zig/lib/compiler_rt/compareXf2.zig

440 lines
15 KiB
Zig

// Ported from:
//
// https://github.com/llvm/llvm-project/commit/d674d96bc56c0f377879d01c9d8dfdaaa7859cdb/compiler-rt/lib/builtins/comparesf2.c
const std = @import("std");
const builtin = @import("builtin");
const is_test = builtin.is_test;
const arch = builtin.cpu.arch;
const linkage: std.builtin.GlobalLinkage = if (builtin.is_test) .Internal else .Weak;
pub const panic = @import("common.zig").panic;
comptime {
@export(__lesf2, .{ .name = "__lesf2", .linkage = linkage });
@export(__ledf2, .{ .name = "__ledf2", .linkage = linkage });
@export(__letf2, .{ .name = "__letf2", .linkage = linkage });
@export(__lexf2, .{ .name = "__lexf2", .linkage = linkage });
@export(__gesf2, .{ .name = "__gesf2", .linkage = linkage });
@export(__gedf2, .{ .name = "__gedf2", .linkage = linkage });
@export(__getf2, .{ .name = "__getf2", .linkage = linkage });
@export(__gexf2, .{ .name = "__gexf2", .linkage = linkage });
@export(__eqsf2, .{ .name = "__eqsf2", .linkage = linkage });
@export(__eqdf2, .{ .name = "__eqdf2", .linkage = linkage });
@export(__eqxf2, .{ .name = "__eqxf2", .linkage = linkage });
@export(__ltsf2, .{ .name = "__ltsf2", .linkage = linkage });
@export(__ltdf2, .{ .name = "__ltdf2", .linkage = linkage });
@export(__ltxf2, .{ .name = "__ltxf2", .linkage = linkage });
@export(__nesf2, .{ .name = "__nesf2", .linkage = linkage });
@export(__nedf2, .{ .name = "__nedf2", .linkage = linkage });
@export(__nexf2, .{ .name = "__nexf2", .linkage = linkage });
@export(__gtsf2, .{ .name = "__gtsf2", .linkage = linkage });
@export(__gtdf2, .{ .name = "__gtdf2", .linkage = linkage });
@export(__gtxf2, .{ .name = "__gtxf2", .linkage = linkage });
@export(__unordsf2, .{ .name = "__unordsf2", .linkage = linkage });
@export(__unorddf2, .{ .name = "__unorddf2", .linkage = linkage });
@export(__unordtf2, .{ .name = "__unordtf2", .linkage = linkage });
if (!is_test) {
@export(__cmpsf2, .{ .name = "__cmpsf2", .linkage = linkage });
@export(__cmpdf2, .{ .name = "__cmpdf2", .linkage = linkage });
@export(__cmptf2, .{ .name = "__cmptf2", .linkage = linkage });
@export(__eqtf2, .{ .name = "__eqtf2", .linkage = linkage });
@export(__lttf2, .{ .name = "__lttf2", .linkage = linkage });
@export(__gttf2, .{ .name = "__gttf2", .linkage = linkage });
@export(__netf2, .{ .name = "__netf2", .linkage = linkage });
if (arch.isARM() or arch.isThumb()) {
@export(__aeabi_fcmpeq, .{ .name = "__aeabi_fcmpeq", .linkage = linkage });
@export(__aeabi_fcmplt, .{ .name = "__aeabi_fcmplt", .linkage = linkage });
@export(__aeabi_fcmple, .{ .name = "__aeabi_fcmple", .linkage = linkage });
@export(__aeabi_fcmpge, .{ .name = "__aeabi_fcmpge", .linkage = linkage });
@export(__aeabi_fcmpgt, .{ .name = "__aeabi_fcmpgt", .linkage = linkage });
@export(__aeabi_fcmpun, .{ .name = "__aeabi_fcmpun", .linkage = linkage });
@export(__aeabi_dcmpeq, .{ .name = "__aeabi_dcmpeq", .linkage = linkage });
@export(__aeabi_dcmplt, .{ .name = "__aeabi_dcmplt", .linkage = linkage });
@export(__aeabi_dcmple, .{ .name = "__aeabi_dcmple", .linkage = linkage });
@export(__aeabi_dcmpge, .{ .name = "__aeabi_dcmpge", .linkage = linkage });
@export(__aeabi_dcmpgt, .{ .name = "__aeabi_dcmpgt", .linkage = linkage });
@export(__aeabi_dcmpun, .{ .name = "__aeabi_dcmpun", .linkage = linkage });
}
if (arch.isPPC() or arch.isPPC64()) {
@export(__eqkf2, .{ .name = "__eqkf2", .linkage = linkage });
@export(__nekf2, .{ .name = "__nekf2", .linkage = linkage });
@export(__gekf2, .{ .name = "__gekf2", .linkage = linkage });
@export(__ltkf2, .{ .name = "__ltkf2", .linkage = linkage });
@export(__lekf2, .{ .name = "__lekf2", .linkage = linkage });
@export(__gtkf2, .{ .name = "__gtkf2", .linkage = linkage });
@export(__unordkf2, .{ .name = "__unordkf2", .linkage = linkage });
}
}
}
const LE = enum(i32) {
Less = -1,
Equal = 0,
Greater = 1,
const Unordered: LE = .Greater;
};
const GE = enum(i32) {
Less = -1,
Equal = 0,
Greater = 1,
const Unordered: GE = .Less;
};
pub inline fn cmp(comptime T: type, comptime RT: type, a: T, b: T) RT {
@setRuntimeSafety(builtin.is_test);
const bits = @typeInfo(T).Float.bits;
const srep_t = std.meta.Int(.signed, bits);
const rep_t = std.meta.Int(.unsigned, bits);
const significandBits = std.math.floatMantissaBits(T);
const exponentBits = std.math.floatExponentBits(T);
const signBit = (@as(rep_t, 1) << (significandBits + exponentBits));
const absMask = signBit - 1;
const infT = comptime std.math.inf(T);
const infRep = @bitCast(rep_t, infT);
const aInt = @bitCast(srep_t, a);
const bInt = @bitCast(srep_t, b);
const aAbs = @bitCast(rep_t, aInt) & absMask;
const bAbs = @bitCast(rep_t, bInt) & absMask;
// If either a or b is NaN, they are unordered.
if (aAbs > infRep or bAbs > infRep) return RT.Unordered;
// If a and b are both zeros, they are equal.
if ((aAbs | bAbs) == 0) return .Equal;
// If at least one of a and b is positive, we get the same result comparing
// a and b as signed integers as we would with a floating-point compare.
if ((aInt & bInt) >= 0) {
if (aInt < bInt) {
return .Less;
} else if (aInt == bInt) {
return .Equal;
} else return .Greater;
} else {
// Otherwise, both are negative, so we need to flip the sense of the
// comparison to get the correct result. (This assumes a twos- or ones-
// complement integer representation; if integers are represented in a
// sign-magnitude representation, then this flip is incorrect).
if (aInt > bInt) {
return .Less;
} else if (aInt == bInt) {
return .Equal;
} else return .Greater;
}
}
pub inline fn unordcmp(comptime T: type, a: T, b: T) i32 {
@setRuntimeSafety(builtin.is_test);
const rep_t = std.meta.Int(.unsigned, @typeInfo(T).Float.bits);
const significandBits = std.math.floatMantissaBits(T);
const exponentBits = std.math.floatExponentBits(T);
const signBit = (@as(rep_t, 1) << (significandBits + exponentBits));
const absMask = signBit - 1;
const infRep = @bitCast(rep_t, std.math.inf(T));
const aAbs: rep_t = @bitCast(rep_t, a) & absMask;
const bAbs: rep_t = @bitCast(rep_t, b) & absMask;
return @boolToInt(aAbs > infRep or bAbs > infRep);
}
// Comparison between f32
pub fn __lesf2(a: f32, b: f32) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
const float = cmp(f32, LE, a, b);
return @bitCast(i32, float);
}
pub fn __gesf2(a: f32, b: f32) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
const float = cmp(f32, GE, a, b);
return @bitCast(i32, float);
}
pub fn __cmpsf2(a: f32, b: f32) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __lesf2, .{ a, b });
}
pub fn __eqsf2(a: f32, b: f32) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __lesf2, .{ a, b });
}
pub fn __ltsf2(a: f32, b: f32) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __lesf2, .{ a, b });
}
pub fn __nesf2(a: f32, b: f32) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __lesf2, .{ a, b });
}
pub fn __gtsf2(a: f32, b: f32) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __gesf2, .{ a, b });
}
// Comparison between f64
pub fn __ledf2(a: f64, b: f64) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
const float = cmp(f64, LE, a, b);
return @bitCast(i32, float);
}
pub fn __gedf2(a: f64, b: f64) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
const float = cmp(f64, GE, a, b);
return @bitCast(i32, float);
}
pub fn __cmpdf2(a: f64, b: f64) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __ledf2, .{ a, b });
}
pub fn __eqdf2(a: f64, b: f64) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __ledf2, .{ a, b });
}
pub fn __ltdf2(a: f64, b: f64) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __ledf2, .{ a, b });
}
pub fn __nedf2(a: f64, b: f64) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __ledf2, .{ a, b });
}
pub fn __gtdf2(a: f64, b: f64) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __gedf2, .{ a, b });
}
// Comparison between f80
pub inline fn cmp_f80(comptime RT: type, a: f80, b: f80) RT {
const a_rep = std.math.break_f80(a);
const b_rep = std.math.break_f80(b);
const sig_bits = std.math.floatMantissaBits(f80);
const int_bit = 0x8000000000000000;
const sign_bit = 0x8000;
const special_exp = 0x7FFF;
// If either a or b is NaN, they are unordered.
if ((a_rep.exp & special_exp == special_exp and a_rep.fraction ^ int_bit != 0) or
(b_rep.exp & special_exp == special_exp and b_rep.fraction ^ int_bit != 0))
return RT.Unordered;
// If a and b are both zeros, they are equal.
if ((a_rep.fraction | b_rep.fraction) | ((a_rep.exp | b_rep.exp) & special_exp) == 0)
return .Equal;
if (@boolToInt(a_rep.exp == b_rep.exp) & @boolToInt(a_rep.fraction == b_rep.fraction) != 0) {
return .Equal;
} else if (a_rep.exp & sign_bit != b_rep.exp & sign_bit) {
// signs are different
if (@bitCast(i16, a_rep.exp) < @bitCast(i16, b_rep.exp)) {
return .Less;
} else {
return .Greater;
}
} else {
const a_fraction = a_rep.fraction | (@as(u80, a_rep.exp) << sig_bits);
const b_fraction = b_rep.fraction | (@as(u80, b_rep.exp) << sig_bits);
if (a_fraction < b_fraction) {
return .Less;
} else {
return .Greater;
}
}
}
pub fn __lexf2(a: f80, b: f80) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
const float = cmp_f80(LE, a, b);
return @bitCast(i32, float);
}
pub fn __gexf2(a: f80, b: f80) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
const float = cmp_f80(GE, a, b);
return @bitCast(i32, float);
}
pub fn __eqxf2(a: f80, b: f80) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __lexf2, .{ a, b });
}
pub fn __ltxf2(a: f80, b: f80) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __lexf2, .{ a, b });
}
pub fn __nexf2(a: f80, b: f80) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __lexf2, .{ a, b });
}
pub fn __gtxf2(a: f80, b: f80) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __gexf2, .{ a, b });
}
// Comparison between f128
pub fn __letf2(a: f128, b: f128) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
const float = cmp(f128, LE, a, b);
return @bitCast(i32, float);
}
pub fn __getf2(a: f128, b: f128) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
const float = cmp(f128, GE, a, b);
return @bitCast(i32, float);
}
pub fn __cmptf2(a: f128, b: f128) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __letf2, .{ a, b });
}
pub fn __eqtf2(a: f128, b: f128) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __letf2, .{ a, b });
}
pub fn __lttf2(a: f128, b: f128) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __letf2, .{ a, b });
}
pub fn __netf2(a: f128, b: f128) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __letf2, .{ a, b });
}
pub fn __gttf2(a: f128, b: f128) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __getf2, .{ a, b });
}
pub fn __eqkf2(a: f128, b: f128) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __letf2, .{ a, b });
}
pub fn __nekf2(a: f128, b: f128) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __letf2, .{ a, b });
}
pub fn __gekf2(a: f128, b: f128) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __getf2, .{ a, b });
}
pub fn __ltkf2(a: f128, b: f128) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __letf2, .{ a, b });
}
pub fn __lekf2(a: f128, b: f128) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __letf2, .{ a, b });
}
pub fn __gtkf2(a: f128, b: f128) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __getf2, .{ a, b });
}
// Unordered comparison between f32/f64/f128
pub fn __unordsf2(a: f32, b: f32) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
return unordcmp(f32, a, b);
}
pub fn __unorddf2(a: f64, b: f64) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
return unordcmp(f64, a, b);
}
pub fn __unordtf2(a: f128, b: f128) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
return unordcmp(f128, a, b);
}
pub fn __unordkf2(a: f128, b: f128) callconv(.C) i32 {
return @call(.{ .modifier = .always_inline }, __unordtf2, .{ a, b });
}
// ARM EABI intrinsics
pub fn __aeabi_fcmpeq(a: f32, b: f32) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __eqsf2, .{ a, b }) == 0);
}
pub fn __aeabi_fcmplt(a: f32, b: f32) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __ltsf2, .{ a, b }) < 0);
}
pub fn __aeabi_fcmple(a: f32, b: f32) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __lesf2, .{ a, b }) <= 0);
}
pub fn __aeabi_fcmpge(a: f32, b: f32) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __gesf2, .{ a, b }) >= 0);
}
pub fn __aeabi_fcmpgt(a: f32, b: f32) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __gtsf2, .{ a, b }) > 0);
}
pub fn __aeabi_fcmpun(a: f32, b: f32) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @call(.{ .modifier = .always_inline }, __unordsf2, .{ a, b });
}
pub fn __aeabi_dcmpeq(a: f64, b: f64) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __eqdf2, .{ a, b }) == 0);
}
pub fn __aeabi_dcmplt(a: f64, b: f64) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __ltdf2, .{ a, b }) < 0);
}
pub fn __aeabi_dcmple(a: f64, b: f64) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __ledf2, .{ a, b }) <= 0);
}
pub fn __aeabi_dcmpge(a: f64, b: f64) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __gedf2, .{ a, b }) >= 0);
}
pub fn __aeabi_dcmpgt(a: f64, b: f64) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __gtdf2, .{ a, b }) > 0);
}
pub fn __aeabi_dcmpun(a: f64, b: f64) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @call(.{ .modifier = .always_inline }, __unorddf2, .{ a, b });
}
test "comparesf2" {
_ = @import("comparesf2_test.zig");
}
test "comparedf2" {
_ = @import("comparedf2_test.zig");
}