zig/lib/std/os/linux/io_uring.zig
Andrew Kelley d29871977f remove redundant license headers from zig standard library
We already have a LICENSE file that covers the Zig Standard Library. We
no longer need to remind everyone that the license is MIT in every single
file.

Previously this was introduced to clarify the situation for a fork of
Zig that made Zig's LICENSE file harder to find, and replaced it with
their own license that required annual payments to their company.
However that fork now appears to be dead. So there is no need to
reinforce the copyright notice in every single file.
2021-08-24 12:25:09 -07:00

1594 lines
61 KiB
Zig

const std = @import("../../std.zig");
const assert = std.debug.assert;
const builtin = std.builtin;
const mem = std.mem;
const net = std.net;
const os = std.os;
const linux = os.linux;
const testing = std.testing;
const io_uring_params = linux.io_uring_params;
const io_uring_sqe = linux.io_uring_sqe;
const io_uring_cqe = linux.io_uring_cqe;
pub const IO_Uring = struct {
fd: os.fd_t = -1,
sq: SubmissionQueue,
cq: CompletionQueue,
flags: u32,
features: u32,
/// A friendly way to setup an io_uring, with default io_uring_params.
/// `entries` must be a power of two between 1 and 4096, although the kernel will make the final
/// call on how many entries the submission and completion queues will ultimately have,
/// see https://github.com/torvalds/linux/blob/v5.8/fs/io_uring.c#L8027-L8050.
/// Matches the interface of io_uring_queue_init() in liburing.
pub fn init(entries: u13, flags: u32) !IO_Uring {
var params = mem.zeroInit(io_uring_params, .{
.flags = flags,
.sq_thread_idle = 1000,
});
return try IO_Uring.init_params(entries, &params);
}
/// A powerful way to setup an io_uring, if you want to tweak io_uring_params such as submission
/// queue thread cpu affinity or thread idle timeout (the kernel and our default is 1 second).
/// `params` is passed by reference because the kernel needs to modify the parameters.
/// Matches the interface of io_uring_queue_init_params() in liburing.
pub fn init_params(entries: u13, p: *io_uring_params) !IO_Uring {
if (entries == 0) return error.EntriesZero;
if (!std.math.isPowerOfTwo(entries)) return error.EntriesNotPowerOfTwo;
assert(p.sq_entries == 0);
assert(p.cq_entries == 0 or p.flags & linux.IORING_SETUP_CQSIZE != 0);
assert(p.features == 0);
assert(p.wq_fd == 0 or p.flags & linux.IORING_SETUP_ATTACH_WQ != 0);
assert(p.resv[0] == 0);
assert(p.resv[1] == 0);
assert(p.resv[2] == 0);
const res = linux.io_uring_setup(entries, p);
switch (linux.getErrno(res)) {
.SUCCESS => {},
.FAULT => return error.ParamsOutsideAccessibleAddressSpace,
// The resv array contains non-zero data, p.flags contains an unsupported flag,
// entries out of bounds, IORING_SETUP_SQ_AFF was specified without IORING_SETUP_SQPOLL,
// or IORING_SETUP_CQSIZE was specified but io_uring_params.cq_entries was invalid:
.INVAL => return error.ArgumentsInvalid,
.MFILE => return error.ProcessFdQuotaExceeded,
.NFILE => return error.SystemFdQuotaExceeded,
.NOMEM => return error.SystemResources,
// IORING_SETUP_SQPOLL was specified but effective user ID lacks sufficient privileges,
// or a container seccomp policy prohibits io_uring syscalls:
.PERM => return error.PermissionDenied,
.NOSYS => return error.SystemOutdated,
else => |errno| return os.unexpectedErrno(errno),
}
const fd = @intCast(os.fd_t, res);
assert(fd >= 0);
errdefer os.close(fd);
// Kernel versions 5.4 and up use only one mmap() for the submission and completion queues.
// This is not an optional feature for us... if the kernel does it, we have to do it.
// The thinking on this by the kernel developers was that both the submission and the
// completion queue rings have sizes just over a power of two, but the submission queue ring
// is significantly smaller with u32 slots. By bundling both in a single mmap, the kernel
// gets the submission queue ring for free.
// See https://patchwork.kernel.org/patch/11115257 for the kernel patch.
// We do not support the double mmap() done before 5.4, because we want to keep the
// init/deinit mmap paths simple and because io_uring has had many bug fixes even since 5.4.
if ((p.features & linux.IORING_FEAT_SINGLE_MMAP) == 0) {
return error.SystemOutdated;
}
// Check that the kernel has actually set params and that "impossible is nothing".
assert(p.sq_entries != 0);
assert(p.cq_entries != 0);
assert(p.cq_entries >= p.sq_entries);
// From here on, we only need to read from params, so pass `p` by value as immutable.
// The completion queue shares the mmap with the submission queue, so pass `sq` there too.
var sq = try SubmissionQueue.init(fd, p.*);
errdefer sq.deinit();
var cq = try CompletionQueue.init(fd, p.*, sq);
errdefer cq.deinit();
// Check that our starting state is as we expect.
assert(sq.head.* == 0);
assert(sq.tail.* == 0);
assert(sq.mask == p.sq_entries - 1);
// Allow flags.* to be non-zero, since the kernel may set IORING_SQ_NEED_WAKEUP at any time.
assert(sq.dropped.* == 0);
assert(sq.array.len == p.sq_entries);
assert(sq.sqes.len == p.sq_entries);
assert(sq.sqe_head == 0);
assert(sq.sqe_tail == 0);
assert(cq.head.* == 0);
assert(cq.tail.* == 0);
assert(cq.mask == p.cq_entries - 1);
assert(cq.overflow.* == 0);
assert(cq.cqes.len == p.cq_entries);
return IO_Uring{
.fd = fd,
.sq = sq,
.cq = cq,
.flags = p.flags,
.features = p.features,
};
}
pub fn deinit(self: *IO_Uring) void {
assert(self.fd >= 0);
// The mmaps depend on the fd, so the order of these calls is important:
self.cq.deinit();
self.sq.deinit();
os.close(self.fd);
self.fd = -1;
}
/// Returns a pointer to a vacant SQE, or an error if the submission queue is full.
/// We follow the implementation (and atomics) of liburing's `io_uring_get_sqe()` exactly.
/// However, instead of a null we return an error to force safe handling.
/// Any situation where the submission queue is full tends more towards a control flow error,
/// and the null return in liburing is more a C idiom than anything else, for lack of a better
/// alternative. In Zig, we have first-class error handling... so let's use it.
/// Matches the implementation of io_uring_get_sqe() in liburing.
pub fn get_sqe(self: *IO_Uring) !*io_uring_sqe {
const head = @atomicLoad(u32, self.sq.head, .Acquire);
// Remember that these head and tail offsets wrap around every four billion operations.
// We must therefore use wrapping addition and subtraction to avoid a runtime crash.
const next = self.sq.sqe_tail +% 1;
if (next -% head > self.sq.sqes.len) return error.SubmissionQueueFull;
var sqe = &self.sq.sqes[self.sq.sqe_tail & self.sq.mask];
self.sq.sqe_tail = next;
return sqe;
}
/// Submits the SQEs acquired via get_sqe() to the kernel. You can call this once after you have
/// called get_sqe() multiple times to setup multiple I/O requests.
/// Returns the number of SQEs submitted.
/// Matches the implementation of io_uring_submit() in liburing.
pub fn submit(self: *IO_Uring) !u32 {
return self.submit_and_wait(0);
}
/// Like submit(), but allows waiting for events as well.
/// Returns the number of SQEs submitted.
/// Matches the implementation of io_uring_submit_and_wait() in liburing.
pub fn submit_and_wait(self: *IO_Uring, wait_nr: u32) !u32 {
const submitted = self.flush_sq();
var flags: u32 = 0;
if (self.sq_ring_needs_enter(&flags) or wait_nr > 0) {
if (wait_nr > 0 or (self.flags & linux.IORING_SETUP_IOPOLL) != 0) {
flags |= linux.IORING_ENTER_GETEVENTS;
}
return try self.enter(submitted, wait_nr, flags);
}
return submitted;
}
/// Tell the kernel we have submitted SQEs and/or want to wait for CQEs.
/// Returns the number of SQEs submitted.
pub fn enter(self: *IO_Uring, to_submit: u32, min_complete: u32, flags: u32) !u32 {
assert(self.fd >= 0);
const res = linux.io_uring_enter(self.fd, to_submit, min_complete, flags, null);
switch (linux.getErrno(res)) {
.SUCCESS => {},
// The kernel was unable to allocate memory or ran out of resources for the request.
// The application should wait for some completions and try again:
.AGAIN => return error.SystemResources,
// The SQE `fd` is invalid, or IOSQE_FIXED_FILE was set but no files were registered:
.BADF => return error.FileDescriptorInvalid,
// The file descriptor is valid, but the ring is not in the right state.
// See io_uring_register(2) for how to enable the ring.
.BADFD => return error.FileDescriptorInBadState,
// The application attempted to overcommit the number of requests it can have pending.
// The application should wait for some completions and try again:
.BUSY => return error.CompletionQueueOvercommitted,
// The SQE is invalid, or valid but the ring was setup with IORING_SETUP_IOPOLL:
.INVAL => return error.SubmissionQueueEntryInvalid,
// The buffer is outside the process' accessible address space, or IORING_OP_READ_FIXED
// or IORING_OP_WRITE_FIXED was specified but no buffers were registered, or the range
// described by `addr` and `len` is not within the buffer registered at `buf_index`:
.FAULT => return error.BufferInvalid,
.NXIO => return error.RingShuttingDown,
// The kernel believes our `self.fd` does not refer to an io_uring instance,
// or the opcode is valid but not supported by this kernel (more likely):
.OPNOTSUPP => return error.OpcodeNotSupported,
// The operation was interrupted by a delivery of a signal before it could complete.
// This can happen while waiting for events with IORING_ENTER_GETEVENTS:
.INTR => return error.SignalInterrupt,
else => |errno| return os.unexpectedErrno(errno),
}
return @intCast(u32, res);
}
/// Sync internal state with kernel ring state on the SQ side.
/// Returns the number of all pending events in the SQ ring, for the shared ring.
/// This return value includes previously flushed SQEs, as per liburing.
/// The rationale is to suggest that an io_uring_enter() call is needed rather than not.
/// Matches the implementation of __io_uring_flush_sq() in liburing.
pub fn flush_sq(self: *IO_Uring) u32 {
if (self.sq.sqe_head != self.sq.sqe_tail) {
// Fill in SQEs that we have queued up, adding them to the kernel ring.
const to_submit = self.sq.sqe_tail -% self.sq.sqe_head;
var tail = self.sq.tail.*;
var i: usize = 0;
while (i < to_submit) : (i += 1) {
self.sq.array[tail & self.sq.mask] = self.sq.sqe_head & self.sq.mask;
tail +%= 1;
self.sq.sqe_head +%= 1;
}
// Ensure that the kernel can actually see the SQE updates when it sees the tail update.
@atomicStore(u32, self.sq.tail, tail, .Release);
}
return self.sq_ready();
}
/// Returns true if we are not using an SQ thread (thus nobody submits but us),
/// or if IORING_SQ_NEED_WAKEUP is set and the SQ thread must be explicitly awakened.
/// For the latter case, we set the SQ thread wakeup flag.
/// Matches the implementation of sq_ring_needs_enter() in liburing.
pub fn sq_ring_needs_enter(self: *IO_Uring, flags: *u32) bool {
assert(flags.* == 0);
if ((self.flags & linux.IORING_SETUP_SQPOLL) == 0) return true;
if ((@atomicLoad(u32, self.sq.flags, .Unordered) & linux.IORING_SQ_NEED_WAKEUP) != 0) {
flags.* |= linux.IORING_ENTER_SQ_WAKEUP;
return true;
}
return false;
}
/// Returns the number of flushed and unflushed SQEs pending in the submission queue.
/// In other words, this is the number of SQEs in the submission queue, i.e. its length.
/// These are SQEs that the kernel is yet to consume.
/// Matches the implementation of io_uring_sq_ready in liburing.
pub fn sq_ready(self: *IO_Uring) u32 {
// Always use the shared ring state (i.e. head and not sqe_head) to avoid going out of sync,
// see https://github.com/axboe/liburing/issues/92.
return self.sq.sqe_tail -% @atomicLoad(u32, self.sq.head, .Acquire);
}
/// Returns the number of CQEs in the completion queue, i.e. its length.
/// These are CQEs that the application is yet to consume.
/// Matches the implementation of io_uring_cq_ready in liburing.
pub fn cq_ready(self: *IO_Uring) u32 {
return @atomicLoad(u32, self.cq.tail, .Acquire) -% self.cq.head.*;
}
/// Copies as many CQEs as are ready, and that can fit into the destination `cqes` slice.
/// If none are available, enters into the kernel to wait for at most `wait_nr` CQEs.
/// Returns the number of CQEs copied, advancing the CQ ring.
/// Provides all the wait/peek methods found in liburing, but with batching and a single method.
/// The rationale for copying CQEs rather than copying pointers is that pointers are 8 bytes
/// whereas CQEs are not much more at only 16 bytes, and this provides a safer faster interface.
/// Safer, because you no longer need to call cqe_seen(), avoiding idempotency bugs.
/// Faster, because we can now amortize the atomic store release to `cq.head` across the batch.
/// See https://github.com/axboe/liburing/issues/103#issuecomment-686665007.
/// Matches the implementation of io_uring_peek_batch_cqe() in liburing, but supports waiting.
pub fn copy_cqes(self: *IO_Uring, cqes: []io_uring_cqe, wait_nr: u32) !u32 {
const count = self.copy_cqes_ready(cqes, wait_nr);
if (count > 0) return count;
if (self.cq_ring_needs_flush() or wait_nr > 0) {
_ = try self.enter(0, wait_nr, linux.IORING_ENTER_GETEVENTS);
return self.copy_cqes_ready(cqes, wait_nr);
}
return 0;
}
fn copy_cqes_ready(self: *IO_Uring, cqes: []io_uring_cqe, wait_nr: u32) u32 {
_ = wait_nr;
const ready = self.cq_ready();
const count = std.math.min(cqes.len, ready);
var head = self.cq.head.*;
var tail = head +% count;
// TODO Optimize this by using 1 or 2 memcpy's (if the tail wraps) rather than a loop.
var i: usize = 0;
// Do not use "less-than" operator since head and tail may wrap:
while (head != tail) {
cqes[i] = self.cq.cqes[head & self.cq.mask]; // Copy struct by value.
head +%= 1;
i += 1;
}
self.cq_advance(count);
return count;
}
/// Returns a copy of an I/O completion, waiting for it if necessary, and advancing the CQ ring.
/// A convenience method for `copy_cqes()` for when you don't need to batch or peek.
pub fn copy_cqe(ring: *IO_Uring) !io_uring_cqe {
var cqes: [1]io_uring_cqe = undefined;
const count = try ring.copy_cqes(&cqes, 1);
assert(count == 1);
return cqes[0];
}
/// Matches the implementation of cq_ring_needs_flush() in liburing.
pub fn cq_ring_needs_flush(self: *IO_Uring) bool {
return (@atomicLoad(u32, self.sq.flags, .Unordered) & linux.IORING_SQ_CQ_OVERFLOW) != 0;
}
/// For advanced use cases only that implement custom completion queue methods.
/// If you use copy_cqes() or copy_cqe() you must not call cqe_seen() or cq_advance().
/// Must be called exactly once after a zero-copy CQE has been processed by your application.
/// Not idempotent, calling more than once will result in other CQEs being lost.
/// Matches the implementation of cqe_seen() in liburing.
pub fn cqe_seen(self: *IO_Uring, cqe: *io_uring_cqe) void {
_ = cqe;
self.cq_advance(1);
}
/// For advanced use cases only that implement custom completion queue methods.
/// Matches the implementation of cq_advance() in liburing.
pub fn cq_advance(self: *IO_Uring, count: u32) void {
if (count > 0) {
// Ensure the kernel only sees the new head value after the CQEs have been read.
@atomicStore(u32, self.cq.head, self.cq.head.* +% count, .Release);
}
}
/// Queues (but does not submit) an SQE to perform an `fsync(2)`.
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
/// For example, for `fdatasync()` you can set `IORING_FSYNC_DATASYNC` in the SQE's `rw_flags`.
/// N.B. While SQEs are initiated in the order in which they appear in the submission queue,
/// operations execute in parallel and completions are unordered. Therefore, an application that
/// submits a write followed by an fsync in the submission queue cannot expect the fsync to
/// apply to the write, since the fsync may complete before the write is issued to the disk.
/// You should preferably use `link_with_next_sqe()` on a write's SQE to link it with an fsync,
/// or else insert a full write barrier using `drain_previous_sqes()` when queueing an fsync.
pub fn fsync(self: *IO_Uring, user_data: u64, fd: os.fd_t, flags: u32) !*io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_fsync(sqe, fd, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a no-op.
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
/// A no-op is more useful than may appear at first glance.
/// For example, you could call `drain_previous_sqes()` on the returned SQE, to use the no-op to
/// know when the ring is idle before acting on a kill signal.
pub fn nop(self: *IO_Uring, user_data: u64) !*io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_nop(sqe);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `read(2)`.
/// Returns a pointer to the SQE.
pub fn read(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: []u8,
offset: u64,
) !*io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_read(sqe, fd, buffer, offset);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `write(2)`.
/// Returns a pointer to the SQE.
pub fn write(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: []const u8,
offset: u64,
) !*io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_write(sqe, fd, buffer, offset);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `preadv()`.
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
/// For example, if you want to do a `preadv2()` then set `rw_flags` on the returned SQE.
/// See https://linux.die.net/man/2/preadv.
pub fn readv(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
iovecs: []const os.iovec,
offset: u64,
) !*io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_readv(sqe, fd, iovecs, offset);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `pwritev()`.
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
/// For example, if you want to do a `pwritev2()` then set `rw_flags` on the returned SQE.
/// See https://linux.die.net/man/2/pwritev.
pub fn writev(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
iovecs: []const os.iovec_const,
offset: u64,
) !*io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_writev(sqe, fd, iovecs, offset);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform an `accept4(2)` on a socket.
/// Returns a pointer to the SQE.
pub fn accept(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
addr: *os.sockaddr,
addrlen: *os.socklen_t,
flags: u32,
) !*io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_accept(sqe, fd, addr, addrlen, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queue (but does not submit) an SQE to perform a `connect(2)` on a socket.
/// Returns a pointer to the SQE.
pub fn connect(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
addr: *const os.sockaddr,
addrlen: os.socklen_t,
) !*io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_connect(sqe, fd, addr, addrlen);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `epoll_ctl(2)`.
/// Returns a pointer to the SQE.
pub fn epoll_ctl(
self: *IO_Uring,
user_data: u64,
epfd: os.fd_t,
fd: os.fd_t,
op: u32,
ev: ?*linux.epoll_event,
) !*io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_epoll_ctl(sqe, epfd, fd, op, ev);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `recv(2)`.
/// Returns a pointer to the SQE.
pub fn recv(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: []u8,
flags: u32,
) !*io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_recv(sqe, fd, buffer, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `send(2)`.
/// Returns a pointer to the SQE.
pub fn send(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: []const u8,
flags: u32,
) !*io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_send(sqe, fd, buffer, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform an `openat(2)`.
/// Returns a pointer to the SQE.
pub fn openat(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
path: [*:0]const u8,
flags: u32,
mode: os.mode_t,
) !*io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_openat(sqe, fd, path, flags, mode);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `close(2)`.
/// Returns a pointer to the SQE.
pub fn close(self: *IO_Uring, user_data: u64, fd: os.fd_t) !*io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_close(sqe, fd);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to register a timeout operation.
/// Returns a pointer to the SQE.
///
/// The timeout will complete when either the timeout expires, or after the specified number of
/// events complete (if `count` is greater than `0`).
///
/// `flags` may be `0` for a relative timeout, or `IORING_TIMEOUT_ABS` for an absolute timeout.
///
/// The completion event result will be `-ETIME` if the timeout completed through expiration,
/// `0` if the timeout completed after the specified number of events, or `-ECANCELED` if the
/// timeout was removed before it expired.
///
/// io_uring timeouts use the `CLOCK_MONOTONIC` clock source.
pub fn timeout(
self: *IO_Uring,
user_data: u64,
ts: *const os.__kernel_timespec,
count: u32,
flags: u32,
) !*io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_timeout(sqe, ts, count, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to remove an existing timeout operation.
/// Returns a pointer to the SQE.
///
/// The timeout is identified by its `user_data`.
///
/// The completion event result will be `0` if the timeout was found and cancelled successfully,
/// `-EBUSY` if the timeout was found but expiration was already in progress, or
/// `-ENOENT` if the timeout was not found.
pub fn timeout_remove(
self: *IO_Uring,
user_data: u64,
timeout_user_data: u64,
flags: u32,
) !*io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_timeout_remove(sqe, timeout_user_data, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `poll(2)`.
/// Returns a pointer to the SQE.
pub fn poll_add(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
poll_mask: u32,
) !*io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_poll_add(sqe, fd, poll_mask);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to remove an existing poll operation.
/// Returns a pointer to the SQE.
pub fn poll_remove(
self: *IO_Uring,
user_data: u64,
target_user_data: u64,
) !*io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_poll_remove(sqe, target_user_data);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform an `fallocate(2)`.
/// Returns a pointer to the SQE.
pub fn fallocate(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
mode: i32,
offset: u64,
len: u64,
) !*io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_fallocate(sqe, fd, mode, offset, len);
sqe.user_data = user_data;
return sqe;
}
/// Registers an array of file descriptors.
/// Every time a file descriptor is put in an SQE and submitted to the kernel, the kernel must
/// retrieve a reference to the file, and once I/O has completed the file reference must be
/// dropped. The atomic nature of this file reference can be a slowdown for high IOPS workloads.
/// This slowdown can be avoided by pre-registering file descriptors.
/// To refer to a registered file descriptor, IOSQE_FIXED_FILE must be set in the SQE's flags,
/// and the SQE's fd must be set to the index of the file descriptor in the registered array.
/// Registering file descriptors will wait for the ring to idle.
/// Files are automatically unregistered by the kernel when the ring is torn down.
/// An application need unregister only if it wants to register a new array of file descriptors.
pub fn register_files(self: *IO_Uring, fds: []const os.fd_t) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_FILES,
@ptrCast(*const c_void, fds.ptr),
@intCast(u32, fds.len),
);
try handle_registration_result(res);
}
/// Registers the file descriptor for an eventfd that will be notified of completion events on
/// an io_uring instance.
/// Only a single a eventfd can be registered at any given point in time.
pub fn register_eventfd(self: *IO_Uring, fd: os.fd_t) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_EVENTFD,
@ptrCast(*const c_void, &fd),
1,
);
try handle_registration_result(res);
}
/// Registers the file descriptor for an eventfd that will be notified of completion events on
/// an io_uring instance. Notifications are only posted for events that complete in an async manner.
/// This means that events that complete inline while being submitted do not trigger a notification event.
/// Only a single eventfd can be registered at any given point in time.
pub fn register_eventfd_async(self: *IO_Uring, fd: os.fd_t) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_EVENTFD_ASYNC,
@ptrCast(*const c_void, &fd),
1,
);
try handle_registration_result(res);
}
/// Unregister the registered eventfd file descriptor.
pub fn unregister_eventfd(self: *IO_Uring) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.UNREGISTER_EVENTFD,
null,
0,
);
try handle_registration_result(res);
}
fn handle_registration_result(res: usize) !void {
switch (linux.getErrno(res)) {
.SUCCESS => {},
// One or more fds in the array are invalid, or the kernel does not support sparse sets:
.BADF => return error.FileDescriptorInvalid,
.BUSY => return error.FilesAlreadyRegistered,
.INVAL => return error.FilesEmpty,
// Adding `nr_args` file references would exceed the maximum allowed number of files the
// user is allowed to have according to the per-user RLIMIT_NOFILE resource limit and
// the CAP_SYS_RESOURCE capability is not set, or `nr_args` exceeds the maximum allowed
// for a fixed file set (older kernels have a limit of 1024 files vs 64K files):
.MFILE => return error.UserFdQuotaExceeded,
// Insufficient kernel resources, or the caller had a non-zero RLIMIT_MEMLOCK soft
// resource limit but tried to lock more memory than the limit permitted (not enforced
// when the process is privileged with CAP_IPC_LOCK):
.NOMEM => return error.SystemResources,
// Attempt to register files on a ring already registering files or being torn down:
.NXIO => return error.RingShuttingDownOrAlreadyRegisteringFiles,
else => |errno| return os.unexpectedErrno(errno),
}
}
/// Unregisters all registered file descriptors previously associated with the ring.
pub fn unregister_files(self: *IO_Uring) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(self.fd, .UNREGISTER_FILES, null, 0);
switch (linux.getErrno(res)) {
.SUCCESS => {},
.NXIO => return error.FilesNotRegistered,
else => |errno| return os.unexpectedErrno(errno),
}
}
};
pub const SubmissionQueue = struct {
head: *u32,
tail: *u32,
mask: u32,
flags: *u32,
dropped: *u32,
array: []u32,
sqes: []io_uring_sqe,
mmap: []align(mem.page_size) u8,
mmap_sqes: []align(mem.page_size) u8,
// We use `sqe_head` and `sqe_tail` in the same way as liburing:
// We increment `sqe_tail` (but not `tail`) for each call to `get_sqe()`.
// We then set `tail` to `sqe_tail` once, only when these events are actually submitted.
// This allows us to amortize the cost of the @atomicStore to `tail` across multiple SQEs.
sqe_head: u32 = 0,
sqe_tail: u32 = 0,
pub fn init(fd: os.fd_t, p: io_uring_params) !SubmissionQueue {
assert(fd >= 0);
assert((p.features & linux.IORING_FEAT_SINGLE_MMAP) != 0);
const size = std.math.max(
p.sq_off.array + p.sq_entries * @sizeOf(u32),
p.cq_off.cqes + p.cq_entries * @sizeOf(io_uring_cqe),
);
const mmap = try os.mmap(
null,
size,
os.PROT_READ | os.PROT_WRITE,
os.MAP_SHARED | os.MAP_POPULATE,
fd,
linux.IORING_OFF_SQ_RING,
);
errdefer os.munmap(mmap);
assert(mmap.len == size);
// The motivation for the `sqes` and `array` indirection is to make it possible for the
// application to preallocate static io_uring_sqe entries and then replay them when needed.
const size_sqes = p.sq_entries * @sizeOf(io_uring_sqe);
const mmap_sqes = try os.mmap(
null,
size_sqes,
os.PROT_READ | os.PROT_WRITE,
os.MAP_SHARED | os.MAP_POPULATE,
fd,
linux.IORING_OFF_SQES,
);
errdefer os.munmap(mmap_sqes);
assert(mmap_sqes.len == size_sqes);
const array = @ptrCast([*]u32, @alignCast(@alignOf(u32), &mmap[p.sq_off.array]));
const sqes = @ptrCast([*]io_uring_sqe, @alignCast(@alignOf(io_uring_sqe), &mmap_sqes[0]));
// We expect the kernel copies p.sq_entries to the u32 pointed to by p.sq_off.ring_entries,
// see https://github.com/torvalds/linux/blob/v5.8/fs/io_uring.c#L7843-L7844.
assert(
p.sq_entries ==
@ptrCast(*u32, @alignCast(@alignOf(u32), &mmap[p.sq_off.ring_entries])).*,
);
return SubmissionQueue{
.head = @ptrCast(*u32, @alignCast(@alignOf(u32), &mmap[p.sq_off.head])),
.tail = @ptrCast(*u32, @alignCast(@alignOf(u32), &mmap[p.sq_off.tail])),
.mask = @ptrCast(*u32, @alignCast(@alignOf(u32), &mmap[p.sq_off.ring_mask])).*,
.flags = @ptrCast(*u32, @alignCast(@alignOf(u32), &mmap[p.sq_off.flags])),
.dropped = @ptrCast(*u32, @alignCast(@alignOf(u32), &mmap[p.sq_off.dropped])),
.array = array[0..p.sq_entries],
.sqes = sqes[0..p.sq_entries],
.mmap = mmap,
.mmap_sqes = mmap_sqes,
};
}
pub fn deinit(self: *SubmissionQueue) void {
os.munmap(self.mmap_sqes);
os.munmap(self.mmap);
}
};
pub const CompletionQueue = struct {
head: *u32,
tail: *u32,
mask: u32,
overflow: *u32,
cqes: []io_uring_cqe,
pub fn init(fd: os.fd_t, p: io_uring_params, sq: SubmissionQueue) !CompletionQueue {
assert(fd >= 0);
assert((p.features & linux.IORING_FEAT_SINGLE_MMAP) != 0);
const mmap = sq.mmap;
const cqes = @ptrCast(
[*]io_uring_cqe,
@alignCast(@alignOf(io_uring_cqe), &mmap[p.cq_off.cqes]),
);
assert(p.cq_entries ==
@ptrCast(*u32, @alignCast(@alignOf(u32), &mmap[p.cq_off.ring_entries])).*);
return CompletionQueue{
.head = @ptrCast(*u32, @alignCast(@alignOf(u32), &mmap[p.cq_off.head])),
.tail = @ptrCast(*u32, @alignCast(@alignOf(u32), &mmap[p.cq_off.tail])),
.mask = @ptrCast(*u32, @alignCast(@alignOf(u32), &mmap[p.cq_off.ring_mask])).*,
.overflow = @ptrCast(*u32, @alignCast(@alignOf(u32), &mmap[p.cq_off.overflow])),
.cqes = cqes[0..p.cq_entries],
};
}
pub fn deinit(self: *CompletionQueue) void {
_ = self;
// A no-op since we now share the mmap with the submission queue.
// Here for symmetry with the submission queue, and for any future feature support.
}
};
pub fn io_uring_prep_nop(sqe: *io_uring_sqe) void {
sqe.* = .{
.opcode = .NOP,
.flags = 0,
.ioprio = 0,
.fd = 0,
.off = 0,
.addr = 0,
.len = 0,
.rw_flags = 0,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.__pad2 = [2]u64{ 0, 0 },
};
}
pub fn io_uring_prep_fsync(sqe: *io_uring_sqe, fd: os.fd_t, flags: u32) void {
sqe.* = .{
.opcode = .FSYNC,
.flags = 0,
.ioprio = 0,
.fd = fd,
.off = 0,
.addr = 0,
.len = 0,
.rw_flags = flags,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.__pad2 = [2]u64{ 0, 0 },
};
}
pub fn io_uring_prep_rw(
op: linux.IORING_OP,
sqe: *io_uring_sqe,
fd: os.fd_t,
addr: u64,
len: usize,
offset: u64,
) void {
sqe.* = .{
.opcode = op,
.flags = 0,
.ioprio = 0,
.fd = fd,
.off = offset,
.addr = addr,
.len = @intCast(u32, len),
.rw_flags = 0,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.__pad2 = [2]u64{ 0, 0 },
};
}
pub fn io_uring_prep_read(sqe: *io_uring_sqe, fd: os.fd_t, buffer: []u8, offset: u64) void {
io_uring_prep_rw(.READ, sqe, fd, @ptrToInt(buffer.ptr), buffer.len, offset);
}
pub fn io_uring_prep_write(sqe: *io_uring_sqe, fd: os.fd_t, buffer: []const u8, offset: u64) void {
io_uring_prep_rw(.WRITE, sqe, fd, @ptrToInt(buffer.ptr), buffer.len, offset);
}
pub fn io_uring_prep_readv(
sqe: *io_uring_sqe,
fd: os.fd_t,
iovecs: []const os.iovec,
offset: u64,
) void {
io_uring_prep_rw(.READV, sqe, fd, @ptrToInt(iovecs.ptr), iovecs.len, offset);
}
pub fn io_uring_prep_writev(
sqe: *io_uring_sqe,
fd: os.fd_t,
iovecs: []const os.iovec_const,
offset: u64,
) void {
io_uring_prep_rw(.WRITEV, sqe, fd, @ptrToInt(iovecs.ptr), iovecs.len, offset);
}
pub fn io_uring_prep_accept(
sqe: *io_uring_sqe,
fd: os.fd_t,
addr: *os.sockaddr,
addrlen: *os.socklen_t,
flags: u32,
) void {
// `addr` holds a pointer to `sockaddr`, and `addr2` holds a pointer to socklen_t`.
// `addr2` maps to `sqe.off` (u64) instead of `sqe.len` (which is only a u32).
io_uring_prep_rw(.ACCEPT, sqe, fd, @ptrToInt(addr), 0, @ptrToInt(addrlen));
sqe.rw_flags = flags;
}
pub fn io_uring_prep_connect(
sqe: *io_uring_sqe,
fd: os.fd_t,
addr: *const os.sockaddr,
addrlen: os.socklen_t,
) void {
// `addrlen` maps to `sqe.off` (u64) instead of `sqe.len` (which is only a u32).
io_uring_prep_rw(.CONNECT, sqe, fd, @ptrToInt(addr), 0, addrlen);
}
pub fn io_uring_prep_epoll_ctl(
sqe: *io_uring_sqe,
epfd: os.fd_t,
fd: os.fd_t,
op: u32,
ev: ?*linux.epoll_event,
) void {
io_uring_prep_rw(.EPOLL_CTL, sqe, epfd, @ptrToInt(ev), op, @intCast(u64, fd));
}
pub fn io_uring_prep_recv(sqe: *io_uring_sqe, fd: os.fd_t, buffer: []u8, flags: u32) void {
io_uring_prep_rw(.RECV, sqe, fd, @ptrToInt(buffer.ptr), buffer.len, 0);
sqe.rw_flags = flags;
}
pub fn io_uring_prep_send(sqe: *io_uring_sqe, fd: os.fd_t, buffer: []const u8, flags: u32) void {
io_uring_prep_rw(.SEND, sqe, fd, @ptrToInt(buffer.ptr), buffer.len, 0);
sqe.rw_flags = flags;
}
pub fn io_uring_prep_openat(
sqe: *io_uring_sqe,
fd: os.fd_t,
path: [*:0]const u8,
flags: u32,
mode: os.mode_t,
) void {
io_uring_prep_rw(.OPENAT, sqe, fd, @ptrToInt(path), mode, 0);
sqe.rw_flags = flags;
}
pub fn io_uring_prep_close(sqe: *io_uring_sqe, fd: os.fd_t) void {
sqe.* = .{
.opcode = .CLOSE,
.flags = 0,
.ioprio = 0,
.fd = fd,
.off = 0,
.addr = 0,
.len = 0,
.rw_flags = 0,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.__pad2 = [2]u64{ 0, 0 },
};
}
pub fn io_uring_prep_timeout(
sqe: *io_uring_sqe,
ts: *const os.__kernel_timespec,
count: u32,
flags: u32,
) void {
io_uring_prep_rw(.TIMEOUT, sqe, -1, @ptrToInt(ts), 1, count);
sqe.rw_flags = flags;
}
pub fn io_uring_prep_timeout_remove(sqe: *io_uring_sqe, timeout_user_data: u64, flags: u32) void {
sqe.* = .{
.opcode = .TIMEOUT_REMOVE,
.flags = 0,
.ioprio = 0,
.fd = -1,
.off = 0,
.addr = timeout_user_data,
.len = 0,
.rw_flags = flags,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.__pad2 = [2]u64{ 0, 0 },
};
}
pub fn io_uring_prep_poll_add(
sqe: *io_uring_sqe,
fd: os.fd_t,
poll_mask: u32,
) void {
io_uring_prep_rw(.POLL_ADD, sqe, fd, @ptrToInt(@as(?*c_void, null)), 0, 0);
sqe.rw_flags = std.mem.nativeToLittle(u32, poll_mask);
}
pub fn io_uring_prep_poll_remove(
sqe: *io_uring_sqe,
target_user_data: u64,
) void {
io_uring_prep_rw(.POLL_REMOVE, sqe, -1, target_user_data, 0, 0);
}
pub fn io_uring_prep_fallocate(
sqe: *io_uring_sqe,
fd: os.fd_t,
mode: i32,
offset: u64,
len: u64,
) void {
sqe.* = .{
.opcode = .FALLOCATE,
.flags = 0,
.ioprio = 0,
.fd = fd,
.off = offset,
.addr = len,
.len = @intCast(u32, mode),
.rw_flags = 0,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.__pad2 = [2]u64{ 0, 0 },
};
}
test "structs/offsets/entries" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
try testing.expectEqual(@as(usize, 120), @sizeOf(io_uring_params));
try testing.expectEqual(@as(usize, 64), @sizeOf(io_uring_sqe));
try testing.expectEqual(@as(usize, 16), @sizeOf(io_uring_cqe));
try testing.expectEqual(0, linux.IORING_OFF_SQ_RING);
try testing.expectEqual(0x8000000, linux.IORING_OFF_CQ_RING);
try testing.expectEqual(0x10000000, linux.IORING_OFF_SQES);
try testing.expectError(error.EntriesZero, IO_Uring.init(0, 0));
try testing.expectError(error.EntriesNotPowerOfTwo, IO_Uring.init(3, 0));
}
test "nop" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
};
defer {
ring.deinit();
testing.expectEqual(@as(os.fd_t, -1), ring.fd) catch @panic("test failed");
}
const sqe = try ring.nop(0xaaaaaaaa);
try testing.expectEqual(io_uring_sqe{
.opcode = .NOP,
.flags = 0,
.ioprio = 0,
.fd = 0,
.off = 0,
.addr = 0,
.len = 0,
.rw_flags = 0,
.user_data = 0xaaaaaaaa,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.__pad2 = [2]u64{ 0, 0 },
}, sqe.*);
try testing.expectEqual(@as(u32, 0), ring.sq.sqe_head);
try testing.expectEqual(@as(u32, 1), ring.sq.sqe_tail);
try testing.expectEqual(@as(u32, 0), ring.sq.tail.*);
try testing.expectEqual(@as(u32, 0), ring.cq.head.*);
try testing.expectEqual(@as(u32, 1), ring.sq_ready());
try testing.expectEqual(@as(u32, 0), ring.cq_ready());
try testing.expectEqual(@as(u32, 1), try ring.submit());
try testing.expectEqual(@as(u32, 1), ring.sq.sqe_head);
try testing.expectEqual(@as(u32, 1), ring.sq.sqe_tail);
try testing.expectEqual(@as(u32, 1), ring.sq.tail.*);
try testing.expectEqual(@as(u32, 0), ring.cq.head.*);
try testing.expectEqual(@as(u32, 0), ring.sq_ready());
try testing.expectEqual(io_uring_cqe{
.user_data = 0xaaaaaaaa,
.res = 0,
.flags = 0,
}, try ring.copy_cqe());
try testing.expectEqual(@as(u32, 1), ring.cq.head.*);
try testing.expectEqual(@as(u32, 0), ring.cq_ready());
const sqe_barrier = try ring.nop(0xbbbbbbbb);
sqe_barrier.flags |= linux.IOSQE_IO_DRAIN;
try testing.expectEqual(@as(u32, 1), try ring.submit());
try testing.expectEqual(io_uring_cqe{
.user_data = 0xbbbbbbbb,
.res = 0,
.flags = 0,
}, try ring.copy_cqe());
try testing.expectEqual(@as(u32, 2), ring.sq.sqe_head);
try testing.expectEqual(@as(u32, 2), ring.sq.sqe_tail);
try testing.expectEqual(@as(u32, 2), ring.sq.tail.*);
try testing.expectEqual(@as(u32, 2), ring.cq.head.*);
}
test "readv" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
};
defer ring.deinit();
const fd = try os.openZ("/dev/zero", os.O_RDONLY | os.O_CLOEXEC, 0);
defer os.close(fd);
// Linux Kernel 5.4 supports IORING_REGISTER_FILES but not sparse fd sets (i.e. an fd of -1).
// Linux Kernel 5.5 adds support for sparse fd sets.
// Compare:
// https://github.com/torvalds/linux/blob/v5.4/fs/io_uring.c#L3119-L3124 vs
// https://github.com/torvalds/linux/blob/v5.8/fs/io_uring.c#L6687-L6691
// We therefore avoid stressing sparse fd sets here:
var registered_fds = [_]os.fd_t{0} ** 1;
const fd_index = 0;
registered_fds[fd_index] = fd;
try ring.register_files(registered_fds[0..]);
var buffer = [_]u8{42} ** 128;
var iovecs = [_]os.iovec{os.iovec{ .iov_base = &buffer, .iov_len = buffer.len }};
const sqe = try ring.readv(0xcccccccc, fd_index, iovecs[0..], 0);
try testing.expectEqual(linux.IORING_OP.READV, sqe.opcode);
sqe.flags |= linux.IOSQE_FIXED_FILE;
try testing.expectError(error.SubmissionQueueFull, ring.nop(0));
try testing.expectEqual(@as(u32, 1), try ring.submit());
try testing.expectEqual(linux.io_uring_cqe{
.user_data = 0xcccccccc,
.res = buffer.len,
.flags = 0,
}, try ring.copy_cqe());
try testing.expectEqualSlices(u8, &([_]u8{0} ** buffer.len), buffer[0..]);
try ring.unregister_files();
}
test "writev/fsync/readv" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(4, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
};
defer ring.deinit();
const path = "test_io_uring_writev_fsync_readv";
const file = try std.fs.cwd().createFile(path, .{ .read = true, .truncate = true });
defer file.close();
defer std.fs.cwd().deleteFile(path) catch {};
const fd = file.handle;
const buffer_write = [_]u8{42} ** 128;
const iovecs_write = [_]os.iovec_const{
os.iovec_const{ .iov_base = &buffer_write, .iov_len = buffer_write.len },
};
var buffer_read = [_]u8{0} ** 128;
var iovecs_read = [_]os.iovec{
os.iovec{ .iov_base = &buffer_read, .iov_len = buffer_read.len },
};
const sqe_writev = try ring.writev(0xdddddddd, fd, iovecs_write[0..], 17);
try testing.expectEqual(linux.IORING_OP.WRITEV, sqe_writev.opcode);
try testing.expectEqual(@as(u64, 17), sqe_writev.off);
sqe_writev.flags |= linux.IOSQE_IO_LINK;
const sqe_fsync = try ring.fsync(0xeeeeeeee, fd, 0);
try testing.expectEqual(linux.IORING_OP.FSYNC, sqe_fsync.opcode);
try testing.expectEqual(fd, sqe_fsync.fd);
sqe_fsync.flags |= linux.IOSQE_IO_LINK;
const sqe_readv = try ring.readv(0xffffffff, fd, iovecs_read[0..], 17);
try testing.expectEqual(linux.IORING_OP.READV, sqe_readv.opcode);
try testing.expectEqual(@as(u64, 17), sqe_readv.off);
try testing.expectEqual(@as(u32, 3), ring.sq_ready());
try testing.expectEqual(@as(u32, 3), try ring.submit_and_wait(3));
try testing.expectEqual(@as(u32, 0), ring.sq_ready());
try testing.expectEqual(@as(u32, 3), ring.cq_ready());
try testing.expectEqual(linux.io_uring_cqe{
.user_data = 0xdddddddd,
.res = buffer_write.len,
.flags = 0,
}, try ring.copy_cqe());
try testing.expectEqual(@as(u32, 2), ring.cq_ready());
try testing.expectEqual(linux.io_uring_cqe{
.user_data = 0xeeeeeeee,
.res = 0,
.flags = 0,
}, try ring.copy_cqe());
try testing.expectEqual(@as(u32, 1), ring.cq_ready());
try testing.expectEqual(linux.io_uring_cqe{
.user_data = 0xffffffff,
.res = buffer_read.len,
.flags = 0,
}, try ring.copy_cqe());
try testing.expectEqual(@as(u32, 0), ring.cq_ready());
try testing.expectEqualSlices(u8, buffer_write[0..], buffer_read[0..]);
}
test "write/read" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(2, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
};
defer ring.deinit();
const path = "test_io_uring_write_read";
const file = try std.fs.cwd().createFile(path, .{ .read = true, .truncate = true });
defer file.close();
defer std.fs.cwd().deleteFile(path) catch {};
const fd = file.handle;
const buffer_write = [_]u8{97} ** 20;
var buffer_read = [_]u8{98} ** 20;
const sqe_write = try ring.write(0x11111111, fd, buffer_write[0..], 10);
try testing.expectEqual(linux.IORING_OP.WRITE, sqe_write.opcode);
try testing.expectEqual(@as(u64, 10), sqe_write.off);
sqe_write.flags |= linux.IOSQE_IO_LINK;
const sqe_read = try ring.read(0x22222222, fd, buffer_read[0..], 10);
try testing.expectEqual(linux.IORING_OP.READ, sqe_read.opcode);
try testing.expectEqual(@as(u64, 10), sqe_read.off);
try testing.expectEqual(@as(u32, 2), try ring.submit());
const cqe_write = try ring.copy_cqe();
const cqe_read = try ring.copy_cqe();
// Prior to Linux Kernel 5.6 this is the only way to test for read/write support:
// https://lwn.net/Articles/809820/
if (cqe_write.err() == .INVAL) return error.SkipZigTest;
if (cqe_read.err() == .INVAL) return error.SkipZigTest;
try testing.expectEqual(linux.io_uring_cqe{
.user_data = 0x11111111,
.res = buffer_write.len,
.flags = 0,
}, cqe_write);
try testing.expectEqual(linux.io_uring_cqe{
.user_data = 0x22222222,
.res = buffer_read.len,
.flags = 0,
}, cqe_read);
try testing.expectEqualSlices(u8, buffer_write[0..], buffer_read[0..]);
}
test "openat" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
};
defer ring.deinit();
const path = "test_io_uring_openat";
defer std.fs.cwd().deleteFile(path) catch {};
const flags: u32 = os.O_CLOEXEC | os.O_RDWR | os.O_CREAT;
const mode: os.mode_t = 0o666;
const sqe_openat = try ring.openat(0x33333333, linux.AT_FDCWD, path, flags, mode);
try testing.expectEqual(io_uring_sqe{
.opcode = .OPENAT,
.flags = 0,
.ioprio = 0,
.fd = linux.AT_FDCWD,
.off = 0,
.addr = @ptrToInt(path),
.len = mode,
.rw_flags = flags,
.user_data = 0x33333333,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.__pad2 = [2]u64{ 0, 0 },
}, sqe_openat.*);
try testing.expectEqual(@as(u32, 1), try ring.submit());
const cqe_openat = try ring.copy_cqe();
try testing.expectEqual(@as(u64, 0x33333333), cqe_openat.user_data);
if (cqe_openat.err() == .INVAL) return error.SkipZigTest;
// AT_FDCWD is not fully supported before kernel 5.6:
// See https://lore.kernel.org/io-uring/20200207155039.12819-1-axboe@kernel.dk/T/
// We use IORING_FEAT_RW_CUR_POS to know if we are pre-5.6 since that feature was added in 5.6.
if (cqe_openat.err() == .BADF and (ring.features & linux.IORING_FEAT_RW_CUR_POS) == 0) {
return error.SkipZigTest;
}
if (cqe_openat.res <= 0) std.debug.print("\ncqe_openat.res={}\n", .{cqe_openat.res});
try testing.expect(cqe_openat.res > 0);
try testing.expectEqual(@as(u32, 0), cqe_openat.flags);
os.close(cqe_openat.res);
}
test "close" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
};
defer ring.deinit();
const path = "test_io_uring_close";
const file = try std.fs.cwd().createFile(path, .{});
errdefer file.close();
defer std.fs.cwd().deleteFile(path) catch {};
const sqe_close = try ring.close(0x44444444, file.handle);
try testing.expectEqual(linux.IORING_OP.CLOSE, sqe_close.opcode);
try testing.expectEqual(file.handle, sqe_close.fd);
try testing.expectEqual(@as(u32, 1), try ring.submit());
const cqe_close = try ring.copy_cqe();
if (cqe_close.err() == .INVAL) return error.SkipZigTest;
try testing.expectEqual(linux.io_uring_cqe{
.user_data = 0x44444444,
.res = 0,
.flags = 0,
}, cqe_close);
}
test "accept/connect/send/recv" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(16, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
};
defer ring.deinit();
const address = try net.Address.parseIp4("127.0.0.1", 3131);
const kernel_backlog = 1;
const server = try os.socket(address.any.family, os.SOCK_STREAM | os.SOCK_CLOEXEC, 0);
defer os.close(server);
try os.setsockopt(server, os.SOL_SOCKET, os.SO_REUSEADDR, &mem.toBytes(@as(c_int, 1)));
try os.bind(server, &address.any, address.getOsSockLen());
try os.listen(server, kernel_backlog);
const buffer_send = [_]u8{ 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 };
var buffer_recv = [_]u8{ 0, 1, 0, 1, 0 };
var accept_addr: os.sockaddr = undefined;
var accept_addr_len: os.socklen_t = @sizeOf(@TypeOf(accept_addr));
_ = try ring.accept(0xaaaaaaaa, server, &accept_addr, &accept_addr_len, 0);
try testing.expectEqual(@as(u32, 1), try ring.submit());
const client = try os.socket(address.any.family, os.SOCK_STREAM | os.SOCK_CLOEXEC, 0);
defer os.close(client);
_ = try ring.connect(0xcccccccc, client, &address.any, address.getOsSockLen());
try testing.expectEqual(@as(u32, 1), try ring.submit());
var cqe_accept = try ring.copy_cqe();
if (cqe_accept.err() == .INVAL) return error.SkipZigTest;
var cqe_connect = try ring.copy_cqe();
if (cqe_connect.err() == .INVAL) return error.SkipZigTest;
// The accept/connect CQEs may arrive in any order, the connect CQE will sometimes come first:
if (cqe_accept.user_data == 0xcccccccc and cqe_connect.user_data == 0xaaaaaaaa) {
const a = cqe_accept;
const b = cqe_connect;
cqe_accept = b;
cqe_connect = a;
}
try testing.expectEqual(@as(u64, 0xaaaaaaaa), cqe_accept.user_data);
if (cqe_accept.res <= 0) std.debug.print("\ncqe_accept.res={}\n", .{cqe_accept.res});
try testing.expect(cqe_accept.res > 0);
try testing.expectEqual(@as(u32, 0), cqe_accept.flags);
try testing.expectEqual(linux.io_uring_cqe{
.user_data = 0xcccccccc,
.res = 0,
.flags = 0,
}, cqe_connect);
const send = try ring.send(0xeeeeeeee, client, buffer_send[0..], 0);
send.flags |= linux.IOSQE_IO_LINK;
_ = try ring.recv(0xffffffff, cqe_accept.res, buffer_recv[0..], 0);
try testing.expectEqual(@as(u32, 2), try ring.submit());
const cqe_send = try ring.copy_cqe();
if (cqe_send.err() == .INVAL) return error.SkipZigTest;
try testing.expectEqual(linux.io_uring_cqe{
.user_data = 0xeeeeeeee,
.res = buffer_send.len,
.flags = 0,
}, cqe_send);
const cqe_recv = try ring.copy_cqe();
if (cqe_recv.err() == .INVAL) return error.SkipZigTest;
try testing.expectEqual(linux.io_uring_cqe{
.user_data = 0xffffffff,
.res = buffer_recv.len,
.flags = 0,
}, cqe_recv);
try testing.expectEqualSlices(u8, buffer_send[0..buffer_recv.len], buffer_recv[0..]);
}
test "timeout (after a relative time)" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
};
defer ring.deinit();
const ms = 10;
const margin = 5;
const ts = os.__kernel_timespec{ .tv_sec = 0, .tv_nsec = ms * 1000000 };
const started = std.time.milliTimestamp();
const sqe = try ring.timeout(0x55555555, &ts, 0, 0);
try testing.expectEqual(linux.IORING_OP.TIMEOUT, sqe.opcode);
try testing.expectEqual(@as(u32, 1), try ring.submit());
const cqe = try ring.copy_cqe();
const stopped = std.time.milliTimestamp();
try testing.expectEqual(linux.io_uring_cqe{
.user_data = 0x55555555,
.res = -@as(i32, @enumToInt(linux.E.TIME)),
.flags = 0,
}, cqe);
// Tests should not depend on timings: skip test if outside margin.
if (!std.math.approxEqAbs(f64, ms, @intToFloat(f64, stopped - started), margin)) return error.SkipZigTest;
}
test "timeout (after a number of completions)" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(2, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
};
defer ring.deinit();
const ts = os.__kernel_timespec{ .tv_sec = 3, .tv_nsec = 0 };
const count_completions: u64 = 1;
const sqe_timeout = try ring.timeout(0x66666666, &ts, count_completions, 0);
try testing.expectEqual(linux.IORING_OP.TIMEOUT, sqe_timeout.opcode);
try testing.expectEqual(count_completions, sqe_timeout.off);
_ = try ring.nop(0x77777777);
try testing.expectEqual(@as(u32, 2), try ring.submit());
const cqe_nop = try ring.copy_cqe();
try testing.expectEqual(linux.io_uring_cqe{
.user_data = 0x77777777,
.res = 0,
.flags = 0,
}, cqe_nop);
const cqe_timeout = try ring.copy_cqe();
try testing.expectEqual(linux.io_uring_cqe{
.user_data = 0x66666666,
.res = 0,
.flags = 0,
}, cqe_timeout);
}
test "timeout_remove" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(2, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
};
defer ring.deinit();
const ts = os.__kernel_timespec{ .tv_sec = 3, .tv_nsec = 0 };
const sqe_timeout = try ring.timeout(0x88888888, &ts, 0, 0);
try testing.expectEqual(linux.IORING_OP.TIMEOUT, sqe_timeout.opcode);
try testing.expectEqual(@as(u64, 0x88888888), sqe_timeout.user_data);
const sqe_timeout_remove = try ring.timeout_remove(0x99999999, 0x88888888, 0);
try testing.expectEqual(linux.IORING_OP.TIMEOUT_REMOVE, sqe_timeout_remove.opcode);
try testing.expectEqual(@as(u64, 0x88888888), sqe_timeout_remove.addr);
try testing.expectEqual(@as(u64, 0x99999999), sqe_timeout_remove.user_data);
try testing.expectEqual(@as(u32, 2), try ring.submit());
const cqe_timeout = try ring.copy_cqe();
// IORING_OP_TIMEOUT_REMOVE is not supported by this kernel version:
// Timeout remove operations set the fd to -1, which results in EBADF before EINVAL.
// We use IORING_FEAT_RW_CUR_POS as a safety check here to make sure we are at least pre-5.6.
// We don't want to skip this test for newer kernels.
if (cqe_timeout.user_data == 0x99999999 and
cqe_timeout.err() == .BADF and
(ring.features & linux.IORING_FEAT_RW_CUR_POS) == 0)
{
return error.SkipZigTest;
}
try testing.expectEqual(linux.io_uring_cqe{
.user_data = 0x88888888,
.res = -@as(i32, @enumToInt(linux.E.CANCELED)),
.flags = 0,
}, cqe_timeout);
const cqe_timeout_remove = try ring.copy_cqe();
try testing.expectEqual(linux.io_uring_cqe{
.user_data = 0x99999999,
.res = 0,
.flags = 0,
}, cqe_timeout_remove);
}
test "fallocate" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
};
defer ring.deinit();
const path = "test_io_uring_fallocate";
const file = try std.fs.cwd().createFile(path, .{ .truncate = true, .mode = 0o666 });
defer file.close();
defer std.fs.cwd().deleteFile(path) catch {};
try testing.expectEqual(@as(u64, 0), (try file.stat()).size);
const len: u64 = 65536;
const sqe = try ring.fallocate(0xaaaaaaaa, file.handle, 0, 0, len);
try testing.expectEqual(linux.IORING_OP.FALLOCATE, sqe.opcode);
try testing.expectEqual(file.handle, sqe.fd);
try testing.expectEqual(@as(u32, 1), try ring.submit());
const cqe = try ring.copy_cqe();
switch (cqe.err()) {
.SUCCESS => {},
// This kernel's io_uring does not yet implement fallocate():
.INVAL => return error.SkipZigTest,
// This kernel does not implement fallocate():
.NOSYS => return error.SkipZigTest,
// The filesystem containing the file referred to by fd does not support this operation;
// or the mode is not supported by the filesystem containing the file referred to by fd:
.OPNOTSUPP => return error.SkipZigTest,
else => |errno| std.debug.panic("unhandled errno: {}", .{errno}),
}
try testing.expectEqual(linux.io_uring_cqe{
.user_data = 0xaaaaaaaa,
.res = 0,
.flags = 0,
}, cqe);
try testing.expectEqual(len, (try file.stat()).size);
}