zig/lib/compiler_rt/common.zig
Andrew Kelley 30ef033693 compiler-rt: fix logic for choosing __gnu_{f2h,h2f}_ieee
wasm32-wasi-musl wants the standard symbol names however Linux requires
the `__gnu_*` flavors. I did not find any authoritative source on what
decides which symbol flavors to use. If we run into more trouble in the
future we can go back to having both.
2022-06-17 20:25:17 -07:00

190 lines
7.4 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
pub const linkage: std.builtin.GlobalLinkage = if (builtin.is_test) .Internal else .Weak;
pub const want_aeabi = switch (builtin.abi) {
.eabi,
.eabihf,
.musleabi,
.musleabihf,
.gnueabi,
.gnueabihf,
=> switch (builtin.cpu.arch) {
.arm, .armeb, .thumb, .thumbeb => true,
else => false,
},
else => false,
};
pub const want_ppc_abi = builtin.cpu.arch.isPPC() or builtin.cpu.arch.isPPC64();
/// This governs whether to use these symbol names for f16/f32 conversions
/// rather than the standard names:
/// * __gnu_f2h_ieee
/// * __gnu_h2f_ieee
/// Known correct configurations:
/// x86_64-freestanding-none => true
/// x86_64-linux-none => true
/// x86_64-linux-gnu => true
/// x86_64-linux-musl => true
/// x86_64-linux-eabi => true
/// arm-linux-musleabihf => true
/// arm-linux-gnueabihf => true
/// arm-linux-eabihf => false
/// wasm32-wasi-musl => false
/// wasm32-freestanding-none => false
/// x86_64-windows-gnu => true
/// x86_64-windows-msvc => true
/// any-macos-any => doesn't matter; libSystem has both symbol flavors
pub const gnu_f16_abi = switch (builtin.cpu.arch) {
.wasm32, .wasm64 => false,
.arm, .armeb, .thumb, .thumbeb => switch (builtin.abi) {
.eabi, .eabihf => false,
else => true,
},
else => true,
};
pub const want_sparc_abi = builtin.cpu.arch.isSPARC();
// Avoid dragging in the runtime safety mechanisms into this .o file,
// unless we're trying to test compiler-rt.
pub fn panic(msg: []const u8, error_return_trace: ?*std.builtin.StackTrace) noreturn {
_ = error_return_trace;
if (builtin.is_test) {
@setCold(true);
std.debug.panic("{s}", .{msg});
} else {
unreachable;
}
}
/// AArch64 is the only ABI (at the moment) to support f16 arguments without the
/// need for extending them to wider fp types.
/// TODO remove this; do this type selection in the language rather than
/// here in compiler-rt.
pub const F16T = if (builtin.cpu.arch.isAARCH64()) f16 else u16;
pub fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void {
switch (Z) {
u16 => {
// 16x16 --> 32 bit multiply
const product = @as(u32, a) * @as(u32, b);
hi.* = @intCast(u16, product >> 16);
lo.* = @truncate(u16, product);
},
u32 => {
// 32x32 --> 64 bit multiply
const product = @as(u64, a) * @as(u64, b);
hi.* = @truncate(u32, product >> 32);
lo.* = @truncate(u32, product);
},
u64 => {
const S = struct {
fn loWord(x: u64) u64 {
return @truncate(u32, x);
}
fn hiWord(x: u64) u64 {
return @truncate(u32, x >> 32);
}
};
// 64x64 -> 128 wide multiply for platforms that don't have such an operation;
// many 64-bit platforms have this operation, but they tend to have hardware
// floating-point, so we don't bother with a special case for them here.
// Each of the component 32x32 -> 64 products
const plolo: u64 = S.loWord(a) * S.loWord(b);
const plohi: u64 = S.loWord(a) * S.hiWord(b);
const philo: u64 = S.hiWord(a) * S.loWord(b);
const phihi: u64 = S.hiWord(a) * S.hiWord(b);
// Sum terms that contribute to lo in a way that allows us to get the carry
const r0: u64 = S.loWord(plolo);
const r1: u64 = S.hiWord(plolo) +% S.loWord(plohi) +% S.loWord(philo);
lo.* = r0 +% (r1 << 32);
// Sum terms contributing to hi with the carry from lo
hi.* = S.hiWord(plohi) +% S.hiWord(philo) +% S.hiWord(r1) +% phihi;
},
u128 => {
const Word_LoMask = @as(u64, 0x00000000ffffffff);
const Word_HiMask = @as(u64, 0xffffffff00000000);
const Word_FullMask = @as(u64, 0xffffffffffffffff);
const S = struct {
fn Word_1(x: u128) u64 {
return @truncate(u32, x >> 96);
}
fn Word_2(x: u128) u64 {
return @truncate(u32, x >> 64);
}
fn Word_3(x: u128) u64 {
return @truncate(u32, x >> 32);
}
fn Word_4(x: u128) u64 {
return @truncate(u32, x);
}
};
// 128x128 -> 256 wide multiply for platforms that don't have such an operation;
// many 64-bit platforms have this operation, but they tend to have hardware
// floating-point, so we don't bother with a special case for them here.
const product11: u64 = S.Word_1(a) * S.Word_1(b);
const product12: u64 = S.Word_1(a) * S.Word_2(b);
const product13: u64 = S.Word_1(a) * S.Word_3(b);
const product14: u64 = S.Word_1(a) * S.Word_4(b);
const product21: u64 = S.Word_2(a) * S.Word_1(b);
const product22: u64 = S.Word_2(a) * S.Word_2(b);
const product23: u64 = S.Word_2(a) * S.Word_3(b);
const product24: u64 = S.Word_2(a) * S.Word_4(b);
const product31: u64 = S.Word_3(a) * S.Word_1(b);
const product32: u64 = S.Word_3(a) * S.Word_2(b);
const product33: u64 = S.Word_3(a) * S.Word_3(b);
const product34: u64 = S.Word_3(a) * S.Word_4(b);
const product41: u64 = S.Word_4(a) * S.Word_1(b);
const product42: u64 = S.Word_4(a) * S.Word_2(b);
const product43: u64 = S.Word_4(a) * S.Word_3(b);
const product44: u64 = S.Word_4(a) * S.Word_4(b);
const sum0: u128 = @as(u128, product44);
const sum1: u128 = @as(u128, product34) +%
@as(u128, product43);
const sum2: u128 = @as(u128, product24) +%
@as(u128, product33) +%
@as(u128, product42);
const sum3: u128 = @as(u128, product14) +%
@as(u128, product23) +%
@as(u128, product32) +%
@as(u128, product41);
const sum4: u128 = @as(u128, product13) +%
@as(u128, product22) +%
@as(u128, product31);
const sum5: u128 = @as(u128, product12) +%
@as(u128, product21);
const sum6: u128 = @as(u128, product11);
const r0: u128 = (sum0 & Word_FullMask) +%
((sum1 & Word_LoMask) << 32);
const r1: u128 = (sum0 >> 64) +%
((sum1 >> 32) & Word_FullMask) +%
(sum2 & Word_FullMask) +%
((sum3 << 32) & Word_HiMask);
lo.* = r0 +% (r1 << 64);
hi.* = (r1 >> 64) +%
(sum1 >> 96) +%
(sum2 >> 64) +%
(sum3 >> 32) +%
sum4 +%
(sum5 << 32) +%
(sum6 << 64);
},
else => @compileError("unsupported"),
}
}
pub fn normalize(comptime T: type, significand: *std.meta.Int(.unsigned, @typeInfo(T).Float.bits)) i32 {
const Z = std.meta.Int(.unsigned, @typeInfo(T).Float.bits);
const integerBit = @as(Z, 1) << std.math.floatFractionalBits(T);
const shift = @clz(Z, significand.*) - @clz(Z, integerBit);
significand.* <<= @intCast(std.math.Log2Int(Z), shift);
return @as(i32, 1) - shift;
}