self.control_flow == .structured);
const result_id = self.spv.allocId();
const block_id_ty_ref = try self.intType(.unsigned, 32);
try self.func.body.emitRaw(self.spv.gpa, .OpPhi, @intCast(2 + incoming.len * 2)); // result type + result + variable/parent...
self.func.body.writeOperand(spec.IdResultType, self.typeId(block_id_ty_ref));
self.func.body.writeOperand(spec.IdRef, result_id);
for (incoming) |incoming_block| {
self.func.body.writeOperand(spec.PairIdRefIdRef, .{ incoming_block.next_block, incoming_block.src_label });
}
return result_id;
}
/// Jumps to the block with the target block-id. This function must only be called when
/// terminating a body, there should be no instructions after it.
/// This function should only be called with structured control flow generation.
fn structuredBreak(self: *DeclGen, target_block: IdRef) !void {
assert(self.control_flow == .structured);
const sblock = self.control_flow.structured.block_stack.getLast();
const merge_block = switch (sblock.*) {
.selection => |*merge| blk: {
const merge_label = self.spv.allocId();
try merge.merge_stack.append(self.gpa, .{
.incoming = .{
.src_label = self.current_block_label,
.next_block = target_block,
},
.merge_block = merge_label,
});
break :blk merge_label;
},
// Loop blocks do not end in a break. Not through a direct break,
// and also not through another instruction like cond_br or unreachable (these
// situations are replaced by `cond_br` in sema, or there is a `block` instruction
// placed around them).
.loop => unreachable,
};
try self.func.body.emitBranch(self.spv.gpa, merge_block);
}
/// Generate a body in a way that exits the body using only structured constructs.
/// Returns the block-id of the next block to jump to. After this function, a jump
/// should still be emitted to the block that should follow this structured body.
/// This function should only be called with structured control flow generation.
fn genStructuredBody(
self: *DeclGen,
/// This parameter defines the method that this structured body is exited with.
block_merge_type: union(enum) {
/// Using selection; early exits from this body are surrounded with
/// if() statements.
selection,
/// Using loops; loops can be early exited by jumping to the merge block at
/// any time.
loop: struct {
merge_label: IdRef,
continue_label: IdRef,
},
},
body: []const Air.Inst.Index,
) !IdRef {
assert(self.control_flow == .structured);
var sblock: ControlFlow.Structured.Block = switch (block_merge_type) {
.loop => |merge| .{ .loop = .{
.merge_block = merge.merge_label,
} },
.selection => .{ .selection = .{} },
};
defer sblock.deinit(self.gpa);
{
try self.control_flow.structured.block_stack.append(self.gpa, &sblock);
defer _ = self.control_flow.structured.block_stack.pop();
try self.genBody(body);
}
switch (sblock) {
.selection => |merge| {
// Now generate the merge block for all merges that
// still need to be performed.
const merge_stack = merge.merge_stack.items;
// If no merges on the stack, this block didn't generate any jumps (all paths
// ended with a return or an unreachable). In that case, we don't need to do
// any merging.
if (merge_stack.len == 0) {
// We still need to return a value of a next block to jump to.
// For example, if we have code like
// if (x) {
// if (y) return else return;
// } else {}
// then we still need the outer to have an OpSelectionMerge and consequently
// a phi node. In that case we can just return bogus, since we know that its
// path will never be taken.
// Make sure that we are still in a block when exiting the function.
// TODO: Can we get rid of that?
try self.beginSpvBlock(self.spv.allocId());
const block_id_ty_ref = try self.intType(.unsigned, 32);
return try self.spv.constUndef(block_id_ty_ref);
}
// The top-most merge actually only has a single source, the
// final jump of the block, or the merge block of a sub-block, cond_br,
// or loop. Therefore we just need to generate a block with a jump to the
// next merge block.
try self.beginSpvBlock(merge_stack[merge_stack.len - 1].merge_block);
// Now generate a merge ladder for the remaining merges in the stack.
var incoming = ControlFlow.Structured.Block.Incoming{
.src_label = self.current_block_label,
.next_block = merge_stack[merge_stack.len - 1].incoming.next_block,
};
var i = merge_stack.len - 1;
while (i > 0) {
i -= 1;
const step = merge_stack[i];
try self.func.body.emitBranch(self.spv.gpa, step.merge_block);
try self.beginSpvBlock(step.merge_block);
const next_block = try self.structuredNextBlock(&.{ incoming, step.incoming });
incoming = .{
.src_label = step.merge_block,
.next_block = next_block,
};
}
return incoming.next_block;
},
.loop => |merge| {
// Close the loop by jumping to the continue label
try self.func.body.emitBranch(self.spv.gpa, block_merge_type.loop.continue_label);
// For blocks we must simple merge all the incoming blocks to get the next block.
try self.beginSpvBlock(merge.merge_block);
return try self.structuredNextBlock(merge.merges.items);
},
}
}
fn airBlock(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
// In AIR, a block doesn't really define an entry point like a block, but
// more like a scope that breaks can jump out of and "return" a value from.
// This cannot be directly modelled in SPIR-V, so in a block instruction,
// we're going to split up the current block by first generating the code
// of the block, then a label, and then generate the rest of the current
// ir.Block in a different SPIR-V block.
const mod = self.module;
const ty = self.typeOfIndex(inst);
const inst_datas = self.air.instructions.items(.data);
const extra = self.air.extraData(Air.Block, inst_datas[@intFromEnum(inst)].ty_pl.payload);
const body: []const Air.Inst.Index =
@ptrCast(self.air.extra[extra.end..][0..extra.data.body_len]);
const have_block_result = ty.isFnOrHasRuntimeBitsIgnoreComptime(mod);
const cf = switch (self.control_flow) {
.structured => |*cf| cf,
.unstructured => |*cf| {
var block = ControlFlow.Unstructured.Block{};
defer block.incoming_blocks.deinit(self.gpa);
// 4 chosen as arbitrary initial capacity.
try block.incoming_blocks.ensureUnusedCapacity(self.gpa, 4);
try cf.blocks.putNoClobber(self.gpa, inst, &block);
defer assert(cf.blocks.remove(inst));
try self.genBody(body);
// Only begin a new block if there were actually any breaks towards it.
if (block.label) |label| {
try self.beginSpvBlock(label);
}
if (!have_block_result)
return null;
assert(block.label != null);
const result_id = self.spv.allocId();
const result_type_id = try self.resolveTypeId(ty);
try self.func.body.emitRaw(
self.spv.gpa,
.OpPhi,
// result type + result + variable/parent...
2 + @as(u16, @intCast(block.incoming_blocks.items.len * 2)),
);
self.func.body.writeOperand(spec.IdResultType, result_type_id);
self.func.body.writeOperand(spec.IdRef, result_id);
for (block.incoming_blocks.items) |incoming| {
self.func.body.writeOperand(
spec.PairIdRefIdRef,
.{ incoming.break_value_id, incoming.src_label },
);
}
return result_id;
},
};
const maybe_block_result_var_id = if (have_block_result) blk: {
const block_result_var_id = try self.alloc(ty, .{ .storage_class = .Function });
try cf.block_results.putNoClobber(self.gpa, inst, block_result_var_id);
break :blk block_result_var_id;
} else null;
defer if (have_block_result) assert(cf.block_results.remove(inst));
const next_block = try self.genStructuredBody(.selection, body);
// When encountering a block instruction, we are always at least in the function's scope,
// so there always has to be another entry.
assert(cf.block_stack.items.len > 0);
// Check if the target of the branch was this current block.
const block_id_ty_ref = try self.intType(.unsigned, 32);
const this_block = try self.constInt(block_id_ty_ref, @intFromEnum(inst));
const jump_to_this_block_id = self.spv.allocId();
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
try self.func.body.emit(self.spv.gpa, .OpIEqual, .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = jump_to_this_block_id,
.operand_1 = next_block,
.operand_2 = this_block,
});
const sblock = cf.block_stack.getLast();
if (ty.isNoReturn(mod)) {
// If this block is noreturn, this instruction is the last of a block,
// and we must simply jump to the block's merge unconditionally.
try self.structuredBreak(next_block);
} else {
switch (sblock.*) {
.selection => |*merge| {
// To jump out of a selection block, push a new entry onto its merge stack and
// generate a conditional branch to there and to the instructions following this block.
const merge_label = self.spv.allocId();
const then_label = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpSelectionMerge, .{
.merge_block = merge_label,
.selection_control = .{},
});
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
.condition = jump_to_this_block_id,
.true_label = then_label,
.false_label = merge_label,
});
try merge.merge_stack.append(self.gpa, .{
.incoming = .{
.src_label = self.current_block_label,
.next_block = next_block,
},
.merge_block = merge_label,
});
try self.beginSpvBlock(then_label);
},
.loop => |*merge| {
// To jump out of a loop block, generate a conditional that exits the block
// to the loop merge if the target ID is not the one of this block.
const continue_label = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
.condition = jump_to_this_block_id,
.true_label = continue_label,
.false_label = merge.merge_block,
});
try merge.merges.append(self.gpa, .{
.src_label = self.current_block_label,
.next_block = next_block,
});
try self.beginSpvBlock(continue_label);
},
}
}
if (maybe_block_result_var_id) |block_result_var_id| {
return try self.load(ty, block_result_var_id, .{});
}
return null;
}
fn airBr(self: *DeclGen, inst: Air.Inst.Index) !void {
const mod = self.module;
const br = self.air.instructions.items(.data)[@intFromEnum(inst)].br;
const operand_ty = self.typeOf(br.operand);
switch (self.control_flow) {
.structured => |*cf| {
if (operand_ty.isFnOrHasRuntimeBitsIgnoreComptime(mod)) {
const operand_id = try self.resolve(br.operand);
const block_result_var_id = cf.block_results.get(br.block_inst).?;
try self.store(operand_ty, block_result_var_id, operand_id, .{});
}
const block_id_ty_ref = try self.intType(.unsigned, 32);
const next_block = try self.constInt(block_id_ty_ref, @intFromEnum(br.block_inst));
try self.structuredBreak(next_block);
},
.unstructured => |cf| {
const block = cf.blocks.get(br.block_inst).?;
if (operand_ty.isFnOrHasRuntimeBitsIgnoreComptime(mod)) {
const operand_id = try self.resolve(br.operand);
// current_block_label should not be undefined here, lest there
// is a br or br_void in the function's body.
try block.incoming_blocks.append(self.gpa, .{
.src_label = self.current_block_label,
.break_value_id = operand_id,
});
}
if (block.label == null) {
block.label = self.spv.allocId();
}
try self.func.body.emitBranch(self.spv.gpa, block.label.?);
},
}
}
fn airCondBr(self: *DeclGen, inst: Air.Inst.Index) !void {
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const cond_br = self.air.extraData(Air.CondBr, pl_op.payload);
const then_body: []const Air.Inst.Index = @ptrCast(self.air.extra[cond_br.end..][0..cond_br.data.then_body_len]);
const else_body: []const Air.Inst.Index = @ptrCast(self.air.extra[cond_br.end + then_body.len ..][0..cond_br.data.else_body_len]);
const condition_id = try self.resolve(pl_op.operand);
const then_label = self.spv.allocId();
const else_label = self.spv.allocId();
switch (self.control_flow) {
.structured => {
const merge_label = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpSelectionMerge, .{
.merge_block = merge_label,
.selection_control = .{},
});
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
.condition = condition_id,
.true_label = then_label,
.false_label = else_label,
});
try self.beginSpvBlock(then_label);
const then_next = try self.genStructuredBody(.selection, then_body);
const then_incoming = ControlFlow.Structured.Block.Incoming{
.src_label = self.current_block_label,
.next_block = then_next,
};
try self.func.body.emitBranch(self.spv.gpa, merge_label);
try self.beginSpvBlock(else_label);
const else_next = try self.genStructuredBody(.selection, else_body);
const else_incoming = ControlFlow.Structured.Block.Incoming{
.src_label = self.current_block_label,
.next_block = else_next,
};
try self.func.body.emitBranch(self.spv.gpa, merge_label);
try self.beginSpvBlock(merge_label);
const next_block = try self.structuredNextBlock(&.{ then_incoming, else_incoming });
try self.structuredBreak(next_block);
},
.unstructured => {
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
.condition = condition_id,
.true_label = then_label,
.false_label = else_label,
});
try self.beginSpvBlock(then_label);
try self.genBody(then_body);
try self.beginSpvBlock(else_label);
try self.genBody(else_body);
},
}
}
fn airLoop(self: *DeclGen, inst: Air.Inst.Index) !void {
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const loop = self.air.extraData(Air.Block, ty_pl.payload);
const body: []const Air.Inst.Index = @ptrCast(self.air.extra[loop.end..][0..loop.data.body_len]);
const body_label = self.spv.allocId();
switch (self.control_flow) {
.structured => {
const header_label = self.spv.allocId();
const merge_label = self.spv.allocId();
const continue_label = self.spv.allocId();
// The back-edge must point to the loop header, so generate a separate block for the
// loop header so that we don't accidentally include some instructions from there
// in the loop.
try self.func.body.emitBranch(self.spv.gpa, header_label);
try self.beginSpvBlock(header_label);
// Emit loop header and jump to loop body
try self.func.body.emit(self.spv.gpa, .OpLoopMerge, .{
.merge_block = merge_label,
.continue_target = continue_label,
.loop_control = .{},
});
try self.func.body.emitBranch(self.spv.gpa, body_label);
try self.beginSpvBlock(body_label);
const next_block = try self.genStructuredBody(.{ .loop = .{
.merge_label = merge_label,
.continue_label = continue_label,
} }, body);
try self.structuredBreak(next_block);
try self.beginSpvBlock(continue_label);
try self.func.body.emitBranch(self.spv.gpa, header_label);
},
.unstructured => {
try self.func.body.emitBranch(self.spv.gpa, body_label);
try self.beginSpvBlock(body_label);
try self.genBody(body);
try self.func.body.emitBranch(self.spv.gpa, body_label);
},
}
}
fn airLoad(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
const mod = self.module;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const ptr_ty = self.typeOf(ty_op.operand);
const elem_ty = self.typeOfIndex(inst);
const operand = try self.resolve(ty_op.operand);
if (!ptr_ty.isVolatilePtr(mod) and self.liveness.isUnused(inst)) return null;
return try self.load(elem_ty, operand, .{ .is_volatile = ptr_ty.isVolatilePtr(mod) });
}
fn airStore(self: *DeclGen, inst: Air.Inst.Index) !void {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ptr_ty = self.typeOf(bin_op.lhs);
const elem_ty = ptr_ty.childType(self.module);
const ptr = try self.resolve(bin_op.lhs);
const value = try self.resolve(bin_op.rhs);
try self.store(elem_ty, ptr, value, .{ .is_volatile = ptr_ty.isVolatilePtr(self.module) });
}
fn airRet(self: *DeclGen, inst: Air.Inst.Index) !void {
const operand = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const ret_ty = self.typeOf(operand);
const mod = self.module;
if (!ret_ty.hasRuntimeBitsIgnoreComptime(mod)) {
const decl = mod.declPtr(self.decl_index);
const fn_info = mod.typeToFunc(decl.ty).?;
if (Type.fromInterned(fn_info.return_type).isError(mod)) {
// Functions with an empty error set are emitted with an error code
// return type and return zero so they can be function pointers coerced
// to functions that return anyerror.
const err_ty_ref = try self.resolveType(Type.anyerror, .direct);
const no_err_id = try self.constInt(err_ty_ref, 0);
return try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = no_err_id });
} else {
return try self.func.body.emit(self.spv.gpa, .OpReturn, {});
}
}
const operand_id = try self.resolve(operand);
try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = operand_id });
}
fn airRetLoad(self: *DeclGen, inst: Air.Inst.Index) !void {
const mod = self.module;
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const ptr_ty = self.typeOf(un_op);
const ret_ty = ptr_ty.childType(mod);
if (!ret_ty.hasRuntimeBitsIgnoreComptime(mod)) {
const decl = mod.declPtr(self.decl_index);
const fn_info = mod.typeToFunc(decl.ty).?;
if (Type.fromInterned(fn_info.return_type).isError(mod)) {
// Functions with an empty error set are emitted with an error code
// return type and return zero so they can be function pointers coerced
// to functions that return anyerror.
const err_ty_ref = try self.resolveType(Type.anyerror, .direct);
const no_err_id = try self.constInt(err_ty_ref, 0);
return try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = no_err_id });
} else {
return try self.func.body.emit(self.spv.gpa, .OpReturn, {});
}
}
const ptr = try self.resolve(un_op);
const value = try self.load(ret_ty, ptr, .{ .is_volatile = ptr_ty.isVolatilePtr(mod) });
try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{
.value = value,
});
}
fn airTry(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
const mod = self.module;
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const err_union_id = try self.resolve(pl_op.operand);
const extra = self.air.extraData(Air.Try, pl_op.payload);
const body: []const Air.Inst.Index = @ptrCast(self.air.extra[extra.end..][0..extra.data.body_len]);
const err_union_ty = self.typeOf(pl_op.operand);
const payload_ty = self.typeOfIndex(inst);
const err_ty_ref = try self.resolveType(Type.anyerror, .direct);
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!err_union_ty.errorUnionSet(mod).errorSetIsEmpty(mod)) {
const err_id = if (eu_layout.payload_has_bits)
try self.extractField(Type.anyerror, err_union_id, eu_layout.errorFieldIndex())
else
err_union_id;
const zero_id = try self.constInt(err_ty_ref, 0);
const is_err_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpINotEqual, .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = is_err_id,
.operand_1 = err_id,
.operand_2 = zero_id,
});
// When there is an error, we must evaluate `body`. Otherwise we must continue
// with the current body.
// Just generate a new block here, then generate a new block inline for the remainder of the body.
const err_block = self.spv.allocId();
const ok_block = self.spv.allocId();
switch (self.control_flow) {
.structured => {
// According to AIR documentation, this block is guaranteed
// to not break and end in a return instruction. Thus,
// for structured control flow, we can just naively use
// the ok block as the merge block here.
try self.func.body.emit(self.spv.gpa, .OpSelectionMerge, .{
.merge_block = ok_block,
.selection_control = .{},
});
},
.unstructured => {},
}
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
.condition = is_err_id,
.true_label = err_block,
.false_label = ok_block,
});
try self.beginSpvBlock(err_block);
try self.genBody(body);
try self.beginSpvBlock(ok_block);
}
if (self.liveness.isUnused(inst)) {
return null;
}
if (!eu_layout.payload_has_bits) {
return null;
}
// Now just extract the payload, if required.
return try self.extractField(payload_ty, err_union_id, eu_layout.payloadFieldIndex());
}
fn airErrUnionErr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const err_union_ty = self.typeOf(ty_op.operand);
const err_ty_ref = try self.resolveType(Type.anyerror, .direct);
if (err_union_ty.errorUnionSet(mod).errorSetIsEmpty(mod)) {
// No error possible, so just return undefined.
return try self.spv.constUndef(err_ty_ref);
}
const payload_ty = err_union_ty.errorUnionPayload(mod);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
// If no payload, error union is represented by error set.
return operand_id;
}
return try self.extractField(Type.anyerror, operand_id, eu_layout.errorFieldIndex());
}
fn airErrUnionPayload(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const payload_ty = self.typeOfIndex(inst);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
return null; // No error possible.
}
return try self.extractField(payload_ty, operand_id, eu_layout.payloadFieldIndex());
}
fn airWrapErrUnionErr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const err_union_ty = self.typeOfIndex(inst);
const payload_ty = err_union_ty.errorUnionPayload(mod);
const operand_id = try self.resolve(ty_op.operand);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
return operand_id;
}
const payload_ty_ref = try self.resolveType(payload_ty, .indirect);
var members: [2]IdRef = undefined;
members[eu_layout.errorFieldIndex()] = operand_id;
members[eu_layout.payloadFieldIndex()] = try self.spv.constUndef(payload_ty_ref);
var types: [2]Type = undefined;
types[eu_layout.errorFieldIndex()] = Type.anyerror;
types[eu_layout.payloadFieldIndex()] = payload_ty;
return try self.constructStruct(err_union_ty, &types, &members);
}
fn airWrapErrUnionPayload(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const err_union_ty = self.typeOfIndex(inst);
const operand_id = try self.resolve(ty_op.operand);
const payload_ty = self.typeOf(ty_op.operand);
const err_ty_ref = try self.resolveType(Type.anyerror, .direct);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
return try self.constInt(err_ty_ref, 0);
}
var members: [2]IdRef = undefined;
members[eu_layout.errorFieldIndex()] = try self.constInt(err_ty_ref, 0);
members[eu_layout.payloadFieldIndex()] = try self.convertToIndirect(payload_ty, operand_id);
var types: [2]Type = undefined;
types[eu_layout.errorFieldIndex()] = Type.anyerror;
types[eu_layout.payloadFieldIndex()] = payload_ty;
return try self.constructStruct(err_union_ty, &types, &members);
}
fn airIsNull(self: *DeclGen, inst: Air.Inst.Index, pred: enum { is_null, is_non_null }) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand_id = try self.resolve(un_op);
const optional_ty = self.typeOf(un_op);
const payload_ty = optional_ty.optionalChild(mod);
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
if (optional_ty.optionalReprIsPayload(mod)) {
// Pointer payload represents nullability: pointer or slice.
const ptr_ty = if (payload_ty.isSlice(mod))
payload_ty.slicePtrFieldType(mod)
else
payload_ty;
const ptr_id = if (payload_ty.isSlice(mod))
try self.extractField(ptr_ty, operand_id, 0)
else
operand_id;
const payload_ty_ref = try self.resolveType(ptr_ty, .direct);
const null_id = try self.spv.constNull(payload_ty_ref);
const op: std.math.CompareOperator = switch (pred) {
.is_null => .eq,
.is_non_null => .neq,
};
return try self.cmp(op, Type.bool, ptr_ty, ptr_id, null_id);
}
const is_non_null_id = if (payload_ty.hasRuntimeBitsIgnoreComptime(mod))
try self.extractField(Type.bool, operand_id, 1)
else
// Optional representation is bool indicating whether the optional is set
// Optionals with no payload are represented as an (indirect) bool, so convert
// it back to the direct bool here.
try self.convertToDirect(Type.bool, operand_id);
return switch (pred) {
.is_null => blk: {
// Invert condition
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpLogicalNot, .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = result_id,
.operand = is_non_null_id,
});
break :blk result_id;
},
.is_non_null => is_non_null_id,
};
}
fn airIsErr(self: *DeclGen, inst: Air.Inst.Index, pred: enum { is_err, is_non_err }) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand_id = try self.resolve(un_op);
const err_union_ty = self.typeOf(un_op);
if (err_union_ty.errorUnionSet(mod).errorSetIsEmpty(mod)) {
return try self.constBool(pred == .is_non_err, .direct);
}
const payload_ty = err_union_ty.errorUnionPayload(mod);
const eu_layout = self.errorUnionLayout(payload_ty);
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
const err_ty_ref = try self.resolveType(Type.anyerror, .direct);
const error_id = if (!eu_layout.payload_has_bits)
operand_id
else
try self.extractField(Type.anyerror, operand_id, eu_layout.errorFieldIndex());
const result_id = self.spv.allocId();
const operands = .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = result_id,
.operand_1 = error_id,
.operand_2 = try self.constInt(err_ty_ref, 0),
};
switch (pred) {
.is_err => try self.func.body.emit(self.spv.gpa, .OpINotEqual, operands),
.is_non_err => try self.func.body.emit(self.spv.gpa, .OpIEqual, operands),
}
return result_id;
}
fn airUnwrapOptional(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const optional_ty = self.typeOf(ty_op.operand);
const payload_ty = self.typeOfIndex(inst);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(mod)) return null;
if (optional_ty.optionalReprIsPayload(mod)) {
return operand_id;
}
return try self.extractField(payload_ty, operand_id, 0);
}
fn airWrapOptional(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const payload_ty = self.typeOf(ty_op.operand);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(mod)) {
return try self.constBool(true, .indirect);
}
const operand_id = try self.resolve(ty_op.operand);
const optional_ty = self.typeOfIndex(inst);
if (optional_ty.optionalReprIsPayload(mod)) {
return operand_id;
}
const payload_id = try self.convertToIndirect(payload_ty, operand_id);
const members = [_]IdRef{ payload_id, try self.constBool(true, .indirect) };
const types = [_]Type{ payload_ty, Type.bool };
return try self.constructStruct(optional_ty, &types, &members);
}
fn airSwitchBr(self: *DeclGen, inst: Air.Inst.Index) !void {
const mod = self.module;
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const cond_ty = self.typeOf(pl_op.operand);
const cond = try self.resolve(pl_op.operand);
const cond_indirect = try self.convertToIndirect(cond_ty, cond);
const switch_br = self.air.extraData(Air.SwitchBr, pl_op.payload);
const cond_words: u32 = switch (cond_ty.zigTypeTag(mod)) {
.Bool => 1,
.Int => blk: {
const bits = cond_ty.intInfo(mod).bits;
const backing_bits = self.backingIntBits(bits) orelse {
return self.todo("implement composite int switch", .{});
};
break :blk if (backing_bits <= 32) @as(u32, 1) else 2;
},
.Enum => blk: {
const int_ty = cond_ty.intTagType(mod);
const int_info = int_ty.intInfo(mod);
const backing_bits = self.backingIntBits(int_info.bits) orelse {
return self.todo("implement composite int switch", .{});
};
break :blk if (backing_bits <= 32) @as(u32, 1) else 2;
},
.ErrorSet => 1,
else => return self.todo("implement switch for type {s}", .{@tagName(cond_ty.zigTypeTag(mod))}), // TODO: Figure out which types apply here, and work around them as we can only do integers.
};
const num_cases = switch_br.data.cases_len;
// Compute the total number of arms that we need.
// Zig switches are grouped by condition, so we need to loop through all of them
const num_conditions = blk: {
var extra_index: usize = switch_br.end;
var num_conditions: u32 = 0;
for (0..num_cases) |_| {
const case = self.air.extraData(Air.SwitchBr.Case, extra_index);
const case_body = self.air.extra[case.end + case.data.items_len ..][0..case.data.body_len];
extra_index = case.end + case.data.items_len + case_body.len;
num_conditions += case.data.items_len;
}
break :blk num_conditions;
};
// First, pre-allocate the labels for the cases.
const first_case_label = self.spv.allocIds(num_cases);
// We always need the default case - if zig has none, we will generate unreachable there.
const default = self.spv.allocId();
const merge_label = switch (self.control_flow) {
.structured => self.spv.allocId(),
.unstructured => null,
};
if (self.control_flow == .structured) {
try self.func.body.emit(self.spv.gpa, .OpSelectionMerge, .{
.merge_block = merge_label.?,
.selection_control = .{},
});
}
// Emit the instruction before generating the blocks.
try self.func.body.emitRaw(self.spv.gpa, .OpSwitch, 2 + (cond_words + 1) * num_conditions);
self.func.body.writeOperand(IdRef, cond_indirect);
self.func.body.writeOperand(IdRef, default);
// Emit each of the cases
{
var extra_index: usize = switch_br.end;
for (0..num_cases) |case_i| {
// SPIR-V needs a literal here, which' width depends on the case condition.
const case = self.air.extraData(Air.SwitchBr.Case, extra_index);
const items = @as([]const Air.Inst.Ref, @ptrCast(self.air.extra[case.end..][0..case.data.items_len]));
const case_body = self.air.extra[case.end + items.len ..][0..case.data.body_len];
extra_index = case.end + case.data.items_len + case_body.len;
const label = IdRef{ .id = @intCast(first_case_label.id + case_i) };
for (items) |item| {
const value = (try self.air.value(item, mod)) orelse unreachable;
const int_val = switch (cond_ty.zigTypeTag(mod)) {
.Bool, .Int => if (cond_ty.isSignedInt(mod)) @as(u64, @bitCast(value.toSignedInt(mod))) else value.toUnsignedInt(mod),
.Enum => blk: {
// TODO: figure out of cond_ty is correct (something with enum literals)
break :blk (try value.intFromEnum(cond_ty, mod)).toUnsignedInt(mod); // TODO: composite integer constants
},
.ErrorSet => value.getErrorInt(mod),
else => unreachable,
};
const int_lit: spec.LiteralContextDependentNumber = switch (cond_words) {
1 => .{ .uint32 = @as(u32, @intCast(int_val)) },
2 => .{ .uint64 = int_val },
else => unreachable,
};
self.func.body.writeOperand(spec.LiteralContextDependentNumber, int_lit);
self.func.body.writeOperand(IdRef, label);
}
}
}
var incoming_structured_blocks = std.ArrayListUnmanaged(ControlFlow.Structured.Block.Incoming){};
defer incoming_structured_blocks.deinit(self.gpa);
if (self.control_flow == .structured) {
try incoming_structured_blocks.ensureUnusedCapacity(self.gpa, num_cases + 1);
}
// Now, finally, we can start emitting each of the cases.
var extra_index: usize = switch_br.end;
for (0..num_cases) |case_i| {
const case = self.air.extraData(Air.SwitchBr.Case, extra_index);
const items: []const Air.Inst.Ref = @ptrCast(self.air.extra[case.end..][0..case.data.items_len]);
const case_body: []const Air.Inst.Index = @ptrCast(self.air.extra[case.end + items.len ..][0..case.data.body_len]);
extra_index = case.end + case.data.items_len + case_body.len;
const label = IdResult{ .id = @intCast(first_case_label.id + case_i) };
try self.beginSpvBlock(label);
switch (self.control_flow) {
.structured => {
const next_block = try self.genStructuredBody(.selection, case_body);
incoming_structured_blocks.appendAssumeCapacity(.{
.src_label = self.current_block_label,
.next_block = next_block,
});
try self.func.body.emitBranch(self.spv.gpa, merge_label.?);
},
.unstructured => {
try self.genBody(case_body);
},
}
}
const else_body: []const Air.Inst.Index = @ptrCast(self.air.extra[extra_index..][0..switch_br.data.else_body_len]);
try self.beginSpvBlock(default);
if (else_body.len != 0) {
switch (self.control_flow) {
.structured => {
const next_block = try self.genStructuredBody(.selection, else_body);
incoming_structured_blocks.appendAssumeCapacity(.{
.src_label = self.current_block_label,
.next_block = next_block,
});
try self.func.body.emitBranch(self.spv.gpa, merge_label.?);
},
.unstructured => {
try self.genBody(else_body);
},
}
} else {
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
}
if (self.control_flow == .structured) {
try self.beginSpvBlock(merge_label.?);
const next_block = try self.structuredNextBlock(incoming_structured_blocks.items);
try self.structuredBreak(next_block);
}
}
fn airUnreach(self: *DeclGen) !void {
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
}
fn airDbgStmt(self: *DeclGen, inst: Air.Inst.Index) !void {
const dbg_stmt = self.air.instructions.items(.data)[@intFromEnum(inst)].dbg_stmt;
const mod = self.module;
const decl = mod.declPtr(self.decl_index);
const path = decl.getFileScope(mod).sub_file_path;
const src_fname_id = try self.spv.resolveSourceFileName(path);
const base_line = self.base_line_stack.getLast();
try self.func.body.emit(self.spv.gpa, .OpLine, .{
.file = src_fname_id,
.line = base_line + dbg_stmt.line + 1,
.column = dbg_stmt.column + 1,
});
}
fn airDbgInlineBegin(self: *DeclGen, inst: Air.Inst.Index) !void {
const mod = self.module;
const fn_ty = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_fn;
const decl_index = mod.funcInfo(fn_ty.func).owner_decl;
const decl = mod.declPtr(decl_index);
try self.base_line_stack.append(self.gpa, decl.src_line);
}
fn airDbgInlineEnd(self: *DeclGen, inst: Air.Inst.Index) !void {
_ = inst;
_ = self.base_line_stack.pop();
}
fn airDbgVar(self: *DeclGen, inst: Air.Inst.Index) !void {
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const target_id = try self.resolve(pl_op.operand);
const name = self.air.nullTerminatedString(pl_op.payload);
try self.spv.debugName(target_id, name);
}
fn airAssembly(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
const mod = self.module;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Asm, ty_pl.payload);
const is_volatile = @as(u1, @truncate(extra.data.flags >> 31)) != 0;
const clobbers_len = @as(u31, @truncate(extra.data.flags));
if (!is_volatile and self.liveness.isUnused(inst)) return null;
var extra_i: usize = extra.end;
const outputs = @as([]const Air.Inst.Ref, @ptrCast(self.air.extra[extra_i..][0..extra.data.outputs_len]));
extra_i += outputs.len;
const inputs = @as([]const Air.Inst.Ref, @ptrCast(self.air.extra[extra_i..][0..extra.data.inputs_len]));
extra_i += inputs.len;
if (outputs.len > 1) {
return self.todo("implement inline asm with more than 1 output", .{});
}
var output_extra_i = extra_i;
for (outputs) |output| {
if (output != .none) {
return self.todo("implement inline asm with non-returned output", .{});
}
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]);
const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
// TODO: Record output and use it somewhere.
}
var input_extra_i = extra_i;
for (inputs) |input| {
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]);
const constraint = std.mem.sliceTo(extra_bytes, 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
// This equation accounts for the fact that even if we have exactly 4 bytes
// for the string, we still use the next u32 for the null terminator.
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
// TODO: Record input and use it somewhere.
_ = input;
}
{
var clobber_i: u32 = 0;
while (clobber_i < clobbers_len) : (clobber_i += 1) {
const clobber = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
extra_i += clobber.len / 4 + 1;
// TODO: Record clobber and use it somewhere.
}
}
const asm_source = std.mem.sliceAsBytes(self.air.extra[extra_i..])[0..extra.data.source_len];
var as = SpvAssembler{
.gpa = self.gpa,
.src = asm_source,
.spv = self.spv,
.func = &self.func,
};
defer as.deinit();
for (inputs) |input| {
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[input_extra_i..]);
const constraint = std.mem.sliceTo(extra_bytes, 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
// This equation accounts for the fact that even if we have exactly 4 bytes
// for the string, we still use the next u32 for the null terminator.
input_extra_i += (constraint.len + name.len + (2 + 3)) / 4;
const value = try self.resolve(input);
try as.value_map.put(as.gpa, name, .{ .value = value });
}
as.assemble() catch |err| switch (err) {
error.AssembleFail => {
// TODO: For now the compiler only supports a single error message per decl,
// so to translate the possible multiple errors from the assembler, emit
// them as notes here.
// TODO: Translate proper error locations.
assert(as.errors.items.len != 0);
assert(self.error_msg == null);
const loc = LazySrcLoc.nodeOffset(0);
const src_loc = loc.toSrcLoc(self.module.declPtr(self.decl_index), mod);
self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, "failed to assemble SPIR-V inline assembly", .{});
const notes = try self.module.gpa.alloc(Module.ErrorMsg, as.errors.items.len);
// Sub-scope to prevent `return error.CodegenFail` from running the errdefers.
{
errdefer self.module.gpa.free(notes);
var i: usize = 0;
errdefer for (notes[0..i]) |*note| {
note.deinit(self.module.gpa);
};
while (i < as.errors.items.len) : (i += 1) {
notes[i] = try Module.ErrorMsg.init(self.module.gpa, src_loc, "{s}", .{as.errors.items[i].msg});
}
}
self.error_msg.?.notes = notes;
return error.CodegenFail;
},
else => |others| return others,
};
for (outputs) |output| {
_ = output;
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[output_extra_i..]);
const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[output_extra_i..]), 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
output_extra_i += (constraint.len + name.len + (2 + 3)) / 4;
const result = as.value_map.get(name) orelse return {
return self.fail("invalid asm output '{s}'", .{name});
};
switch (result) {
.just_declared, .unresolved_forward_reference => unreachable,
.ty => return self.fail("cannot return spir-v type as value from assembly", .{}),
.value => |ref| return ref,
}
// TODO: Multiple results
// TODO: Check that the output type from assembly is the same as the type actually expected by Zig.
}
return null;
}
fn airCall(self: *DeclGen, inst: Air.Inst.Index, modifier: std.builtin.CallModifier) !?IdRef {
_ = modifier;
const mod = self.module;
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = self.air.extraData(Air.Call, pl_op.payload);
const args = @as([]const Air.Inst.Ref, @ptrCast(self.air.extra[extra.end..][0..extra.data.args_len]));
const callee_ty = self.typeOf(pl_op.operand);
const zig_fn_ty = switch (callee_ty.zigTypeTag(mod)) {
.Fn => callee_ty,
.Pointer => return self.fail("cannot call function pointers", .{}),
else => unreachable,
};
const fn_info = mod.typeToFunc(zig_fn_ty).?;
const return_type = fn_info.return_type;
const result_type_ref = try self.resolveFnReturnType(Type.fromInterned(return_type));
const result_id = self.spv.allocId();
const callee_id = try self.resolve(pl_op.operand);
const params = try self.gpa.alloc(spec.IdRef, args.len);
defer self.gpa.free(params);
var n_params: usize = 0;
for (args) |arg| {
// Note: resolve() might emit instructions, so we need to call it
// before starting to emit OpFunctionCall instructions. Hence the
// temporary params buffer.
const arg_ty = self.typeOf(arg);
if (!arg_ty.hasRuntimeBitsIgnoreComptime(mod)) continue;
const arg_id = try self.resolve(arg);
params[n_params] = arg_id;
n_params += 1;
}
try self.func.body.emit(self.spv.gpa, .OpFunctionCall, .{
.id_result_type = self.typeId(result_type_ref),
.id_result = result_id,
.function = callee_id,
.id_ref_3 = params[0..n_params],
});
if (return_type == .noreturn_type) {
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
}
if (self.liveness.isUnused(inst) or !Type.fromInterned(return_type).hasRuntimeBitsIgnoreComptime(mod)) {
return null;
}
return result_id;
}
fn typeOf(self: *DeclGen, inst: Air.Inst.Ref) Type {
const mod = self.module;
return self.air.typeOf(inst, &mod.intern_pool);
}
fn typeOfIndex(self: *DeclGen, inst: Air.Inst.Index) Type {
const mod = self.module;
return self.air.typeOfIndex(inst, &mod.intern_pool);
}
};