zig/src/Sema.zig
2024-04-06 12:57:51 -07:00

39248 lines
1.6 MiB

//! Semantic analysis of ZIR instructions.
//! Shared to every Block. Stored on the stack.
//! State used for compiling a ZIR into AIR.
//! Transforms untyped ZIR instructions into semantically-analyzed AIR instructions.
//! Does type checking, comptime control flow, and safety-check generation.
//! This is the the heart of the Zig compiler.
mod: *Module,
/// Alias to `mod.gpa`.
gpa: Allocator,
/// Points to the temporary arena allocator of the Sema.
/// This arena will be cleared when the sema is destroyed.
arena: Allocator,
code: Zir,
air_instructions: std.MultiArrayList(Air.Inst) = .{},
air_extra: std.ArrayListUnmanaged(u32) = .{},
/// Maps ZIR to AIR.
inst_map: InstMap = .{},
/// When analyzing an inline function call, owner_decl is the Decl of the caller
/// and `src_decl` of `Block` is the `Decl` of the callee.
/// This `Decl` owns the arena memory of this `Sema`.
owner_decl: *Decl,
owner_decl_index: InternPool.DeclIndex,
/// For an inline or comptime function call, this will be the root parent function
/// which contains the callsite. Corresponds to `owner_decl`.
/// This could be `none`, a `func_decl`, or a `func_instance`.
owner_func_index: InternPool.Index,
/// The function this ZIR code is the body of, according to the source code.
/// This starts out the same as `owner_func_index` and then diverges in the case of
/// an inline or comptime function call.
/// This could be `none`, a `func_decl`, or a `func_instance`.
func_index: InternPool.Index,
/// Whether the type of func_index has a calling convention of `.Naked`.
func_is_naked: bool,
/// Used to restore the error return trace when returning a non-error from a function.
error_return_trace_index_on_fn_entry: Air.Inst.Ref = .none,
comptime_err_ret_trace: *std.ArrayList(Module.SrcLoc),
/// When semantic analysis needs to know the return type of the function whose body
/// is being analyzed, this `Type` should be used instead of going through `func`.
/// This will correctly handle the case of a comptime/inline function call of a
/// generic function which uses a type expression for the return type.
/// The type will be `void` in the case that `func` is `null`.
fn_ret_ty: Type,
/// In case of the return type being an error union with an inferred error
/// set, this is the inferred error set. `null` otherwise. Allocated with
/// `Sema.arena`.
fn_ret_ty_ies: ?*InferredErrorSet,
branch_quota: u32 = default_branch_quota,
branch_count: u32 = 0,
/// Populated when returning `error.ComptimeBreak`. Used to communicate the
/// break instruction up the stack to find the corresponding Block.
comptime_break_inst: Zir.Inst.Index = undefined,
decl_val_table: std.AutoHashMapUnmanaged(InternPool.DeclIndex, Air.Inst.Ref) = .{},
/// When doing a generic function instantiation, this array collects a value
/// for each parameter of the generic owner. `none` for non-comptime parameters.
/// This is a separate array from `block.params` so that it can be passed
/// directly to `comptime_args` when calling `InternPool.getFuncInstance`.
/// This memory is allocated by a parent `Sema` in the temporary arena, and is
/// used only to add a `func_instance` into the `InternPool`.
comptime_args: []InternPool.Index = &.{},
/// Used to communicate from a generic function instantiation to the logic that
/// creates a generic function instantiation value in `funcCommon`.
generic_owner: InternPool.Index = .none,
/// When `generic_owner` is not none, this contains the generic function
/// instantiation callsite so that compile errors on the parameter types of the
/// instantiation can point back to the instantiation site in addition to the
/// declaration site.
generic_call_src: LazySrcLoc = .unneeded,
/// Corresponds to `generic_call_src`.
generic_call_decl: InternPool.OptionalDeclIndex = .none,
/// The key is types that must be fully resolved prior to machine code
/// generation pass. Types are added to this set when resolving them
/// immediately could cause a dependency loop, but they do need to be resolved
/// before machine code generation passes process the AIR.
/// It would work fine if this were an array list instead of an array hash map.
/// I chose array hash map with the intention to save time by omitting
/// duplicates.
types_to_resolve: std.AutoArrayHashMapUnmanaged(InternPool.Index, void) = .{},
/// These are lazily created runtime blocks from block_inline instructions.
/// They are created when an break_inline passes through a runtime condition, because
/// Sema must convert comptime control flow to runtime control flow, which means
/// breaking from a block.
post_hoc_blocks: std.AutoHashMapUnmanaged(Air.Inst.Index, *LabeledBlock) = .{},
/// Populated with the last compile error created.
err: ?*Module.ErrorMsg = null,
/// Set to true when analyzing a func type instruction so that nested generic
/// function types will emit generic poison instead of a partial type.
no_partial_func_ty: bool = false,
/// The temporary arena is used for the memory of the `InferredAlloc` values
/// here so the values can be dropped without any cleanup.
unresolved_inferred_allocs: std.AutoArrayHashMapUnmanaged(Air.Inst.Index, InferredAlloc) = .{},
/// This is populated when `@setAlignStack` occurs so that if there is a duplicate
/// one encountered, the conflicting source location can be shown.
prev_stack_alignment_src: ?LazySrcLoc = null,
/// While analyzing a type which has a special InternPool index, this is set to the index at which
/// the struct/enum/union type created should be placed. Otherwise, it is `.none`.
builtin_type_target_index: InternPool.Index = .none,
/// Links every pointer derived from a base `alloc` back to that `alloc`. Used
/// to detect comptime-known `const`s.
/// TODO: ZIR liveness analysis would allow us to remove elements from this map.
base_allocs: std.AutoHashMapUnmanaged(Air.Inst.Index, Air.Inst.Index) = .{},
/// Runtime `alloc`s are placed in this map to track all comptime-known writes
/// before the corresponding `make_ptr_const` instruction.
/// If any store to the alloc depends on a runtime condition or stores a runtime
/// value, the corresponding element in this map is erased, to indicate that the
/// alloc is not comptime-known.
/// If the alloc remains in this map when `make_ptr_const` is reached, its value
/// is comptime-known, and all stores to the pointer must be applied at comptime
/// to determine the comptime value.
/// Backed by gpa.
maybe_comptime_allocs: std.AutoHashMapUnmanaged(Air.Inst.Index, MaybeComptimeAlloc) = .{},
/// Comptime-mutable allocs, and any comptime allocs which reference it, are
/// stored as elements of this array.
/// Pointers to such memory are represented via an index into this array.
/// Backed by gpa.
comptime_allocs: std.ArrayListUnmanaged(ComptimeAlloc) = .{},
const MaybeComptimeAlloc = struct {
/// The runtime index of the `alloc` instruction.
runtime_index: Value.RuntimeIndex,
/// Backed by sema.arena. Tracks all comptime-known stores to this `alloc`. Due to
/// RLS, a single comptime-known allocation may have arbitrarily many stores.
/// This may also contain `set_union_tag` instructions.
stores: std.MultiArrayList(struct {
inst: Air.Inst.Index,
src_decl: InternPool.DeclIndex,
src: LazySrcLoc,
}) = .{},
/// Backed by sema.arena. Contains instructions such as `optional_payload_ptr_set`
/// which have side effects so will not be elided by Liveness: we must rewrite these
/// instructions to be nops instead of relying on Liveness.
non_elideable_pointers: std.ArrayListUnmanaged(Air.Inst.Index) = .{},
};
const ComptimeAlloc = struct {
val: MutableValue,
is_const: bool,
/// `.none` indicates that the alignment is the natural alignment of `val`.
alignment: Alignment,
/// This is the `runtime_index` at the point of this allocation. If an store
/// to this alloc ever occurs with a runtime index greater than this one, it
/// is behind a runtime condition, so a compile error will be emitted.
runtime_index: Value.RuntimeIndex,
};
fn newComptimeAlloc(sema: *Sema, block: *Block, ty: Type, alignment: Alignment) !ComptimeAllocIndex {
const idx = sema.comptime_allocs.items.len;
try sema.comptime_allocs.append(sema.gpa, .{
.val = .{ .interned = try sema.mod.intern(.{ .undef = ty.toIntern() }) },
.is_const = false,
.alignment = alignment,
.runtime_index = block.runtime_index,
});
return @enumFromInt(idx);
}
pub fn getComptimeAlloc(sema: *Sema, idx: ComptimeAllocIndex) *ComptimeAlloc {
return &sema.comptime_allocs.items[@intFromEnum(idx)];
}
const std = @import("std");
const math = std.math;
const mem = std.mem;
const Allocator = mem.Allocator;
const assert = std.debug.assert;
const log = std.log.scoped(.sema);
const Sema = @This();
const Value = @import("Value.zig");
const MutableValue = @import("mutable_value.zig").MutableValue;
const Type = @import("type.zig").Type;
const Air = @import("Air.zig");
const Zir = std.zig.Zir;
const Module = @import("Module.zig");
const trace = @import("tracy.zig").trace;
const Namespace = Module.Namespace;
const CompileError = Module.CompileError;
const SemaError = Module.SemaError;
const Decl = Module.Decl;
const LazySrcLoc = std.zig.LazySrcLoc;
const RangeSet = @import("RangeSet.zig");
const target_util = @import("target.zig");
const Package = @import("Package.zig");
const crash_report = @import("crash_report.zig");
const build_options = @import("build_options");
const Compilation = @import("Compilation.zig");
const InternPool = @import("InternPool.zig");
const Alignment = InternPool.Alignment;
const ComptimeAllocIndex = InternPool.ComptimeAllocIndex;
pub const default_branch_quota = 1000;
pub const default_reference_trace_len = 2;
pub const InferredErrorSet = struct {
/// The function body from which this error set originates.
/// This is `none` in the case of a comptime/inline function call, corresponding to
/// `InternPool.Index.adhoc_inferred_error_set_type`.
/// The function's resolved error set is not set until analysis of the
/// function body completes.
func: InternPool.Index,
/// All currently known errors that this error set contains. This includes
/// direct additions via `return error.Foo;`, and possibly also errors that
/// are returned from any dependent functions.
errors: NameMap = .{},
/// Other inferred error sets which this inferred error set should include.
inferred_error_sets: std.AutoArrayHashMapUnmanaged(InternPool.Index, void) = .{},
/// The regular error set created by resolving this inferred error set.
resolved: InternPool.Index = .none,
pub const NameMap = std.AutoArrayHashMapUnmanaged(InternPool.NullTerminatedString, void);
pub fn addErrorSet(
self: *InferredErrorSet,
err_set_ty: Type,
ip: *InternPool,
arena: Allocator,
) !void {
switch (err_set_ty.toIntern()) {
.anyerror_type => self.resolved = .anyerror_type,
.adhoc_inferred_error_set_type => {}, // Adding an inferred error set to itself.
else => switch (ip.indexToKey(err_set_ty.toIntern())) {
.error_set_type => |error_set_type| {
for (error_set_type.names.get(ip)) |name| {
try self.errors.put(arena, name, {});
}
},
.inferred_error_set_type => {
try self.inferred_error_sets.put(arena, err_set_ty.toIntern(), {});
},
else => unreachable,
},
}
}
};
/// Stores the mapping from `Zir.Inst.Index -> Air.Inst.Ref`, which is used by sema to resolve
/// instructions during analysis.
/// Instead of a hash table approach, InstMap is simply a slice that is indexed into using the
/// zir instruction index and a start offset. An index is not pressent in the map if the value
/// at the index is `Air.Inst.Ref.none`.
/// `ensureSpaceForInstructions` can be called to force InstMap to have a mapped range that
/// includes all instructions in a slice. After calling this function, `putAssumeCapacity*` can
/// be called safely for any of the instructions passed in.
pub const InstMap = struct {
items: []Air.Inst.Ref = &[_]Air.Inst.Ref{},
start: Zir.Inst.Index = @enumFromInt(0),
pub fn deinit(map: InstMap, allocator: mem.Allocator) void {
allocator.free(map.items);
}
pub fn get(map: InstMap, key: Zir.Inst.Index) ?Air.Inst.Ref {
if (!map.contains(key)) return null;
return map.items[@intFromEnum(key) - @intFromEnum(map.start)];
}
pub fn putAssumeCapacity(
map: *InstMap,
key: Zir.Inst.Index,
ref: Air.Inst.Ref,
) void {
map.items[@intFromEnum(key) - @intFromEnum(map.start)] = ref;
}
pub fn putAssumeCapacityNoClobber(
map: *InstMap,
key: Zir.Inst.Index,
ref: Air.Inst.Ref,
) void {
assert(!map.contains(key));
map.putAssumeCapacity(key, ref);
}
pub const GetOrPutResult = struct {
value_ptr: *Air.Inst.Ref,
found_existing: bool,
};
pub fn getOrPutAssumeCapacity(
map: *InstMap,
key: Zir.Inst.Index,
) GetOrPutResult {
const index = @intFromEnum(key) - @intFromEnum(map.start);
return GetOrPutResult{
.value_ptr = &map.items[index],
.found_existing = map.items[index] != .none,
};
}
pub fn remove(map: InstMap, key: Zir.Inst.Index) bool {
if (!map.contains(key)) return false;
map.items[@intFromEnum(key) - @intFromEnum(map.start)] = .none;
return true;
}
pub fn contains(map: InstMap, key: Zir.Inst.Index) bool {
return map.items[@intFromEnum(key) - @intFromEnum(map.start)] != .none;
}
pub fn ensureSpaceForInstructions(
map: *InstMap,
allocator: mem.Allocator,
insts: []const Zir.Inst.Index,
) !void {
const start, const end = mem.minMax(u32, @ptrCast(insts));
const map_start = @intFromEnum(map.start);
if (map_start <= start and end < map.items.len + map_start)
return;
const old_start = if (map.items.len == 0) start else map_start;
var better_capacity = map.items.len;
var better_start = old_start;
while (true) {
const extra_capacity = better_capacity / 2 + 16;
better_capacity += extra_capacity;
better_start -|= @intCast(extra_capacity / 2);
if (better_start <= start and end < better_capacity + better_start)
break;
}
const start_diff = old_start - better_start;
const new_items = try allocator.alloc(Air.Inst.Ref, better_capacity);
@memset(new_items[0..start_diff], .none);
@memcpy(new_items[start_diff..][0..map.items.len], map.items);
@memset(new_items[start_diff + map.items.len ..], .none);
allocator.free(map.items);
map.items = new_items;
map.start = @enumFromInt(better_start);
}
};
/// This is the context needed to semantically analyze ZIR instructions and
/// produce AIR instructions.
/// This is a temporary structure stored on the stack; references to it are valid only
/// during semantic analysis of the block.
pub const Block = struct {
parent: ?*Block,
/// Shared among all child blocks.
sema: *Sema,
/// The namespace to use for lookups from this source block
/// When analyzing fields, this is different from src_decl.src_namespace.
namespace: InternPool.NamespaceIndex,
/// The AIR instructions generated for this block.
instructions: std.ArrayListUnmanaged(Air.Inst.Index),
// `param` instructions are collected here to be used by the `func` instruction.
/// When doing a generic function instantiation, this array collects a type
/// for each *runtime-known* parameter. This array corresponds to the instance
/// function type, while `Sema.comptime_args` corresponds to the generic owner
/// function type.
/// This memory is allocated by a parent `Sema` in the temporary arena, and is
/// used to add a `func_instance` into the `InternPool`.
params: std.MultiArrayList(Param) = .{},
label: ?*Label = null,
inlining: ?*Inlining,
/// If runtime_index is not 0 then one of these is guaranteed to be non null.
runtime_cond: ?Module.SrcLoc = null,
runtime_loop: ?Module.SrcLoc = null,
/// This Decl is the Decl according to the Zig source code corresponding to this Block.
/// This can vary during inline or comptime function calls. See `Sema.owner_decl`
/// for the one that will be the same for all Block instances.
src_decl: InternPool.DeclIndex,
/// Non zero if a non-inline loop or a runtime conditional have been encountered.
/// Stores to comptime variables are only allowed when var.runtime_index <= runtime_index.
runtime_index: Value.RuntimeIndex = .zero,
inline_block: Zir.Inst.OptionalIndex = .none,
comptime_reason: ?*const ComptimeReason = null,
// TODO is_comptime and comptime_reason should probably be merged together.
is_comptime: bool,
is_typeof: bool = false,
/// Keep track of the active error return trace index around blocks so that we can correctly
/// pop the error trace upon block exit.
error_return_trace_index: Air.Inst.Ref = .none,
/// when null, it is determined by build mode, changed by @setRuntimeSafety
want_safety: ?bool = null,
/// What mode to generate float operations in, set by @setFloatMode
float_mode: std.builtin.FloatMode = .strict,
c_import_buf: ?*std.ArrayList(u8) = null,
/// If not `null`, this boolean is set when a `dbg_var_ptr` or `dbg_var_val`
/// instruction is emitted. It signals that the innermost lexically
/// enclosing `block`/`block_inline` should be translated into a real AIR
/// `block` in order for codegen to match lexical scoping for debug vars.
need_debug_scope: ?*bool = null,
const ComptimeReason = union(enum) {
c_import: struct {
block: *Block,
src: LazySrcLoc,
},
comptime_ret_ty: struct {
block: *Block,
func: Air.Inst.Ref,
func_src: LazySrcLoc,
return_ty: Type,
},
fn explain(cr: ComptimeReason, sema: *Sema, msg: ?*Module.ErrorMsg) !void {
const parent = msg orelse return;
const mod = sema.mod;
const prefix = "expression is evaluated at comptime because ";
switch (cr) {
.c_import => |ci| {
try sema.errNote(ci.block, ci.src, parent, prefix ++ "it is inside a @cImport", .{});
},
.comptime_ret_ty => |rt| {
const src_loc = if (try sema.funcDeclSrc(rt.func)) |fn_decl| blk: {
var src_loc = fn_decl.srcLoc(mod);
src_loc.lazy = .{ .node_offset_fn_type_ret_ty = 0 };
break :blk src_loc;
} else blk: {
const src_decl = mod.declPtr(rt.block.src_decl);
break :blk src_decl.toSrcLoc(rt.func_src, mod);
};
if (rt.return_ty.isGenericPoison()) {
return mod.errNoteNonLazy(src_loc, parent, prefix ++ "the generic function was instantiated with a comptime-only return type", .{});
}
try mod.errNoteNonLazy(
src_loc,
parent,
prefix ++ "the function returns a comptime-only type '{}'",
.{rt.return_ty.fmt(mod)},
);
try sema.explainWhyTypeIsComptime(parent, src_loc, rt.return_ty);
},
}
}
};
const Param = struct {
/// `none` means `anytype`.
ty: InternPool.Index,
is_comptime: bool,
name: Zir.NullTerminatedString,
};
/// This `Block` maps a block ZIR instruction to the corresponding
/// AIR instruction for break instruction analysis.
pub const Label = struct {
zir_block: Zir.Inst.Index,
merges: Merges,
};
/// This `Block` indicates that an inline function call is happening
/// and return instructions should be analyzed as a break instruction
/// to this AIR block instruction.
/// It is shared among all the blocks in an inline or comptime called
/// function.
pub const Inlining = struct {
call_block: *Block,
call_src: LazySrcLoc,
has_comptime_args: bool,
func: InternPool.Index,
comptime_result: Air.Inst.Ref,
merges: Merges,
};
pub const Merges = struct {
block_inst: Air.Inst.Index,
/// Separate array list from break_inst_list so that it can be passed directly
/// to resolvePeerTypes.
results: std.ArrayListUnmanaged(Air.Inst.Ref),
/// Keeps track of the break instructions so that the operand can be replaced
/// if we need to add type coercion at the end of block analysis.
/// Same indexes, capacity, length as `results`.
br_list: std.ArrayListUnmanaged(Air.Inst.Index),
/// Keeps the source location of the rhs operand of the break instruction,
/// to enable more precise compile errors.
/// Same indexes, capacity, length as `results`.
src_locs: std.ArrayListUnmanaged(?LazySrcLoc),
pub fn deinit(merges: *@This(), allocator: mem.Allocator) void {
merges.results.deinit(allocator);
merges.br_list.deinit(allocator);
merges.src_locs.deinit(allocator);
}
};
/// For debugging purposes.
pub fn dump(block: *Block, mod: Module) void {
Zir.dumpBlock(mod, block);
}
pub fn makeSubBlock(parent: *Block) Block {
return .{
.parent = parent,
.sema = parent.sema,
.src_decl = parent.src_decl,
.namespace = parent.namespace,
.instructions = .{},
.label = null,
.inlining = parent.inlining,
.is_comptime = parent.is_comptime,
.comptime_reason = parent.comptime_reason,
.is_typeof = parent.is_typeof,
.runtime_cond = parent.runtime_cond,
.runtime_loop = parent.runtime_loop,
.runtime_index = parent.runtime_index,
.want_safety = parent.want_safety,
.float_mode = parent.float_mode,
.c_import_buf = parent.c_import_buf,
.error_return_trace_index = parent.error_return_trace_index,
.need_debug_scope = parent.need_debug_scope,
};
}
pub fn wantSafety(block: *const Block) bool {
return block.want_safety orelse switch (block.sema.mod.optimizeMode()) {
.Debug => true,
.ReleaseSafe => true,
.ReleaseFast => false,
.ReleaseSmall => false,
};
}
pub fn getFileScope(block: *Block, mod: *Module) *Module.File {
return mod.namespacePtr(block.namespace).file_scope;
}
fn addTy(
block: *Block,
tag: Air.Inst.Tag,
ty: Type,
) error{OutOfMemory}!Air.Inst.Ref {
return block.addInst(.{
.tag = tag,
.data = .{ .ty = ty },
});
}
fn addTyOp(
block: *Block,
tag: Air.Inst.Tag,
ty: Type,
operand: Air.Inst.Ref,
) error{OutOfMemory}!Air.Inst.Ref {
return block.addInst(.{
.tag = tag,
.data = .{ .ty_op = .{
.ty = Air.internedToRef(ty.toIntern()),
.operand = operand,
} },
});
}
fn addBitCast(block: *Block, ty: Type, operand: Air.Inst.Ref) Allocator.Error!Air.Inst.Ref {
return block.addInst(.{
.tag = .bitcast,
.data = .{ .ty_op = .{
.ty = Air.internedToRef(ty.toIntern()),
.operand = operand,
} },
});
}
fn addNoOp(block: *Block, tag: Air.Inst.Tag) error{OutOfMemory}!Air.Inst.Ref {
return block.addInst(.{
.tag = tag,
.data = .{ .no_op = {} },
});
}
fn addUnOp(
block: *Block,
tag: Air.Inst.Tag,
operand: Air.Inst.Ref,
) error{OutOfMemory}!Air.Inst.Ref {
return block.addInst(.{
.tag = tag,
.data = .{ .un_op = operand },
});
}
fn addBr(
block: *Block,
target_block: Air.Inst.Index,
operand: Air.Inst.Ref,
) error{OutOfMemory}!Air.Inst.Ref {
return block.addInst(.{
.tag = .br,
.data = .{ .br = .{
.block_inst = target_block,
.operand = operand,
} },
});
}
fn addBinOp(
block: *Block,
tag: Air.Inst.Tag,
lhs: Air.Inst.Ref,
rhs: Air.Inst.Ref,
) error{OutOfMemory}!Air.Inst.Ref {
return block.addInst(.{
.tag = tag,
.data = .{ .bin_op = .{
.lhs = lhs,
.rhs = rhs,
} },
});
}
fn addStructFieldPtr(
block: *Block,
struct_ptr: Air.Inst.Ref,
field_index: u32,
ptr_field_ty: Type,
) !Air.Inst.Ref {
const ty = Air.internedToRef(ptr_field_ty.toIntern());
const tag: Air.Inst.Tag = switch (field_index) {
0 => .struct_field_ptr_index_0,
1 => .struct_field_ptr_index_1,
2 => .struct_field_ptr_index_2,
3 => .struct_field_ptr_index_3,
else => {
return block.addInst(.{
.tag = .struct_field_ptr,
.data = .{ .ty_pl = .{
.ty = ty,
.payload = try block.sema.addExtra(Air.StructField{
.struct_operand = struct_ptr,
.field_index = field_index,
}),
} },
});
},
};
return block.addInst(.{
.tag = tag,
.data = .{ .ty_op = .{
.ty = ty,
.operand = struct_ptr,
} },
});
}
fn addStructFieldVal(
block: *Block,
struct_val: Air.Inst.Ref,
field_index: u32,
field_ty: Type,
) !Air.Inst.Ref {
return block.addInst(.{
.tag = .struct_field_val,
.data = .{ .ty_pl = .{
.ty = Air.internedToRef(field_ty.toIntern()),
.payload = try block.sema.addExtra(Air.StructField{
.struct_operand = struct_val,
.field_index = field_index,
}),
} },
});
}
fn addSliceElemPtr(
block: *Block,
slice: Air.Inst.Ref,
elem_index: Air.Inst.Ref,
elem_ptr_ty: Type,
) !Air.Inst.Ref {
return block.addInst(.{
.tag = .slice_elem_ptr,
.data = .{ .ty_pl = .{
.ty = Air.internedToRef(elem_ptr_ty.toIntern()),
.payload = try block.sema.addExtra(Air.Bin{
.lhs = slice,
.rhs = elem_index,
}),
} },
});
}
fn addPtrElemPtr(
block: *Block,
array_ptr: Air.Inst.Ref,
elem_index: Air.Inst.Ref,
elem_ptr_ty: Type,
) !Air.Inst.Ref {
const ty_ref = Air.internedToRef(elem_ptr_ty.toIntern());
return block.addPtrElemPtrTypeRef(array_ptr, elem_index, ty_ref);
}
fn addPtrElemPtrTypeRef(
block: *Block,
array_ptr: Air.Inst.Ref,
elem_index: Air.Inst.Ref,
elem_ptr_ty: Air.Inst.Ref,
) !Air.Inst.Ref {
return block.addInst(.{
.tag = .ptr_elem_ptr,
.data = .{ .ty_pl = .{
.ty = elem_ptr_ty,
.payload = try block.sema.addExtra(Air.Bin{
.lhs = array_ptr,
.rhs = elem_index,
}),
} },
});
}
fn addCmpVector(block: *Block, lhs: Air.Inst.Ref, rhs: Air.Inst.Ref, cmp_op: std.math.CompareOperator) !Air.Inst.Ref {
const sema = block.sema;
const mod = sema.mod;
return block.addInst(.{
.tag = if (block.float_mode == .optimized) .cmp_vector_optimized else .cmp_vector,
.data = .{ .ty_pl = .{
.ty = Air.internedToRef((try mod.vectorType(.{
.len = sema.typeOf(lhs).vectorLen(mod),
.child = .bool_type,
})).toIntern()),
.payload = try sema.addExtra(Air.VectorCmp{
.lhs = lhs,
.rhs = rhs,
.op = Air.VectorCmp.encodeOp(cmp_op),
}),
} },
});
}
fn addAggregateInit(
block: *Block,
aggregate_ty: Type,
elements: []const Air.Inst.Ref,
) !Air.Inst.Ref {
const sema = block.sema;
const ty_ref = Air.internedToRef(aggregate_ty.toIntern());
try sema.air_extra.ensureUnusedCapacity(sema.gpa, elements.len);
const extra_index: u32 = @intCast(sema.air_extra.items.len);
sema.appendRefsAssumeCapacity(elements);
return block.addInst(.{
.tag = .aggregate_init,
.data = .{ .ty_pl = .{
.ty = ty_ref,
.payload = extra_index,
} },
});
}
fn addUnionInit(
block: *Block,
union_ty: Type,
field_index: u32,
init: Air.Inst.Ref,
) !Air.Inst.Ref {
return block.addInst(.{
.tag = .union_init,
.data = .{ .ty_pl = .{
.ty = Air.internedToRef(union_ty.toIntern()),
.payload = try block.sema.addExtra(Air.UnionInit{
.field_index = field_index,
.init = init,
}),
} },
});
}
pub fn addInst(block: *Block, inst: Air.Inst) error{OutOfMemory}!Air.Inst.Ref {
return (try block.addInstAsIndex(inst)).toRef();
}
pub fn addInstAsIndex(block: *Block, inst: Air.Inst) error{OutOfMemory}!Air.Inst.Index {
const sema = block.sema;
const gpa = sema.gpa;
try sema.air_instructions.ensureUnusedCapacity(gpa, 1);
try block.instructions.ensureUnusedCapacity(gpa, 1);
const result_index: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
sema.air_instructions.appendAssumeCapacity(inst);
block.instructions.appendAssumeCapacity(result_index);
return result_index;
}
/// Insert an instruction into the block at `index`. Moves all following
/// instructions forward in the block to make room. Operation is O(N).
pub fn insertInst(block: *Block, index: Air.Inst.Index, inst: Air.Inst) error{OutOfMemory}!Air.Inst.Ref {
return (try block.insertInstAsIndex(index, inst)).toRef();
}
pub fn insertInstAsIndex(block: *Block, index: Air.Inst.Index, inst: Air.Inst) error{OutOfMemory}!Air.Inst.Index {
const sema = block.sema;
const gpa = sema.gpa;
try sema.air_instructions.ensureUnusedCapacity(gpa, 1);
const result_index: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
sema.air_instructions.appendAssumeCapacity(inst);
try block.instructions.insert(gpa, @intFromEnum(index), result_index);
return result_index;
}
fn addUnreachable(block: *Block, src: LazySrcLoc, safety_check: bool) !void {
if (safety_check and block.wantSafety()) {
try block.sema.safetyPanic(block, src, .unreach);
} else {
_ = try block.addNoOp(.unreach);
}
}
pub fn ownerModule(block: Block) *Package.Module {
const zcu = block.sema.mod;
return zcu.namespacePtr(block.namespace).file_scope.mod;
}
};
const LabeledBlock = struct {
block: Block,
label: Block.Label,
fn destroy(lb: *LabeledBlock, gpa: Allocator) void {
lb.block.instructions.deinit(gpa);
lb.label.merges.deinit(gpa);
gpa.destroy(lb);
}
};
/// The value stored in the inferred allocation. This will go into
/// peer type resolution. This is stored in a separate list so that
/// the items are contiguous in memory and thus can be passed to
/// `Module.resolvePeerTypes`.
const InferredAlloc = struct {
/// The placeholder `store` instructions used before the result pointer type
/// is known. These should be rewritten to perform any required coercions
/// when the type is resolved.
/// Allocated from `sema.arena`.
prongs: std.ArrayListUnmanaged(Air.Inst.Index) = .{},
};
const NeededComptimeReason = struct {
needed_comptime_reason: []const u8,
block_comptime_reason: ?*const Block.ComptimeReason = null,
};
pub fn deinit(sema: *Sema) void {
const gpa = sema.gpa;
sema.air_instructions.deinit(gpa);
sema.air_extra.deinit(gpa);
sema.inst_map.deinit(gpa);
sema.decl_val_table.deinit(gpa);
sema.types_to_resolve.deinit(gpa);
{
var it = sema.post_hoc_blocks.iterator();
while (it.next()) |entry| {
const labeled_block = entry.value_ptr.*;
labeled_block.destroy(gpa);
}
sema.post_hoc_blocks.deinit(gpa);
}
sema.unresolved_inferred_allocs.deinit(gpa);
sema.base_allocs.deinit(gpa);
sema.maybe_comptime_allocs.deinit(gpa);
sema.comptime_allocs.deinit(gpa);
sema.* = undefined;
}
/// Performs semantic analysis of a ZIR body which is behind a runtime condition. If comptime
/// control flow happens here, Sema will convert it to runtime control flow by introducing post-hoc
/// blocks where necessary.
fn analyzeBodyRuntimeBreak(sema: *Sema, block: *Block, body: []const Zir.Inst.Index) !void {
sema.analyzeBodyInner(block, body) catch |err| switch (err) {
error.ComptimeBreak => {
const zir_datas = sema.code.instructions.items(.data);
const break_data = zir_datas[@intFromEnum(sema.comptime_break_inst)].@"break";
const extra = sema.code.extraData(Zir.Inst.Break, break_data.payload_index).data;
try sema.addRuntimeBreak(block, extra.block_inst, break_data.operand);
},
else => |e| return e,
};
}
/// Semantically analyze a ZIR function body. It is guranteed by AstGen that such a body cannot
/// trigger comptime control flow to move above the function body.
pub fn analyzeFnBody(
sema: *Sema,
block: *Block,
body: []const Zir.Inst.Index,
) !void {
sema.analyzeBodyInner(block, body) catch |err| switch (err) {
error.ComptimeBreak => unreachable, // unexpected comptime control flow
else => |e| return e,
};
}
/// Given a ZIR body which can be exited via a `break_inline` instruction, or a non-inline body which
/// we are evaluating at comptime, semantically analyze the body and return the result from it.
/// Returns `null` if control flow did not break from this block, but instead terminated with some
/// other runtime noreturn instruction. Compile-time breaks to blocks further up the stack still
/// return `error.ComptimeBreak`. If `block.is_comptime`, this function will never return `null`.
fn analyzeInlineBody(
sema: *Sema,
block: *Block,
body: []const Zir.Inst.Index,
/// The index which a break instruction can target to break from this body.
break_target: Zir.Inst.Index,
) CompileError!?Air.Inst.Ref {
if (sema.analyzeBodyInner(block, body)) |_| {
return null;
} else |err| switch (err) {
error.ComptimeBreak => {},
else => |e| return e,
}
const break_inst = sema.comptime_break_inst;
const break_data = sema.code.instructions.items(.data)[@intFromEnum(break_inst)].@"break";
const extra = sema.code.extraData(Zir.Inst.Break, break_data.payload_index).data;
if (extra.block_inst != break_target) {
// This control flow goes further up the stack.
return error.ComptimeBreak;
}
return try sema.resolveInst(break_data.operand);
}
/// Like `analyzeInlineBody`, but if the body does not break with a value, returns
/// `.unreachable_value` instead of `null`. Notably, use this to evaluate an arbitrary
/// body at comptime to a single result value.
pub fn resolveInlineBody(
sema: *Sema,
block: *Block,
body: []const Zir.Inst.Index,
/// The index which a break instruction can target to break from this body.
break_target: Zir.Inst.Index,
) CompileError!Air.Inst.Ref {
return (try sema.analyzeInlineBody(block, body, break_target)) orelse .unreachable_value;
}
/// This function is the main loop of `Sema`. It analyzes a single body of ZIR instructions.
///
/// If this function returns normally, the merges of `block` were populated with all possible
/// (runtime) results of this block. Peer type resolution should be performed on the result,
/// and relevant runtime instructions written to perform necessary coercions and breaks. See
/// `resolveAnalyzedBlock`. This form of return is impossible if `block.is_comptime == true`.
///
/// Alternatively, this function may return `error.ComptimeBreak`. This indicates that comptime
/// control flow is happening, and we are breaking at comptime from a block indicated by the
/// break instruction in `sema.comptime_break_inst`. This occurs for any `break_inline`, or for a
/// standard `break` at comptime. This error is pushed up the stack until the target block is
/// reached, at which point the break operand will be fetched.
///
/// It is rare to call this function directly. Usually, you want one of the following wrappers:
/// * If the body is exited via a `break_inline`, or is being evaluated at comptime,
/// use `Sema.analyzeInlineBody` or `Sema.resolveInlineBody`.
/// * If the body is behind a fresh runtime condition, use `Sema.analyzeBodyRuntimeBreak`.
/// * If the body is an entire function body, use `Sema.analyzeFnBody`.
/// * If the body is to be generated into an AIR `block`, use `Sema.resolveBlockBody`.
/// * Otherwise, direct usage of `Sema.analyzeBodyInner` may be necessary.
fn analyzeBodyInner(
sema: *Sema,
block: *Block,
body: []const Zir.Inst.Index,
) CompileError!void {
// No tracy calls here, to avoid interfering with the tail call mechanism.
try sema.inst_map.ensureSpaceForInstructions(sema.gpa, body);
const mod = sema.mod;
const map = &sema.inst_map;
const tags = sema.code.instructions.items(.tag);
const datas = sema.code.instructions.items(.data);
var crash_info = crash_report.prepAnalyzeBody(sema, block, body);
crash_info.push();
defer crash_info.pop();
// We use a while (true) loop here to avoid a redundant way of breaking out of
// the loop. The only way to break out of the loop is with a `noreturn`
// instruction.
var i: u32 = 0;
while (true) {
crash_info.setBodyIndex(i);
const inst = body[i];
std.log.scoped(.sema_zir).debug("sema ZIR {s} %{d}", .{
mod.namespacePtr(mod.declPtr(block.src_decl).src_namespace).file_scope.sub_file_path, inst,
});
const air_inst: Air.Inst.Ref = switch (tags[@intFromEnum(inst)]) {
// zig fmt: off
.alloc => try sema.zirAlloc(block, inst),
.alloc_inferred => try sema.zirAllocInferred(block, true),
.alloc_inferred_mut => try sema.zirAllocInferred(block, false),
.alloc_inferred_comptime => try sema.zirAllocInferredComptime(true),
.alloc_inferred_comptime_mut => try sema.zirAllocInferredComptime(false),
.alloc_mut => try sema.zirAllocMut(block, inst),
.alloc_comptime_mut => try sema.zirAllocComptime(block, inst),
.make_ptr_const => try sema.zirMakePtrConst(block, inst),
.anyframe_type => try sema.zirAnyframeType(block, inst),
.array_cat => try sema.zirArrayCat(block, inst),
.array_mul => try sema.zirArrayMul(block, inst),
.array_type => try sema.zirArrayType(block, inst),
.array_type_sentinel => try sema.zirArrayTypeSentinel(block, inst),
.vector_type => try sema.zirVectorType(block, inst),
.as_node => try sema.zirAsNode(block, inst),
.as_shift_operand => try sema.zirAsShiftOperand(block, inst),
.bit_and => try sema.zirBitwise(block, inst, .bit_and),
.bit_not => try sema.zirBitNot(block, inst),
.bit_or => try sema.zirBitwise(block, inst, .bit_or),
.bitcast => try sema.zirBitcast(block, inst),
.suspend_block => try sema.zirSuspendBlock(block, inst),
.bool_not => try sema.zirBoolNot(block, inst),
.bool_br_and => try sema.zirBoolBr(block, inst, false),
.bool_br_or => try sema.zirBoolBr(block, inst, true),
.c_import => try sema.zirCImport(block, inst),
.call => try sema.zirCall(block, inst, .direct),
.field_call => try sema.zirCall(block, inst, .field),
.cmp_lt => try sema.zirCmp(block, inst, .lt),
.cmp_lte => try sema.zirCmp(block, inst, .lte),
.cmp_eq => try sema.zirCmpEq(block, inst, .eq, Air.Inst.Tag.fromCmpOp(.eq, block.float_mode == .optimized)),
.cmp_gte => try sema.zirCmp(block, inst, .gte),
.cmp_gt => try sema.zirCmp(block, inst, .gt),
.cmp_neq => try sema.zirCmpEq(block, inst, .neq, Air.Inst.Tag.fromCmpOp(.neq, block.float_mode == .optimized)),
.decl_ref => try sema.zirDeclRef(block, inst),
.decl_val => try sema.zirDeclVal(block, inst),
.load => try sema.zirLoad(block, inst),
.elem_ptr => try sema.zirElemPtr(block, inst),
.elem_ptr_node => try sema.zirElemPtrNode(block, inst),
.elem_val => try sema.zirElemVal(block, inst),
.elem_val_node => try sema.zirElemValNode(block, inst),
.elem_val_imm => try sema.zirElemValImm(block, inst),
.elem_type => try sema.zirElemType(block, inst),
.indexable_ptr_elem_type => try sema.zirIndexablePtrElemType(block, inst),
.vector_elem_type => try sema.zirVectorElemType(block, inst),
.enum_literal => try sema.zirEnumLiteral(block, inst),
.int_from_enum => try sema.zirIntFromEnum(block, inst),
.enum_from_int => try sema.zirEnumFromInt(block, inst),
.err_union_code => try sema.zirErrUnionCode(block, inst),
.err_union_code_ptr => try sema.zirErrUnionCodePtr(block, inst),
.err_union_payload_unsafe => try sema.zirErrUnionPayload(block, inst),
.err_union_payload_unsafe_ptr => try sema.zirErrUnionPayloadPtr(block, inst),
.error_union_type => try sema.zirErrorUnionType(block, inst),
.error_value => try sema.zirErrorValue(block, inst),
.field_ptr => try sema.zirFieldPtr(block, inst),
.field_ptr_named => try sema.zirFieldPtrNamed(block, inst),
.field_val => try sema.zirFieldVal(block, inst),
.field_val_named => try sema.zirFieldValNamed(block, inst),
.func => try sema.zirFunc(block, inst, false),
.func_inferred => try sema.zirFunc(block, inst, true),
.func_fancy => try sema.zirFuncFancy(block, inst),
.import => try sema.zirImport(block, inst),
.indexable_ptr_len => try sema.zirIndexablePtrLen(block, inst),
.int => try sema.zirInt(block, inst),
.int_big => try sema.zirIntBig(block, inst),
.float => try sema.zirFloat(block, inst),
.float128 => try sema.zirFloat128(block, inst),
.int_type => try sema.zirIntType(inst),
.is_non_err => try sema.zirIsNonErr(block, inst),
.is_non_err_ptr => try sema.zirIsNonErrPtr(block, inst),
.ret_is_non_err => try sema.zirRetIsNonErr(block, inst),
.is_non_null => try sema.zirIsNonNull(block, inst),
.is_non_null_ptr => try sema.zirIsNonNullPtr(block, inst),
.merge_error_sets => try sema.zirMergeErrorSets(block, inst),
.negate => try sema.zirNegate(block, inst),
.negate_wrap => try sema.zirNegateWrap(block, inst),
.optional_payload_safe => try sema.zirOptionalPayload(block, inst, true),
.optional_payload_safe_ptr => try sema.zirOptionalPayloadPtr(block, inst, true),
.optional_payload_unsafe => try sema.zirOptionalPayload(block, inst, false),
.optional_payload_unsafe_ptr => try sema.zirOptionalPayloadPtr(block, inst, false),
.optional_type => try sema.zirOptionalType(block, inst),
.ptr_type => try sema.zirPtrType(block, inst),
.ref => try sema.zirRef(block, inst),
.ret_err_value_code => try sema.zirRetErrValueCode(inst),
.shr => try sema.zirShr(block, inst, .shr),
.shr_exact => try sema.zirShr(block, inst, .shr_exact),
.slice_end => try sema.zirSliceEnd(block, inst),
.slice_sentinel => try sema.zirSliceSentinel(block, inst),
.slice_start => try sema.zirSliceStart(block, inst),
.slice_length => try sema.zirSliceLength(block, inst),
.str => try sema.zirStr(inst),
.switch_block => try sema.zirSwitchBlock(block, inst, false),
.switch_block_ref => try sema.zirSwitchBlock(block, inst, true),
.switch_block_err_union => try sema.zirSwitchBlockErrUnion(block, inst),
.type_info => try sema.zirTypeInfo(block, inst),
.size_of => try sema.zirSizeOf(block, inst),
.bit_size_of => try sema.zirBitSizeOf(block, inst),
.typeof => try sema.zirTypeof(block, inst),
.typeof_builtin => try sema.zirTypeofBuiltin(block, inst),
.typeof_log2_int_type => try sema.zirTypeofLog2IntType(block, inst),
.xor => try sema.zirBitwise(block, inst, .xor),
.struct_init_empty => try sema.zirStructInitEmpty(block, inst),
.struct_init_empty_result => try sema.zirStructInitEmptyResult(block, inst, false),
.struct_init_empty_ref_result => try sema.zirStructInitEmptyResult(block, inst, true),
.struct_init_anon => try sema.zirStructInitAnon(block, inst),
.struct_init => try sema.zirStructInit(block, inst, false),
.struct_init_ref => try sema.zirStructInit(block, inst, true),
.struct_init_field_type => try sema.zirStructInitFieldType(block, inst),
.struct_init_field_ptr => try sema.zirStructInitFieldPtr(block, inst),
.array_init_anon => try sema.zirArrayInitAnon(block, inst),
.array_init => try sema.zirArrayInit(block, inst, false),
.array_init_ref => try sema.zirArrayInit(block, inst, true),
.array_init_elem_type => try sema.zirArrayInitElemType(block, inst),
.array_init_elem_ptr => try sema.zirArrayInitElemPtr(block, inst),
.union_init => try sema.zirUnionInit(block, inst),
.field_type_ref => try sema.zirFieldTypeRef(block, inst),
.int_from_ptr => try sema.zirIntFromPtr(block, inst),
.align_of => try sema.zirAlignOf(block, inst),
.int_from_bool => try sema.zirIntFromBool(block, inst),
.embed_file => try sema.zirEmbedFile(block, inst),
.error_name => try sema.zirErrorName(block, inst),
.tag_name => try sema.zirTagName(block, inst),
.type_name => try sema.zirTypeName(block, inst),
.frame_type => try sema.zirFrameType(block, inst),
.frame_size => try sema.zirFrameSize(block, inst),
.int_from_float => try sema.zirIntFromFloat(block, inst),
.float_from_int => try sema.zirFloatFromInt(block, inst),
.ptr_from_int => try sema.zirPtrFromInt(block, inst),
.float_cast => try sema.zirFloatCast(block, inst),
.int_cast => try sema.zirIntCast(block, inst),
.ptr_cast => try sema.zirPtrCast(block, inst),
.truncate => try sema.zirTruncate(block, inst),
.has_decl => try sema.zirHasDecl(block, inst),
.has_field => try sema.zirHasField(block, inst),
.byte_swap => try sema.zirByteSwap(block, inst),
.bit_reverse => try sema.zirBitReverse(block, inst),
.bit_offset_of => try sema.zirBitOffsetOf(block, inst),
.offset_of => try sema.zirOffsetOf(block, inst),
.splat => try sema.zirSplat(block, inst),
.reduce => try sema.zirReduce(block, inst),
.shuffle => try sema.zirShuffle(block, inst),
.atomic_load => try sema.zirAtomicLoad(block, inst),
.atomic_rmw => try sema.zirAtomicRmw(block, inst),
.mul_add => try sema.zirMulAdd(block, inst),
.builtin_call => try sema.zirBuiltinCall(block, inst),
.@"resume" => try sema.zirResume(block, inst),
.@"await" => try sema.zirAwait(block, inst),
.for_len => try sema.zirForLen(block, inst),
.validate_array_init_ref_ty => try sema.zirValidateArrayInitRefTy(block, inst),
.opt_eu_base_ptr_init => try sema.zirOptEuBasePtrInit(block, inst),
.coerce_ptr_elem_ty => try sema.zirCoercePtrElemTy(block, inst),
.clz => try sema.zirBitCount(block, inst, .clz, Value.clz),
.ctz => try sema.zirBitCount(block, inst, .ctz, Value.ctz),
.pop_count => try sema.zirBitCount(block, inst, .popcount, Value.popCount),
.abs => try sema.zirAbs(block, inst),
.sqrt => try sema.zirUnaryMath(block, inst, .sqrt, Value.sqrt),
.sin => try sema.zirUnaryMath(block, inst, .sin, Value.sin),
.cos => try sema.zirUnaryMath(block, inst, .cos, Value.cos),
.tan => try sema.zirUnaryMath(block, inst, .tan, Value.tan),
.exp => try sema.zirUnaryMath(block, inst, .exp, Value.exp),
.exp2 => try sema.zirUnaryMath(block, inst, .exp2, Value.exp2),
.log => try sema.zirUnaryMath(block, inst, .log, Value.log),
.log2 => try sema.zirUnaryMath(block, inst, .log2, Value.log2),
.log10 => try sema.zirUnaryMath(block, inst, .log10, Value.log10),
.floor => try sema.zirUnaryMath(block, inst, .floor, Value.floor),
.ceil => try sema.zirUnaryMath(block, inst, .ceil, Value.ceil),
.round => try sema.zirUnaryMath(block, inst, .round, Value.round),
.trunc => try sema.zirUnaryMath(block, inst, .trunc_float, Value.trunc),
.error_set_decl => try sema.zirErrorSetDecl(block, inst, .parent),
.error_set_decl_anon => try sema.zirErrorSetDecl(block, inst, .anon),
.error_set_decl_func => try sema.zirErrorSetDecl(block, inst, .func),
.add => try sema.zirArithmetic(block, inst, .add, true),
.addwrap => try sema.zirArithmetic(block, inst, .addwrap, true),
.add_sat => try sema.zirArithmetic(block, inst, .add_sat, true),
.add_unsafe => try sema.zirArithmetic(block, inst, .add_unsafe, false),
.mul => try sema.zirArithmetic(block, inst, .mul, true),
.mulwrap => try sema.zirArithmetic(block, inst, .mulwrap, true),
.mul_sat => try sema.zirArithmetic(block, inst, .mul_sat, true),
.sub => try sema.zirArithmetic(block, inst, .sub, true),
.subwrap => try sema.zirArithmetic(block, inst, .subwrap, true),
.sub_sat => try sema.zirArithmetic(block, inst, .sub_sat, true),
.div => try sema.zirDiv(block, inst),
.div_exact => try sema.zirDivExact(block, inst),
.div_floor => try sema.zirDivFloor(block, inst),
.div_trunc => try sema.zirDivTrunc(block, inst),
.mod_rem => try sema.zirModRem(block, inst),
.mod => try sema.zirMod(block, inst),
.rem => try sema.zirRem(block, inst),
.max => try sema.zirMinMax(block, inst, .max),
.min => try sema.zirMinMax(block, inst, .min),
.shl => try sema.zirShl(block, inst, .shl),
.shl_exact => try sema.zirShl(block, inst, .shl_exact),
.shl_sat => try sema.zirShl(block, inst, .shl_sat),
.ret_ptr => try sema.zirRetPtr(block),
.ret_type => Air.internedToRef(sema.fn_ret_ty.toIntern()),
// Instructions that we know to *always* be noreturn based solely on their tag.
// These functions match the return type of analyzeBody so that we can
// tail call them here.
.compile_error => break try sema.zirCompileError(block, inst),
.ret_implicit => break try sema.zirRetImplicit(block, inst),
.ret_node => break try sema.zirRetNode(block, inst),
.ret_load => break try sema.zirRetLoad(block, inst),
.ret_err_value => break try sema.zirRetErrValue(block, inst),
.@"unreachable" => break try sema.zirUnreachable(block, inst),
.panic => break try sema.zirPanic(block, inst),
.trap => break try sema.zirTrap(block, inst),
// zig fmt: on
// This instruction never exists in an analyzed body. It exists only in the declaration
// list for a container type.
.declaration => unreachable,
.extended => ext: {
const extended = datas[@intFromEnum(inst)].extended;
break :ext switch (extended.opcode) {
// zig fmt: off
.variable => try sema.zirVarExtended( block, extended),
.struct_decl => try sema.zirStructDecl( block, extended, inst),
.enum_decl => try sema.zirEnumDecl( block, extended, inst),
.union_decl => try sema.zirUnionDecl( block, extended, inst),
.opaque_decl => try sema.zirOpaqueDecl( block, extended, inst),
.this => try sema.zirThis( block, extended),
.ret_addr => try sema.zirRetAddr( block, extended),
.builtin_src => try sema.zirBuiltinSrc( block, extended),
.error_return_trace => try sema.zirErrorReturnTrace( block),
.frame => try sema.zirFrame( block, extended),
.frame_address => try sema.zirFrameAddress( block, extended),
.alloc => try sema.zirAllocExtended( block, extended),
.builtin_extern => try sema.zirBuiltinExtern( block, extended),
.@"asm" => try sema.zirAsm( block, extended, false),
.asm_expr => try sema.zirAsm( block, extended, true),
.typeof_peer => try sema.zirTypeofPeer( block, extended, inst),
.compile_log => try sema.zirCompileLog( extended),
.min_multi => try sema.zirMinMaxMulti( block, extended, .min),
.max_multi => try sema.zirMinMaxMulti( block, extended, .max),
.add_with_overflow => try sema.zirOverflowArithmetic(block, extended, extended.opcode),
.sub_with_overflow => try sema.zirOverflowArithmetic(block, extended, extended.opcode),
.mul_with_overflow => try sema.zirOverflowArithmetic(block, extended, extended.opcode),
.shl_with_overflow => try sema.zirOverflowArithmetic(block, extended, extended.opcode),
.c_undef => try sema.zirCUndef( block, extended),
.c_include => try sema.zirCInclude( block, extended),
.c_define => try sema.zirCDefine( block, extended),
.wasm_memory_size => try sema.zirWasmMemorySize( block, extended),
.wasm_memory_grow => try sema.zirWasmMemoryGrow( block, extended),
.prefetch => try sema.zirPrefetch( block, extended),
.error_cast => try sema.zirErrorCast( block, extended),
.await_nosuspend => try sema.zirAwaitNosuspend( block, extended),
.select => try sema.zirSelect( block, extended),
.int_from_error => try sema.zirIntFromError( block, extended),
.error_from_int => try sema.zirErrorFromInt( block, extended),
.reify => try sema.zirReify( block, extended, inst),
.builtin_async_call => try sema.zirBuiltinAsyncCall( block, extended),
.cmpxchg => try sema.zirCmpxchg( block, extended),
.c_va_arg => try sema.zirCVaArg( block, extended),
.c_va_copy => try sema.zirCVaCopy( block, extended),
.c_va_end => try sema.zirCVaEnd( block, extended),
.c_va_start => try sema.zirCVaStart( block, extended),
.ptr_cast_full => try sema.zirPtrCastFull( block, extended),
.ptr_cast_no_dest => try sema.zirPtrCastNoDest( block, extended),
.work_item_id => try sema.zirWorkItem( block, extended, extended.opcode),
.work_group_size => try sema.zirWorkItem( block, extended, extended.opcode),
.work_group_id => try sema.zirWorkItem( block, extended, extended.opcode),
.in_comptime => try sema.zirInComptime( block),
.closure_get => try sema.zirClosureGet( block, extended),
// zig fmt: on
.fence => {
try sema.zirFence(block, extended);
i += 1;
continue;
},
.set_float_mode => {
try sema.zirSetFloatMode(block, extended);
i += 1;
continue;
},
.set_align_stack => {
try sema.zirSetAlignStack(block, extended);
i += 1;
continue;
},
.set_cold => {
try sema.zirSetCold(block, extended);
i += 1;
continue;
},
.breakpoint => {
if (!block.is_comptime) {
_ = try block.addNoOp(.breakpoint);
}
i += 1;
continue;
},
.restore_err_ret_index => {
try sema.zirRestoreErrRetIndex(block, extended);
i += 1;
continue;
},
.value_placeholder => unreachable, // never appears in a body
.field_parent_ptr => try sema.zirFieldParentPtr(block, extended),
};
},
// Instructions that we know can *never* be noreturn based solely on
// their tag. We avoid needlessly checking if they are noreturn and
// continue the loop.
// We also know that they cannot be referenced later, so we avoid
// putting them into the map.
.dbg_stmt => {
try sema.zirDbgStmt(block, inst);
i += 1;
continue;
},
.dbg_var_ptr => {
try sema.zirDbgVar(block, inst, .dbg_var_ptr);
i += 1;
continue;
},
.dbg_var_val => {
try sema.zirDbgVar(block, inst, .dbg_var_val);
i += 1;
continue;
},
.ensure_err_union_payload_void => {
try sema.zirEnsureErrUnionPayloadVoid(block, inst);
i += 1;
continue;
},
.ensure_result_non_error => {
try sema.zirEnsureResultNonError(block, inst);
i += 1;
continue;
},
.ensure_result_used => {
try sema.zirEnsureResultUsed(block, inst);
i += 1;
continue;
},
.set_eval_branch_quota => {
try sema.zirSetEvalBranchQuota(block, inst);
i += 1;
continue;
},
.atomic_store => {
try sema.zirAtomicStore(block, inst);
i += 1;
continue;
},
.store_node => {
try sema.zirStoreNode(block, inst);
i += 1;
continue;
},
.store_to_inferred_ptr => {
try sema.zirStoreToInferredPtr(block, inst);
i += 1;
continue;
},
.resolve_inferred_alloc => {
try sema.zirResolveInferredAlloc(block, inst);
i += 1;
continue;
},
.validate_struct_init_ty => {
try sema.zirValidateStructInitTy(block, inst, false);
i += 1;
continue;
},
.validate_struct_init_result_ty => {
try sema.zirValidateStructInitTy(block, inst, true);
i += 1;
continue;
},
.validate_array_init_ty => {
try sema.zirValidateArrayInitTy(block, inst, false);
i += 1;
continue;
},
.validate_array_init_result_ty => {
try sema.zirValidateArrayInitTy(block, inst, true);
i += 1;
continue;
},
.validate_ptr_struct_init => {
try sema.zirValidatePtrStructInit(block, inst);
i += 1;
continue;
},
.validate_ptr_array_init => {
try sema.zirValidatePtrArrayInit(block, inst);
i += 1;
continue;
},
.validate_deref => {
try sema.zirValidateDeref(block, inst);
i += 1;
continue;
},
.validate_destructure => {
try sema.zirValidateDestructure(block, inst);
i += 1;
continue;
},
.validate_ref_ty => {
try sema.zirValidateRefTy(block, inst);
i += 1;
continue;
},
.@"export" => {
try sema.zirExport(block, inst);
i += 1;
continue;
},
.export_value => {
try sema.zirExportValue(block, inst);
i += 1;
continue;
},
.set_runtime_safety => {
try sema.zirSetRuntimeSafety(block, inst);
i += 1;
continue;
},
.param => {
try sema.zirParam(block, inst, false);
i += 1;
continue;
},
.param_comptime => {
try sema.zirParam(block, inst, true);
i += 1;
continue;
},
.param_anytype => {
try sema.zirParamAnytype(block, inst, false);
i += 1;
continue;
},
.param_anytype_comptime => {
try sema.zirParamAnytype(block, inst, true);
i += 1;
continue;
},
.memcpy => {
try sema.zirMemcpy(block, inst);
i += 1;
continue;
},
.memset => {
try sema.zirMemset(block, inst);
i += 1;
continue;
},
.check_comptime_control_flow => {
if (!block.is_comptime) {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const inline_block = inst_data.operand.toIndex().?;
var check_block = block;
const target_runtime_index = while (true) {
if (check_block.inline_block == inline_block.toOptional()) {
break check_block.runtime_index;
}
check_block = check_block.parent.?;
};
if (@intFromEnum(target_runtime_index) < @intFromEnum(block.runtime_index)) {
const runtime_src = block.runtime_cond orelse block.runtime_loop.?;
const msg = msg: {
const msg = try sema.errMsg(block, src, "comptime control flow inside runtime block", .{});
errdefer msg.destroy(sema.gpa);
try mod.errNoteNonLazy(runtime_src, msg, "runtime control flow here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
}
i += 1;
continue;
},
.save_err_ret_index => {
try sema.zirSaveErrRetIndex(block, inst);
i += 1;
continue;
},
.restore_err_ret_index_unconditional => {
const un_node = datas[@intFromEnum(inst)].un_node;
try sema.restoreErrRetIndex(block, un_node.src(), un_node.operand, .none);
i += 1;
continue;
},
.restore_err_ret_index_fn_entry => {
const un_node = datas[@intFromEnum(inst)].un_node;
try sema.restoreErrRetIndex(block, un_node.src(), .none, un_node.operand);
i += 1;
continue;
},
// Special case instructions to handle comptime control flow.
.@"break" => {
if (block.is_comptime) {
sema.comptime_break_inst = inst;
return error.ComptimeBreak;
} else {
try sema.zirBreak(block, inst);
break;
}
},
.break_inline => {
sema.comptime_break_inst = inst;
return error.ComptimeBreak;
},
.repeat => {
if (block.is_comptime) {
// Send comptime control flow back to the beginning of this block.
const src = LazySrcLoc.nodeOffset(datas[@intFromEnum(inst)].node);
try sema.emitBackwardBranch(block, src);
i = 0;
continue;
} else {
// We are definitely called by `zirLoop`, which will treat the
// fact that this body does not terminate `noreturn` as an
// implicit repeat.
break;
}
},
.repeat_inline => {
// Send comptime control flow back to the beginning of this block.
const src = LazySrcLoc.nodeOffset(datas[@intFromEnum(inst)].node);
try sema.emitBackwardBranch(block, src);
i = 0;
continue;
},
.loop => blk: {
if (!block.is_comptime) break :blk try sema.zirLoop(block, inst);
// Same as `block_inline`. TODO https://github.com/ziglang/zig/issues/8220
const inst_data = datas[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Block, inst_data.payload_index);
const inline_body = sema.code.bodySlice(extra.end, extra.data.body_len);
// Create a temporary child block so that this loop is properly
// labeled for any .restore_err_ret_index instructions
var child_block = block.makeSubBlock();
var label: Block.Label = .{
.zir_block = inst,
.merges = undefined,
};
child_block.label = &label;
// Write these instructions directly into the parent block
child_block.instructions = block.instructions;
defer block.instructions = child_block.instructions;
const result = try sema.analyzeInlineBody(&child_block, inline_body, inst) orelse break;
break :blk result;
},
.block, .block_comptime => blk: {
if (!block.is_comptime) {
break :blk try sema.zirBlock(block, inst, tags[@intFromEnum(inst)] == .block_comptime);
}
// Same as `block_inline`. TODO https://github.com/ziglang/zig/issues/8220
const inst_data = datas[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Block, inst_data.payload_index);
const inline_body = sema.code.bodySlice(extra.end, extra.data.body_len);
// Create a temporary child block so that this block is properly
// labeled for any .restore_err_ret_index instructions
var child_block = block.makeSubBlock();
var label: Block.Label = .{
.zir_block = inst,
.merges = undefined,
};
child_block.label = &label;
// Write these instructions directly into the parent block
child_block.instructions = block.instructions;
defer block.instructions = child_block.instructions;
const result = try sema.analyzeInlineBody(&child_block, inline_body, inst) orelse break;
break :blk result;
},
.block_inline => blk: {
// Directly analyze the block body without introducing a new block.
// However, in the case of a corresponding break_inline which reaches
// through a runtime conditional branch, we must retroactively emit
// a block, so we remember the block index here just in case.
const block_index = block.instructions.items.len;
const inst_data = datas[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Block, inst_data.payload_index);
const inline_body = sema.code.bodySlice(extra.end, extra.data.body_len);
const gpa = sema.gpa;
const BreakResult = struct {
block_inst: Zir.Inst.Index,
operand: Zir.Inst.Ref,
};
const opt_break_data: ?BreakResult, const need_debug_scope = b: {
// Create a temporary child block so that this inline block is properly
// labeled for any .restore_err_ret_index instructions
var child_block = block.makeSubBlock();
var need_debug_scope = false;
child_block.need_debug_scope = &need_debug_scope;
// If this block contains a function prototype, we need to reset the
// current list of parameters and restore it later.
// Note: this probably needs to be resolved in a more general manner.
const tag_index = @intFromEnum(inline_body[inline_body.len - 1]);
child_block.inline_block = (if (tags[tag_index] == .repeat_inline)
inline_body[0]
else
inst).toOptional();
var label: Block.Label = .{
.zir_block = inst,
.merges = undefined,
};
child_block.label = &label;
// Write these instructions directly into the parent block
child_block.instructions = block.instructions;
defer block.instructions = child_block.instructions;
const break_result: ?BreakResult = if (sema.analyzeBodyInner(&child_block, inline_body)) |_| r: {
break :r null;
} else |err| switch (err) {
error.ComptimeBreak => brk_res: {
const break_inst = sema.comptime_break_inst;
const break_data = sema.code.instructions.items(.data)[@intFromEnum(break_inst)].@"break";
const break_extra = sema.code.extraData(Zir.Inst.Break, break_data.payload_index).data;
break :brk_res .{
.block_inst = break_extra.block_inst,
.operand = break_data.operand,
};
},
else => |e| return e,
};
if (need_debug_scope) {
_ = try sema.ensurePostHoc(block, inst);
}
break :b .{ break_result, need_debug_scope };
};
// A runtime conditional branch that needs a post-hoc block to be
// emitted communicates this by mapping the block index into the inst map.
if (map.get(inst)) |new_block_ref| ph: {
// Comptime control flow populates the map, so we don't actually know
// if this is a post-hoc runtime block until we check the
// post_hoc_block map.
const new_block_inst = new_block_ref.toIndex() orelse break :ph;
const labeled_block = sema.post_hoc_blocks.get(new_block_inst) orelse
break :ph;
// In this case we need to move all the instructions starting at
// block_index from the current block into this new one.
if (opt_break_data) |break_data| {
// This is a comptime break which we now change to a runtime break
// since it crosses a runtime branch.
// It may pass through our currently being analyzed block_inline or it
// may point directly to it. In the latter case, this modifies the
// block that we looked up in the post_hoc_blocks map above.
try sema.addRuntimeBreak(block, break_data.block_inst, break_data.operand);
}
try labeled_block.block.instructions.appendSlice(gpa, block.instructions.items[block_index..]);
block.instructions.items.len = block_index;
const block_result = try sema.resolveAnalyzedBlock(block, inst_data.src(), &labeled_block.block, &labeled_block.label.merges, need_debug_scope);
{
// Destroy the ad-hoc block entry so that it does not interfere with
// the next iteration of comptime control flow, if any.
labeled_block.destroy(gpa);
assert(sema.post_hoc_blocks.remove(new_block_inst));
}
break :blk block_result;
}
const break_data = opt_break_data orelse break;
if (inst == break_data.block_inst) {
break :blk try sema.resolveInst(break_data.operand);
} else {
// `comptime_break_inst` preserved from `analyzeBodyInner` above.
return error.ComptimeBreak;
}
},
.condbr => blk: {
if (!block.is_comptime) {
try sema.zirCondbr(block, inst);
break;
}
// Same as condbr_inline. TODO https://github.com/ziglang/zig/issues/8220
const inst_data = datas[@intFromEnum(inst)].pl_node;
const cond_src: LazySrcLoc = .{ .node_offset_if_cond = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.CondBr, inst_data.payload_index);
const then_body = sema.code.bodySlice(extra.end, extra.data.then_body_len);
const else_body = sema.code.bodySlice(
extra.end + then_body.len,
extra.data.else_body_len,
);
const cond = try sema.resolveInstConst(block, cond_src, extra.data.condition, .{
.needed_comptime_reason = "condition in comptime branch must be comptime-known",
.block_comptime_reason = block.comptime_reason,
});
const inline_body = if (cond.toBool()) then_body else else_body;
try sema.maybeErrorUnwrapCondbr(block, inline_body, extra.data.condition, cond_src);
const result = try sema.analyzeInlineBody(block, inline_body, inst) orelse break;
break :blk result;
},
.condbr_inline => blk: {
const inst_data = datas[@intFromEnum(inst)].pl_node;
const cond_src: LazySrcLoc = .{ .node_offset_if_cond = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.CondBr, inst_data.payload_index);
const then_body = sema.code.bodySlice(extra.end, extra.data.then_body_len);
const else_body = sema.code.bodySlice(
extra.end + then_body.len,
extra.data.else_body_len,
);
const cond = try sema.resolveInstConst(block, cond_src, extra.data.condition, .{
.needed_comptime_reason = "condition in comptime branch must be comptime-known",
.block_comptime_reason = block.comptime_reason,
});
const inline_body = if (cond.toBool()) then_body else else_body;
try sema.maybeErrorUnwrapCondbr(block, inline_body, extra.data.condition, cond_src);
const old_runtime_index = block.runtime_index;
defer block.runtime_index = old_runtime_index;
const result = try sema.analyzeInlineBody(block, inline_body, inst) orelse break;
break :blk result;
},
.@"try" => blk: {
if (!block.is_comptime) break :blk try sema.zirTry(block, inst);
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Try, inst_data.payload_index);
const inline_body = sema.code.bodySlice(extra.end, extra.data.body_len);
const err_union = try sema.resolveInst(extra.data.operand);
const err_union_ty = sema.typeOf(err_union);
if (err_union_ty.zigTypeTag(mod) != .ErrorUnion) {
return sema.fail(block, operand_src, "expected error union type, found '{}'", .{
err_union_ty.fmt(mod),
});
}
const is_non_err = try sema.analyzeIsNonErrComptimeOnly(block, operand_src, err_union);
assert(is_non_err != .none);
const is_non_err_val = try sema.resolveConstDefinedValue(block, operand_src, is_non_err, .{
.needed_comptime_reason = "try operand inside comptime block must be comptime-known",
.block_comptime_reason = block.comptime_reason,
});
if (is_non_err_val.toBool()) {
break :blk try sema.analyzeErrUnionPayload(block, src, err_union_ty, err_union, operand_src, false);
}
const result = try sema.analyzeInlineBody(block, inline_body, inst) orelse break;
break :blk result;
},
.try_ptr => blk: {
if (!block.is_comptime) break :blk try sema.zirTryPtr(block, inst);
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Try, inst_data.payload_index);
const inline_body = sema.code.bodySlice(extra.end, extra.data.body_len);
const operand = try sema.resolveInst(extra.data.operand);
const err_union = try sema.analyzeLoad(block, src, operand, operand_src);
const is_non_err = try sema.analyzeIsNonErrComptimeOnly(block, operand_src, err_union);
assert(is_non_err != .none);
const is_non_err_val = try sema.resolveConstDefinedValue(block, operand_src, is_non_err, .{
.needed_comptime_reason = "try operand inside comptime block must be comptime-known",
.block_comptime_reason = block.comptime_reason,
});
if (is_non_err_val.toBool()) {
break :blk try sema.analyzeErrUnionPayloadPtr(block, src, operand, false, false);
}
const result = try sema.analyzeInlineBody(block, inline_body, inst) orelse break;
break :blk result;
},
.@"defer" => blk: {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].@"defer";
const defer_body = sema.code.bodySlice(inst_data.index, inst_data.len);
if (sema.analyzeBodyInner(block, defer_body)) |_| {
// The defer terminated noreturn - no more analysis needed.
break;
} else |err| switch (err) {
error.ComptimeBreak => {},
else => |e| return e,
}
if (sema.comptime_break_inst != defer_body[defer_body.len - 1]) {
return error.ComptimeBreak;
}
break :blk .void_value;
},
.defer_err_code => blk: {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].defer_err_code;
const extra = sema.code.extraData(Zir.Inst.DeferErrCode, inst_data.payload_index).data;
const defer_body = sema.code.bodySlice(extra.index, extra.len);
const err_code = try sema.resolveInst(inst_data.err_code);
map.putAssumeCapacity(extra.remapped_err_code, err_code);
if (sema.analyzeBodyInner(block, defer_body)) |_| {
// The defer terminated noreturn - no more analysis needed.
break;
} else |err| switch (err) {
error.ComptimeBreak => {},
else => |e| return e,
}
if (sema.comptime_break_inst != defer_body[defer_body.len - 1]) {
return error.ComptimeBreak;
}
break :blk .void_value;
},
};
if (sema.isNoReturn(air_inst)) {
// We're going to assume that the body itself is noreturn, so let's ensure that now
assert(block.instructions.items.len > 0);
assert(sema.isNoReturn(block.instructions.items[block.instructions.items.len - 1].toRef()));
break;
}
map.putAssumeCapacity(inst, air_inst);
i += 1;
}
}
pub fn resolveInstAllowNone(sema: *Sema, zir_ref: Zir.Inst.Ref) !Air.Inst.Ref {
if (zir_ref == .none) {
return .none;
} else {
return resolveInst(sema, zir_ref);
}
}
pub fn resolveInst(sema: *Sema, zir_ref: Zir.Inst.Ref) !Air.Inst.Ref {
assert(zir_ref != .none);
if (zir_ref.toIndex()) |i| {
const inst = sema.inst_map.get(i).?;
if (inst == .generic_poison) return error.GenericPoison;
return inst;
}
// First section of indexes correspond to a set number of constant values.
// We intentionally map the same indexes to the same values between ZIR and AIR.
return @enumFromInt(@intFromEnum(zir_ref));
}
fn resolveConstBool(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
zir_ref: Zir.Inst.Ref,
reason: NeededComptimeReason,
) !bool {
const air_inst = try sema.resolveInst(zir_ref);
const wanted_type = Type.bool;
const coerced_inst = try sema.coerce(block, wanted_type, air_inst, src);
const val = try sema.resolveConstDefinedValue(block, src, coerced_inst, reason);
return val.toBool();
}
fn resolveConstString(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
zir_ref: Zir.Inst.Ref,
reason: NeededComptimeReason,
) ![]u8 {
const air_inst = try sema.resolveInst(zir_ref);
return sema.toConstString(block, src, air_inst, reason);
}
pub fn toConstString(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
air_inst: Air.Inst.Ref,
reason: NeededComptimeReason,
) ![]u8 {
const coerced_inst = try sema.coerce(block, Type.slice_const_u8, air_inst, src);
const slice_val = try sema.resolveConstDefinedValue(block, src, coerced_inst, reason);
const arr_val = try sema.derefSliceAsArray(block, src, slice_val, reason);
return arr_val.toAllocatedBytes(arr_val.typeOf(sema.mod), sema.arena, sema.mod);
}
pub fn resolveConstStringIntern(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
zir_ref: Zir.Inst.Ref,
reason: NeededComptimeReason,
) !InternPool.NullTerminatedString {
const air_inst = try sema.resolveInst(zir_ref);
const wanted_type = Type.slice_const_u8;
const coerced_inst = try sema.coerce(block, wanted_type, air_inst, src);
const val = try sema.resolveConstDefinedValue(block, src, coerced_inst, reason);
return sema.sliceToIpString(block, src, val, reason);
}
pub fn resolveType(sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref) !Type {
const air_inst = try sema.resolveInst(zir_ref);
assert(air_inst != .var_args_param_type);
const ty = try sema.analyzeAsType(block, src, air_inst);
if (ty.isGenericPoison()) return error.GenericPoison;
return ty;
}
fn resolveDestType(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
zir_ref: Zir.Inst.Ref,
strat: enum { remove_eu_opt, remove_eu, remove_opt },
builtin_name: []const u8,
) !Type {
const mod = sema.mod;
const remove_eu = switch (strat) {
.remove_eu_opt, .remove_eu => true,
.remove_opt => false,
};
const remove_opt = switch (strat) {
.remove_eu_opt, .remove_opt => true,
.remove_eu => false,
};
const raw_ty = sema.resolveType(block, src, zir_ref) catch |err| switch (err) {
error.GenericPoison => {
// Cast builtins use their result type as the destination type, but
// it could be an anytype argument, which we can't catch in AstGen.
const msg = msg: {
const msg = try sema.errMsg(block, src, "{s} must have a known result type", .{builtin_name});
errdefer msg.destroy(sema.gpa);
switch (sema.genericPoisonReason(zir_ref)) {
.anytype_param => |call_src| try sema.errNote(block, call_src, msg, "result type is unknown due to anytype parameter", .{}),
.anyopaque_ptr => |ptr_src| try sema.errNote(block, ptr_src, msg, "result type is unknown due to opaque pointer type", .{}),
.unknown => {},
}
try sema.errNote(block, src, msg, "use @as to provide explicit result type", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
},
else => |e| return e,
};
if (remove_eu and raw_ty.zigTypeTag(mod) == .ErrorUnion) {
const eu_child = raw_ty.errorUnionPayload(mod);
if (remove_opt and eu_child.zigTypeTag(mod) == .Optional) {
return eu_child.childType(mod);
}
return eu_child;
}
if (remove_opt and raw_ty.zigTypeTag(mod) == .Optional) {
return raw_ty.childType(mod);
}
return raw_ty;
}
const GenericPoisonReason = union(enum) {
anytype_param: LazySrcLoc,
anyopaque_ptr: LazySrcLoc,
unknown,
};
/// Backtracks through ZIR instructions to determine the reason a generic poison
/// type was created. Used for error reporting.
fn genericPoisonReason(sema: *Sema, ref: Zir.Inst.Ref) GenericPoisonReason {
var cur = ref;
while (true) {
const inst = cur.toIndex() orelse return .unknown;
switch (sema.code.instructions.items(.tag)[@intFromEnum(inst)]) {
.validate_array_init_ref_ty => {
const pl_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.ArrayInitRefTy, pl_node.payload_index).data;
cur = extra.ptr_ty;
},
.array_init_elem_type => {
const bin = sema.code.instructions.items(.data)[@intFromEnum(inst)].bin;
cur = bin.lhs;
},
.indexable_ptr_elem_type, .vector_elem_type => {
const un_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
cur = un_node.operand;
},
.struct_init_field_type => {
const pl_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.FieldType, pl_node.payload_index).data;
cur = extra.container_type;
},
.elem_type => {
// There are two cases here: the pointer type may already have been
// generic poison, or it may have been an anyopaque pointer.
const un_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const operand_ref = sema.resolveInst(un_node.operand) catch |err| switch (err) {
error.GenericPoison => unreachable, // this is a type, not a value
};
const operand_val = operand_ref.toInterned() orelse return .unknown;
if (operand_val == .generic_poison_type) {
// The pointer was generic poison - keep looking.
cur = un_node.operand;
} else {
// This must be an anyopaque pointer!
return .{ .anyopaque_ptr = un_node.src() };
}
},
.call, .field_call => {
// A function call can never return generic poison, so we must be
// evaluating an `anytype` function parameter.
// TODO: better source location - function decl rather than call
const pl_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
return .{ .anytype_param = pl_node.src() };
},
else => return .unknown,
}
}
}
fn analyzeAsType(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
air_inst: Air.Inst.Ref,
) !Type {
const wanted_type = Type.type;
const coerced_inst = try sema.coerce(block, wanted_type, air_inst, src);
const val = try sema.resolveConstDefinedValue(block, src, coerced_inst, .{
.needed_comptime_reason = "types must be comptime-known",
});
return val.toType();
}
pub fn setupErrorReturnTrace(sema: *Sema, block: *Block, last_arg_index: usize) !void {
const mod = sema.mod;
const comp = mod.comp;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
if (!comp.config.any_error_tracing) return;
assert(!block.is_comptime);
var err_trace_block = block.makeSubBlock();
defer err_trace_block.instructions.deinit(gpa);
const src: LazySrcLoc = .unneeded;
// var addrs: [err_return_trace_addr_count]usize = undefined;
const err_return_trace_addr_count = 32;
const addr_arr_ty = try mod.arrayType(.{
.len = err_return_trace_addr_count,
.child = .usize_type,
});
const addrs_ptr = try err_trace_block.addTy(.alloc, try mod.singleMutPtrType(addr_arr_ty));
// var st: StackTrace = undefined;
const stack_trace_ty = try sema.getBuiltinType("StackTrace");
try sema.resolveTypeFields(stack_trace_ty);
const st_ptr = try err_trace_block.addTy(.alloc, try mod.singleMutPtrType(stack_trace_ty));
// st.instruction_addresses = &addrs;
const instruction_addresses_field_name = try ip.getOrPutString(gpa, "instruction_addresses");
const addr_field_ptr = try sema.fieldPtr(&err_trace_block, src, st_ptr, instruction_addresses_field_name, src, true);
try sema.storePtr2(&err_trace_block, src, addr_field_ptr, src, addrs_ptr, src, .store);
// st.index = 0;
const index_field_name = try ip.getOrPutString(gpa, "index");
const index_field_ptr = try sema.fieldPtr(&err_trace_block, src, st_ptr, index_field_name, src, true);
try sema.storePtr2(&err_trace_block, src, index_field_ptr, src, .zero_usize, src, .store);
// @errorReturnTrace() = &st;
_ = try err_trace_block.addUnOp(.set_err_return_trace, st_ptr);
try block.instructions.insertSlice(gpa, last_arg_index, err_trace_block.instructions.items);
}
/// Return the Value corresponding to a given AIR ref, or `null` if it refers to a runtime value.
/// InternPool key `variable` is considered a runtime value.
/// Generic poison causes `error.GenericPoison` to be returned.
fn resolveValue(sema: *Sema, inst: Air.Inst.Ref) CompileError!?Value {
const val = (try sema.resolveValueAllowVariables(inst)) orelse return null;
if (val.isGenericPoison()) return error.GenericPoison;
if (sema.mod.intern_pool.isVariable(val.toIntern())) return null;
return val;
}
/// Like `resolveValue`, but emits an error if the value is not comptime-known.
fn resolveConstValue(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
inst: Air.Inst.Ref,
reason: NeededComptimeReason,
) CompileError!Value {
return try sema.resolveValue(inst) orelse {
return sema.failWithNeededComptime(block, src, reason);
};
}
/// Like `resolveValue`, but emits an error if the value is comptime-known to be undefined.
fn resolveDefinedValue(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
air_ref: Air.Inst.Ref,
) CompileError!?Value {
const mod = sema.mod;
const val = try sema.resolveValue(air_ref) orelse return null;
if (val.isUndef(mod)) {
return sema.failWithUseOfUndef(block, src);
}
return val;
}
/// Like `resolveValue`, but emits an error if the value is not comptime-known or is undefined.
fn resolveConstDefinedValue(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
air_ref: Air.Inst.Ref,
reason: NeededComptimeReason,
) CompileError!Value {
const val = try sema.resolveConstValue(block, src, air_ref, reason);
if (val.isUndef(sema.mod)) return sema.failWithUseOfUndef(block, src);
return val;
}
/// Like `resolveValue`, but recursively resolves lazy values before returning.
fn resolveValueResolveLazy(sema: *Sema, inst: Air.Inst.Ref) CompileError!?Value {
return try sema.resolveLazyValue((try sema.resolveValue(inst)) orelse return null);
}
/// Like `resolveValue`, but any pointer value which does not correspond
/// to a comptime-known integer (e.g. a decl pointer) returns `null`.
/// Lazy values are recursively resolved.
fn resolveValueIntable(sema: *Sema, inst: Air.Inst.Ref) CompileError!?Value {
const val = (try sema.resolveValue(inst)) orelse return null;
if (sema.mod.intern_pool.getBackingAddrTag(val.toIntern())) |addr| switch (addr) {
.decl, .anon_decl, .comptime_alloc, .comptime_field => return null,
.int => {},
.eu_payload, .opt_payload, .elem, .field => unreachable,
};
return try sema.resolveLazyValue(val);
}
/// Returns all InternPool keys representing values, including `variable`, `undef`, and `generic_poison`.
fn resolveValueAllowVariables(sema: *Sema, inst: Air.Inst.Ref) CompileError!?Value {
assert(inst != .none);
// First section of indexes correspond to a set number of constant values.
if (@intFromEnum(inst) < InternPool.static_len) {
return Value.fromInterned(@as(InternPool.Index, @enumFromInt(@intFromEnum(inst))));
}
const air_tags = sema.air_instructions.items(.tag);
if (try sema.typeHasOnePossibleValue(sema.typeOf(inst))) |opv| {
if (inst.toInterned()) |ip_index| {
const val = Value.fromInterned(ip_index);
if (val.getVariable(sema.mod) != null) return val;
}
return opv;
}
const ip_index = inst.toInterned() orelse {
switch (air_tags[@intFromEnum(inst.toIndex().?)]) {
.inferred_alloc => unreachable,
.inferred_alloc_comptime => unreachable,
else => return null,
}
};
const val = Value.fromInterned(ip_index);
if (val.isPtrToThreadLocal(sema.mod)) return null;
return val;
}
/// Returns a compile error if the value has tag `variable`.
fn resolveInstConst(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
zir_ref: Zir.Inst.Ref,
reason: NeededComptimeReason,
) CompileError!Value {
const air_ref = try sema.resolveInst(zir_ref);
return sema.resolveConstDefinedValue(block, src, air_ref, reason);
}
/// Value Tag may be `undef` or `variable`.
pub fn resolveFinalDeclValue(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
air_ref: Air.Inst.Ref,
) CompileError!Value {
const val = try sema.resolveValueAllowVariables(air_ref) orelse {
return sema.failWithNeededComptime(block, src, .{
.needed_comptime_reason = "global variable initializer must be comptime-known",
});
};
if (val.isGenericPoison()) return error.GenericPoison;
if (val.canMutateComptimeVarState(sema.mod)) {
return sema.fail(block, src, "global variable contains reference to comptime var", .{});
}
return val;
}
fn failWithNeededComptime(sema: *Sema, block: *Block, src: LazySrcLoc, reason: NeededComptimeReason) CompileError {
const msg = msg: {
const msg = try sema.errMsg(block, src, "unable to resolve comptime value", .{});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "{s}", .{reason.needed_comptime_reason});
if (reason.block_comptime_reason) |block_comptime_reason| {
try block_comptime_reason.explain(sema, msg);
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
fn failWithUseOfUndef(sema: *Sema, block: *Block, src: LazySrcLoc) CompileError {
return sema.fail(block, src, "use of undefined value here causes undefined behavior", .{});
}
fn failWithDivideByZero(sema: *Sema, block: *Block, src: LazySrcLoc) CompileError {
return sema.fail(block, src, "division by zero here causes undefined behavior", .{});
}
fn failWithModRemNegative(sema: *Sema, block: *Block, src: LazySrcLoc, lhs_ty: Type, rhs_ty: Type) CompileError {
return sema.fail(block, src, "remainder division with '{}' and '{}': signed integers and floats must use @rem or @mod", .{
lhs_ty.fmt(sema.mod), rhs_ty.fmt(sema.mod),
});
}
fn failWithExpectedOptionalType(sema: *Sema, block: *Block, src: LazySrcLoc, optional_ty: Type) CompileError {
return sema.fail(block, src, "expected optional type, found '{}'", .{optional_ty.fmt(sema.mod)});
}
fn failWithArrayInitNotSupported(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) CompileError {
const mod = sema.mod;
const msg = msg: {
const msg = try sema.errMsg(block, src, "type '{}' does not support array initialization syntax", .{
ty.fmt(mod),
});
errdefer msg.destroy(sema.gpa);
if (ty.isSlice(mod)) {
try sema.errNote(block, src, msg, "inferred array length is specified with an underscore: '[_]{}'", .{ty.elemType2(mod).fmt(mod)});
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
fn failWithStructInitNotSupported(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) CompileError {
return sema.fail(block, src, "type '{}' does not support struct initialization syntax", .{
ty.fmt(sema.mod),
});
}
fn failWithErrorSetCodeMissing(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
dest_err_set_ty: Type,
src_err_set_ty: Type,
) CompileError {
return sema.fail(block, src, "expected type '{}', found type '{}'", .{
dest_err_set_ty.fmt(sema.mod), src_err_set_ty.fmt(sema.mod),
});
}
fn failWithIntegerOverflow(sema: *Sema, block: *Block, src: LazySrcLoc, int_ty: Type, val: Value, vector_index: usize) CompileError {
const mod = sema.mod;
if (int_ty.zigTypeTag(mod) == .Vector) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "overflow of vector type '{}' with value '{}'", .{
int_ty.fmt(sema.mod), val.fmtValue(sema.mod),
});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "when computing vector element at index '{d}'", .{vector_index});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
return sema.fail(block, src, "overflow of integer type '{}' with value '{}'", .{
int_ty.fmt(sema.mod), val.fmtValue(sema.mod),
});
}
fn failWithInvalidComptimeFieldStore(sema: *Sema, block: *Block, init_src: LazySrcLoc, container_ty: Type, field_index: usize) CompileError {
const mod = sema.mod;
const msg = msg: {
const msg = try sema.errMsg(block, init_src, "value stored in comptime field does not match the default value of the field", .{});
errdefer msg.destroy(sema.gpa);
const struct_type = mod.typeToStruct(container_ty) orelse break :msg msg;
const default_value_src = mod.fieldSrcLoc(struct_type.decl.unwrap().?, .{
.index = field_index,
.range = .value,
});
try mod.errNoteNonLazy(default_value_src, msg, "default value set here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
fn failWithUseOfAsync(sema: *Sema, block: *Block, src: LazySrcLoc) CompileError {
const msg = msg: {
const msg = try sema.errMsg(block, src, "async has not been implemented in the self-hosted compiler yet", .{});
errdefer msg.destroy(sema.gpa);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
fn failWithInvalidFieldAccess(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
object_ty: Type,
field_name: InternPool.NullTerminatedString,
) CompileError {
const mod = sema.mod;
const inner_ty = if (object_ty.isSinglePointer(mod)) object_ty.childType(mod) else object_ty;
if (inner_ty.zigTypeTag(mod) == .Optional) opt: {
const child_ty = inner_ty.optionalChild(mod);
if (!typeSupportsFieldAccess(mod, child_ty, field_name)) break :opt;
const msg = msg: {
const msg = try sema.errMsg(block, src, "optional type '{}' does not support field access", .{object_ty.fmt(sema.mod)});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "consider using '.?', 'orelse', or 'if'", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
} else if (inner_ty.zigTypeTag(mod) == .ErrorUnion) err: {
const child_ty = inner_ty.errorUnionPayload(mod);
if (!typeSupportsFieldAccess(mod, child_ty, field_name)) break :err;
const msg = msg: {
const msg = try sema.errMsg(block, src, "error union type '{}' does not support field access", .{object_ty.fmt(sema.mod)});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "consider using 'try', 'catch', or 'if'", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
return sema.fail(block, src, "type '{}' does not support field access", .{object_ty.fmt(sema.mod)});
}
fn typeSupportsFieldAccess(mod: *const Module, ty: Type, field_name: InternPool.NullTerminatedString) bool {
const ip = &mod.intern_pool;
switch (ty.zigTypeTag(mod)) {
.Array => return ip.stringEqlSlice(field_name, "len"),
.Pointer => {
const ptr_info = ty.ptrInfo(mod);
if (ptr_info.flags.size == .Slice) {
return ip.stringEqlSlice(field_name, "ptr") or ip.stringEqlSlice(field_name, "len");
} else if (Type.fromInterned(ptr_info.child).zigTypeTag(mod) == .Array) {
return ip.stringEqlSlice(field_name, "len");
} else return false;
},
.Type, .Struct, .Union => return true,
else => return false,
}
}
fn failWithComptimeErrorRetTrace(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
name: InternPool.NullTerminatedString,
) CompileError {
const mod = sema.mod;
const msg = msg: {
const msg = try sema.errMsg(block, src, "caught unexpected error '{}'", .{name.fmt(&mod.intern_pool)});
errdefer msg.destroy(sema.gpa);
for (sema.comptime_err_ret_trace.items) |src_loc| {
try mod.errNoteNonLazy(src_loc, msg, "error returned here", .{});
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
/// We don't return a pointer to the new error note because the pointer
/// becomes invalid when you add another one.
fn errNote(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
parent: *Module.ErrorMsg,
comptime format: []const u8,
args: anytype,
) error{OutOfMemory}!void {
const mod = sema.mod;
const src_decl = mod.declPtr(block.src_decl);
return mod.errNoteNonLazy(src_decl.toSrcLoc(src, mod), parent, format, args);
}
fn addFieldErrNote(
sema: *Sema,
container_ty: Type,
field_index: usize,
parent: *Module.ErrorMsg,
comptime format: []const u8,
args: anytype,
) !void {
@setCold(true);
const mod = sema.mod;
const decl_index = container_ty.getOwnerDecl(mod);
const decl = mod.declPtr(decl_index);
const field_src = blk: {
const tree = decl.getFileScope(mod).getTree(sema.gpa) catch |err| {
log.err("unable to load AST to report compile error: {s}", .{@errorName(err)});
break :blk decl.srcLoc(mod);
};
const container_node = decl.relativeToNodeIndex(0);
const node_tags = tree.nodes.items(.tag);
var buf: [2]std.zig.Ast.Node.Index = undefined;
const container_decl = tree.fullContainerDecl(&buf, container_node) orelse break :blk decl.srcLoc(mod);
var it_index: usize = 0;
for (container_decl.ast.members) |member_node| {
switch (node_tags[member_node]) {
.container_field_init,
.container_field_align,
.container_field,
=> {
if (it_index == field_index) {
break :blk decl.nodeOffsetSrcLoc(decl.nodeIndexToRelative(member_node), mod);
}
it_index += 1;
},
else => continue,
}
}
unreachable;
};
try mod.errNoteNonLazy(field_src, parent, format, args);
}
fn errMsg(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
comptime format: []const u8,
args: anytype,
) error{ NeededSourceLocation, OutOfMemory }!*Module.ErrorMsg {
const mod = sema.mod;
if (src == .unneeded) return error.NeededSourceLocation;
const src_decl = mod.declPtr(block.src_decl);
return Module.ErrorMsg.create(sema.gpa, src_decl.toSrcLoc(src, mod), format, args);
}
pub fn fail(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
comptime format: []const u8,
args: anytype,
) CompileError {
const err_msg = try sema.errMsg(block, src, format, args);
inline for (args) |arg| {
if (@TypeOf(arg) == Type.Formatter) {
try addDeclaredHereNote(sema, err_msg, arg.data.ty);
}
}
return sema.failWithOwnedErrorMsg(block, err_msg);
}
fn failWithOwnedErrorMsg(sema: *Sema, block: ?*Block, err_msg: *Module.ErrorMsg) error{ AnalysisFail, OutOfMemory } {
@setCold(true);
const gpa = sema.gpa;
const mod = sema.mod;
ref: {
errdefer err_msg.destroy(gpa);
if (build_options.enable_debug_extensions and mod.comp.debug_compile_errors) {
var wip_errors: std.zig.ErrorBundle.Wip = undefined;
wip_errors.init(gpa) catch unreachable;
Compilation.addModuleErrorMsg(mod, &wip_errors, err_msg.*) catch unreachable;
std.debug.print("compile error during Sema:\n", .{});
var error_bundle = wip_errors.toOwnedBundle("") catch unreachable;
error_bundle.renderToStdErr(.{ .ttyconf = .no_color });
crash_report.compilerPanic("unexpected compile error occurred", null, null);
}
try mod.failed_decls.ensureUnusedCapacity(gpa, 1);
try mod.failed_files.ensureUnusedCapacity(gpa, 1);
if (block) |start_block| {
var block_it = start_block;
while (block_it.inlining) |inlining| {
try sema.errNote(
inlining.call_block,
inlining.call_src,
err_msg,
"called from here",
.{},
);
block_it = inlining.call_block;
}
const max_references = refs: {
if (mod.comp.reference_trace) |num| break :refs num;
// Do not add multiple traces without explicit request.
if (mod.failed_decls.count() > 0) break :ref;
break :refs default_reference_trace_len;
};
var referenced_by = if (sema.owner_func_index != .none)
mod.funcOwnerDeclIndex(sema.owner_func_index)
else
sema.owner_decl_index;
var reference_stack = std.ArrayList(Module.ErrorMsg.Trace).init(gpa);
defer reference_stack.deinit();
// Avoid infinite loops.
var seen = std.AutoHashMap(InternPool.DeclIndex, void).init(gpa);
defer seen.deinit();
while (mod.reference_table.get(referenced_by)) |ref| {
const gop = try seen.getOrPut(ref.referencer);
if (gop.found_existing) break;
if (reference_stack.items.len < max_references) {
const decl = mod.declPtr(ref.referencer);
try reference_stack.append(.{
.decl = decl.name,
.src_loc = decl.toSrcLoc(ref.src, mod),
});
}
referenced_by = ref.referencer;
}
err_msg.reference_trace = try reference_stack.toOwnedSlice();
err_msg.hidden_references = @intCast(seen.count() -| max_references);
}
}
const ip = &mod.intern_pool;
if (sema.owner_func_index != .none) {
ip.funcAnalysis(sema.owner_func_index).state = .sema_failure;
} else {
sema.owner_decl.analysis = .sema_failure;
}
if (sema.func_index != .none) {
ip.funcAnalysis(sema.func_index).state = .sema_failure;
}
const gop = mod.failed_decls.getOrPutAssumeCapacity(sema.owner_decl_index);
if (gop.found_existing) {
// If there are multiple errors for the same Decl, prefer the first one added.
sema.err = null;
err_msg.destroy(gpa);
} else {
sema.err = err_msg;
gop.value_ptr.* = err_msg;
}
return error.AnalysisFail;
}
/// Given an ErrorMsg, modify its message and source location to the given values, turning the
/// original message into a note. Notes on the original message are preserved as further notes.
/// Reference trace is preserved.
fn reparentOwnedErrorMsg(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
msg: *Module.ErrorMsg,
comptime format: []const u8,
args: anytype,
) !void {
const mod = sema.mod;
const src_decl = mod.declPtr(block.src_decl);
const resolved_src = src_decl.toSrcLoc(src, mod);
const msg_str = try std.fmt.allocPrint(mod.gpa, format, args);
const orig_notes = msg.notes.len;
msg.notes = try sema.gpa.realloc(msg.notes, orig_notes + 1);
std.mem.copyBackwards(Module.ErrorMsg, msg.notes[1..], msg.notes[0..orig_notes]);
msg.notes[0] = .{
.src_loc = msg.src_loc,
.msg = msg.msg,
};
msg.src_loc = resolved_src;
msg.msg = msg_str;
}
const align_ty = Type.u29;
pub fn analyzeAsAlign(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
air_ref: Air.Inst.Ref,
) !Alignment {
const alignment_big = try sema.analyzeAsInt(block, src, air_ref, align_ty, .{
.needed_comptime_reason = "alignment must be comptime-known",
});
return sema.validateAlign(block, src, alignment_big);
}
fn validateAlign(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
alignment: u64,
) !Alignment {
const result = try validateAlignAllowZero(sema, block, src, alignment);
if (result == .none) return sema.fail(block, src, "alignment must be >= 1", .{});
return result;
}
fn validateAlignAllowZero(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
alignment: u64,
) !Alignment {
if (alignment == 0) return .none;
if (!std.math.isPowerOfTwo(alignment)) {
return sema.fail(block, src, "alignment value '{d}' is not a power of two", .{
alignment,
});
}
return Alignment.fromNonzeroByteUnits(alignment);
}
fn resolveAlign(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
zir_ref: Zir.Inst.Ref,
) !Alignment {
const air_ref = try sema.resolveInst(zir_ref);
return sema.analyzeAsAlign(block, src, air_ref);
}
fn resolveInt(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
zir_ref: Zir.Inst.Ref,
dest_ty: Type,
reason: NeededComptimeReason,
) !u64 {
const air_ref = try sema.resolveInst(zir_ref);
return sema.analyzeAsInt(block, src, air_ref, dest_ty, reason);
}
fn analyzeAsInt(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
air_ref: Air.Inst.Ref,
dest_ty: Type,
reason: NeededComptimeReason,
) !u64 {
const mod = sema.mod;
const coerced = try sema.coerce(block, dest_ty, air_ref, src);
const val = try sema.resolveConstDefinedValue(block, src, coerced, reason);
return (try val.getUnsignedIntAdvanced(mod, sema)).?;
}
/// Given a ZIR extra index which points to a list of `Zir.Inst.Capture`,
/// resolves this into a list of `InternPool.CaptureValue` allocated by `arena`.
fn getCaptures(sema: *Sema, block: *Block, type_src: LazySrcLoc, extra_index: usize, captures_len: u32) ![]InternPool.CaptureValue {
const zcu = sema.mod;
const ip = &zcu.intern_pool;
const parent_captures: InternPool.CaptureValue.Slice = zcu.namespacePtr(block.namespace).getType(zcu).getCaptures(zcu);
const captures = try sema.arena.alloc(InternPool.CaptureValue, captures_len);
for (sema.code.extra[extra_index..][0..captures_len], captures) |raw, *capture| {
const zir_capture: Zir.Inst.Capture = @bitCast(raw);
capture.* = switch (zir_capture.unwrap()) {
.nested => |parent_idx| parent_captures.get(ip)[parent_idx],
.instruction_load => |ptr_inst| InternPool.CaptureValue.wrap(capture: {
const ptr_ref = try sema.resolveInst(ptr_inst.toRef());
const ptr_val = try sema.resolveValue(ptr_ref) orelse {
break :capture .{ .runtime = sema.typeOf(ptr_ref).childType(zcu).toIntern() };
};
// TODO: better source location
const unresolved_loaded_val = try sema.pointerDeref(block, type_src, ptr_val, sema.typeOf(ptr_ref)) orelse {
break :capture .{ .runtime = sema.typeOf(ptr_ref).childType(zcu).toIntern() };
};
const loaded_val = try sema.resolveLazyValue(unresolved_loaded_val);
if (loaded_val.canMutateComptimeVarState(zcu)) {
// TODO: source location of captured value
return sema.fail(block, type_src, "type capture contains reference to comptime var", .{});
}
break :capture .{ .@"comptime" = loaded_val.toIntern() };
}),
.instruction => |inst| InternPool.CaptureValue.wrap(capture: {
const air_ref = try sema.resolveInst(inst.toRef());
if (try sema.resolveValueResolveLazy(air_ref)) |val| {
if (val.canMutateComptimeVarState(zcu)) {
// TODO: source location of captured value
return sema.fail(block, type_src, "type capture contains reference to comptime var", .{});
}
break :capture .{ .@"comptime" = val.toIntern() };
}
break :capture .{ .runtime = sema.typeOf(air_ref).toIntern() };
}),
.decl_val => |str| capture: {
const decl_name = try ip.getOrPutString(sema.gpa, sema.code.nullTerminatedString(str));
const decl = try sema.lookupIdentifier(block, .unneeded, decl_name); // TODO: could we need this src loc?
break :capture InternPool.CaptureValue.wrap(.{ .decl_val = decl });
},
.decl_ref => |str| capture: {
const decl_name = try ip.getOrPutString(sema.gpa, sema.code.nullTerminatedString(str));
const decl = try sema.lookupIdentifier(block, .unneeded, decl_name); // TODO: could we need this src loc?
break :capture InternPool.CaptureValue.wrap(.{ .decl_ref = decl });
},
};
}
return captures;
}
/// Given an `InternPool.WipNamespaceType` or `InternPool.WipEnumType`, apply
/// `sema.builtin_type_target_index` to it if necessary.
fn wrapWipTy(sema: *Sema, wip_ty: anytype) @TypeOf(wip_ty) {
if (sema.builtin_type_target_index == .none) return wip_ty;
var new = wip_ty;
new.index = sema.builtin_type_target_index;
sema.mod.intern_pool.resolveBuiltinType(new.index, wip_ty.index);
return new;
}
/// Given a type just looked up in the `InternPool`, check whether it is
/// considered outdated on this update. If so, remove it from the pool
/// and return `true`.
fn maybeRemoveOutdatedType(sema: *Sema, ty: InternPool.Index) !bool {
const zcu = sema.mod;
if (!zcu.comp.debug_incremental) return false;
const decl_index = Type.fromInterned(ty).getOwnerDecl(zcu);
const decl_as_depender = InternPool.Depender.wrap(.{ .decl = decl_index });
const was_outdated = zcu.outdated.swapRemove(decl_as_depender) or
zcu.potentially_outdated.swapRemove(decl_as_depender);
if (!was_outdated) return false;
_ = zcu.outdated_ready.swapRemove(decl_as_depender);
zcu.intern_pool.removeDependenciesForDepender(zcu.gpa, InternPool.Depender.wrap(.{ .decl = decl_index }));
zcu.intern_pool.remove(ty);
zcu.declPtr(decl_index).analysis = .dependency_failure;
try zcu.markDependeeOutdated(.{ .decl_val = decl_index });
return true;
}
fn zirStructDecl(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
inst: Zir.Inst.Index,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const small: Zir.Inst.StructDecl.Small = @bitCast(extended.small);
const extra = sema.code.extraData(Zir.Inst.StructDecl, extended.operand);
const src = extra.data.src();
var extra_index = extra.end;
const captures_len = if (small.has_captures_len) blk: {
const captures_len = sema.code.extra[extra_index];
extra_index += 1;
break :blk captures_len;
} else 0;
const fields_len = if (small.has_fields_len) blk: {
const fields_len = sema.code.extra[extra_index];
extra_index += 1;
break :blk fields_len;
} else 0;
const decls_len = if (small.has_decls_len) blk: {
const decls_len = sema.code.extra[extra_index];
extra_index += 1;
break :blk decls_len;
} else 0;
const captures = try sema.getCaptures(block, src, extra_index, captures_len);
extra_index += captures_len;
if (small.has_backing_int) {
const backing_int_body_len = sema.code.extra[extra_index];
extra_index += 1; // backing_int_body_len
if (backing_int_body_len == 0) {
extra_index += 1; // backing_int_ref
} else {
extra_index += backing_int_body_len; // backing_int_body_inst
}
}
const struct_init: InternPool.StructTypeInit = .{
.layout = small.layout,
.fields_len = fields_len,
.known_non_opv = small.known_non_opv,
.requires_comptime = if (small.known_comptime_only) .yes else .unknown,
.is_tuple = small.is_tuple,
.any_comptime_fields = small.any_comptime_fields,
.any_default_inits = small.any_default_inits,
.inits_resolved = false,
.any_aligned_fields = small.any_aligned_fields,
.has_namespace = true or decls_len > 0, // TODO: see below
.key = .{ .declared = .{
.zir_index = try ip.trackZir(gpa, block.getFileScope(mod), inst),
.captures = captures,
} },
};
const wip_ty = sema.wrapWipTy(switch (try ip.getStructType(gpa, struct_init)) {
.existing => |ty| wip: {
if (!try sema.maybeRemoveOutdatedType(ty)) return Air.internedToRef(ty);
break :wip (try ip.getStructType(gpa, struct_init)).wip;
},
.wip => |wip| wip,
});
errdefer wip_ty.cancel(ip);
const new_decl_index = try sema.createAnonymousDeclTypeNamed(
block,
src,
Value.fromInterned(wip_ty.index),
small.name_strategy,
"struct",
inst,
);
mod.declPtr(new_decl_index).owns_tv = true;
errdefer mod.abortAnonDecl(new_decl_index);
if (sema.mod.comp.debug_incremental) {
try ip.addDependency(
sema.gpa,
InternPool.Depender.wrap(.{ .decl = new_decl_index }),
.{ .src_hash = try ip.trackZir(sema.gpa, block.getFileScope(mod), inst) },
);
}
// TODO: if AstGen tells us `@This` was not used in the fields, we can elide the namespace.
const new_namespace_index: InternPool.OptionalNamespaceIndex = if (true or decls_len > 0) (try mod.createNamespace(.{
.parent = block.namespace.toOptional(),
.decl_index = new_decl_index,
.file_scope = block.getFileScope(mod),
})).toOptional() else .none;
errdefer if (new_namespace_index.unwrap()) |ns| mod.destroyNamespace(ns);
if (new_namespace_index.unwrap()) |ns| {
const decls = sema.code.bodySlice(extra_index, decls_len);
try mod.scanNamespace(ns, decls, mod.declPtr(new_decl_index));
}
try mod.finalizeAnonDecl(new_decl_index);
return Air.internedToRef(wip_ty.finish(ip, new_decl_index, new_namespace_index));
}
fn createAnonymousDeclTypeNamed(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
val: Value,
name_strategy: Zir.Inst.NameStrategy,
anon_prefix: []const u8,
inst: ?Zir.Inst.Index,
) !InternPool.DeclIndex {
const mod = sema.mod;
const ip = &mod.intern_pool;
const gpa = sema.gpa;
const namespace = block.namespace;
const src_decl = mod.declPtr(block.src_decl);
const src_node = src_decl.relativeToNodeIndex(src.node_offset.x);
const new_decl_index = try mod.allocateNewDecl(namespace, src_node);
errdefer mod.destroyDecl(new_decl_index);
switch (name_strategy) {
.anon => {
// It would be neat to have "struct:line:column" but this name has
// to survive incremental updates, where it may have been shifted down
// or up to a different line, but unchanged, and thus not unnecessarily
// semantically analyzed.
// This name is also used as the key in the parent namespace so it cannot be
// renamed.
const name = mod.intern_pool.getOrPutStringFmt(gpa, "{}__{s}_{d}", .{
src_decl.name.fmt(&mod.intern_pool), anon_prefix, @intFromEnum(new_decl_index),
}) catch unreachable;
try mod.initNewAnonDecl(new_decl_index, src_decl.src_line, val, name);
return new_decl_index;
},
.parent => {
const name = mod.declPtr(block.src_decl).name;
try mod.initNewAnonDecl(new_decl_index, src_decl.src_line, val, name);
return new_decl_index;
},
.func => {
const fn_info = sema.code.getFnInfo(ip.funcZirBodyInst(sema.func_index).resolve(ip));
const zir_tags = sema.code.instructions.items(.tag);
var buf = std.ArrayList(u8).init(gpa);
defer buf.deinit();
const writer = buf.writer();
try writer.print("{}(", .{mod.declPtr(block.src_decl).name.fmt(&mod.intern_pool)});
var arg_i: usize = 0;
for (fn_info.param_body) |zir_inst| switch (zir_tags[@intFromEnum(zir_inst)]) {
.param, .param_comptime, .param_anytype, .param_anytype_comptime => {
const arg = sema.inst_map.get(zir_inst).?;
// If this is being called in a generic function then analyzeCall will
// have already resolved the args and this will work.
// If not then this is a struct type being returned from a non-generic
// function and the name doesn't matter since it will later
// result in a compile error.
const arg_val = sema.resolveConstValue(block, .unneeded, arg, undefined) catch
return sema.createAnonymousDeclTypeNamed(block, src, val, .anon, anon_prefix, null);
if (arg_i != 0) try writer.writeByte(',');
try writer.print("{}", .{arg_val.fmtValue(sema.mod)});
arg_i += 1;
continue;
},
else => continue,
};
try writer.writeByte(')');
const name = try mod.intern_pool.getOrPutString(gpa, buf.items);
try mod.initNewAnonDecl(new_decl_index, src_decl.src_line, val, name);
return new_decl_index;
},
.dbg_var => {
const ref = inst.?.toRef();
const zir_tags = sema.code.instructions.items(.tag);
const zir_data = sema.code.instructions.items(.data);
for (@intFromEnum(inst.?)..zir_tags.len) |i| switch (zir_tags[i]) {
.dbg_var_ptr, .dbg_var_val => {
if (zir_data[i].str_op.operand != ref) continue;
const name = try mod.intern_pool.getOrPutStringFmt(gpa, "{}.{s}", .{
src_decl.name.fmt(&mod.intern_pool), zir_data[i].str_op.getStr(sema.code),
});
try mod.initNewAnonDecl(new_decl_index, src_decl.src_line, val, name);
return new_decl_index;
},
else => {},
};
return sema.createAnonymousDeclTypeNamed(block, src, val, .anon, anon_prefix, null);
},
}
}
fn zirEnumDecl(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
inst: Zir.Inst.Index,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const small: Zir.Inst.EnumDecl.Small = @bitCast(extended.small);
const extra = sema.code.extraData(Zir.Inst.EnumDecl, extended.operand);
var extra_index: usize = extra.end;
const src = extra.data.src();
const tag_ty_src: LazySrcLoc = .{ .node_offset_container_tag = src.node_offset.x };
const tag_type_ref = if (small.has_tag_type) blk: {
const tag_type_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
extra_index += 1;
break :blk tag_type_ref;
} else .none;
const captures_len = if (small.has_captures_len) blk: {
const captures_len = sema.code.extra[extra_index];
extra_index += 1;
break :blk captures_len;
} else 0;
const body_len = if (small.has_body_len) blk: {
const body_len = sema.code.extra[extra_index];
extra_index += 1;
break :blk body_len;
} else 0;
const fields_len = if (small.has_fields_len) blk: {
const fields_len = sema.code.extra[extra_index];
extra_index += 1;
break :blk fields_len;
} else 0;
const decls_len = if (small.has_decls_len) blk: {
const decls_len = sema.code.extra[extra_index];
extra_index += 1;
break :blk decls_len;
} else 0;
const captures = try sema.getCaptures(block, src, extra_index, captures_len);
extra_index += captures_len;
const decls = sema.code.bodySlice(extra_index, decls_len);
extra_index += decls_len;
const body = sema.code.bodySlice(extra_index, body_len);
extra_index += body.len;
const bit_bags_count = std.math.divCeil(usize, fields_len, 32) catch unreachable;
const body_end = extra_index;
extra_index += bit_bags_count;
const any_values = for (sema.code.extra[body_end..][0..bit_bags_count]) |bag| {
if (bag != 0) break true;
} else false;
const enum_init: InternPool.EnumTypeInit = .{
.has_namespace = true or decls_len > 0, // TODO: see below
.has_values = any_values,
.tag_mode = if (small.nonexhaustive)
.nonexhaustive
else if (tag_type_ref == .none)
.auto
else
.explicit,
.fields_len = fields_len,
.key = .{ .declared = .{
.zir_index = try mod.intern_pool.trackZir(sema.gpa, block.getFileScope(mod), inst),
.captures = captures,
} },
};
const wip_ty = sema.wrapWipTy(switch (try ip.getEnumType(gpa, enum_init)) {
.existing => |ty| wip: {
if (!try sema.maybeRemoveOutdatedType(ty)) return Air.internedToRef(ty);
break :wip (try ip.getEnumType(gpa, enum_init)).wip;
},
.wip => |wip| wip,
});
// Once this is `true`, we will not delete the decl or type even upon failure, since we
// have finished constructing the type and are in the process of analyzing it.
var done = false;
errdefer if (!done) wip_ty.cancel(ip);
const new_decl_index = try sema.createAnonymousDeclTypeNamed(
block,
src,
Value.fromInterned(wip_ty.index),
small.name_strategy,
"enum",
inst,
);
const new_decl = mod.declPtr(new_decl_index);
new_decl.owns_tv = true;
errdefer if (!done) mod.abortAnonDecl(new_decl_index);
if (sema.mod.comp.debug_incremental) {
try mod.intern_pool.addDependency(
sema.gpa,
InternPool.Depender.wrap(.{ .decl = new_decl_index }),
.{ .src_hash = try mod.intern_pool.trackZir(sema.gpa, block.getFileScope(mod), inst) },
);
}
// TODO: if AstGen tells us `@This` was not used in the fields, we can elide the namespace.
const new_namespace_index: InternPool.OptionalNamespaceIndex = if (true or decls_len > 0) (try mod.createNamespace(.{
.parent = block.namespace.toOptional(),
.decl_index = new_decl_index,
.file_scope = block.getFileScope(mod),
})).toOptional() else .none;
errdefer if (!done) if (new_namespace_index.unwrap()) |ns| mod.destroyNamespace(ns);
if (new_namespace_index.unwrap()) |ns| {
try mod.scanNamespace(ns, decls, new_decl);
}
// We've finished the initial construction of this type, and are about to perform analysis.
// Set the decl and namespace appropriately, and don't destroy anything on failure.
wip_ty.prepare(ip, new_decl_index, new_namespace_index);
done = true;
const int_tag_ty = ty: {
// We create a block for the field type instructions because they
// may need to reference Decls from inside the enum namespace.
// Within the field type, default value, and alignment expressions, the "owner decl"
// should be the enum itself.
const prev_owner_decl = sema.owner_decl;
const prev_owner_decl_index = sema.owner_decl_index;
sema.owner_decl = new_decl;
sema.owner_decl_index = new_decl_index;
defer {
sema.owner_decl = prev_owner_decl;
sema.owner_decl_index = prev_owner_decl_index;
}
const prev_owner_func_index = sema.owner_func_index;
sema.owner_func_index = .none;
defer sema.owner_func_index = prev_owner_func_index;
const prev_func_index = sema.func_index;
sema.func_index = .none;
defer sema.func_index = prev_func_index;
var enum_block: Block = .{
.parent = null,
.sema = sema,
.src_decl = new_decl_index,
.namespace = new_namespace_index.unwrap() orelse block.namespace,
.instructions = .{},
.inlining = null,
.is_comptime = true,
};
defer enum_block.instructions.deinit(sema.gpa);
if (body.len != 0) {
_ = try sema.analyzeInlineBody(&enum_block, body, inst);
}
if (tag_type_ref != .none) {
const ty = try sema.resolveType(block, tag_ty_src, tag_type_ref);
if (ty.zigTypeTag(mod) != .Int and ty.zigTypeTag(mod) != .ComptimeInt) {
return sema.fail(block, tag_ty_src, "expected integer tag type, found '{}'", .{ty.fmt(sema.mod)});
}
break :ty ty;
} else if (fields_len == 0) {
break :ty try mod.intType(.unsigned, 0);
} else {
const bits = std.math.log2_int_ceil(usize, fields_len);
break :ty try mod.intType(.unsigned, bits);
}
};
wip_ty.setTagTy(ip, int_tag_ty.toIntern());
if (small.nonexhaustive and int_tag_ty.toIntern() != .comptime_int_type) {
if (fields_len > 1 and std.math.log2_int(u64, fields_len) == int_tag_ty.bitSize(mod)) {
return sema.fail(block, src, "non-exhaustive enum specifies every value", .{});
}
}
var bit_bag_index: usize = body_end;
var cur_bit_bag: u32 = undefined;
var field_i: u32 = 0;
var last_tag_val: ?Value = null;
while (field_i < fields_len) : (field_i += 1) {
if (field_i % 32 == 0) {
cur_bit_bag = sema.code.extra[bit_bag_index];
bit_bag_index += 1;
}
const has_tag_value = @as(u1, @truncate(cur_bit_bag)) != 0;
cur_bit_bag >>= 1;
const field_name_index: Zir.NullTerminatedString = @enumFromInt(sema.code.extra[extra_index]);
const field_name_zir = sema.code.nullTerminatedString(field_name_index);
extra_index += 2; // field name, doc comment
const field_name = try mod.intern_pool.getOrPutString(gpa, field_name_zir);
const tag_overflow = if (has_tag_value) overflow: {
const tag_val_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
extra_index += 1;
const tag_inst = try sema.resolveInst(tag_val_ref);
last_tag_val = sema.resolveConstDefinedValue(block, .unneeded, tag_inst, undefined) catch |err| switch (err) {
error.NeededSourceLocation => {
const value_src = mod.fieldSrcLoc(new_decl_index, .{
.index = field_i,
.range = .value,
}).lazy;
_ = try sema.resolveConstDefinedValue(block, value_src, tag_inst, .{
.needed_comptime_reason = "enum tag value must be comptime-known",
});
unreachable;
},
else => |e| return e,
};
if (!(try sema.intFitsInType(last_tag_val.?, int_tag_ty, null))) break :overflow true;
last_tag_val = try mod.getCoerced(last_tag_val.?, int_tag_ty);
if (wip_ty.nextField(&mod.intern_pool, field_name, last_tag_val.?.toIntern())) |conflict| {
assert(conflict.kind == .value); // AstGen validated names are unique
const value_src = mod.fieldSrcLoc(new_decl_index, .{
.index = field_i,
.range = .value,
}).lazy;
const other_field_src = mod.fieldSrcLoc(new_decl_index, .{ .index = conflict.prev_field_idx }).lazy;
const msg = msg: {
const msg = try sema.errMsg(block, value_src, "enum tag value {} already taken", .{last_tag_val.?.fmtValue(sema.mod)});
errdefer msg.destroy(gpa);
try sema.errNote(block, other_field_src, msg, "other occurrence here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
break :overflow false;
} else if (any_values) overflow: {
var overflow: ?usize = null;
last_tag_val = if (last_tag_val) |val|
try sema.intAdd(val, try mod.intValue(int_tag_ty, 1), int_tag_ty, &overflow)
else
try mod.intValue(int_tag_ty, 0);
if (overflow != null) break :overflow true;
if (wip_ty.nextField(&mod.intern_pool, field_name, last_tag_val.?.toIntern())) |conflict| {
assert(conflict.kind == .value); // AstGen validated names are unique
const field_src = mod.fieldSrcLoc(new_decl_index, .{ .index = field_i }).lazy;
const other_field_src = mod.fieldSrcLoc(new_decl_index, .{ .index = conflict.prev_field_idx }).lazy;
const msg = msg: {
const msg = try sema.errMsg(block, field_src, "enum tag value {} already taken", .{last_tag_val.?.fmtValue(sema.mod)});
errdefer msg.destroy(gpa);
try sema.errNote(block, other_field_src, msg, "other occurrence here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
break :overflow false;
} else overflow: {
assert(wip_ty.nextField(&mod.intern_pool, field_name, .none) == null);
last_tag_val = try mod.intValue(Type.comptime_int, field_i);
if (!try sema.intFitsInType(last_tag_val.?, int_tag_ty, null)) break :overflow true;
last_tag_val = try mod.getCoerced(last_tag_val.?, int_tag_ty);
break :overflow false;
};
if (tag_overflow) {
const value_src = mod.fieldSrcLoc(new_decl_index, .{
.index = field_i,
.range = if (has_tag_value) .value else .name,
}).lazy;
const msg = try sema.errMsg(block, value_src, "enumeration value '{}' too large for type '{}'", .{
last_tag_val.?.fmtValue(mod), int_tag_ty.fmt(mod),
});
return sema.failWithOwnedErrorMsg(block, msg);
}
}
try mod.finalizeAnonDecl(new_decl_index);
return Air.internedToRef(wip_ty.index);
}
fn zirUnionDecl(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
inst: Zir.Inst.Index,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const small: Zir.Inst.UnionDecl.Small = @bitCast(extended.small);
const extra = sema.code.extraData(Zir.Inst.UnionDecl, extended.operand);
var extra_index: usize = extra.end;
const src = extra.data.src();
extra_index += @intFromBool(small.has_tag_type);
const captures_len = if (small.has_captures_len) blk: {
const captures_len = sema.code.extra[extra_index];
extra_index += 1;
break :blk captures_len;
} else 0;
extra_index += @intFromBool(small.has_body_len);
const fields_len = if (small.has_fields_len) blk: {
const fields_len = sema.code.extra[extra_index];
extra_index += 1;
break :blk fields_len;
} else 0;
const decls_len = if (small.has_decls_len) blk: {
const decls_len = sema.code.extra[extra_index];
extra_index += 1;
break :blk decls_len;
} else 0;
const captures = try sema.getCaptures(block, src, extra_index, captures_len);
extra_index += captures_len;
const union_init: InternPool.UnionTypeInit = .{
.flags = .{
.layout = small.layout,
.status = .none,
.runtime_tag = if (small.has_tag_type or small.auto_enum_tag)
.tagged
else if (small.layout != .auto)
.none
else switch (block.wantSafety()) {
true => .safety,
false => .none,
},
.any_aligned_fields = small.any_aligned_fields,
.requires_comptime = .unknown,
.assumed_runtime_bits = false,
.assumed_pointer_aligned = false,
.alignment = .none,
},
.has_namespace = true or decls_len != 0, // TODO: see below
.fields_len = fields_len,
.enum_tag_ty = .none, // set later
.field_types = &.{}, // set later
.field_aligns = &.{}, // set later
.key = .{ .declared = .{
.zir_index = try ip.trackZir(gpa, block.getFileScope(mod), inst),
.captures = captures,
} },
};
const wip_ty = sema.wrapWipTy(switch (try ip.getUnionType(gpa, union_init)) {
.existing => |ty| wip: {
if (!try sema.maybeRemoveOutdatedType(ty)) return Air.internedToRef(ty);
break :wip (try ip.getUnionType(gpa, union_init)).wip;
},
.wip => |wip| wip,
});
errdefer wip_ty.cancel(ip);
const new_decl_index = try sema.createAnonymousDeclTypeNamed(
block,
src,
Value.fromInterned(wip_ty.index),
small.name_strategy,
"union",
inst,
);
mod.declPtr(new_decl_index).owns_tv = true;
errdefer mod.abortAnonDecl(new_decl_index);
if (sema.mod.comp.debug_incremental) {
try mod.intern_pool.addDependency(
sema.gpa,
InternPool.Depender.wrap(.{ .decl = new_decl_index }),
.{ .src_hash = try mod.intern_pool.trackZir(sema.gpa, block.getFileScope(mod), inst) },
);
}
// TODO: if AstGen tells us `@This` was not used in the fields, we can elide the namespace.
const new_namespace_index: InternPool.OptionalNamespaceIndex = if (true or decls_len > 0) (try mod.createNamespace(.{
.parent = block.namespace.toOptional(),
.decl_index = new_decl_index,
.file_scope = block.getFileScope(mod),
})).toOptional() else .none;
errdefer if (new_namespace_index.unwrap()) |ns| mod.destroyNamespace(ns);
if (new_namespace_index.unwrap()) |ns| {
const decls = sema.code.bodySlice(extra_index, decls_len);
try mod.scanNamespace(ns, decls, mod.declPtr(new_decl_index));
}
try mod.finalizeAnonDecl(new_decl_index);
return Air.internedToRef(wip_ty.finish(ip, new_decl_index, new_namespace_index));
}
fn zirOpaqueDecl(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
inst: Zir.Inst.Index,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const small: Zir.Inst.OpaqueDecl.Small = @bitCast(extended.small);
const extra = sema.code.extraData(Zir.Inst.OpaqueDecl, extended.operand);
var extra_index: usize = extra.end;
const src = extra.data.src();
const captures_len = if (small.has_captures_len) blk: {
const captures_len = sema.code.extra[extra_index];
extra_index += 1;
break :blk captures_len;
} else 0;
const decls_len = if (small.has_decls_len) blk: {
const decls_len = sema.code.extra[extra_index];
extra_index += 1;
break :blk decls_len;
} else 0;
const captures = try sema.getCaptures(block, src, extra_index, captures_len);
extra_index += captures_len;
const opaque_init: InternPool.OpaqueTypeInit = .{
.has_namespace = decls_len != 0,
.key = .{ .declared = .{
.zir_index = try ip.trackZir(gpa, block.getFileScope(mod), inst),
.captures = captures,
} },
};
// No `wrapWipTy` needed as no std.builtin types are opaque.
const wip_ty = switch (try ip.getOpaqueType(gpa, opaque_init)) {
.existing => |ty| wip: {
if (!try sema.maybeRemoveOutdatedType(ty)) return Air.internedToRef(ty);
break :wip (try ip.getOpaqueType(gpa, opaque_init)).wip;
},
.wip => |wip| wip,
};
errdefer wip_ty.cancel(ip);
const new_decl_index = try sema.createAnonymousDeclTypeNamed(
block,
src,
Value.fromInterned(wip_ty.index),
small.name_strategy,
"opaque",
inst,
);
mod.declPtr(new_decl_index).owns_tv = true;
errdefer mod.abortAnonDecl(new_decl_index);
if (sema.mod.comp.debug_incremental) {
try ip.addDependency(
gpa,
InternPool.Depender.wrap(.{ .decl = new_decl_index }),
.{ .src_hash = try ip.trackZir(gpa, block.getFileScope(mod), inst) },
);
}
const new_namespace_index: InternPool.OptionalNamespaceIndex = if (decls_len > 0) (try mod.createNamespace(.{
.parent = block.namespace.toOptional(),
.decl_index = new_decl_index,
.file_scope = block.getFileScope(mod),
})).toOptional() else .none;
errdefer if (new_namespace_index.unwrap()) |ns| mod.destroyNamespace(ns);
if (new_namespace_index.unwrap()) |ns| {
const decls = sema.code.bodySlice(extra_index, decls_len);
try mod.scanNamespace(ns, decls, mod.declPtr(new_decl_index));
}
try mod.finalizeAnonDecl(new_decl_index);
return Air.internedToRef(wip_ty.finish(ip, new_decl_index, new_namespace_index));
}
fn zirErrorSetDecl(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
name_strategy: Zir.Inst.NameStrategy,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const gpa = sema.gpa;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.ErrorSetDecl, inst_data.payload_index);
var names: InferredErrorSet.NameMap = .{};
try names.ensureUnusedCapacity(sema.arena, extra.data.fields_len);
var extra_index: u32 = @intCast(extra.end);
const extra_index_end = extra_index + (extra.data.fields_len * 2);
while (extra_index < extra_index_end) : (extra_index += 2) { // +2 to skip over doc_string
const name_index: Zir.NullTerminatedString = @enumFromInt(sema.code.extra[extra_index]);
const name = sema.code.nullTerminatedString(name_index);
const name_ip = try mod.intern_pool.getOrPutString(gpa, name);
_ = try mod.getErrorValue(name_ip);
const result = names.getOrPutAssumeCapacity(name_ip);
assert(!result.found_existing); // verified in AstGen
}
const error_set_ty = try mod.errorSetFromUnsortedNames(names.keys());
const new_decl_index = try sema.createAnonymousDeclTypeNamed(
block,
src,
error_set_ty.toValue(),
name_strategy,
"error",
inst,
);
const new_decl = mod.declPtr(new_decl_index);
new_decl.owns_tv = true;
errdefer mod.abortAnonDecl(new_decl_index);
const decl_val = sema.analyzeDeclVal(block, src, new_decl_index);
try mod.finalizeAnonDecl(new_decl_index);
return decl_val;
}
fn zirRetPtr(sema: *Sema, block: *Block) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
if (block.is_comptime or try sema.typeRequiresComptime(sema.fn_ret_ty)) {
try sema.resolveTypeFields(sema.fn_ret_ty);
return sema.analyzeComptimeAlloc(block, sema.fn_ret_ty, .none);
}
const target = sema.mod.getTarget();
const ptr_type = try sema.ptrType(.{
.child = sema.fn_ret_ty.toIntern(),
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
});
if (block.inlining != null) {
// We are inlining a function call; this should be emitted as an alloc, not a ret_ptr.
// TODO when functions gain result location support, the inlining struct in
// Block should contain the return pointer, and we would pass that through here.
try sema.queueFullTypeResolution(sema.fn_ret_ty);
return block.addTy(.alloc, ptr_type);
}
return block.addTy(.ret_ptr, ptr_type);
}
fn zirRef(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_tok;
const operand = try sema.resolveInst(inst_data.operand);
return sema.analyzeRef(block, inst_data.src(), operand);
}
fn zirEnsureResultUsed(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const operand = try sema.resolveInst(inst_data.operand);
const src = inst_data.src();
return sema.ensureResultUsed(block, sema.typeOf(operand), src);
}
fn ensureResultUsed(
sema: *Sema,
block: *Block,
ty: Type,
src: LazySrcLoc,
) CompileError!void {
const mod = sema.mod;
switch (ty.zigTypeTag(mod)) {
.Void, .NoReturn => return,
.ErrorSet, .ErrorUnion => {
const msg = msg: {
const msg = try sema.errMsg(block, src, "error is ignored", .{});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "consider using 'try', 'catch', or 'if'", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
},
else => {
const msg = msg: {
const msg = try sema.errMsg(block, src, "value of type '{}' ignored", .{ty.fmt(sema.mod)});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "all non-void values must be used", .{});
try sema.errNote(block, src, msg, "this error can be suppressed by assigning the value to '_'", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
},
}
}
fn zirEnsureResultNonError(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const operand = try sema.resolveInst(inst_data.operand);
const src = inst_data.src();
const operand_ty = sema.typeOf(operand);
switch (operand_ty.zigTypeTag(mod)) {
.ErrorSet, .ErrorUnion => {
const msg = msg: {
const msg = try sema.errMsg(block, src, "error is discarded", .{});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "consider using 'try', 'catch', or 'if'", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
},
else => return,
}
}
fn zirEnsureErrUnionPayloadVoid(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const operand = try sema.resolveInst(inst_data.operand);
const operand_ty = sema.typeOf(operand);
const err_union_ty = if (operand_ty.zigTypeTag(mod) == .Pointer)
operand_ty.childType(mod)
else
operand_ty;
if (err_union_ty.zigTypeTag(mod) != .ErrorUnion) return;
const payload_ty = err_union_ty.errorUnionPayload(mod).zigTypeTag(mod);
if (payload_ty != .Void and payload_ty != .NoReturn) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "error union payload is ignored", .{});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "payload value can be explicitly ignored with '|_|'", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
}
fn zirIndexablePtrLen(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const object = try sema.resolveInst(inst_data.operand);
return indexablePtrLen(sema, block, src, object);
}
fn indexablePtrLen(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
object: Air.Inst.Ref,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const object_ty = sema.typeOf(object);
const is_pointer_to = object_ty.isSinglePointer(mod);
const indexable_ty = if (is_pointer_to) object_ty.childType(mod) else object_ty;
try checkIndexable(sema, block, src, indexable_ty);
const field_name = try mod.intern_pool.getOrPutString(sema.gpa, "len");
return sema.fieldVal(block, src, object, field_name, src);
}
fn indexablePtrLenOrNone(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
operand: Air.Inst.Ref,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const operand_ty = sema.typeOf(operand);
try checkMemOperand(sema, block, src, operand_ty);
if (operand_ty.ptrSize(mod) == .Many) return .none;
const field_name = try mod.intern_pool.getOrPutString(sema.gpa, "len");
return sema.fieldVal(block, src, operand, field_name, src);
}
fn zirAllocExtended(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
) CompileError!Air.Inst.Ref {
const gpa = sema.gpa;
const extra = sema.code.extraData(Zir.Inst.AllocExtended, extended.operand);
const ty_src: LazySrcLoc = .{ .node_offset_var_decl_ty = extra.data.src_node };
const align_src: LazySrcLoc = .{ .node_offset_var_decl_align = extra.data.src_node };
const small: Zir.Inst.AllocExtended.Small = @bitCast(extended.small);
var extra_index: usize = extra.end;
const var_ty: Type = if (small.has_type) blk: {
const type_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
extra_index += 1;
break :blk try sema.resolveType(block, ty_src, type_ref);
} else undefined;
const alignment = if (small.has_align) blk: {
const align_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
extra_index += 1;
const alignment = try sema.resolveAlign(block, align_src, align_ref);
break :blk alignment;
} else .none;
if (block.is_comptime or small.is_comptime) {
if (small.has_type) {
return sema.analyzeComptimeAlloc(block, var_ty, alignment);
} else {
try sema.air_instructions.append(gpa, .{
.tag = .inferred_alloc_comptime,
.data = .{ .inferred_alloc_comptime = .{
.alignment = alignment,
.is_const = small.is_const,
.ptr = undefined,
} },
});
return @as(Air.Inst.Index, @enumFromInt(sema.air_instructions.len - 1)).toRef();
}
}
if (small.has_type) {
if (!small.is_const) {
try sema.validateVarType(block, ty_src, var_ty, false);
}
const target = sema.mod.getTarget();
try sema.resolveTypeLayout(var_ty);
const ptr_type = try sema.ptrType(.{
.child = var_ty.toIntern(),
.flags = .{
.alignment = alignment,
.address_space = target_util.defaultAddressSpace(target, .local),
},
});
const ptr = try block.addTy(.alloc, ptr_type);
if (small.is_const) {
const ptr_inst = ptr.toIndex().?;
try sema.maybe_comptime_allocs.put(gpa, ptr_inst, .{ .runtime_index = block.runtime_index });
try sema.base_allocs.put(gpa, ptr_inst, ptr_inst);
}
return ptr;
}
const result_index = try block.addInstAsIndex(.{
.tag = .inferred_alloc,
.data = .{ .inferred_alloc = .{
.alignment = alignment,
.is_const = small.is_const,
} },
});
try sema.unresolved_inferred_allocs.putNoClobber(gpa, result_index, .{});
if (small.is_const) {
try sema.maybe_comptime_allocs.put(gpa, result_index, .{ .runtime_index = block.runtime_index });
try sema.base_allocs.put(gpa, result_index, result_index);
}
return result_index.toRef();
}
fn zirAllocComptime(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const ty_src: LazySrcLoc = .{ .node_offset_var_decl_ty = inst_data.src_node };
const var_ty = try sema.resolveType(block, ty_src, inst_data.operand);
return sema.analyzeComptimeAlloc(block, var_ty, .none);
}
fn zirMakePtrConst(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const alloc = try sema.resolveInst(inst_data.operand);
const alloc_ty = sema.typeOf(alloc);
const ptr_info = alloc_ty.ptrInfo(mod);
const elem_ty = Type.fromInterned(ptr_info.child);
// If the alloc was created in a comptime scope, we already created a comptime alloc for it.
// However, if the final constructed value does not reference comptime-mutable memory, we wish
// to promote it to an anon decl.
already_ct: {
const ptr_val = try sema.resolveValue(alloc) orelse break :already_ct;
// If this was a comptime inferred alloc, then `storeToInferredAllocComptime`
// might have already done our job and created an anon decl ref.
switch (mod.intern_pool.indexToKey(ptr_val.toIntern())) {
.ptr => |ptr| switch (ptr.addr) {
.anon_decl => {
// The comptime-ification was already done for us.
// Just make sure the pointer is const.
return sema.makePtrConst(block, alloc);
},
else => {},
},
else => {},
}
if (!sema.isComptimeMutablePtr(ptr_val)) break :already_ct;
const alloc_index = mod.intern_pool.indexToKey(ptr_val.toIntern()).ptr.addr.comptime_alloc;
const ct_alloc = sema.getComptimeAlloc(alloc_index);
const interned = try ct_alloc.val.intern(mod, sema.arena);
if (Value.fromInterned(interned).canMutateComptimeVarState(mod)) {
// Preserve the comptime alloc, just make the pointer const.
ct_alloc.val = .{ .interned = interned };
ct_alloc.is_const = true;
return sema.makePtrConst(block, alloc);
} else {
// Promote the constant to an anon decl.
const new_mut_ptr = Air.internedToRef(try mod.intern(.{ .ptr = .{
.ty = alloc_ty.toIntern(),
.addr = .{ .anon_decl = .{
.val = interned,
.orig_ty = alloc_ty.toIntern(),
} },
} }));
return sema.makePtrConst(block, new_mut_ptr);
}
}
// Otherwise, check if the alloc is comptime-known despite being in a runtime scope.
if (try sema.resolveComptimeKnownAllocPtr(block, alloc, null)) |ptr_val| {
return sema.makePtrConst(block, Air.internedToRef(ptr_val));
}
if (try sema.typeRequiresComptime(elem_ty)) {
// The value was initialized through RLS, so we didn't detect the runtime condition earlier.
// TODO: source location of runtime control flow
const init_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
return sema.fail(block, init_src, "value with comptime-only type '{}' depends on runtime control flow", .{elem_ty.fmt(mod)});
}
// This is a runtime value.
return sema.makePtrConst(block, alloc);
}
/// If `alloc` is an inferred allocation, `resolved_inferred_ty` is taken to be its resolved
/// type. Otherwise, it may be `null`, and the type will be inferred from `alloc`.
fn resolveComptimeKnownAllocPtr(sema: *Sema, block: *Block, alloc: Air.Inst.Ref, resolved_alloc_ty: ?Type) CompileError!?InternPool.Index {
const mod = sema.mod;
const alloc_ty = resolved_alloc_ty orelse sema.typeOf(alloc);
const ptr_info = alloc_ty.ptrInfo(mod);
const elem_ty = Type.fromInterned(ptr_info.child);
const alloc_inst = alloc.toIndex() orelse return null;
const comptime_info = sema.maybe_comptime_allocs.fetchRemove(alloc_inst) orelse return null;
const stores = comptime_info.value.stores.items(.inst);
// Since the entry existed in `maybe_comptime_allocs`, the allocation is comptime-known.
// We will resolve and return its value.
// We expect to have emitted at least one store, unless the elem type is OPV.
if (stores.len == 0) {
const val = (try sema.typeHasOnePossibleValue(elem_ty)).?.toIntern();
return sema.finishResolveComptimeKnownAllocPtr(block, alloc_ty, val, null, alloc_inst, comptime_info.value);
}
// In general, we want to create a comptime alloc of the correct type and
// apply the stores to that alloc in order. However, before going to all
// that effort, let's optimize for the common case of a single store.
simple: {
if (stores.len != 1) break :simple;
const store_inst = stores[0];
const store_data = sema.air_instructions.items(.data)[@intFromEnum(store_inst)].bin_op;
if (store_data.lhs != alloc) break :simple;
const val = store_data.rhs.toInterned().?;
assert(mod.intern_pool.typeOf(val) == elem_ty.toIntern());
return sema.finishResolveComptimeKnownAllocPtr(block, alloc_ty, val, null, alloc_inst, comptime_info.value);
}
// The simple strategy failed: we must create a mutable comptime alloc and
// perform all of the runtime store operations at comptime.
const ct_alloc = try sema.newComptimeAlloc(block, elem_ty, ptr_info.flags.alignment);
const alloc_ptr = try mod.intern(.{ .ptr = .{
.ty = alloc_ty.toIntern(),
.addr = .{ .comptime_alloc = ct_alloc },
} });
// Maps from pointers into the runtime allocs, to comptime-mutable pointers into the comptime alloc
var ptr_mapping = std.AutoHashMap(Air.Inst.Index, InternPool.Index).init(sema.arena);
try ptr_mapping.ensureTotalCapacity(@intCast(stores.len));
ptr_mapping.putAssumeCapacity(alloc_inst, alloc_ptr);
var to_map = try std.ArrayList(Air.Inst.Index).initCapacity(sema.arena, stores.len);
for (stores) |store_inst| {
const bin_op = sema.air_instructions.items(.data)[@intFromEnum(store_inst)].bin_op;
to_map.appendAssumeCapacity(bin_op.lhs.toIndex().?);
}
const tmp_air = sema.getTmpAir();
while (to_map.popOrNull()) |air_ptr| {
if (ptr_mapping.contains(air_ptr)) continue;
const PointerMethod = union(enum) {
same_addr,
opt_payload,
eu_payload,
field: u32,
elem: u64,
};
const inst_tag = tmp_air.instructions.items(.tag)[@intFromEnum(air_ptr)];
const air_parent_ptr: Air.Inst.Ref, const method: PointerMethod = switch (inst_tag) {
.struct_field_ptr => blk: {
const data = tmp_air.extraData(
Air.StructField,
tmp_air.instructions.items(.data)[@intFromEnum(air_ptr)].ty_pl.payload,
).data;
break :blk .{
data.struct_operand,
.{ .field = data.field_index },
};
},
.struct_field_ptr_index_0,
.struct_field_ptr_index_1,
.struct_field_ptr_index_2,
.struct_field_ptr_index_3,
=> .{
tmp_air.instructions.items(.data)[@intFromEnum(air_ptr)].ty_op.operand,
.{ .field = switch (inst_tag) {
.struct_field_ptr_index_0 => 0,
.struct_field_ptr_index_1 => 1,
.struct_field_ptr_index_2 => 2,
.struct_field_ptr_index_3 => 3,
else => unreachable,
} },
},
.ptr_slice_ptr_ptr => .{
tmp_air.instructions.items(.data)[@intFromEnum(air_ptr)].ty_op.operand,
.{ .field = Value.slice_ptr_index },
},
.ptr_slice_len_ptr => .{
tmp_air.instructions.items(.data)[@intFromEnum(air_ptr)].ty_op.operand,
.{ .field = Value.slice_len_index },
},
.ptr_elem_ptr => blk: {
const data = tmp_air.extraData(
Air.Bin,
tmp_air.instructions.items(.data)[@intFromEnum(air_ptr)].ty_pl.payload,
).data;
const idx_val = (try sema.resolveValue(data.rhs)).?;
break :blk .{
data.lhs,
.{ .elem = try idx_val.toUnsignedIntAdvanced(sema) },
};
},
.bitcast => .{
tmp_air.instructions.items(.data)[@intFromEnum(air_ptr)].ty_op.operand,
.same_addr,
},
.optional_payload_ptr_set => .{
tmp_air.instructions.items(.data)[@intFromEnum(air_ptr)].ty_op.operand,
.opt_payload,
},
.errunion_payload_ptr_set => .{
tmp_air.instructions.items(.data)[@intFromEnum(air_ptr)].ty_op.operand,
.eu_payload,
},
else => unreachable,
};
const decl_parent_ptr = ptr_mapping.get(air_parent_ptr.toIndex().?) orelse {
// Resolve the parent pointer first.
// Note that we add in what seems like the wrong order, because we're popping from the end of this array.
try to_map.appendSlice(&.{ air_ptr, air_parent_ptr.toIndex().? });
continue;
};
const new_ptr_ty = tmp_air.typeOfIndex(air_ptr, &mod.intern_pool).toIntern();
const new_ptr = switch (method) {
.same_addr => try mod.intern_pool.getCoerced(sema.gpa, decl_parent_ptr, new_ptr_ty),
.opt_payload => try mod.intern(.{ .ptr = .{
.ty = new_ptr_ty,
.addr = .{ .opt_payload = decl_parent_ptr },
} }),
.eu_payload => try mod.intern(.{ .ptr = .{
.ty = new_ptr_ty,
.addr = .{ .eu_payload = decl_parent_ptr },
} }),
.field => |field_idx| try mod.intern(.{ .ptr = .{
.ty = new_ptr_ty,
.addr = .{ .field = .{
.base = decl_parent_ptr,
.index = field_idx,
} },
} }),
.elem => |elem_idx| (try Value.fromInterned(decl_parent_ptr).elemPtr(Type.fromInterned(new_ptr_ty), @intCast(elem_idx), mod)).toIntern(),
};
try ptr_mapping.put(air_ptr, new_ptr);
}
// We have a correlation between AIR pointers and decl pointers. Perform all stores at comptime.
for (stores) |store_inst| {
switch (sema.air_instructions.items(.tag)[@intFromEnum(store_inst)]) {
.set_union_tag => {
// If this tag has an OPV payload, there won't be a corresponding
// store instruction, so we must set the union payload now.
const bin_op = sema.air_instructions.items(.data)[@intFromEnum(store_inst)].bin_op;
const air_ptr_inst = bin_op.lhs.toIndex().?;
const tag_val = (try sema.resolveValue(bin_op.rhs)).?;
const union_ty = sema.typeOf(bin_op.lhs).childType(mod);
const payload_ty = union_ty.unionFieldType(tag_val, mod).?;
if (try sema.typeHasOnePossibleValue(payload_ty)) |payload_val| {
const new_ptr = ptr_mapping.get(air_ptr_inst).?;
const store_val = try mod.unionValue(union_ty, tag_val, payload_val);
try sema.storePtrVal(block, .unneeded, Value.fromInterned(new_ptr), store_val, union_ty);
}
},
.store, .store_safe => {
const bin_op = sema.air_instructions.items(.data)[@intFromEnum(store_inst)].bin_op;
const air_ptr_inst = bin_op.lhs.toIndex().?;
const store_val = (try sema.resolveValue(bin_op.rhs)).?;
const new_ptr = ptr_mapping.get(air_ptr_inst).?;
try sema.storePtrVal(block, .unneeded, Value.fromInterned(new_ptr), store_val, Type.fromInterned(mod.intern_pool.typeOf(store_val.toIntern())));
},
else => unreachable,
}
}
// The value is finalized - load it!
const val = (try sema.pointerDeref(block, .unneeded, Value.fromInterned(alloc_ptr), alloc_ty)).?.toIntern();
return sema.finishResolveComptimeKnownAllocPtr(block, alloc_ty, val, ct_alloc, alloc_inst, comptime_info.value);
}
/// Given the resolved comptime-known value, rewrites the dead AIR to not
/// create a runtime stack allocation. Also places the resulting value into
/// either an anon decl ref or a comptime alloc depending on whether it
/// references comptime-mutable memory. If `existing_comptime_alloc` is
/// passed, it is a scratch allocation which already contains `result_val`.
/// Same return type as `resolveComptimeKnownAllocPtr` so we can tail call.
fn finishResolveComptimeKnownAllocPtr(
sema: *Sema,
block: *Block,
alloc_ty: Type,
result_val: InternPool.Index,
existing_comptime_alloc: ?ComptimeAllocIndex,
alloc_inst: Air.Inst.Index,
comptime_info: MaybeComptimeAlloc,
) CompileError!?InternPool.Index {
const zcu = sema.mod;
// We're almost done - we have the resolved comptime value. We just need to
// eliminate the now-dead runtime instructions.
// We will rewrite the AIR to eliminate the alloc and all stores to it.
// This will cause instructions deriving field pointers etc of the alloc to
// become invalid, however, since we are removing all stores to those pointers,
// they will be eliminated by Liveness before they reach codegen.
// The specifics of this instruction aren't really important: we just want
// Liveness to elide it.
const nop_inst: Air.Inst = .{ .tag = .bitcast, .data = .{ .ty_op = .{ .ty = .u8_type, .operand = .zero_u8 } } };
sema.air_instructions.set(@intFromEnum(alloc_inst), nop_inst);
for (comptime_info.stores.items(.inst)) |store_inst| {
sema.air_instructions.set(@intFromEnum(store_inst), nop_inst);
}
for (comptime_info.non_elideable_pointers.items) |ptr_inst| {
sema.air_instructions.set(@intFromEnum(ptr_inst), nop_inst);
}
if (Value.fromInterned(result_val).canMutateComptimeVarState(zcu)) {
const alloc_index = existing_comptime_alloc orelse a: {
const idx = try sema.newComptimeAlloc(block, alloc_ty.childType(zcu), alloc_ty.ptrAlignment(zcu));
const alloc = sema.getComptimeAlloc(idx);
alloc.val = .{ .interned = result_val };
break :a idx;
};
sema.getComptimeAlloc(alloc_index).is_const = true;
return try zcu.intern(.{ .ptr = .{
.ty = alloc_ty.toIntern(),
.addr = .{ .comptime_alloc = alloc_index },
} });
} else {
return try zcu.intern(.{ .ptr = .{
.ty = alloc_ty.toIntern(),
.addr = .{ .anon_decl = .{
.orig_ty = alloc_ty.toIntern(),
.val = result_val,
} },
} });
}
}
fn makePtrTyConst(sema: *Sema, ptr_ty: Type) CompileError!Type {
var ptr_info = ptr_ty.ptrInfo(sema.mod);
ptr_info.flags.is_const = true;
return sema.ptrType(ptr_info);
}
fn makePtrConst(sema: *Sema, block: *Block, alloc: Air.Inst.Ref) CompileError!Air.Inst.Ref {
const alloc_ty = sema.typeOf(alloc);
const const_ptr_ty = try sema.makePtrTyConst(alloc_ty);
// Detect if a comptime value simply needs to have its type changed.
if (try sema.resolveValue(alloc)) |val| {
return Air.internedToRef((try sema.mod.getCoerced(val, const_ptr_ty)).toIntern());
}
return block.addBitCast(const_ptr_ty, alloc);
}
fn zirAllocInferredComptime(
sema: *Sema,
is_const: bool,
) CompileError!Air.Inst.Ref {
const gpa = sema.gpa;
try sema.air_instructions.append(gpa, .{
.tag = .inferred_alloc_comptime,
.data = .{ .inferred_alloc_comptime = .{
.alignment = .none,
.is_const = is_const,
.ptr = undefined,
} },
});
return @as(Air.Inst.Index, @enumFromInt(sema.air_instructions.len - 1)).toRef();
}
fn zirAlloc(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const ty_src: LazySrcLoc = .{ .node_offset_var_decl_ty = inst_data.src_node };
const var_ty = try sema.resolveType(block, ty_src, inst_data.operand);
if (block.is_comptime) {
return sema.analyzeComptimeAlloc(block, var_ty, .none);
}
const target = sema.mod.getTarget();
const ptr_type = try sema.ptrType(.{
.child = var_ty.toIntern(),
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
});
try sema.queueFullTypeResolution(var_ty);
const ptr = try block.addTy(.alloc, ptr_type);
const ptr_inst = ptr.toIndex().?;
try sema.maybe_comptime_allocs.put(sema.gpa, ptr_inst, .{ .runtime_index = block.runtime_index });
try sema.base_allocs.put(sema.gpa, ptr_inst, ptr_inst);
return ptr;
}
fn zirAllocMut(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const ty_src: LazySrcLoc = .{ .node_offset_var_decl_ty = inst_data.src_node };
const var_ty = try sema.resolveType(block, ty_src, inst_data.operand);
if (block.is_comptime) {
return sema.analyzeComptimeAlloc(block, var_ty, .none);
}
try sema.validateVarType(block, ty_src, var_ty, false);
const target = sema.mod.getTarget();
const ptr_type = try sema.ptrType(.{
.child = var_ty.toIntern(),
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
});
try sema.queueFullTypeResolution(var_ty);
return block.addTy(.alloc, ptr_type);
}
fn zirAllocInferred(
sema: *Sema,
block: *Block,
is_const: bool,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const gpa = sema.gpa;
if (block.is_comptime) {
try sema.air_instructions.append(gpa, .{
.tag = .inferred_alloc_comptime,
.data = .{ .inferred_alloc_comptime = .{
.alignment = .none,
.is_const = is_const,
.ptr = undefined,
} },
});
return @as(Air.Inst.Index, @enumFromInt(sema.air_instructions.len - 1)).toRef();
}
const result_index = try block.addInstAsIndex(.{
.tag = .inferred_alloc,
.data = .{ .inferred_alloc = .{
.alignment = .none,
.is_const = is_const,
} },
});
try sema.unresolved_inferred_allocs.putNoClobber(gpa, result_index, .{});
if (is_const) {
try sema.maybe_comptime_allocs.put(gpa, result_index, .{ .runtime_index = block.runtime_index });
try sema.base_allocs.put(sema.gpa, result_index, result_index);
}
return result_index.toRef();
}
fn zirResolveInferredAlloc(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const gpa = sema.gpa;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const ty_src: LazySrcLoc = .{ .node_offset_var_decl_ty = inst_data.src_node };
const ptr = try sema.resolveInst(inst_data.operand);
const ptr_inst = ptr.toIndex().?;
const target = mod.getTarget();
switch (sema.air_instructions.items(.tag)[@intFromEnum(ptr_inst)]) {
.inferred_alloc_comptime => {
// The work was already done for us by `Sema.storeToInferredAllocComptime`.
// All we need to do is remap the pointer.
const iac = sema.air_instructions.items(.data)[@intFromEnum(ptr_inst)].inferred_alloc_comptime;
const resolved_ptr = iac.ptr;
if (std.debug.runtime_safety) {
// The inferred_alloc_comptime should never be referenced again
sema.air_instructions.set(@intFromEnum(ptr_inst), .{ .tag = undefined, .data = undefined });
}
const val = switch (mod.intern_pool.indexToKey(resolved_ptr).ptr.addr) {
.anon_decl => |a| a.val,
.comptime_alloc => |i| val: {
const alloc = sema.getComptimeAlloc(i);
break :val try alloc.val.intern(mod, sema.arena);
},
else => unreachable,
};
if (mod.intern_pool.isFuncBody(val)) {
const ty = Type.fromInterned(mod.intern_pool.typeOf(val));
if (try sema.fnHasRuntimeBits(ty)) {
try mod.ensureFuncBodyAnalysisQueued(val);
}
}
// Remap the ZIR operand to the resolved pointer value
sema.inst_map.putAssumeCapacity(inst_data.operand.toIndex().?, Air.internedToRef(resolved_ptr));
},
.inferred_alloc => {
const ia1 = sema.air_instructions.items(.data)[@intFromEnum(ptr_inst)].inferred_alloc;
const ia2 = sema.unresolved_inferred_allocs.fetchSwapRemove(ptr_inst).?.value;
const peer_vals = try sema.arena.alloc(Air.Inst.Ref, ia2.prongs.items.len);
for (peer_vals, ia2.prongs.items) |*peer_val, store_inst| {
assert(sema.air_instructions.items(.tag)[@intFromEnum(store_inst)] == .store);
const bin_op = sema.air_instructions.items(.data)[@intFromEnum(store_inst)].bin_op;
peer_val.* = bin_op.rhs;
}
const final_elem_ty = try sema.resolvePeerTypes(block, ty_src, peer_vals, .none);
const final_ptr_ty = try sema.ptrType(.{
.child = final_elem_ty.toIntern(),
.flags = .{
.alignment = ia1.alignment,
.address_space = target_util.defaultAddressSpace(target, .local),
},
});
if (!ia1.is_const) {
try sema.validateVarType(block, ty_src, final_elem_ty, false);
} else if (try sema.resolveComptimeKnownAllocPtr(block, ptr, final_ptr_ty)) |ptr_val| {
const const_ptr_ty = try sema.makePtrTyConst(final_ptr_ty);
const new_const_ptr = try mod.getCoerced(Value.fromInterned(ptr_val), const_ptr_ty);
// Remap the ZIR oeprand to the resolved pointer value
sema.inst_map.putAssumeCapacity(inst_data.operand.toIndex().?, Air.internedToRef(new_const_ptr.toIntern()));
// Unless the block is comptime, `alloc_inferred` always produces
// a runtime constant. The final inferred type needs to be
// fully resolved so it can be lowered in codegen.
try sema.resolveTypeFully(final_elem_ty);
return;
}
if (try sema.typeRequiresComptime(final_elem_ty)) {
// The alloc wasn't comptime-known per the above logic, so the
// type cannot be comptime-only.
// TODO: source location of runtime control flow
return sema.fail(block, src, "value with comptime-only type '{}' depends on runtime control flow", .{final_elem_ty.fmt(mod)});
}
try sema.queueFullTypeResolution(final_elem_ty);
// Change it to a normal alloc.
sema.air_instructions.set(@intFromEnum(ptr_inst), .{
.tag = .alloc,
.data = .{ .ty = final_ptr_ty },
});
// Now we need to go back over all the store instructions, and do the logic as if
// the new result ptr type was available.
for (ia2.prongs.items) |placeholder_inst| {
var replacement_block = block.makeSubBlock();
defer replacement_block.instructions.deinit(gpa);
assert(sema.air_instructions.items(.tag)[@intFromEnum(placeholder_inst)] == .store);
const bin_op = sema.air_instructions.items(.data)[@intFromEnum(placeholder_inst)].bin_op;
try sema.storePtr2(&replacement_block, src, bin_op.lhs, src, bin_op.rhs, src, .store);
// If only one instruction is produced then we can replace the store
// placeholder instruction with this instruction; no need for an entire block.
if (replacement_block.instructions.items.len == 1) {
const only_inst = replacement_block.instructions.items[0];
sema.air_instructions.set(@intFromEnum(placeholder_inst), sema.air_instructions.get(@intFromEnum(only_inst)));
continue;
}
// Here we replace the placeholder store instruction with a block
// that does the actual store logic.
_ = try replacement_block.addBr(placeholder_inst, .void_value);
try sema.air_extra.ensureUnusedCapacity(
gpa,
@typeInfo(Air.Block).Struct.fields.len + replacement_block.instructions.items.len,
);
sema.air_instructions.set(@intFromEnum(placeholder_inst), .{
.tag = .block,
.data = .{ .ty_pl = .{
.ty = .void_type,
.payload = sema.addExtraAssumeCapacity(Air.Block{
.body_len = @intCast(replacement_block.instructions.items.len),
}),
} },
});
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(replacement_block.instructions.items));
}
},
else => unreachable,
}
}
fn zirForLen(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.MultiOp, inst_data.payload_index);
const args = sema.code.refSlice(extra.end, extra.data.operands_len);
const src = inst_data.src();
var len: Air.Inst.Ref = .none;
var len_val: ?Value = null;
var len_idx: u32 = undefined;
var any_runtime = false;
const runtime_arg_lens = try gpa.alloc(Air.Inst.Ref, args.len);
defer gpa.free(runtime_arg_lens);
// First pass to look for comptime values.
for (args, 0..) |zir_arg, i_usize| {
const i: u32 = @intCast(i_usize);
runtime_arg_lens[i] = .none;
if (zir_arg == .none) continue;
const object = try sema.resolveInst(zir_arg);
const object_ty = sema.typeOf(object);
// Each arg could be an indexable, or a range, in which case the length
// is passed directly as an integer.
const is_int = switch (object_ty.zigTypeTag(mod)) {
.Int, .ComptimeInt => true,
else => false,
};
const arg_src: LazySrcLoc = .{ .for_input = .{
.for_node_offset = inst_data.src_node,
.input_index = i,
} };
const arg_len_uncoerced = if (is_int) object else l: {
if (!object_ty.isIndexable(mod)) {
// Instead of using checkIndexable we customize this error.
const msg = msg: {
const msg = try sema.errMsg(block, arg_src, "type '{}' is not indexable and not a range", .{object_ty.fmt(sema.mod)});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, arg_src, msg, "for loop operand must be a range, array, slice, tuple, or vector", .{});
if (object_ty.zigTypeTag(mod) == .ErrorUnion) {
try sema.errNote(block, arg_src, msg, "consider using 'try', 'catch', or 'if'", .{});
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
if (!object_ty.indexableHasLen(mod)) continue;
break :l try sema.fieldVal(block, arg_src, object, try ip.getOrPutString(gpa, "len"), arg_src);
};
const arg_len = try sema.coerce(block, Type.usize, arg_len_uncoerced, arg_src);
if (len == .none) {
len = arg_len;
len_idx = i;
}
if (try sema.resolveDefinedValue(block, src, arg_len)) |arg_val| {
if (len_val) |v| {
if (!(try sema.valuesEqual(arg_val, v, Type.usize))) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "non-matching for loop lengths", .{});
errdefer msg.destroy(gpa);
const a_src: LazySrcLoc = .{ .for_input = .{
.for_node_offset = inst_data.src_node,
.input_index = len_idx,
} };
try sema.errNote(block, a_src, msg, "length {} here", .{
v.fmtValue(sema.mod),
});
try sema.errNote(block, arg_src, msg, "length {} here", .{
arg_val.fmtValue(sema.mod),
});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
} else {
len = arg_len;
len_val = arg_val;
len_idx = i;
}
continue;
}
runtime_arg_lens[i] = arg_len;
any_runtime = true;
}
if (len == .none) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "unbounded for loop", .{});
errdefer msg.destroy(gpa);
for (args, 0..) |zir_arg, i_usize| {
const i: u32 = @intCast(i_usize);
if (zir_arg == .none) continue;
const object = try sema.resolveInst(zir_arg);
const object_ty = sema.typeOf(object);
// Each arg could be an indexable, or a range, in which case the length
// is passed directly as an integer.
switch (object_ty.zigTypeTag(mod)) {
.Int, .ComptimeInt => continue,
else => {},
}
const arg_src: LazySrcLoc = .{ .for_input = .{
.for_node_offset = inst_data.src_node,
.input_index = i,
} };
try sema.errNote(block, arg_src, msg, "type '{}' has no upper bound", .{
object_ty.fmt(sema.mod),
});
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
// Now for the runtime checks.
if (any_runtime and block.wantSafety()) {
for (runtime_arg_lens, 0..) |arg_len, i| {
if (arg_len == .none) continue;
if (i == len_idx) continue;
const ok = try block.addBinOp(.cmp_eq, len, arg_len);
try sema.addSafetyCheck(block, src, ok, .for_len_mismatch);
}
}
return len;
}
/// Given any single pointer, retrieve a pointer to the payload of any optional
/// or error union pointed to, initializing these pointers along the way.
/// Given a `*E!?T`, returns a (valid) `*T`.
/// May invalidate already-stored payload data.
fn optEuBasePtrInit(sema: *Sema, block: *Block, ptr: Air.Inst.Ref, src: LazySrcLoc) CompileError!Air.Inst.Ref {
const mod = sema.mod;
var base_ptr = ptr;
while (true) switch (sema.typeOf(base_ptr).childType(mod).zigTypeTag(mod)) {
.ErrorUnion => base_ptr = try sema.analyzeErrUnionPayloadPtr(block, src, base_ptr, false, true),
.Optional => base_ptr = try sema.analyzeOptionalPayloadPtr(block, src, base_ptr, false, true),
else => break,
};
try sema.checkKnownAllocPtr(block, ptr, base_ptr);
return base_ptr;
}
fn zirOptEuBasePtrInit(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const un_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const ptr = try sema.resolveInst(un_node.operand);
return sema.optEuBasePtrInit(block, ptr, un_node.src());
}
fn zirCoercePtrElemTy(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const pl_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = pl_node.src();
const extra = sema.code.extraData(Zir.Inst.Bin, pl_node.payload_index).data;
const uncoerced_val = try sema.resolveInst(extra.rhs);
const maybe_wrapped_ptr_ty = sema.resolveType(block, .unneeded, extra.lhs) catch |err| switch (err) {
error.GenericPoison => return uncoerced_val,
else => |e| return e,
};
const ptr_ty = maybe_wrapped_ptr_ty.optEuBaseType(mod);
assert(ptr_ty.zigTypeTag(mod) == .Pointer); // validated by a previous instruction
const elem_ty = ptr_ty.childType(mod);
switch (ptr_ty.ptrSize(mod)) {
.One => {
const uncoerced_ty = sema.typeOf(uncoerced_val);
if (elem_ty.zigTypeTag(mod) == .Array and elem_ty.childType(mod).toIntern() == uncoerced_ty.toIntern()) {
// We're trying to initialize a *[1]T with a reference to a T - don't perform any coercion.
return uncoerced_val;
}
// If the destination type is anyopaque, don't coerce - the pointer will coerce instead.
if (elem_ty.toIntern() == .anyopaque_type) {
return uncoerced_val;
} else {
return sema.coerce(block, elem_ty, uncoerced_val, src);
}
},
.Slice, .Many => {
// Our goal is to coerce `uncoerced_val` to an array of `elem_ty`.
const val_ty = sema.typeOf(uncoerced_val);
switch (val_ty.zigTypeTag(mod)) {
.Array, .Vector => {},
else => if (!val_ty.isTuple(mod)) {
return sema.fail(block, src, "expected array of '{}', found '{}'", .{ elem_ty.fmt(mod), val_ty.fmt(mod) });
},
}
const want_ty = try mod.arrayType(.{
.len = val_ty.arrayLen(mod),
.child = elem_ty.toIntern(),
.sentinel = if (ptr_ty.sentinel(mod)) |s| s.toIntern() else .none,
});
return sema.coerce(block, want_ty, uncoerced_val, src);
},
.C => {
// There's nothing meaningful to do here, because we don't know if this is meant to be a
// single-pointer or a many-pointer.
return uncoerced_val;
},
}
}
fn zirValidateRefTy(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const mod = sema.mod;
const un_tok = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_tok;
const src = un_tok.src();
// In case of GenericPoison, we don't actually have a type, so this will be
// treated as an untyped address-of operator.
if (un_tok.operand == .var_args_param_type) return;
const operand_air_inst = sema.resolveInst(un_tok.operand) catch |err| switch (err) {
error.GenericPoison => return,
else => |e| return e,
};
if (operand_air_inst == .var_args_param_type) return;
const ty_operand = sema.analyzeAsType(block, src, operand_air_inst) catch |err| switch (err) {
error.GenericPoison => return,
else => |e| return e,
};
if (ty_operand.isGenericPoison()) return;
if (ty_operand.optEuBaseType(mod).zigTypeTag(mod) != .Pointer) {
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "expected type '{}', found pointer", .{ty_operand.fmt(mod)});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "address-of operator always returns a pointer", .{});
break :msg msg;
});
}
}
fn zirValidateArrayInitRefTy(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const pl_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = pl_node.src();
const extra = sema.code.extraData(Zir.Inst.ArrayInitRefTy, pl_node.payload_index).data;
const maybe_wrapped_ptr_ty = sema.resolveType(block, .unneeded, extra.ptr_ty) catch |err| switch (err) {
error.GenericPoison => return .generic_poison_type,
else => |e| return e,
};
const ptr_ty = maybe_wrapped_ptr_ty.optEuBaseType(mod);
assert(ptr_ty.zigTypeTag(mod) == .Pointer); // validated by a previous instruction
if (ptr_ty.isSlice(mod)) {
// Use array of correct length
const arr_ty = try mod.arrayType(.{
.len = extra.elem_count,
.child = ptr_ty.childType(mod).toIntern(),
.sentinel = if (ptr_ty.sentinel(mod)) |s| s.toIntern() else .none,
});
return Air.internedToRef(arr_ty.toIntern());
}
// Otherwise, we just want the pointer child type
const ret_ty = ptr_ty.childType(mod);
if (ret_ty.toIntern() == .anyopaque_type) {
// The actual array type is unknown, which we represent with a generic poison.
return .generic_poison_type;
}
const arr_ty = ret_ty.optEuBaseType(mod);
try sema.validateArrayInitTy(block, src, src, extra.elem_count, arr_ty);
return Air.internedToRef(ret_ty.toIntern());
}
fn zirValidateArrayInitTy(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
is_result_ty: bool,
) CompileError!void {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const ty_src: LazySrcLoc = if (is_result_ty) src else .{ .node_offset_init_ty = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.ArrayInit, inst_data.payload_index).data;
const ty = sema.resolveType(block, ty_src, extra.ty) catch |err| switch (err) {
// It's okay for the type to be unknown: this will result in an anonymous array init.
error.GenericPoison => return,
else => |e| return e,
};
const arr_ty = if (is_result_ty) ty.optEuBaseType(mod) else ty;
return sema.validateArrayInitTy(block, src, ty_src, extra.init_count, arr_ty);
}
fn validateArrayInitTy(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
ty_src: LazySrcLoc,
init_count: u32,
ty: Type,
) CompileError!void {
const mod = sema.mod;
switch (ty.zigTypeTag(mod)) {
.Array => {
const array_len = ty.arrayLen(mod);
if (init_count != array_len) {
return sema.fail(block, src, "expected {d} array elements; found {d}", .{
array_len, init_count,
});
}
return;
},
.Vector => {
const array_len = ty.arrayLen(mod);
if (init_count != array_len) {
return sema.fail(block, src, "expected {d} vector elements; found {d}", .{
array_len, init_count,
});
}
return;
},
.Struct => if (ty.isTuple(mod)) {
try sema.resolveTypeFields(ty);
const array_len = ty.arrayLen(mod);
if (init_count > array_len) {
return sema.fail(block, src, "expected at most {d} tuple fields; found {d}", .{
array_len, init_count,
});
}
return;
},
else => {},
}
return sema.failWithArrayInitNotSupported(block, ty_src, ty);
}
fn zirValidateStructInitTy(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
is_result_ty: bool,
) CompileError!void {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const ty = sema.resolveType(block, src, inst_data.operand) catch |err| switch (err) {
// It's okay for the type to be unknown: this will result in an anonymous struct init.
error.GenericPoison => return,
else => |e| return e,
};
const struct_ty = if (is_result_ty) ty.optEuBaseType(mod) else ty;
switch (struct_ty.zigTypeTag(mod)) {
.Struct, .Union => return,
else => {},
}
return sema.failWithStructInitNotSupported(block, src, struct_ty);
}
fn zirValidatePtrStructInit(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
) CompileError!void {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const validate_inst = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const init_src = validate_inst.src();
const validate_extra = sema.code.extraData(Zir.Inst.Block, validate_inst.payload_index);
const instrs = sema.code.bodySlice(validate_extra.end, validate_extra.data.body_len);
const field_ptr_data = sema.code.instructions.items(.data)[@intFromEnum(instrs[0])].pl_node;
const field_ptr_extra = sema.code.extraData(Zir.Inst.Field, field_ptr_data.payload_index).data;
const object_ptr = try sema.resolveInst(field_ptr_extra.lhs);
const agg_ty = sema.typeOf(object_ptr).childType(mod).optEuBaseType(mod);
switch (agg_ty.zigTypeTag(mod)) {
.Struct => return sema.validateStructInit(
block,
agg_ty,
init_src,
instrs,
),
.Union => return sema.validateUnionInit(
block,
agg_ty,
init_src,
instrs,
object_ptr,
),
else => unreachable,
}
}
fn validateUnionInit(
sema: *Sema,
block: *Block,
union_ty: Type,
init_src: LazySrcLoc,
instrs: []const Zir.Inst.Index,
union_ptr: Air.Inst.Ref,
) CompileError!void {
const mod = sema.mod;
const gpa = sema.gpa;
if (instrs.len != 1) {
const msg = msg: {
const msg = try sema.errMsg(
block,
init_src,
"cannot initialize multiple union fields at once; unions can only have one active field",
.{},
);
errdefer msg.destroy(gpa);
for (instrs[1..]) |inst| {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const inst_src: LazySrcLoc = .{ .node_offset_initializer = inst_data.src_node };
try sema.errNote(block, inst_src, msg, "additional initializer here", .{});
}
try sema.addDeclaredHereNote(msg, union_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
if (block.is_comptime and
(try sema.resolveDefinedValue(block, init_src, union_ptr)) != null)
{
// In this case, comptime machinery already did everything. No work to do here.
return;
}
const field_ptr = instrs[0];
const field_ptr_data = sema.code.instructions.items(.data)[@intFromEnum(field_ptr)].pl_node;
const field_src: LazySrcLoc = .{ .node_offset_initializer = field_ptr_data.src_node };
const field_ptr_extra = sema.code.extraData(Zir.Inst.Field, field_ptr_data.payload_index).data;
const field_name = try mod.intern_pool.getOrPutString(gpa, sema.code.nullTerminatedString(field_ptr_extra.field_name_start));
const field_index = try sema.unionFieldIndex(block, union_ty, field_name, field_src);
const air_tags = sema.air_instructions.items(.tag);
const air_datas = sema.air_instructions.items(.data);
const field_ptr_ref = sema.inst_map.get(field_ptr).?;
// Our task here is to determine if the union is comptime-known. In such case,
// we erase the runtime AIR instructions for initializing the union, and replace
// the mapping with the comptime value. Either way, we will need to populate the tag.
// We expect to see something like this in the current block AIR:
// %a = alloc(*const U)
// %b = bitcast(*U, %a)
// %c = field_ptr(..., %b)
// %e!= store(%c!, %d!)
// If %d is a comptime operand, the union is comptime.
// If the union is comptime, we want `first_block_index`
// to point at %c so that the bitcast becomes the last instruction in the block.
//
// Store instruction may be missing; if field type has only one possible value, this case is handled below.
//
// In the case of a comptime-known pointer to a union, the
// the field_ptr instruction is missing, so we have to pattern-match
// based only on the store instructions.
// `first_block_index` needs to point to the `field_ptr` if it exists;
// the `store` otherwise.
var first_block_index = block.instructions.items.len;
var block_index = block.instructions.items.len - 1;
var init_val: ?Value = null;
var init_ref: ?Air.Inst.Ref = null;
while (block_index > 0) : (block_index -= 1) {
const store_inst = block.instructions.items[block_index];
if (store_inst.toRef() == field_ptr_ref) {
first_block_index = block_index;
break;
}
switch (air_tags[@intFromEnum(store_inst)]) {
.store, .store_safe => {},
else => continue,
}
const bin_op = air_datas[@intFromEnum(store_inst)].bin_op;
var ptr_ref = bin_op.lhs;
if (ptr_ref.toIndex()) |ptr_inst| if (air_tags[@intFromEnum(ptr_inst)] == .bitcast) {
ptr_ref = air_datas[@intFromEnum(ptr_inst)].ty_op.operand;
};
if (ptr_ref != field_ptr_ref) continue;
first_block_index = @min(if (field_ptr_ref.toIndex()) |field_ptr_inst|
std.mem.lastIndexOfScalar(
Air.Inst.Index,
block.instructions.items[0..block_index],
field_ptr_inst,
).?
else
block_index, first_block_index);
init_ref = bin_op.rhs;
init_val = try sema.resolveValue(bin_op.rhs);
break;
}
const tag_ty = union_ty.unionTagTypeHypothetical(mod);
const tag_val = try mod.enumValueFieldIndex(tag_ty, field_index);
const field_type = union_ty.unionFieldType(tag_val, mod).?;
if (try sema.typeHasOnePossibleValue(field_type)) |field_only_value| {
init_val = field_only_value;
}
if (init_val) |val| {
// Our task is to delete all the `field_ptr` and `store` instructions, and insert
// instead a single `store` to the result ptr with a comptime union value.
block_index = first_block_index;
for (block.instructions.items[first_block_index..]) |cur_inst| {
switch (air_tags[@intFromEnum(cur_inst)]) {
.struct_field_ptr,
.struct_field_ptr_index_0,
.struct_field_ptr_index_1,
.struct_field_ptr_index_2,
.struct_field_ptr_index_3,
=> if (cur_inst.toRef() == field_ptr_ref) continue,
.bitcast => if (air_datas[@intFromEnum(cur_inst)].ty_op.operand == field_ptr_ref) continue,
.store, .store_safe => {
var ptr_ref = air_datas[@intFromEnum(cur_inst)].bin_op.lhs;
if (ptr_ref.toIndex()) |ptr_inst| if (air_tags[@intFromEnum(ptr_inst)] == .bitcast) {
ptr_ref = air_datas[@intFromEnum(ptr_inst)].ty_op.operand;
};
if (ptr_ref == field_ptr_ref) continue;
},
else => {},
}
block.instructions.items[block_index] = cur_inst;
block_index += 1;
}
block.instructions.shrinkRetainingCapacity(block_index);
const union_val = try mod.intern(.{ .un = .{
.ty = union_ty.toIntern(),
.tag = tag_val.toIntern(),
.val = val.toIntern(),
} });
const union_init = Air.internedToRef(union_val);
try sema.storePtr2(block, init_src, union_ptr, init_src, union_init, init_src, .store);
return;
} else if (try sema.typeRequiresComptime(union_ty)) {
return sema.failWithNeededComptime(block, field_ptr_data.src(), .{
.needed_comptime_reason = "initializer of comptime only union must be comptime-known",
});
}
if (init_ref) |v| try sema.validateRuntimeValue(block, field_ptr_data.src(), v);
const new_tag = Air.internedToRef(tag_val.toIntern());
const set_tag_inst = try block.addBinOp(.set_union_tag, union_ptr, new_tag);
try sema.checkComptimeKnownStore(block, set_tag_inst, init_src);
}
fn validateStructInit(
sema: *Sema,
block: *Block,
struct_ty: Type,
init_src: LazySrcLoc,
instrs: []const Zir.Inst.Index,
) CompileError!void {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const field_indices = try gpa.alloc(u32, instrs.len);
defer gpa.free(field_indices);
// Maps field index to field_ptr index of where it was already initialized.
const found_fields = try gpa.alloc(Zir.Inst.OptionalIndex, struct_ty.structFieldCount(mod));
defer gpa.free(found_fields);
@memset(found_fields, .none);
var struct_ptr_zir_ref: Zir.Inst.Ref = undefined;
for (instrs, field_indices) |field_ptr, *field_index| {
const field_ptr_data = sema.code.instructions.items(.data)[@intFromEnum(field_ptr)].pl_node;
const field_src: LazySrcLoc = .{ .node_offset_initializer = field_ptr_data.src_node };
const field_ptr_extra = sema.code.extraData(Zir.Inst.Field, field_ptr_data.payload_index).data;
struct_ptr_zir_ref = field_ptr_extra.lhs;
const field_name = try ip.getOrPutString(
gpa,
sema.code.nullTerminatedString(field_ptr_extra.field_name_start),
);
field_index.* = if (struct_ty.isTuple(mod))
try sema.tupleFieldIndex(block, struct_ty, field_name, field_src)
else
try sema.structFieldIndex(block, struct_ty, field_name, field_src);
assert(found_fields[field_index.*] == .none);
found_fields[field_index.*] = field_ptr.toOptional();
}
var root_msg: ?*Module.ErrorMsg = null;
errdefer if (root_msg) |msg| msg.destroy(sema.gpa);
const struct_ptr = try sema.resolveInst(struct_ptr_zir_ref);
if (block.is_comptime and
(try sema.resolveDefinedValue(block, init_src, struct_ptr)) != null)
{
try sema.resolveStructLayout(struct_ty);
// In this case the only thing we need to do is evaluate the implicit
// store instructions for default field values, and report any missing fields.
// Avoid the cost of the extra machinery for detecting a comptime struct init value.
for (found_fields, 0..) |field_ptr, i_usize| {
const i: u32 = @intCast(i_usize);
if (field_ptr != .none) continue;
try sema.resolveStructFieldInits(struct_ty);
const default_val = struct_ty.structFieldDefaultValue(i, mod);
if (default_val.toIntern() == .unreachable_value) {
const field_name = struct_ty.structFieldName(i, mod).unwrap() orelse {
const template = "missing tuple field with index {d}";
if (root_msg) |msg| {
try sema.errNote(block, init_src, msg, template, .{i});
} else {
root_msg = try sema.errMsg(block, init_src, template, .{i});
}
continue;
};
const template = "missing struct field: {}";
const args = .{field_name.fmt(ip)};
if (root_msg) |msg| {
try sema.errNote(block, init_src, msg, template, args);
} else {
root_msg = try sema.errMsg(block, init_src, template, args);
}
continue;
}
const field_src = init_src; // TODO better source location
const default_field_ptr = if (struct_ty.isTuple(mod))
try sema.tupleFieldPtr(block, init_src, struct_ptr, field_src, @intCast(i), true)
else
try sema.structFieldPtrByIndex(block, init_src, struct_ptr, @intCast(i), field_src, struct_ty, true);
const init = Air.internedToRef(default_val.toIntern());
try sema.storePtr2(block, init_src, default_field_ptr, init_src, init, field_src, .store);
}
if (root_msg) |msg| {
if (mod.typeToStruct(struct_ty)) |struct_type| {
const decl = mod.declPtr(struct_type.decl.unwrap().?);
const fqn = try decl.fullyQualifiedName(mod);
try mod.errNoteNonLazy(
decl.srcLoc(mod),
msg,
"struct '{}' declared here",
.{fqn.fmt(ip)},
);
}
root_msg = null;
return sema.failWithOwnedErrorMsg(block, msg);
}
return;
}
var fields_allow_runtime = true;
var struct_is_comptime = true;
var first_block_index = block.instructions.items.len;
const require_comptime = try sema.typeRequiresComptime(struct_ty);
const air_tags = sema.air_instructions.items(.tag);
const air_datas = sema.air_instructions.items(.data);
try sema.resolveStructFieldInits(struct_ty);
// We collect the comptime field values in case the struct initialization
// ends up being comptime-known.
const field_values = try sema.arena.alloc(InternPool.Index, struct_ty.structFieldCount(mod));
field: for (found_fields, 0..) |opt_field_ptr, i_usize| {
const i: u32 = @intCast(i_usize);
if (opt_field_ptr.unwrap()) |field_ptr| {
// Determine whether the value stored to this pointer is comptime-known.
const field_ty = struct_ty.structFieldType(i, mod);
if (try sema.typeHasOnePossibleValue(field_ty)) |opv| {
field_values[i] = opv.toIntern();
continue;
}
const field_ptr_ref = sema.inst_map.get(field_ptr).?;
//std.debug.print("validateStructInit (field_ptr_ref=%{d}):\n", .{field_ptr_ref});
//for (block.instructions.items) |item| {
// std.debug.print(" %{d} = {s}\n", .{item, @tagName(air_tags[@intFromEnum(item)])});
//}
// We expect to see something like this in the current block AIR:
// %a = field_ptr(...)
// store(%a, %b)
// With an optional bitcast between the store and the field_ptr.
// If %b is a comptime operand, this field is comptime.
//
// However, in the case of a comptime-known pointer to a struct, the
// the field_ptr instruction is missing, so we have to pattern-match
// based only on the store instructions.
// `first_block_index` needs to point to the `field_ptr` if it exists;
// the `store` otherwise.
// Possible performance enhancement: save the `block_index` between iterations
// of the for loop.
var block_index = block.instructions.items.len;
while (block_index > 0) {
block_index -= 1;
const store_inst = block.instructions.items[block_index];
if (store_inst.toRef() == field_ptr_ref) {
struct_is_comptime = false;
continue :field;
}
switch (air_tags[@intFromEnum(store_inst)]) {
.store, .store_safe => {},
else => continue,
}
const bin_op = air_datas[@intFromEnum(store_inst)].bin_op;
var ptr_ref = bin_op.lhs;
if (ptr_ref.toIndex()) |ptr_inst| if (air_tags[@intFromEnum(ptr_inst)] == .bitcast) {
ptr_ref = air_datas[@intFromEnum(ptr_inst)].ty_op.operand;
};
if (ptr_ref != field_ptr_ref) continue;
first_block_index = @min(if (field_ptr_ref.toIndex()) |field_ptr_inst|
std.mem.lastIndexOfScalar(
Air.Inst.Index,
block.instructions.items[0..block_index],
field_ptr_inst,
).?
else
block_index, first_block_index);
if (!sema.checkRuntimeValue(bin_op.rhs)) fields_allow_runtime = false;
if (try sema.resolveValue(bin_op.rhs)) |val| {
field_values[i] = val.toIntern();
} else if (require_comptime) {
const field_ptr_data = sema.code.instructions.items(.data)[@intFromEnum(field_ptr)].pl_node;
return sema.failWithNeededComptime(block, field_ptr_data.src(), .{
.needed_comptime_reason = "initializer of comptime only struct must be comptime-known",
});
} else {
struct_is_comptime = false;
}
continue :field;
}
struct_is_comptime = false;
continue :field;
}
const default_val = struct_ty.structFieldDefaultValue(i, mod);
if (default_val.toIntern() == .unreachable_value) {
const field_name = struct_ty.structFieldName(i, mod).unwrap() orelse {
const template = "missing tuple field with index {d}";
if (root_msg) |msg| {
try sema.errNote(block, init_src, msg, template, .{i});
} else {
root_msg = try sema.errMsg(block, init_src, template, .{i});
}
continue;
};
const template = "missing struct field: {}";
const args = .{field_name.fmt(ip)};
if (root_msg) |msg| {
try sema.errNote(block, init_src, msg, template, args);
} else {
root_msg = try sema.errMsg(block, init_src, template, args);
}
continue;
}
field_values[i] = default_val.toIntern();
}
if (!struct_is_comptime and !fields_allow_runtime and root_msg == null) {
root_msg = try sema.errMsg(block, init_src, "runtime value contains reference to comptime var", .{});
try sema.errNote(block, init_src, root_msg.?, "comptime var pointers are not available at runtime", .{});
}
if (root_msg) |msg| {
if (mod.typeToStruct(struct_ty)) |struct_type| {
const decl = mod.declPtr(struct_type.decl.unwrap().?);
const fqn = try decl.fullyQualifiedName(mod);
try mod.errNoteNonLazy(
decl.srcLoc(mod),
msg,
"struct '{}' declared here",
.{fqn.fmt(ip)},
);
}
root_msg = null;
return sema.failWithOwnedErrorMsg(block, msg);
}
if (struct_is_comptime) {
// Our task is to delete all the `field_ptr` and `store` instructions, and insert
// instead a single `store` to the struct_ptr with a comptime struct value.
var init_index: usize = 0;
var field_ptr_ref = Air.Inst.Ref.none;
var block_index = first_block_index;
for (block.instructions.items[first_block_index..]) |cur_inst| {
while (field_ptr_ref == .none and init_index < instrs.len) : (init_index += 1) {
const field_ty = struct_ty.structFieldType(field_indices[init_index], mod);
if (try field_ty.onePossibleValue(mod)) |_| continue;
field_ptr_ref = sema.inst_map.get(instrs[init_index]).?;
}
switch (air_tags[@intFromEnum(cur_inst)]) {
.struct_field_ptr,
.struct_field_ptr_index_0,
.struct_field_ptr_index_1,
.struct_field_ptr_index_2,
.struct_field_ptr_index_3,
=> if (cur_inst.toRef() == field_ptr_ref) continue,
.bitcast => if (air_datas[@intFromEnum(cur_inst)].ty_op.operand == field_ptr_ref) continue,
.store, .store_safe => {
var ptr_ref = air_datas[@intFromEnum(cur_inst)].bin_op.lhs;
if (ptr_ref.toIndex()) |ptr_inst| if (air_tags[@intFromEnum(ptr_inst)] == .bitcast) {
ptr_ref = air_datas[@intFromEnum(ptr_inst)].ty_op.operand;
};
if (ptr_ref == field_ptr_ref) {
field_ptr_ref = .none;
continue;
}
},
else => {},
}
block.instructions.items[block_index] = cur_inst;
block_index += 1;
}
block.instructions.shrinkRetainingCapacity(block_index);
const struct_val = try mod.intern(.{ .aggregate = .{
.ty = struct_ty.toIntern(),
.storage = .{ .elems = field_values },
} });
const struct_init = Air.internedToRef(struct_val);
try sema.storePtr2(block, init_src, struct_ptr, init_src, struct_init, init_src, .store);
return;
}
try sema.resolveStructLayout(struct_ty);
// Our task is to insert `store` instructions for all the default field values.
for (found_fields, 0..) |field_ptr, i| {
if (field_ptr != .none) continue;
const field_src = init_src; // TODO better source location
const default_field_ptr = if (struct_ty.isTuple(mod))
try sema.tupleFieldPtr(block, init_src, struct_ptr, field_src, @intCast(i), true)
else
try sema.structFieldPtrByIndex(block, init_src, struct_ptr, @intCast(i), field_src, struct_ty, true);
try sema.checkKnownAllocPtr(block, struct_ptr, default_field_ptr);
const init = Air.internedToRef(field_values[i]);
try sema.storePtr2(block, init_src, default_field_ptr, init_src, init, field_src, .store);
}
}
fn zirValidatePtrArrayInit(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
) CompileError!void {
const mod = sema.mod;
const validate_inst = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const init_src = validate_inst.src();
const validate_extra = sema.code.extraData(Zir.Inst.Block, validate_inst.payload_index);
const instrs = sema.code.bodySlice(validate_extra.end, validate_extra.data.body_len);
const first_elem_ptr_data = sema.code.instructions.items(.data)[@intFromEnum(instrs[0])].pl_node;
const elem_ptr_extra = sema.code.extraData(Zir.Inst.ElemPtrImm, first_elem_ptr_data.payload_index).data;
const array_ptr = try sema.resolveInst(elem_ptr_extra.ptr);
const array_ty = sema.typeOf(array_ptr).childType(mod).optEuBaseType(mod);
const array_len = array_ty.arrayLen(mod);
// Collect the comptime element values in case the array literal ends up
// being comptime-known.
const element_vals = try sema.arena.alloc(
InternPool.Index,
try sema.usizeCast(block, init_src, array_len),
);
if (instrs.len != array_len) switch (array_ty.zigTypeTag(mod)) {
.Struct => {
var root_msg: ?*Module.ErrorMsg = null;
errdefer if (root_msg) |msg| msg.destroy(sema.gpa);
try sema.resolveStructFieldInits(array_ty);
var i = instrs.len;
while (i < array_len) : (i += 1) {
const default_val = array_ty.structFieldDefaultValue(i, mod).toIntern();
if (default_val == .unreachable_value) {
const template = "missing tuple field with index {d}";
if (root_msg) |msg| {
try sema.errNote(block, init_src, msg, template, .{i});
} else {
root_msg = try sema.errMsg(block, init_src, template, .{i});
}
continue;
}
element_vals[i] = default_val;
}
if (root_msg) |msg| {
root_msg = null;
return sema.failWithOwnedErrorMsg(block, msg);
}
},
.Array => {
return sema.fail(block, init_src, "expected {d} array elements; found {d}", .{
array_len, instrs.len,
});
},
.Vector => {
return sema.fail(block, init_src, "expected {d} vector elements; found {d}", .{
array_len, instrs.len,
});
},
else => unreachable,
};
if (block.is_comptime and
(try sema.resolveDefinedValue(block, init_src, array_ptr)) != null)
{
// In this case the comptime machinery will have evaluated the store instructions
// at comptime so we have almost nothing to do here. However, in case of a
// sentinel-terminated array, the sentinel will not have been populated by
// any ZIR instructions at comptime; we need to do that here.
if (array_ty.sentinel(mod)) |sentinel_val| {
const array_len_ref = try mod.intRef(Type.usize, array_len);
const sentinel_ptr = try sema.elemPtrArray(block, init_src, init_src, array_ptr, init_src, array_len_ref, true, true);
const sentinel = Air.internedToRef(sentinel_val.toIntern());
try sema.storePtr2(block, init_src, sentinel_ptr, init_src, sentinel, init_src, .store);
}
return;
}
// If the array has one possible value, the value is always comptime-known.
if (try sema.typeHasOnePossibleValue(array_ty)) |array_opv| {
const array_init = Air.internedToRef(array_opv.toIntern());
try sema.storePtr2(block, init_src, array_ptr, init_src, array_init, init_src, .store);
return;
}
var array_is_comptime = true;
var first_block_index = block.instructions.items.len;
const air_tags = sema.air_instructions.items(.tag);
const air_datas = sema.air_instructions.items(.data);
outer: for (instrs, 0..) |elem_ptr, i| {
// Determine whether the value stored to this pointer is comptime-known.
if (array_ty.isTuple(mod)) {
if (array_ty.structFieldIsComptime(i, mod))
try sema.resolveStructFieldInits(array_ty);
if (try array_ty.structFieldValueComptime(mod, i)) |opv| {
element_vals[i] = opv.toIntern();
continue;
}
}
const elem_ptr_ref = sema.inst_map.get(elem_ptr).?;
// We expect to see something like this in the current block AIR:
// %a = elem_ptr(...)
// store(%a, %b)
// With an optional bitcast between the store and the elem_ptr.
// If %b is a comptime operand, this element is comptime.
//
// However, in the case of a comptime-known pointer to an array, the
// the elem_ptr instruction is missing, so we have to pattern-match
// based only on the store instructions.
// `first_block_index` needs to point to the `elem_ptr` if it exists;
// the `store` otherwise.
//
// This is nearly identical to similar logic in `validateStructInit`.
// Possible performance enhancement: save the `block_index` between iterations
// of the for loop.
var block_index = block.instructions.items.len;
while (block_index > 0) {
block_index -= 1;
const store_inst = block.instructions.items[block_index];
if (store_inst.toRef() == elem_ptr_ref) {
array_is_comptime = false;
continue :outer;
}
switch (air_tags[@intFromEnum(store_inst)]) {
.store, .store_safe => {},
else => continue,
}
const bin_op = air_datas[@intFromEnum(store_inst)].bin_op;
var ptr_ref = bin_op.lhs;
if (ptr_ref.toIndex()) |ptr_inst| if (air_tags[@intFromEnum(ptr_inst)] == .bitcast) {
ptr_ref = air_datas[@intFromEnum(ptr_inst)].ty_op.operand;
};
if (ptr_ref != elem_ptr_ref) continue;
first_block_index = @min(if (elem_ptr_ref.toIndex()) |elem_ptr_inst|
std.mem.lastIndexOfScalar(
Air.Inst.Index,
block.instructions.items[0..block_index],
elem_ptr_inst,
).?
else
block_index, first_block_index);
if (try sema.resolveValue(bin_op.rhs)) |val| {
element_vals[i] = val.toIntern();
} else {
array_is_comptime = false;
}
continue :outer;
}
array_is_comptime = false;
continue :outer;
}
if (array_is_comptime) {
if (try sema.resolveDefinedValue(block, init_src, array_ptr)) |ptr_val| {
switch (mod.intern_pool.indexToKey(ptr_val.toIntern())) {
.ptr => |ptr| switch (ptr.addr) {
.comptime_field => return, // This store was validated by the individual elem ptrs.
else => {},
},
else => {},
}
}
// Our task is to delete all the `elem_ptr` and `store` instructions, and insert
// instead a single `store` to the array_ptr with a comptime struct value.
var elem_index: usize = 0;
var elem_ptr_ref = Air.Inst.Ref.none;
var block_index = first_block_index;
for (block.instructions.items[first_block_index..]) |cur_inst| {
while (elem_ptr_ref == .none and elem_index < instrs.len) : (elem_index += 1) {
if (array_ty.isTuple(mod) and array_ty.structFieldIsComptime(elem_index, mod)) continue;
elem_ptr_ref = sema.inst_map.get(instrs[elem_index]).?;
}
switch (air_tags[@intFromEnum(cur_inst)]) {
.ptr_elem_ptr => if (cur_inst.toRef() == elem_ptr_ref) continue,
.bitcast => if (air_datas[@intFromEnum(cur_inst)].ty_op.operand == elem_ptr_ref) continue,
.store, .store_safe => {
var ptr_ref = air_datas[@intFromEnum(cur_inst)].bin_op.lhs;
if (ptr_ref.toIndex()) |ptr_inst| if (air_tags[@intFromEnum(ptr_inst)] == .bitcast) {
ptr_ref = air_datas[@intFromEnum(ptr_inst)].ty_op.operand;
};
if (ptr_ref == elem_ptr_ref) {
elem_ptr_ref = .none;
continue;
}
},
else => {},
}
block.instructions.items[block_index] = cur_inst;
block_index += 1;
}
block.instructions.shrinkRetainingCapacity(block_index);
const array_val = try mod.intern(.{ .aggregate = .{
.ty = array_ty.toIntern(),
.storage = .{ .elems = element_vals },
} });
const array_init = Air.internedToRef(array_val);
try sema.storePtr2(block, init_src, array_ptr, init_src, array_init, init_src, .store);
}
}
fn zirValidateDeref(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const operand = try sema.resolveInst(inst_data.operand);
const operand_ty = sema.typeOf(operand);
if (operand_ty.zigTypeTag(mod) != .Pointer) {
return sema.fail(block, src, "cannot dereference non-pointer type '{}'", .{operand_ty.fmt(mod)});
} else switch (operand_ty.ptrSize(mod)) {
.One, .C => {},
.Many => return sema.fail(block, src, "index syntax required for unknown-length pointer type '{}'", .{operand_ty.fmt(mod)}),
.Slice => return sema.fail(block, src, "index syntax required for slice type '{}'", .{operand_ty.fmt(mod)}),
}
if ((try sema.typeHasOnePossibleValue(operand_ty.childType(mod))) != null) {
// No need to validate the actual pointer value, we don't need it!
return;
}
const elem_ty = operand_ty.elemType2(mod);
if (try sema.resolveValue(operand)) |val| {
if (val.isUndef(mod)) {
return sema.fail(block, src, "cannot dereference undefined value", .{});
}
} else if (try sema.typeRequiresComptime(elem_ty)) {
const msg = msg: {
const msg = try sema.errMsg(
block,
src,
"values of type '{}' must be comptime-known, but operand value is runtime-known",
.{elem_ty.fmt(mod)},
);
errdefer msg.destroy(sema.gpa);
const src_decl = mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsComptime(msg, src_decl.toSrcLoc(src, mod), elem_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
}
fn zirValidateDestructure(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.ValidateDestructure, inst_data.payload_index).data;
const src = inst_data.src();
const destructure_src = LazySrcLoc.nodeOffset(extra.destructure_node);
const operand = try sema.resolveInst(extra.operand);
const operand_ty = sema.typeOf(operand);
const can_destructure = switch (operand_ty.zigTypeTag(mod)) {
.Array, .Vector => true,
.Struct => operand_ty.isTuple(mod),
else => false,
};
if (!can_destructure) {
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "type '{}' cannot be destructured", .{operand_ty.fmt(mod)});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, destructure_src, msg, "result destructured here", .{});
break :msg msg;
});
}
if (operand_ty.arrayLen(mod) != extra.expect_len) {
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "expected {} elements for destructure, found {}", .{
extra.expect_len,
operand_ty.arrayLen(mod),
});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, destructure_src, msg, "result destructured here", .{});
break :msg msg;
});
}
}
fn failWithBadMemberAccess(
sema: *Sema,
block: *Block,
agg_ty: Type,
field_src: LazySrcLoc,
field_name: InternPool.NullTerminatedString,
) CompileError {
const mod = sema.mod;
const kw_name = switch (agg_ty.zigTypeTag(mod)) {
.Union => "union",
.Struct => "struct",
.Opaque => "opaque",
.Enum => "enum",
else => unreachable,
};
if (agg_ty.getOwnerDeclOrNull(mod)) |some| if (mod.declIsRoot(some)) {
return sema.fail(block, field_src, "root struct of file '{}' has no member named '{}'", .{
agg_ty.fmt(mod), field_name.fmt(&mod.intern_pool),
});
};
return sema.fail(block, field_src, "{s} '{}' has no member named '{}'", .{
kw_name, agg_ty.fmt(mod), field_name.fmt(&mod.intern_pool),
});
}
fn failWithBadStructFieldAccess(
sema: *Sema,
block: *Block,
struct_type: InternPool.LoadedStructType,
field_src: LazySrcLoc,
field_name: InternPool.NullTerminatedString,
) CompileError {
const mod = sema.mod;
const gpa = sema.gpa;
const decl = mod.declPtr(struct_type.decl.unwrap().?);
const fqn = try decl.fullyQualifiedName(mod);
const msg = msg: {
const msg = try sema.errMsg(
block,
field_src,
"no field named '{}' in struct '{}'",
.{ field_name.fmt(&mod.intern_pool), fqn.fmt(&mod.intern_pool) },
);
errdefer msg.destroy(gpa);
try mod.errNoteNonLazy(decl.srcLoc(mod), msg, "struct declared here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
fn failWithBadUnionFieldAccess(
sema: *Sema,
block: *Block,
union_obj: InternPool.LoadedUnionType,
field_src: LazySrcLoc,
field_name: InternPool.NullTerminatedString,
) CompileError {
const mod = sema.mod;
const gpa = sema.gpa;
const decl = mod.declPtr(union_obj.decl);
const fqn = try decl.fullyQualifiedName(mod);
const msg = msg: {
const msg = try sema.errMsg(
block,
field_src,
"no field named '{}' in union '{}'",
.{ field_name.fmt(&mod.intern_pool), fqn.fmt(&mod.intern_pool) },
);
errdefer msg.destroy(gpa);
try mod.errNoteNonLazy(decl.srcLoc(mod), msg, "union declared here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
fn addDeclaredHereNote(sema: *Sema, parent: *Module.ErrorMsg, decl_ty: Type) !void {
const mod = sema.mod;
const src_loc = decl_ty.declSrcLocOrNull(mod) orelse return;
const category = switch (decl_ty.zigTypeTag(mod)) {
.Union => "union",
.Struct => "struct",
.Enum => "enum",
.Opaque => "opaque",
.ErrorSet => "error set",
else => unreachable,
};
try mod.errNoteNonLazy(src_loc, parent, "{s} declared here", .{category});
}
fn zirStoreToInferredPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const tracy = trace(@src());
defer tracy.end();
const pl_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = pl_node.src();
const bin = sema.code.extraData(Zir.Inst.Bin, pl_node.payload_index).data;
const ptr = try sema.resolveInst(bin.lhs);
const operand = try sema.resolveInst(bin.rhs);
const ptr_inst = ptr.toIndex().?;
const air_datas = sema.air_instructions.items(.data);
switch (sema.air_instructions.items(.tag)[@intFromEnum(ptr_inst)]) {
.inferred_alloc_comptime => {
const iac = &air_datas[@intFromEnum(ptr_inst)].inferred_alloc_comptime;
return sema.storeToInferredAllocComptime(block, src, operand, iac);
},
.inferred_alloc => {
const ia = sema.unresolved_inferred_allocs.getPtr(ptr_inst).?;
return sema.storeToInferredAlloc(block, src, ptr, operand, ia);
},
else => unreachable,
}
}
fn storeToInferredAlloc(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
ptr: Air.Inst.Ref,
operand: Air.Inst.Ref,
inferred_alloc: *InferredAlloc,
) CompileError!void {
// Create a store instruction as a placeholder. This will be replaced by a
// proper store sequence once we know the stored type.
const dummy_store = try block.addBinOp(.store, ptr, operand);
try sema.checkComptimeKnownStore(block, dummy_store, src);
// Add the stored instruction to the set we will use to resolve peer types
// for the inferred allocation.
try inferred_alloc.prongs.append(sema.arena, dummy_store.toIndex().?);
}
fn storeToInferredAllocComptime(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
operand: Air.Inst.Ref,
iac: *Air.Inst.Data.InferredAllocComptime,
) CompileError!void {
const zcu = sema.mod;
const operand_ty = sema.typeOf(operand);
// There will be only one store_to_inferred_ptr because we are running at comptime.
// The alloc will turn into a Decl or a ComptimeAlloc.
const operand_val = try sema.resolveValue(operand) orelse {
return sema.failWithNeededComptime(block, src, .{
.needed_comptime_reason = "value being stored to a comptime variable must be comptime-known",
});
};
const alloc_ty = try sema.ptrType(.{
.child = operand_ty.toIntern(),
.flags = .{
.alignment = iac.alignment,
.is_const = iac.is_const,
},
});
if (iac.is_const and !operand_val.canMutateComptimeVarState(zcu)) {
iac.ptr = try zcu.intern(.{ .ptr = .{
.ty = alloc_ty.toIntern(),
.addr = .{ .anon_decl = .{
.val = operand_val.toIntern(),
.orig_ty = alloc_ty.toIntern(),
} },
} });
} else {
const alloc_index = try sema.newComptimeAlloc(block, operand_ty, iac.alignment);
sema.getComptimeAlloc(alloc_index).val = .{ .interned = operand_val.toIntern() };
iac.ptr = try zcu.intern(.{ .ptr = .{
.ty = alloc_ty.toIntern(),
.addr = .{ .comptime_alloc = alloc_index },
} });
}
}
fn zirSetEvalBranchQuota(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const quota: u32 = @intCast(try sema.resolveInt(block, src, inst_data.operand, Type.u32, .{
.needed_comptime_reason = "eval branch quota must be comptime-known",
}));
sema.branch_quota = @max(sema.branch_quota, quota);
}
fn zirStoreNode(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const zir_tags = sema.code.instructions.items(.tag);
const zir_datas = sema.code.instructions.items(.data);
const inst_data = zir_datas[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const ptr = try sema.resolveInst(extra.lhs);
const operand = try sema.resolveInst(extra.rhs);
const is_ret = if (extra.lhs.toIndex()) |ptr_index|
zir_tags[@intFromEnum(ptr_index)] == .ret_ptr
else
false;
// Check for the possibility of this pattern:
// %a = ret_ptr
// %b = store(%a, %c)
// Where %c is an error union or error set. In such case we need to add
// to the current function's inferred error set, if any.
if (is_ret and sema.fn_ret_ty_ies != null) switch (sema.typeOf(operand).zigTypeTag(mod)) {
.ErrorUnion, .ErrorSet => try sema.addToInferredErrorSet(operand),
else => {},
};
const ptr_src: LazySrcLoc = .{ .node_offset_store_ptr = inst_data.src_node };
const operand_src: LazySrcLoc = .{ .node_offset_store_operand = inst_data.src_node };
const air_tag: Air.Inst.Tag = if (is_ret)
.ret_ptr
else if (block.wantSafety())
.store_safe
else
.store;
return sema.storePtr2(block, src, ptr, ptr_src, operand, operand_src, air_tag);
}
fn zirStr(sema: *Sema, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const bytes = sema.code.instructions.items(.data)[@intFromEnum(inst)].str.get(sema.code);
return sema.addStrLitNoAlias(bytes);
}
fn addStrLit(sema: *Sema, bytes: []const u8) CompileError!Air.Inst.Ref {
const duped_bytes = try sema.arena.dupe(u8, bytes);
return addStrLitNoAlias(sema, duped_bytes);
}
/// Safe to call when `bytes` does not point into `InternPool`.
fn addStrLitNoAlias(sema: *Sema, bytes: []const u8) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const array_ty = try mod.arrayType(.{
.len = bytes.len,
.sentinel = .zero_u8,
.child = .u8_type,
});
const val = try mod.intern(.{ .aggregate = .{
.ty = array_ty.toIntern(),
.storage = .{ .bytes = bytes },
} });
return anonDeclRef(sema, val);
}
fn anonDeclRef(sema: *Sema, val: InternPool.Index) CompileError!Air.Inst.Ref {
return Air.internedToRef(try refValue(sema, val));
}
fn refValue(sema: *Sema, val: InternPool.Index) CompileError!InternPool.Index {
const mod = sema.mod;
const ptr_ty = (try sema.ptrType(.{
.child = mod.intern_pool.typeOf(val),
.flags = .{
.alignment = .none,
.is_const = true,
.address_space = .generic,
},
})).toIntern();
return mod.intern(.{ .ptr = .{
.ty = ptr_ty,
.addr = .{ .anon_decl = .{
.val = val,
.orig_ty = ptr_ty,
} },
} });
}
fn zirInt(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
_ = block;
const tracy = trace(@src());
defer tracy.end();
const int = sema.code.instructions.items(.data)[@intFromEnum(inst)].int;
return sema.mod.intRef(Type.comptime_int, int);
}
fn zirIntBig(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
_ = block;
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const int = sema.code.instructions.items(.data)[@intFromEnum(inst)].str;
const byte_count = int.len * @sizeOf(std.math.big.Limb);
const limb_bytes = sema.code.string_bytes[@intFromEnum(int.start)..][0..byte_count];
// TODO: this allocation and copy is only needed because the limbs may be unaligned.
// If ZIR is adjusted so that big int limbs are guaranteed to be aligned, these
// two lines can be removed.
const limbs = try sema.arena.alloc(std.math.big.Limb, int.len);
@memcpy(mem.sliceAsBytes(limbs), limb_bytes);
return Air.internedToRef((try mod.intValue_big(Type.comptime_int, .{
.limbs = limbs,
.positive = true,
})).toIntern());
}
fn zirFloat(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
_ = block;
const number = sema.code.instructions.items(.data)[@intFromEnum(inst)].float;
return Air.internedToRef((try sema.mod.floatValue(
Type.comptime_float,
number,
)).toIntern());
}
fn zirFloat128(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
_ = block;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Float128, inst_data.payload_index).data;
const number = extra.get();
return Air.internedToRef((try sema.mod.floatValue(Type.comptime_float, number)).toIntern());
}
fn zirCompileError(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const msg = try sema.resolveConstString(block, operand_src, inst_data.operand, .{
.needed_comptime_reason = "compile error string must be comptime-known",
});
return sema.fail(block, src, "{s}", .{msg});
}
fn zirCompileLog(
sema: *Sema,
extended: Zir.Inst.Extended.InstData,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
var managed = mod.compile_log_text.toManaged(sema.gpa);
defer sema.mod.compile_log_text = managed.moveToUnmanaged();
const writer = managed.writer();
const extra = sema.code.extraData(Zir.Inst.NodeMultiOp, extended.operand);
const src_node = extra.data.src_node;
const args = sema.code.refSlice(extra.end, extended.small);
for (args, 0..) |arg_ref, i| {
if (i != 0) try writer.print(", ", .{});
const arg = try sema.resolveInst(arg_ref);
const arg_ty = sema.typeOf(arg);
if (try sema.resolveValueResolveLazy(arg)) |val| {
try writer.print("@as({}, {})", .{
arg_ty.fmt(mod), val.fmtValue(mod),
});
} else {
try writer.print("@as({}, [runtime value])", .{arg_ty.fmt(mod)});
}
}
try writer.print("\n", .{});
const decl_index = if (sema.func_index != .none)
mod.funcOwnerDeclIndex(sema.func_index)
else
sema.owner_decl_index;
const gop = try mod.compile_log_decls.getOrPut(sema.gpa, decl_index);
if (!gop.found_existing) {
gop.value_ptr.* = src_node;
}
return .void_value;
}
fn zirPanic(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const msg_inst = try sema.resolveInst(inst_data.operand);
// `panicWithMsg` would perform this coercion for us, but we can get a better
// source location if we do it here.
const coerced_msg = try sema.coerce(block, Type.slice_const_u8, msg_inst, .{ .node_offset_builtin_call_arg0 = inst_data.src_node });
if (block.is_comptime) {
return sema.fail(block, src, "encountered @panic at comptime", .{});
}
try sema.panicWithMsg(block, src, coerced_msg, .@"@panic");
}
fn zirTrap(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const src_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].node;
const src = LazySrcLoc.nodeOffset(src_node);
if (block.is_comptime)
return sema.fail(block, src, "encountered @trap at comptime", .{});
_ = try block.addNoOp(.trap);
}
fn zirLoop(sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.Block, inst_data.payload_index);
const body = sema.code.bodySlice(extra.end, extra.data.body_len);
const gpa = sema.gpa;
// AIR expects a block outside the loop block too.
// Reserve space for a Loop instruction so that generated Break instructions can
// point to it, even if it doesn't end up getting used because the code ends up being
// comptime evaluated.
const block_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
const loop_inst: Air.Inst.Index = @enumFromInt(@intFromEnum(block_inst) + 1);
try sema.air_instructions.ensureUnusedCapacity(gpa, 2);
sema.air_instructions.appendAssumeCapacity(.{
.tag = .block,
.data = undefined,
});
sema.air_instructions.appendAssumeCapacity(.{
.tag = .loop,
.data = .{ .ty_pl = .{
.ty = .noreturn_type,
.payload = undefined,
} },
});
var label: Block.Label = .{
.zir_block = inst,
.merges = .{
.src_locs = .{},
.results = .{},
.br_list = .{},
.block_inst = block_inst,
},
};
var child_block = parent_block.makeSubBlock();
child_block.label = &label;
child_block.runtime_cond = null;
child_block.runtime_loop = mod.declPtr(child_block.src_decl).toSrcLoc(src, mod);
child_block.runtime_index.increment();
const merges = &child_block.label.?.merges;
defer child_block.instructions.deinit(gpa);
defer merges.deinit(gpa);
var loop_block = child_block.makeSubBlock();
defer loop_block.instructions.deinit(gpa);
// Use `analyzeBodyInner` directly to push any comptime control flow up the stack.
try sema.analyzeBodyInner(&loop_block, body);
const loop_block_len = loop_block.instructions.items.len;
if (loop_block_len > 0 and sema.typeOf(loop_block.instructions.items[loop_block_len - 1].toRef()).isNoReturn(mod)) {
// If the loop ended with a noreturn terminator, then there is no way for it to loop,
// so we can just use the block instead.
try child_block.instructions.appendSlice(gpa, loop_block.instructions.items);
} else {
try child_block.instructions.append(gpa, loop_inst);
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).Struct.fields.len + loop_block_len);
sema.air_instructions.items(.data)[@intFromEnum(loop_inst)].ty_pl.payload = sema.addExtraAssumeCapacity(
Air.Block{ .body_len = @intCast(loop_block_len) },
);
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(loop_block.instructions.items));
}
return sema.resolveAnalyzedBlock(parent_block, src, &child_block, merges, false);
}
fn zirCImport(sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const comp = mod.comp;
const gpa = sema.gpa;
const pl_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = pl_node.src();
const extra = sema.code.extraData(Zir.Inst.Block, pl_node.payload_index);
const body = sema.code.bodySlice(extra.end, extra.data.body_len);
// we check this here to avoid undefined symbols
if (!build_options.have_llvm)
return sema.fail(parent_block, src, "C import unavailable; Zig compiler built without LLVM extensions", .{});
var c_import_buf = std.ArrayList(u8).init(gpa);
defer c_import_buf.deinit();
var comptime_reason: Block.ComptimeReason = .{ .c_import = .{
.block = parent_block,
.src = src,
} };
var child_block: Block = .{
.parent = parent_block,
.sema = sema,
.src_decl = parent_block.src_decl,
.namespace = parent_block.namespace,
.instructions = .{},
.inlining = parent_block.inlining,
.is_comptime = true,
.comptime_reason = &comptime_reason,
.c_import_buf = &c_import_buf,
.runtime_cond = parent_block.runtime_cond,
.runtime_loop = parent_block.runtime_loop,
.runtime_index = parent_block.runtime_index,
};
defer child_block.instructions.deinit(gpa);
_ = try sema.analyzeInlineBody(&child_block, body, inst);
var c_import_res = comp.cImport(c_import_buf.items, parent_block.ownerModule()) catch |err|
return sema.fail(&child_block, src, "C import failed: {s}", .{@errorName(err)});
defer c_import_res.deinit(gpa);
if (c_import_res.errors.errorMessageCount() != 0) {
const msg = msg: {
const msg = try sema.errMsg(&child_block, src, "C import failed", .{});
errdefer msg.destroy(gpa);
if (!comp.config.link_libc)
try sema.errNote(&child_block, src, msg, "libc headers not available; compilation does not link against libc", .{});
const gop = try mod.cimport_errors.getOrPut(gpa, sema.owner_decl_index);
if (!gop.found_existing) {
gop.value_ptr.* = c_import_res.errors;
c_import_res.errors = std.zig.ErrorBundle.empty;
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(&child_block, msg);
}
const parent_mod = parent_block.ownerModule();
const c_import_mod = Package.Module.create(comp.arena, .{
.global_cache_directory = comp.global_cache_directory,
.paths = .{
.root = .{
.root_dir = Compilation.Directory.cwd(),
.sub_path = std.fs.path.dirname(c_import_res.out_zig_path) orelse "",
},
.root_src_path = std.fs.path.basename(c_import_res.out_zig_path),
},
.fully_qualified_name = c_import_res.out_zig_path,
.cc_argv = parent_mod.cc_argv,
.inherited = .{},
.global = comp.config,
.parent = parent_mod,
.builtin_mod = parent_mod.getBuiltinDependency(),
.builtin_modules = null, // `builtin_mod` is set
}) catch |err| switch (err) {
// None of these are possible because we are creating a package with
// the exact same configuration as the parent package, which already
// passed these checks.
error.ValgrindUnsupportedOnTarget => unreachable,
error.TargetRequiresSingleThreaded => unreachable,
error.BackendRequiresSingleThreaded => unreachable,
error.TargetRequiresPic => unreachable,
error.PieRequiresPic => unreachable,
error.DynamicLinkingRequiresPic => unreachable,
error.TargetHasNoRedZone => unreachable,
error.StackCheckUnsupportedByTarget => unreachable,
error.StackProtectorUnsupportedByTarget => unreachable,
error.StackProtectorUnavailableWithoutLibC => unreachable,
else => |e| return e,
};
const result = mod.importPkg(c_import_mod) catch |err|
return sema.fail(&child_block, src, "C import failed: {s}", .{@errorName(err)});
mod.astGenFile(result.file) catch |err|
return sema.fail(&child_block, src, "C import failed: {s}", .{@errorName(err)});
try mod.ensureFileAnalyzed(result.file);
const file_root_decl_index = result.file.root_decl.unwrap().?;
return sema.analyzeDeclVal(parent_block, src, file_root_decl_index);
}
fn zirSuspendBlock(sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
return sema.failWithUseOfAsync(parent_block, src);
}
fn zirBlock(sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index, force_comptime: bool) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const pl_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = pl_node.src();
const extra = sema.code.extraData(Zir.Inst.Block, pl_node.payload_index);
const body = sema.code.bodySlice(extra.end, extra.data.body_len);
const gpa = sema.gpa;
// Reserve space for a Block instruction so that generated Break instructions can
// point to it, even if it doesn't end up getting used because the code ends up being
// comptime evaluated or is an unlabeled block.
const block_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
try sema.air_instructions.append(gpa, .{
.tag = .block,
.data = undefined,
});
var label: Block.Label = .{
.zir_block = inst,
.merges = .{
.src_locs = .{},
.results = .{},
.br_list = .{},
.block_inst = block_inst,
},
};
var child_block: Block = .{
.parent = parent_block,
.sema = sema,
.src_decl = parent_block.src_decl,
.namespace = parent_block.namespace,
.instructions = .{},
.label = &label,
.inlining = parent_block.inlining,
.is_comptime = parent_block.is_comptime or force_comptime,
.comptime_reason = parent_block.comptime_reason,
.is_typeof = parent_block.is_typeof,
.want_safety = parent_block.want_safety,
.float_mode = parent_block.float_mode,
.c_import_buf = parent_block.c_import_buf,
.runtime_cond = parent_block.runtime_cond,
.runtime_loop = parent_block.runtime_loop,
.runtime_index = parent_block.runtime_index,
.error_return_trace_index = parent_block.error_return_trace_index,
};
defer child_block.instructions.deinit(gpa);
defer label.merges.deinit(gpa);
return sema.resolveBlockBody(parent_block, src, &child_block, body, inst, &label.merges);
}
/// Semantically analyze the given ZIR body, emitting any resulting runtime code into the AIR block
/// specified by `child_block` if necessary (and emitting this block into `parent_block`).
/// TODO: `merges` is known from `child_block`, remove this parameter.
fn resolveBlockBody(
sema: *Sema,
parent_block: *Block,
src: LazySrcLoc,
child_block: *Block,
body: []const Zir.Inst.Index,
/// This is the instruction that a break instruction within `body` can
/// use to return from the body.
body_inst: Zir.Inst.Index,
merges: *Block.Merges,
) CompileError!Air.Inst.Ref {
if (child_block.is_comptime) {
return sema.resolveInlineBody(child_block, body, body_inst);
} else {
assert(sema.air_instructions.items(.tag)[@intFromEnum(merges.block_inst)] == .block);
var need_debug_scope = false;
child_block.need_debug_scope = &need_debug_scope;
if (sema.analyzeBodyInner(child_block, body)) |_| {
return sema.resolveAnalyzedBlock(parent_block, src, child_block, merges, need_debug_scope);
} else |err| switch (err) {
error.ComptimeBreak => {
// Comptime control flow is happening, however child_block may still contain
// runtime instructions which need to be copied to the parent block.
if (need_debug_scope and child_block.instructions.items.len > 0) {
// We need a runtime block for scoping reasons.
_ = try child_block.addBr(merges.block_inst, .void_value);
try parent_block.instructions.append(sema.gpa, merges.block_inst);
try sema.air_extra.ensureUnusedCapacity(sema.gpa, @typeInfo(Air.Block).Struct.fields.len +
child_block.instructions.items.len);
sema.air_instructions.items(.data)[@intFromEnum(merges.block_inst)] = .{ .ty_pl = .{
.ty = .void_type,
.payload = sema.addExtraAssumeCapacity(Air.Block{
.body_len = @intCast(child_block.instructions.items.len),
}),
} };
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(child_block.instructions.items));
} else {
// We can copy instructions directly to the parent block.
try parent_block.instructions.appendSlice(sema.gpa, child_block.instructions.items);
}
const break_inst = sema.comptime_break_inst;
const break_data = sema.code.instructions.items(.data)[@intFromEnum(break_inst)].@"break";
const extra = sema.code.extraData(Zir.Inst.Break, break_data.payload_index).data;
if (extra.block_inst == body_inst) {
return try sema.resolveInst(break_data.operand);
} else {
return error.ComptimeBreak;
}
},
else => |e| return e,
}
}
}
/// After a body corresponding to an AIR `block` has been analyzed, this function places them into
/// the block pointed at by `merges.block_inst` if necessary, or the block may be elided in favor of
/// inlining the instructions directly into the parent block. Either way, it considers all merges of
/// this block, and combines them appropriately using peer type resolution, returning the final
/// value of the block.
fn resolveAnalyzedBlock(
sema: *Sema,
parent_block: *Block,
src: LazySrcLoc,
child_block: *Block,
merges: *Block.Merges,
need_debug_scope: bool,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const gpa = sema.gpa;
const mod = sema.mod;
// Blocks must terminate with noreturn instruction.
assert(child_block.instructions.items.len != 0);
assert(sema.typeOf(child_block.instructions.items[child_block.instructions.items.len - 1].toRef()).isNoReturn(mod));
const block_tag = sema.air_instructions.items(.tag)[@intFromEnum(merges.block_inst)];
switch (block_tag) {
.block => {},
.dbg_inline_block => assert(need_debug_scope),
else => unreachable,
}
if (merges.results.items.len == 0) {
switch (block_tag) {
.block => {
// No need for a block instruction. We can put the new instructions
// directly into the parent block.
if (need_debug_scope) {
// The code following this block is unreachable, as the block has no
// merges, so we don't necessarily need to emit this as an AIR block.
// However, we need a block *somewhere* to make the scoping correct,
// so forward this request to the parent block.
if (parent_block.need_debug_scope) |ptr| ptr.* = true;
}
try parent_block.instructions.appendSlice(gpa, child_block.instructions.items);
return child_block.instructions.items[child_block.instructions.items.len - 1].toRef();
},
.dbg_inline_block => {
// Create a block containing all instruction from the body.
try parent_block.instructions.append(gpa, merges.block_inst);
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.DbgInlineBlock).Struct.fields.len +
child_block.instructions.items.len);
sema.air_instructions.items(.data)[@intFromEnum(merges.block_inst)] = .{ .ty_pl = .{
.ty = .noreturn_type,
.payload = sema.addExtraAssumeCapacity(Air.DbgInlineBlock{
.func = child_block.inlining.?.func,
.body_len = @intCast(child_block.instructions.items.len),
}),
} };
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(child_block.instructions.items));
return merges.block_inst.toRef();
},
else => unreachable,
}
}
if (merges.results.items.len == 1) {
// If the `break` is trailing, we may be able to elide the AIR block here
// by appending the new instructions directly to the parent block.
if (!need_debug_scope) {
const last_inst_index = child_block.instructions.items.len - 1;
const last_inst = child_block.instructions.items[last_inst_index];
if (sema.getBreakBlock(last_inst)) |br_block| {
if (br_block == merges.block_inst) {
// Great, the last instruction is the break! Put the instructions
// directly into the parent block.
try parent_block.instructions.appendSlice(gpa, child_block.instructions.items[0..last_inst_index]);
return merges.results.items[0];
}
}
}
// Okay, we need a runtime block. If the value is comptime-known, the
// block should just return void, and we return the merge result
// directly. Otherwise, we can defer to the logic below.
if (try sema.resolveValue(merges.results.items[0])) |result_val| {
// Create a block containing all instruction from the body.
try parent_block.instructions.append(gpa, merges.block_inst);
switch (block_tag) {
.block => {
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).Struct.fields.len +
child_block.instructions.items.len);
sema.air_instructions.items(.data)[@intFromEnum(merges.block_inst)] = .{ .ty_pl = .{
.ty = .void_type,
.payload = sema.addExtraAssumeCapacity(Air.Block{
.body_len = @intCast(child_block.instructions.items.len),
}),
} };
},
.dbg_inline_block => {
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.DbgInlineBlock).Struct.fields.len +
child_block.instructions.items.len);
sema.air_instructions.items(.data)[@intFromEnum(merges.block_inst)] = .{ .ty_pl = .{
.ty = .void_type,
.payload = sema.addExtraAssumeCapacity(Air.DbgInlineBlock{
.func = child_block.inlining.?.func,
.body_len = @intCast(child_block.instructions.items.len),
}),
} };
},
else => unreachable,
}
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(child_block.instructions.items));
// Rewrite the break to just give value {}; the value is
// comptime-known and will be returned directly.
sema.air_instructions.items(.data)[@intFromEnum(merges.br_list.items[0])].br.operand = .void_value;
return Air.internedToRef(result_val.toIntern());
}
}
// It is impossible to have the number of results be > 1 in a comptime scope.
assert(!child_block.is_comptime); // Should already got a compile error in the condbr condition.
// Note that we'll always create an AIR block here, so `need_debug_scope` is irrelevant.
// Need to set the type and emit the Block instruction. This allows machine code generation
// to emit a jump instruction to after the block when it encounters the break.
try parent_block.instructions.append(gpa, merges.block_inst);
const resolved_ty = try sema.resolvePeerTypes(parent_block, src, merges.results.items, .{ .override = merges.src_locs.items });
// TODO add note "missing else causes void value"
const type_src = src; // TODO: better source location
if (try sema.typeRequiresComptime(resolved_ty)) {
const msg = msg: {
const msg = try sema.errMsg(child_block, type_src, "value with comptime-only type '{}' depends on runtime control flow", .{resolved_ty.fmt(mod)});
errdefer msg.destroy(sema.gpa);
const runtime_src = child_block.runtime_cond orelse child_block.runtime_loop.?;
try mod.errNoteNonLazy(runtime_src, msg, "runtime control flow here", .{});
const child_src_decl = mod.declPtr(child_block.src_decl);
try sema.explainWhyTypeIsComptime(msg, child_src_decl.toSrcLoc(type_src, mod), resolved_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(child_block, msg);
}
for (merges.results.items, merges.src_locs.items) |merge_inst, merge_src| {
try sema.validateRuntimeValue(child_block, merge_src orelse src, merge_inst);
}
const ty_inst = Air.internedToRef(resolved_ty.toIntern());
switch (block_tag) {
.block => {
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).Struct.fields.len +
child_block.instructions.items.len);
sema.air_instructions.items(.data)[@intFromEnum(merges.block_inst)] = .{ .ty_pl = .{
.ty = ty_inst,
.payload = sema.addExtraAssumeCapacity(Air.Block{
.body_len = @intCast(child_block.instructions.items.len),
}),
} };
},
.dbg_inline_block => {
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.DbgInlineBlock).Struct.fields.len +
child_block.instructions.items.len);
sema.air_instructions.items(.data)[@intFromEnum(merges.block_inst)] = .{ .ty_pl = .{
.ty = ty_inst,
.payload = sema.addExtraAssumeCapacity(Air.DbgInlineBlock{
.func = child_block.inlining.?.func,
.body_len = @intCast(child_block.instructions.items.len),
}),
} };
},
else => unreachable,
}
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(child_block.instructions.items));
// Now that the block has its type resolved, we need to go back into all the break
// instructions, and insert type coercion on the operands.
for (merges.br_list.items) |br| {
const br_operand = sema.air_instructions.items(.data)[@intFromEnum(br)].br.operand;
const br_operand_src = src;
const br_operand_ty = sema.typeOf(br_operand);
if (br_operand_ty.eql(resolved_ty, mod)) {
// No type coercion needed.
continue;
}
var coerce_block = parent_block.makeSubBlock();
defer coerce_block.instructions.deinit(gpa);
const coerced_operand = try sema.coerce(&coerce_block, resolved_ty, br_operand, br_operand_src);
// If no instructions were produced, such as in the case of a coercion of a
// constant value to a new type, we can simply point the br operand to it.
if (coerce_block.instructions.items.len == 0) {
sema.air_instructions.items(.data)[@intFromEnum(br)].br.operand = coerced_operand;
continue;
}
assert(coerce_block.instructions.items[coerce_block.instructions.items.len - 1].toRef() == coerced_operand);
// Convert the br instruction to a block instruction that has the coercion
// and then a new br inside that returns the coerced instruction.
const sub_block_len: u32 = @intCast(coerce_block.instructions.items.len + 1);
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).Struct.fields.len +
sub_block_len);
try sema.air_instructions.ensureUnusedCapacity(gpa, 1);
const sub_br_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
sema.air_instructions.items(.tag)[@intFromEnum(br)] = .block;
sema.air_instructions.items(.data)[@intFromEnum(br)] = .{ .ty_pl = .{
.ty = .noreturn_type,
.payload = sema.addExtraAssumeCapacity(Air.Block{
.body_len = sub_block_len,
}),
} };
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(coerce_block.instructions.items));
sema.air_extra.appendAssumeCapacity(@intFromEnum(sub_br_inst));
sema.air_instructions.appendAssumeCapacity(.{
.tag = .br,
.data = .{ .br = .{
.block_inst = merges.block_inst,
.operand = coerced_operand,
} },
});
}
return merges.block_inst.toRef();
}
fn zirExport(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Export, inst_data.payload_index).data;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const options_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const decl_name = try mod.intern_pool.getOrPutString(mod.gpa, sema.code.nullTerminatedString(extra.decl_name));
const decl_index = if (extra.namespace != .none) index_blk: {
const container_ty = try sema.resolveType(block, operand_src, extra.namespace);
const container_namespace = container_ty.getNamespaceIndex(mod);
const maybe_index = try sema.lookupInNamespace(block, operand_src, container_namespace, decl_name, false);
break :index_blk maybe_index orelse
return sema.failWithBadMemberAccess(block, container_ty, operand_src, decl_name);
} else try sema.lookupIdentifier(block, operand_src, decl_name);
const options = sema.resolveExportOptions(block, .unneeded, extra.options) catch |err| switch (err) {
error.NeededSourceLocation => {
_ = try sema.resolveExportOptions(block, options_src, extra.options);
unreachable;
},
else => |e| return e,
};
{
try mod.ensureDeclAnalyzed(decl_index);
const exported_decl = mod.declPtr(decl_index);
if (exported_decl.val.getFunction(mod)) |function| {
return sema.analyzeExport(block, src, options, function.owner_decl);
}
}
try sema.analyzeExport(block, src, options, decl_index);
}
fn zirExportValue(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.ExportValue, inst_data.payload_index).data;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const options_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const operand = try sema.resolveInstConst(block, operand_src, extra.operand, .{
.needed_comptime_reason = "export target must be comptime-known",
});
const options = try sema.resolveExportOptions(block, options_src, extra.options);
if (options.linkage == .internal)
return;
if (operand.getFunction(mod)) |function| {
const decl_index = function.owner_decl;
return sema.analyzeExport(block, src, options, decl_index);
}
try addExport(mod, .{
.opts = options,
.src = src,
.owner_decl = sema.owner_decl_index,
.src_decl = block.src_decl,
.exported = .{ .value = operand.toIntern() },
.status = .in_progress,
});
}
pub fn analyzeExport(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
options: Module.Export.Options,
exported_decl_index: InternPool.DeclIndex,
) !void {
const gpa = sema.gpa;
const mod = sema.mod;
if (options.linkage == .internal)
return;
try mod.ensureDeclAnalyzed(exported_decl_index);
const exported_decl = mod.declPtr(exported_decl_index);
const export_ty = exported_decl.typeOf(mod);
if (!try sema.validateExternType(export_ty, .other)) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "unable to export type '{}'", .{export_ty.fmt(mod)});
errdefer msg.destroy(gpa);
const src_decl = mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsNotExtern(msg, src_decl.toSrcLoc(src, mod), export_ty, .other);
try sema.addDeclaredHereNote(msg, export_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
// TODO: some backends might support re-exporting extern decls
if (exported_decl.isExtern(mod)) {
return sema.fail(block, src, "export target cannot be extern", .{});
}
try sema.maybeQueueFuncBodyAnalysis(exported_decl_index);
try addExport(mod, .{
.opts = options,
.src = src,
.owner_decl = sema.owner_decl_index,
.src_decl = block.src_decl,
.exported = .{ .decl_index = exported_decl_index },
.status = .in_progress,
});
}
fn addExport(mod: *Module, export_init: Module.Export) error{OutOfMemory}!void {
const gpa = mod.gpa;
try mod.decl_exports.ensureUnusedCapacity(gpa, 1);
try mod.value_exports.ensureUnusedCapacity(gpa, 1);
try mod.export_owners.ensureUnusedCapacity(gpa, 1);
const new_export = try gpa.create(Module.Export);
errdefer gpa.destroy(new_export);
new_export.* = export_init;
const eo_gop = mod.export_owners.getOrPutAssumeCapacity(export_init.owner_decl);
if (!eo_gop.found_existing) eo_gop.value_ptr.* = .{};
try eo_gop.value_ptr.append(gpa, new_export);
errdefer _ = eo_gop.value_ptr.pop();
switch (export_init.exported) {
.decl_index => |decl_index| {
const de_gop = mod.decl_exports.getOrPutAssumeCapacity(decl_index);
if (!de_gop.found_existing) de_gop.value_ptr.* = .{};
try de_gop.value_ptr.append(gpa, new_export);
},
.value => |value| {
const ve_gop = mod.value_exports.getOrPutAssumeCapacity(value);
if (!ve_gop.found_existing) ve_gop.value_ptr.* = .{};
try ve_gop.value_ptr.append(gpa, new_export);
},
}
}
fn zirSetAlignStack(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!void {
const mod = sema.mod;
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const src = LazySrcLoc.nodeOffset(extra.node);
const alignment = try sema.resolveAlign(block, operand_src, extra.operand);
if (alignment.order(Alignment.fromNonzeroByteUnits(256)).compare(.gt)) {
return sema.fail(block, src, "attempt to @setAlignStack({d}); maximum is 256", .{
alignment.toByteUnits().?,
});
}
const fn_owner_decl = mod.funcOwnerDeclPtr(sema.func_index);
switch (fn_owner_decl.typeOf(mod).fnCallingConvention(mod)) {
.Naked => return sema.fail(block, src, "@setAlignStack in naked function", .{}),
.Inline => return sema.fail(block, src, "@setAlignStack in inline function", .{}),
else => if (block.inlining != null) {
return sema.fail(block, src, "@setAlignStack in inline call", .{});
},
}
if (sema.prev_stack_alignment_src) |prev_src| {
const msg = msg: {
const msg = try sema.errMsg(block, src, "multiple @setAlignStack in the same function body", .{});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, prev_src, msg, "other instance here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
sema.prev_stack_alignment_src = src;
const ip = &mod.intern_pool;
const a = ip.funcAnalysis(sema.func_index);
if (a.stack_alignment != .none) {
a.stack_alignment = @enumFromInt(@max(
@intFromEnum(alignment),
@intFromEnum(a.stack_alignment),
));
}
}
fn zirSetCold(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!void {
const mod = sema.mod;
const ip = &mod.intern_pool;
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const is_cold = try sema.resolveConstBool(block, operand_src, extra.operand, .{
.needed_comptime_reason = "operand to @setCold must be comptime-known",
});
if (sema.func_index == .none) return; // does nothing outside a function
ip.funcAnalysis(sema.func_index).is_cold = is_cold;
}
fn zirSetFloatMode(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!void {
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
const src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
block.float_mode = try sema.resolveBuiltinEnum(block, src, extra.operand, "FloatMode", .{
.needed_comptime_reason = "operand to @setFloatMode must be comptime-known",
});
}
fn zirSetRuntimeSafety(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
block.want_safety = try sema.resolveConstBool(block, operand_src, inst_data.operand, .{
.needed_comptime_reason = "operand to @setRuntimeSafety must be comptime-known",
});
}
fn zirFence(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!void {
if (block.is_comptime) return;
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
const order_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const order = try sema.resolveAtomicOrder(block, order_src, extra.operand, .{
.needed_comptime_reason = "atomic order of @fence must be comptime-known",
});
if (@intFromEnum(order) < @intFromEnum(std.builtin.AtomicOrder.acquire)) {
return sema.fail(block, order_src, "atomic ordering must be acquire or stricter", .{});
}
_ = try block.addInst(.{
.tag = .fence,
.data = .{ .fence = order },
});
}
fn zirBreak(sema: *Sema, start_block: *Block, inst: Zir.Inst.Index) CompileError!void {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].@"break";
const extra = sema.code.extraData(Zir.Inst.Break, inst_data.payload_index).data;
const operand = try sema.resolveInst(inst_data.operand);
const zir_block = extra.block_inst;
var block = start_block;
while (true) {
if (block.label) |label| {
if (label.zir_block == zir_block) {
const br_ref = try start_block.addBr(label.merges.block_inst, operand);
const src_loc = if (extra.operand_src_node != Zir.Inst.Break.no_src_node)
LazySrcLoc.nodeOffset(extra.operand_src_node)
else
null;
try label.merges.src_locs.append(sema.gpa, src_loc);
try label.merges.results.append(sema.gpa, operand);
try label.merges.br_list.append(sema.gpa, br_ref.toIndex().?);
block.runtime_index.increment();
if (block.runtime_cond == null and block.runtime_loop == null) {
block.runtime_cond = start_block.runtime_cond orelse start_block.runtime_loop;
block.runtime_loop = start_block.runtime_loop;
}
return;
}
}
block = block.parent.?;
}
}
fn zirDbgStmt(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
if (block.is_comptime or block.ownerModule().strip) return;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].dbg_stmt;
if (block.instructions.items.len != 0) {
const idx = block.instructions.items[block.instructions.items.len - 1];
if (sema.air_instructions.items(.tag)[@intFromEnum(idx)] == .dbg_stmt) {
// The previous dbg_stmt didn't correspond to any actual code, so replace it.
sema.air_instructions.items(.data)[@intFromEnum(idx)].dbg_stmt = .{
.line = inst_data.line,
.column = inst_data.column,
};
return;
}
}
_ = try block.addInst(.{
.tag = .dbg_stmt,
.data = .{ .dbg_stmt = .{
.line = inst_data.line,
.column = inst_data.column,
} },
});
}
fn zirDbgVar(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
air_tag: Air.Inst.Tag,
) CompileError!void {
const str_op = sema.code.instructions.items(.data)[@intFromEnum(inst)].str_op;
const operand = try sema.resolveInst(str_op.operand);
const name = str_op.getStr(sema.code);
try sema.addDbgVar(block, operand, air_tag, name);
}
fn addDbgVar(
sema: *Sema,
block: *Block,
operand: Air.Inst.Ref,
air_tag: Air.Inst.Tag,
name: []const u8,
) CompileError!void {
if (block.is_comptime or block.ownerModule().strip) return;
const mod = sema.mod;
const operand_ty = sema.typeOf(operand);
const val_ty = switch (air_tag) {
.dbg_var_ptr => operand_ty.childType(mod),
.dbg_var_val => operand_ty,
else => unreachable,
};
if (try sema.typeRequiresComptime(val_ty)) return;
if (!(try sema.typeHasRuntimeBits(val_ty))) return;
if (try sema.resolveValue(operand)) |operand_val| {
if (operand_val.canMutateComptimeVarState(mod)) return;
}
// To ensure the lexical scoping is known to backends, this alloc must be
// within a real runtime block. We set a flag which communicates information
// to the closest lexically enclosing block:
// * If it is a `block_inline`, communicates to logic in `analyzeBodyInner`
// to create a post-hoc block.
// * Otherwise, communicates to logic in `resolveBlockBody` to create a
// real `block` instruction.
if (block.need_debug_scope) |ptr| ptr.* = true;
try sema.queueFullTypeResolution(operand_ty);
// Add the name to the AIR.
const name_extra_index: u32 = @intCast(sema.air_extra.items.len);
const elements_used = name.len / 4 + 1;
try sema.air_extra.ensureUnusedCapacity(sema.gpa, elements_used);
const buffer = mem.sliceAsBytes(sema.air_extra.unusedCapacitySlice());
@memcpy(buffer[0..name.len], name);
buffer[name.len] = 0;
sema.air_extra.items.len += elements_used;
_ = try block.addInst(.{
.tag = air_tag,
.data = .{ .pl_op = .{
.payload = name_extra_index,
.operand = operand,
} },
});
}
fn zirDeclRef(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].str_tok;
const src = inst_data.src();
const decl_name = try mod.intern_pool.getOrPutString(sema.gpa, inst_data.get(sema.code));
const decl_index = try sema.lookupIdentifier(block, src, decl_name);
try sema.addReferencedBy(block, src, decl_index);
return sema.analyzeDeclRef(decl_index);
}
fn zirDeclVal(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].str_tok;
const src = inst_data.src();
const decl_name = try mod.intern_pool.getOrPutString(sema.gpa, inst_data.get(sema.code));
const decl = try sema.lookupIdentifier(block, src, decl_name);
return sema.analyzeDeclVal(block, src, decl);
}
fn lookupIdentifier(sema: *Sema, block: *Block, src: LazySrcLoc, name: InternPool.NullTerminatedString) !InternPool.DeclIndex {
const mod = sema.mod;
var namespace = block.namespace;
while (true) {
if (try sema.lookupInNamespace(block, src, namespace.toOptional(), name, false)) |decl_index| {
return decl_index;
}
namespace = mod.namespacePtr(namespace).parent.unwrap() orelse break;
}
unreachable; // AstGen detects use of undeclared identifiers.
}
/// This looks up a member of a specific namespace. It is affected by `usingnamespace` but
/// only for ones in the specified namespace.
fn lookupInNamespace(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
opt_namespace_index: InternPool.OptionalNamespaceIndex,
ident_name: InternPool.NullTerminatedString,
observe_usingnamespace: bool,
) CompileError!?InternPool.DeclIndex {
const mod = sema.mod;
const namespace_index = opt_namespace_index.unwrap() orelse return null;
const namespace = mod.namespacePtr(namespace_index);
const namespace_decl = mod.declPtr(namespace.decl_index);
if (namespace_decl.analysis == .file_failure) {
return error.AnalysisFail;
}
if (observe_usingnamespace and namespace.usingnamespace_set.count() != 0) {
const src_file = mod.namespacePtr(block.namespace).file_scope;
const gpa = sema.gpa;
var checked_namespaces: std.AutoArrayHashMapUnmanaged(*Namespace, bool) = .{};
defer checked_namespaces.deinit(gpa);
// Keep track of name conflicts for error notes.
var candidates: std.ArrayListUnmanaged(InternPool.DeclIndex) = .{};
defer candidates.deinit(gpa);
try checked_namespaces.put(gpa, namespace, namespace.file_scope == src_file);
var check_i: usize = 0;
while (check_i < checked_namespaces.count()) : (check_i += 1) {
const check_ns = checked_namespaces.keys()[check_i];
if (check_ns.decls.getKeyAdapted(ident_name, Module.DeclAdapter{ .zcu = mod })) |decl_index| {
// Skip decls which are not marked pub, which are in a different
// file than the `a.b`/`@hasDecl` syntax.
const decl = mod.declPtr(decl_index);
if (decl.is_pub or (src_file == decl.getFileScope(mod) and checked_namespaces.values()[check_i])) {
try candidates.append(gpa, decl_index);
}
}
var it = check_ns.usingnamespace_set.iterator();
while (it.next()) |entry| {
const sub_usingnamespace_decl_index = entry.key_ptr.*;
// Skip the decl we're currently analysing.
if (sub_usingnamespace_decl_index == sema.owner_decl_index) continue;
const sub_usingnamespace_decl = mod.declPtr(sub_usingnamespace_decl_index);
const sub_is_pub = entry.value_ptr.*;
if (!sub_is_pub and src_file != sub_usingnamespace_decl.getFileScope(mod)) {
// Skip usingnamespace decls which are not marked pub, which are in
// a different file than the `a.b`/`@hasDecl` syntax.
continue;
}
try sema.ensureDeclAnalyzed(sub_usingnamespace_decl_index);
const ns_ty = sub_usingnamespace_decl.val.toType();
const sub_ns = mod.namespacePtrUnwrap(ns_ty.getNamespaceIndex(mod)) orelse continue;
try checked_namespaces.put(gpa, sub_ns, src_file == sub_usingnamespace_decl.getFileScope(mod));
}
}
{
var i: usize = 0;
while (i < candidates.items.len) {
if (candidates.items[i] == sema.owner_decl_index) {
_ = candidates.orderedRemove(i);
} else {
i += 1;
}
}
}
switch (candidates.items.len) {
0 => {},
1 => {
const decl_index = candidates.items[0];
return decl_index;
},
else => {
const msg = msg: {
const msg = try sema.errMsg(block, src, "ambiguous reference", .{});
errdefer msg.destroy(gpa);
for (candidates.items) |candidate_index| {
const candidate = mod.declPtr(candidate_index);
const src_loc = candidate.srcLoc(mod);
try mod.errNoteNonLazy(src_loc, msg, "declared here", .{});
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
},
}
} else if (namespace.decls.getKeyAdapted(ident_name, Module.DeclAdapter{ .zcu = mod })) |decl_index| {
return decl_index;
}
return null;
}
fn funcDeclSrc(sema: *Sema, func_inst: Air.Inst.Ref) !?*Decl {
const mod = sema.mod;
const func_val = (try sema.resolveValue(func_inst)) orelse return null;
if (func_val.isUndef(mod)) return null;
const owner_decl_index = switch (mod.intern_pool.indexToKey(func_val.toIntern())) {
.extern_func => |extern_func| extern_func.decl,
.func => |func| func.owner_decl,
.ptr => |ptr| switch (ptr.addr) {
.decl => |decl| mod.declPtr(decl).val.getFunction(mod).?.owner_decl,
else => return null,
},
else => return null,
};
return mod.declPtr(owner_decl_index);
}
pub fn analyzeSaveErrRetIndex(sema: *Sema, block: *Block) SemaError!Air.Inst.Ref {
const mod = sema.mod;
const gpa = sema.gpa;
if (block.is_comptime or block.is_typeof) {
const index_val = try mod.intValue_u64(Type.usize, sema.comptime_err_ret_trace.items.len);
return Air.internedToRef(index_val.toIntern());
}
if (!block.ownerModule().error_tracing) return .none;
const stack_trace_ty = sema.getBuiltinType("StackTrace") catch |err| switch (err) {
error.NeededSourceLocation, error.GenericPoison, error.ComptimeReturn, error.ComptimeBreak => unreachable,
else => |e| return e,
};
sema.resolveTypeFields(stack_trace_ty) catch |err| switch (err) {
error.NeededSourceLocation, error.GenericPoison, error.ComptimeReturn, error.ComptimeBreak => unreachable,
else => |e| return e,
};
const field_name = try mod.intern_pool.getOrPutString(gpa, "index");
const field_index = sema.structFieldIndex(block, stack_trace_ty, field_name, .unneeded) catch |err| switch (err) {
error.AnalysisFail, error.NeededSourceLocation => @panic("std.builtin.StackTrace is corrupt"),
error.GenericPoison, error.ComptimeReturn, error.ComptimeBreak => unreachable,
error.OutOfMemory => |e| return e,
};
return try block.addInst(.{
.tag = .save_err_return_trace_index,
.data = .{ .ty_pl = .{
.ty = Air.internedToRef(stack_trace_ty.toIntern()),
.payload = @intCast(field_index),
} },
});
}
/// Add instructions to block to "pop" the error return trace.
/// If `operand` is provided, only pops if operand is non-error.
fn popErrorReturnTrace(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
operand: Air.Inst.Ref,
saved_error_trace_index: Air.Inst.Ref,
) CompileError!void {
const mod = sema.mod;
const gpa = sema.gpa;
var is_non_error: ?bool = null;
var is_non_error_inst: Air.Inst.Ref = undefined;
if (operand != .none) {
is_non_error_inst = try sema.analyzeIsNonErr(block, src, operand);
if (try sema.resolveDefinedValue(block, src, is_non_error_inst)) |cond_val|
is_non_error = cond_val.toBool();
} else is_non_error = true; // no operand means pop unconditionally
if (is_non_error == true) {
// AstGen determined this result does not go to an error-handling expr (try/catch/return etc.), or
// the result is comptime-known to be a non-error. Either way, pop unconditionally.
const stack_trace_ty = try sema.getBuiltinType("StackTrace");
try sema.resolveTypeFields(stack_trace_ty);
const ptr_stack_trace_ty = try mod.singleMutPtrType(stack_trace_ty);
const err_return_trace = try block.addTy(.err_return_trace, ptr_stack_trace_ty);
const field_name = try mod.intern_pool.getOrPutString(gpa, "index");
const field_ptr = try sema.structFieldPtr(block, src, err_return_trace, field_name, src, stack_trace_ty, true);
try sema.storePtr2(block, src, field_ptr, src, saved_error_trace_index, src, .store);
} else if (is_non_error == null) {
// The result might be an error. If it is, we leave the error trace alone. If it isn't, we need
// to pop any error trace that may have been propagated from our arguments.
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).Struct.fields.len);
const cond_block_inst = try block.addInstAsIndex(.{
.tag = .block,
.data = .{
.ty_pl = .{
.ty = .void_type,
.payload = undefined, // updated below
},
},
});
var then_block = block.makeSubBlock();
defer then_block.instructions.deinit(gpa);
// If non-error, then pop the error return trace by restoring the index.
const stack_trace_ty = try sema.getBuiltinType("StackTrace");
try sema.resolveTypeFields(stack_trace_ty);
const ptr_stack_trace_ty = try mod.singleMutPtrType(stack_trace_ty);
const err_return_trace = try then_block.addTy(.err_return_trace, ptr_stack_trace_ty);
const field_name = try mod.intern_pool.getOrPutString(gpa, "index");
const field_ptr = try sema.structFieldPtr(&then_block, src, err_return_trace, field_name, src, stack_trace_ty, true);
try sema.storePtr2(&then_block, src, field_ptr, src, saved_error_trace_index, src, .store);
_ = try then_block.addBr(cond_block_inst, .void_value);
// Otherwise, do nothing
var else_block = block.makeSubBlock();
defer else_block.instructions.deinit(gpa);
_ = try else_block.addBr(cond_block_inst, .void_value);
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.CondBr).Struct.fields.len +
then_block.instructions.items.len + else_block.instructions.items.len +
@typeInfo(Air.Block).Struct.fields.len + 1); // +1 for the sole .cond_br instruction in the .block
const cond_br_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
try sema.air_instructions.append(gpa, .{ .tag = .cond_br, .data = .{ .pl_op = .{
.operand = is_non_error_inst,
.payload = sema.addExtraAssumeCapacity(Air.CondBr{
.then_body_len = @intCast(then_block.instructions.items.len),
.else_body_len = @intCast(else_block.instructions.items.len),
}),
} } });
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(then_block.instructions.items));
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(else_block.instructions.items));
sema.air_instructions.items(.data)[@intFromEnum(cond_block_inst)].ty_pl.payload = sema.addExtraAssumeCapacity(Air.Block{ .body_len = 1 });
sema.air_extra.appendAssumeCapacity(@intFromEnum(cond_br_inst));
}
}
fn zirCall(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
comptime kind: enum { direct, field },
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const callee_src: LazySrcLoc = .{ .node_offset_call_func = inst_data.src_node };
const call_src = inst_data.src();
const ExtraType = switch (kind) {
.direct => Zir.Inst.Call,
.field => Zir.Inst.FieldCall,
};
const extra = sema.code.extraData(ExtraType, inst_data.payload_index);
const args_len = extra.data.flags.args_len;
const modifier: std.builtin.CallModifier = @enumFromInt(extra.data.flags.packed_modifier);
const ensure_result_used = extra.data.flags.ensure_result_used;
const pop_error_return_trace = extra.data.flags.pop_error_return_trace;
const callee: ResolvedFieldCallee = switch (kind) {
.direct => .{ .direct = try sema.resolveInst(extra.data.callee) },
.field => blk: {
const object_ptr = try sema.resolveInst(extra.data.obj_ptr);
const field_name = try mod.intern_pool.getOrPutString(sema.gpa, sema.code.nullTerminatedString(extra.data.field_name_start));
const field_name_src: LazySrcLoc = .{ .node_offset_field_name = inst_data.src_node };
break :blk try sema.fieldCallBind(block, callee_src, object_ptr, field_name, field_name_src);
},
};
const func: Air.Inst.Ref = switch (callee) {
.direct => |func_inst| func_inst,
.method => |method| method.func_inst,
};
const callee_ty = sema.typeOf(func);
const total_args = args_len + @intFromBool(callee == .method);
const func_ty = try sema.checkCallArgumentCount(block, func, callee_src, callee_ty, total_args, callee == .method);
// The block index before the call, so we can potentially insert an error trace save here later.
const block_index: Air.Inst.Index = @enumFromInt(block.instructions.items.len);
// This will be set by `analyzeCall` to indicate whether any parameter was an error (making the
// error trace potentially dirty).
var input_is_error = false;
const args_info: CallArgsInfo = .{ .zir_call = .{
.bound_arg = switch (callee) {
.direct => .none,
.method => |method| method.arg0_inst,
},
.bound_arg_src = callee_src,
.call_inst = inst,
.call_node_offset = inst_data.src_node,
.num_args = args_len,
.args_body = @ptrCast(sema.code.extra[extra.end..]),
.any_arg_is_error = &input_is_error,
} };
// AstGen ensures that a call instruction is always preceded by a dbg_stmt instruction.
const call_dbg_node: Zir.Inst.Index = @enumFromInt(@intFromEnum(inst) - 1);
const call_inst = try sema.analyzeCall(block, func, func_ty, callee_src, call_src, modifier, ensure_result_used, args_info, call_dbg_node, .call);
if (sema.owner_func_index == .none or
!mod.intern_pool.funcAnalysis(sema.owner_func_index).calls_or_awaits_errorable_fn)
{
// No errorable fn actually called; we have no error return trace
input_is_error = false;
}
if (block.ownerModule().error_tracing and
!block.is_comptime and !block.is_typeof and (input_is_error or pop_error_return_trace))
{
const return_ty = sema.typeOf(call_inst);
if (modifier != .always_tail and return_ty.isNoReturn(mod))
return call_inst; // call to "fn (...) noreturn", don't pop
// TODO: we don't fix up the error trace for always_tail correctly, we should be doing it
// *before* the recursive call. This will be a bit tricky to do and probably requires
// moving this logic into analyzeCall. But that's probably a good idea anyway.
if (modifier == .always_tail)
return call_inst;
// If any input is an error-type, we might need to pop any trace it generated. Otherwise, we only
// need to clean-up our own trace if we were passed to a non-error-handling expression.
if (input_is_error or (pop_error_return_trace and return_ty.isError(mod))) {
const stack_trace_ty = try sema.getBuiltinType("StackTrace");
try sema.resolveTypeFields(stack_trace_ty);
const field_name = try mod.intern_pool.getOrPutString(sema.gpa, "index");
const field_index = try sema.structFieldIndex(block, stack_trace_ty, field_name, call_src);
// Insert a save instruction before the arg resolution + call instructions we just generated
const save_inst = try block.insertInst(block_index, .{
.tag = .save_err_return_trace_index,
.data = .{ .ty_pl = .{
.ty = Air.internedToRef(stack_trace_ty.toIntern()),
.payload = @intCast(field_index),
} },
});
// Pop the error return trace, testing the result for non-error if necessary
const operand = if (pop_error_return_trace or modifier == .always_tail) .none else call_inst;
try sema.popErrorReturnTrace(block, call_src, operand, save_inst);
}
return call_inst;
} else {
return call_inst;
}
}
fn checkCallArgumentCount(
sema: *Sema,
block: *Block,
func: Air.Inst.Ref,
func_src: LazySrcLoc,
callee_ty: Type,
total_args: usize,
member_fn: bool,
) !Type {
const mod = sema.mod;
const func_ty = func_ty: {
switch (callee_ty.zigTypeTag(mod)) {
.Fn => break :func_ty callee_ty,
.Pointer => {
const ptr_info = callee_ty.ptrInfo(mod);
if (ptr_info.flags.size == .One and Type.fromInterned(ptr_info.child).zigTypeTag(mod) == .Fn) {
break :func_ty Type.fromInterned(ptr_info.child);
}
},
.Optional => {
const opt_child = callee_ty.optionalChild(mod);
if (opt_child.zigTypeTag(mod) == .Fn or (opt_child.isSinglePointer(mod) and
opt_child.childType(mod).zigTypeTag(mod) == .Fn))
{
const msg = msg: {
const msg = try sema.errMsg(block, func_src, "cannot call optional type '{}'", .{
callee_ty.fmt(mod),
});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, func_src, msg, "consider using '.?', 'orelse' or 'if'", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
},
else => {},
}
return sema.fail(block, func_src, "type '{}' not a function", .{callee_ty.fmt(mod)});
};
const func_ty_info = mod.typeToFunc(func_ty).?;
const fn_params_len = func_ty_info.param_types.len;
const args_len = total_args - @intFromBool(member_fn);
if (func_ty_info.is_var_args) {
assert(callConvSupportsVarArgs(func_ty_info.cc));
if (total_args >= fn_params_len) return func_ty;
} else if (fn_params_len == total_args) {
return func_ty;
}
const maybe_decl = try sema.funcDeclSrc(func);
const member_str = if (member_fn) "member function " else "";
const variadic_str = if (func_ty_info.is_var_args) "at least " else "";
const msg = msg: {
const msg = try sema.errMsg(
block,
func_src,
"{s}expected {s}{d} argument(s), found {d}",
.{
member_str,
variadic_str,
fn_params_len - @intFromBool(member_fn),
args_len,
},
);
errdefer msg.destroy(sema.gpa);
if (maybe_decl) |fn_decl| try mod.errNoteNonLazy(fn_decl.srcLoc(mod), msg, "function declared here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
fn callBuiltin(
sema: *Sema,
block: *Block,
call_src: LazySrcLoc,
builtin_fn: Air.Inst.Ref,
modifier: std.builtin.CallModifier,
args: []const Air.Inst.Ref,
operation: CallOperation,
) !void {
const mod = sema.mod;
const callee_ty = sema.typeOf(builtin_fn);
const func_ty = func_ty: {
switch (callee_ty.zigTypeTag(mod)) {
.Fn => break :func_ty callee_ty,
.Pointer => {
const ptr_info = callee_ty.ptrInfo(mod);
if (ptr_info.flags.size == .One and Type.fromInterned(ptr_info.child).zigTypeTag(mod) == .Fn) {
break :func_ty Type.fromInterned(ptr_info.child);
}
},
else => {},
}
std.debug.panic("type '{}' is not a function calling builtin fn", .{callee_ty.fmt(mod)});
};
const func_ty_info = mod.typeToFunc(func_ty).?;
const fn_params_len = func_ty_info.param_types.len;
if (args.len != fn_params_len or (func_ty_info.is_var_args and args.len < fn_params_len)) {
std.debug.panic("parameter count mismatch calling builtin fn, expected {d}, found {d}", .{ fn_params_len, args.len });
}
_ = try sema.analyzeCall(
block,
builtin_fn,
func_ty,
call_src,
call_src,
modifier,
false,
.{ .resolved = .{ .src = call_src, .args = args } },
null,
operation,
);
}
const CallOperation = enum {
call,
@"@call",
@"@panic",
@"safety check",
@"error return",
};
const CallArgsInfo = union(enum) {
/// The full list of resolved (but uncoerced) arguments is known ahead of time.
resolved: struct {
src: LazySrcLoc,
args: []const Air.Inst.Ref,
},
/// The list of resolved (but uncoerced) arguments is known ahead of time, but
/// originated from a usage of the @call builtin at the given node offset.
call_builtin: struct {
call_node_offset: i32,
args: []const Air.Inst.Ref,
},
/// This call corresponds to a ZIR call instruction. The arguments have not yet been
/// resolved. They must be resolved by `analyzeCall` so that argument resolution and
/// generic instantiation may be interleaved. This is required for RLS to work on
/// generic parameters.
zir_call: struct {
/// This may be `none`, in which case it is ignored. Otherwise, it is the
/// already-resolved value of the first argument, from method call syntax.
bound_arg: Air.Inst.Ref,
/// The source location of `bound_arg` if it is not `null`. Otherwise `undefined`.
bound_arg_src: LazySrcLoc,
/// The ZIR call instruction. The parameter type is placed at this index while
/// analyzing arguments.
call_inst: Zir.Inst.Index,
/// The node offset of `call_inst`.
call_node_offset: i32,
/// The number of arguments to this call, not including `bound_arg`.
num_args: u32,
/// The ZIR corresponding to all function arguments (other than `bound_arg`, if it
/// is not `none`). Format is precisely the same as trailing data of ZIR `call`.
args_body: []const Zir.Inst.Index,
/// This bool will be set to true if any argument evaluated turns out to have an error set or error union type.
/// This is used by the caller to restore the error return trace when necessary.
any_arg_is_error: *bool,
},
fn count(cai: CallArgsInfo) usize {
return switch (cai) {
inline .resolved, .call_builtin => |resolved| resolved.args.len,
.zir_call => |zir_call| zir_call.num_args + @intFromBool(zir_call.bound_arg != .none),
};
}
fn argSrc(cai: CallArgsInfo, block: *Block, arg_index: usize) LazySrcLoc {
return switch (cai) {
.resolved => |resolved| resolved.src,
.call_builtin => |call_builtin| .{ .call_arg = .{
.decl = block.src_decl,
.call_node_offset = call_builtin.call_node_offset,
.arg_index = @intCast(arg_index),
} },
.zir_call => |zir_call| if (arg_index == 0 and zir_call.bound_arg != .none) {
return zir_call.bound_arg_src;
} else .{ .call_arg = .{
.decl = block.src_decl,
.call_node_offset = zir_call.call_node_offset,
.arg_index = @intCast(arg_index - @intFromBool(zir_call.bound_arg != .none)),
} },
};
}
/// Analyzes the arg at `arg_index` and coerces it to `param_ty`.
/// `param_ty` may be `generic_poison` or `var_args_param`.
/// `func_ty_info` may be the type before instantiation, even if a generic
/// instantiation has been partially completed.
fn analyzeArg(
cai: CallArgsInfo,
sema: *Sema,
block: *Block,
arg_index: usize,
param_ty: Type,
func_ty_info: InternPool.Key.FuncType,
func_inst: Air.Inst.Ref,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const param_count = func_ty_info.param_types.len;
switch (param_ty.toIntern()) {
.generic_poison_type, .var_args_param_type => {},
else => try sema.queueFullTypeResolution(param_ty),
}
const uncoerced_arg: Air.Inst.Ref = switch (cai) {
inline .resolved, .call_builtin => |resolved| resolved.args[arg_index],
.zir_call => |zir_call| arg_val: {
const has_bound_arg = zir_call.bound_arg != .none;
if (arg_index == 0 and has_bound_arg) {
break :arg_val zir_call.bound_arg;
}
const real_arg_idx = arg_index - @intFromBool(has_bound_arg);
const arg_body = if (real_arg_idx == 0) blk: {
const start = zir_call.num_args;
const end = @intFromEnum(zir_call.args_body[0]);
break :blk zir_call.args_body[start..end];
} else blk: {
const start = @intFromEnum(zir_call.args_body[real_arg_idx - 1]);
const end = @intFromEnum(zir_call.args_body[real_arg_idx]);
break :blk zir_call.args_body[start..end];
};
// Generate args to comptime params in comptime block
const parent_comptime = block.is_comptime;
defer block.is_comptime = parent_comptime;
// Note that we are indexing into parameters, not arguments, so use `arg_index` instead of `real_arg_idx`
if (arg_index < @min(param_count, 32) and func_ty_info.paramIsComptime(@intCast(arg_index))) {
block.is_comptime = true;
// TODO set comptime_reason
}
// Give the arg its result type
sema.inst_map.putAssumeCapacity(zir_call.call_inst, Air.internedToRef(param_ty.toIntern()));
// Resolve the arg!
const uncoerced_arg = try sema.resolveInlineBody(block, arg_body, zir_call.call_inst);
if (sema.typeOf(uncoerced_arg).zigTypeTag(mod) == .NoReturn) {
// This terminates resolution of arguments. The caller should
// propagate this.
return uncoerced_arg;
}
if (sema.typeOf(uncoerced_arg).isError(mod)) {
zir_call.any_arg_is_error.* = true;
}
break :arg_val uncoerced_arg;
},
};
switch (param_ty.toIntern()) {
.generic_poison_type => return uncoerced_arg,
.var_args_param_type => return sema.coerceVarArgParam(block, uncoerced_arg, cai.argSrc(block, arg_index)),
else => return sema.coerceExtra(
block,
param_ty,
uncoerced_arg,
cai.argSrc(block, arg_index),
.{ .param_src = .{
.func_inst = func_inst,
.param_i = @intCast(arg_index),
} },
) catch |err| switch (err) {
error.NotCoercible => unreachable,
else => |e| return e,
},
}
}
};
/// While performing an inline call, we need to switch between two Sema states a few times: the
/// state for the caller (with the callee's `code`, `fn_ret_ty`, etc), and the state for the callee.
/// These cannot be two separate Sema instances as they must share AIR.
/// Therefore, this struct acts as a helper to switch between the two.
/// This switching is required during argument evaluation, where function argument analysis must be
/// interleaved with resolving generic parameter types.
const InlineCallSema = struct {
sema: *Sema,
cur: enum {
caller,
callee,
},
other_code: Zir,
other_func_index: InternPool.Index,
other_fn_ret_ty: Type,
other_fn_ret_ty_ies: ?*InferredErrorSet,
other_inst_map: InstMap,
other_error_return_trace_index_on_fn_entry: Air.Inst.Ref,
other_generic_owner: InternPool.Index,
other_generic_call_src: LazySrcLoc,
other_generic_call_decl: InternPool.OptionalDeclIndex,
/// Sema should currently be set up for the caller (i.e. unchanged yet). This init will not
/// change that. The other parameters contain data for the callee Sema. The other modified
/// Sema fields are all initialized to default values for the callee.
/// Must call deinit on the result.
fn init(
sema: *Sema,
callee_code: Zir,
callee_func_index: InternPool.Index,
callee_error_return_trace_index_on_fn_entry: Air.Inst.Ref,
) InlineCallSema {
return .{
.sema = sema,
.cur = .caller,
.other_code = callee_code,
.other_func_index = callee_func_index,
.other_fn_ret_ty = Type.void,
.other_fn_ret_ty_ies = null,
.other_inst_map = .{},
.other_error_return_trace_index_on_fn_entry = callee_error_return_trace_index_on_fn_entry,
.other_generic_owner = .none,
.other_generic_call_src = .unneeded,
.other_generic_call_decl = .none,
};
}
/// Switch back to the caller Sema if necessary and free all temporary state of the callee Sema.
fn deinit(ics: *InlineCallSema) void {
switch (ics.cur) {
.caller => {},
.callee => ics.swap(),
}
// Callee Sema owns the inst_map memory
ics.other_inst_map.deinit(ics.sema.gpa);
ics.* = undefined;
}
/// Returns a Sema instance suitable for usage from the caller context.
fn caller(ics: *InlineCallSema) *Sema {
switch (ics.cur) {
.caller => {},
.callee => ics.swap(),
}
return ics.sema;
}
/// Returns a Sema instance suitable for usage from the callee context.
fn callee(ics: *InlineCallSema) *Sema {
switch (ics.cur) {
.caller => ics.swap(),
.callee => {},
}
return ics.sema;
}
/// Internal use only. Swaps to the other Sema state.
fn swap(ics: *InlineCallSema) void {
ics.cur = switch (ics.cur) {
.caller => .callee,
.callee => .caller,
};
// zig fmt: off
std.mem.swap(Zir, &ics.sema.code, &ics.other_code);
std.mem.swap(InternPool.Index, &ics.sema.func_index, &ics.other_func_index);
std.mem.swap(Type, &ics.sema.fn_ret_ty, &ics.other_fn_ret_ty);
std.mem.swap(?*InferredErrorSet, &ics.sema.fn_ret_ty_ies, &ics.other_fn_ret_ty_ies);
std.mem.swap(InstMap, &ics.sema.inst_map, &ics.other_inst_map);
std.mem.swap(InternPool.Index, &ics.sema.generic_owner, &ics.other_generic_owner);
std.mem.swap(LazySrcLoc, &ics.sema.generic_call_src, &ics.other_generic_call_src);
std.mem.swap(InternPool.OptionalDeclIndex, &ics.sema.generic_call_decl, &ics.other_generic_call_decl);
std.mem.swap(Air.Inst.Ref, &ics.sema.error_return_trace_index_on_fn_entry, &ics.other_error_return_trace_index_on_fn_entry);
// zig fmt: on
}
};
fn analyzeCall(
sema: *Sema,
block: *Block,
func: Air.Inst.Ref,
func_ty: Type,
func_src: LazySrcLoc,
call_src: LazySrcLoc,
modifier: std.builtin.CallModifier,
ensure_result_used: bool,
args_info: CallArgsInfo,
call_dbg_node: ?Zir.Inst.Index,
operation: CallOperation,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
const callee_ty = sema.typeOf(func);
const func_ty_info = mod.typeToFunc(func_ty).?;
const cc = func_ty_info.cc;
if (try sema.resolveValue(func)) |func_val|
if (func_val.isUndef(mod))
return sema.failWithUseOfUndef(block, call_src);
if (cc == .Naked) {
const maybe_decl = try sema.funcDeclSrc(func);
const msg = msg: {
const msg = try sema.errMsg(
block,
func_src,
"unable to call function with naked calling convention",
.{},
);
errdefer msg.destroy(sema.gpa);
if (maybe_decl) |fn_decl| try mod.errNoteNonLazy(fn_decl.srcLoc(mod), msg, "function declared here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
const call_tag: Air.Inst.Tag = switch (modifier) {
.auto,
.always_inline,
.compile_time,
.no_async,
=> Air.Inst.Tag.call,
.never_tail => Air.Inst.Tag.call_never_tail,
.never_inline => Air.Inst.Tag.call_never_inline,
.always_tail => Air.Inst.Tag.call_always_tail,
.async_kw => return sema.failWithUseOfAsync(block, call_src),
};
if (modifier == .never_inline and func_ty_info.cc == .Inline) {
return sema.fail(block, call_src, "'never_inline' call of inline function", .{});
}
if (modifier == .always_inline and func_ty_info.is_noinline) {
return sema.fail(block, call_src, "'always_inline' call of noinline function", .{});
}
const gpa = sema.gpa;
var is_generic_call = func_ty_info.is_generic;
var is_comptime_call = block.is_comptime or modifier == .compile_time;
var comptime_reason: ?*const Block.ComptimeReason = null;
if (!is_comptime_call) {
if (sema.typeRequiresComptime(Type.fromInterned(func_ty_info.return_type))) |ct| {
is_comptime_call = ct;
if (ct) {
comptime_reason = &.{ .comptime_ret_ty = .{
.block = block,
.func = func,
.func_src = func_src,
.return_ty = Type.fromInterned(func_ty_info.return_type),
} };
}
} else |err| switch (err) {
error.GenericPoison => is_generic_call = true,
else => |e| return e,
}
}
var is_inline_call = is_comptime_call or modifier == .always_inline or
func_ty_info.cc == .Inline;
if (sema.func_is_naked and !is_inline_call and !is_comptime_call) {
const msg = msg: {
const msg = try sema.errMsg(block, call_src, "runtime {s} not allowed in naked function", .{@tagName(operation)});
errdefer msg.destroy(sema.gpa);
switch (operation) {
.call, .@"@call", .@"@panic", .@"error return" => {},
.@"safety check" => try sema.errNote(block, call_src, msg, "use @setRuntimeSafety to disable runtime safety", .{}),
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
if (!is_inline_call and is_generic_call) {
if (sema.instantiateGenericCall(
block,
func,
func_src,
call_src,
ensure_result_used,
args_info,
call_tag,
call_dbg_node,
)) |some| {
return some;
} else |err| switch (err) {
error.GenericPoison => {
is_inline_call = true;
},
error.ComptimeReturn => {
is_inline_call = true;
is_comptime_call = true;
comptime_reason = &.{ .comptime_ret_ty = .{
.block = block,
.func = func,
.func_src = func_src,
.return_ty = Type.fromInterned(func_ty_info.return_type),
} };
},
else => |e| return e,
}
}
if (is_comptime_call and modifier == .never_inline) {
return sema.fail(block, call_src, "unable to perform 'never_inline' call at compile-time", .{});
}
const result: Air.Inst.Ref = if (is_inline_call) res: {
const func_val = try sema.resolveConstDefinedValue(block, func_src, func, .{
.needed_comptime_reason = "function being called at comptime must be comptime-known",
.block_comptime_reason = comptime_reason,
});
const module_fn_index = switch (mod.intern_pool.indexToKey(func_val.toIntern())) {
.extern_func => return sema.fail(block, call_src, "{s} call of extern function", .{
@as([]const u8, if (is_comptime_call) "comptime" else "inline"),
}),
.func => func_val.toIntern(),
.ptr => |ptr| switch (ptr.addr) {
.decl => |decl| blk: {
const func_val_ptr = mod.declPtr(decl).val.toIntern();
const intern_index = mod.intern_pool.indexToKey(func_val_ptr);
if (intern_index == .extern_func or (intern_index == .variable and intern_index.variable.is_extern))
return sema.fail(block, call_src, "{s} call of extern function pointer", .{
@as([]const u8, if (is_comptime_call) "comptime" else "inline"),
});
break :blk func_val_ptr;
},
else => {
assert(callee_ty.isPtrAtRuntime(mod));
return sema.fail(block, call_src, "{s} call of function pointer", .{
@as([]const u8, if (is_comptime_call) "comptime" else "inline"),
});
},
},
else => unreachable,
};
if (func_ty_info.is_var_args) {
return sema.fail(block, call_src, "{s} call of variadic function", .{
@as([]const u8, if (is_comptime_call) "comptime" else "inline"),
});
}
// Analyze the ZIR. The same ZIR gets analyzed into a runtime function
// or an inlined call depending on what union tag the `label` field is
// set to in the `Block`.
// This block instruction will be used to capture the return value from the
// inlined function.
const need_debug_scope = !is_comptime_call and !block.is_typeof and !block.ownerModule().strip;
const block_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
try sema.air_instructions.append(gpa, .{
.tag = if (need_debug_scope) .dbg_inline_block else .block,
.data = undefined,
});
// This one is shared among sub-blocks within the same callee, but not
// shared among the entire inline/comptime call stack.
var inlining: Block.Inlining = .{
.call_block = block,
.call_src = call_src,
.has_comptime_args = false,
.func = module_fn_index,
.comptime_result = undefined,
.merges = .{
.src_locs = .{},
.results = .{},
.br_list = .{},
.block_inst = block_inst,
},
};
const module_fn = mod.funcInfo(module_fn_index);
const fn_owner_decl = mod.declPtr(module_fn.owner_decl);
// We effectively want a child Sema here, but can't literally do that, because we need AIR
// to be shared. InlineCallSema is a wrapper which handles this for us. While `ics` is in
// scope, we should use its `caller`/`callee` methods rather than using `sema` directly
// whenever performing an operation where the difference matters.
var ics = InlineCallSema.init(
sema,
fn_owner_decl.getFileScope(mod).zir,
module_fn_index,
block.error_return_trace_index,
);
defer ics.deinit();
var child_block: Block = .{
.parent = null,
.sema = sema,
.src_decl = module_fn.owner_decl,
.namespace = fn_owner_decl.src_namespace,
.instructions = .{},
.label = null,
.inlining = &inlining,
.is_typeof = block.is_typeof,
.is_comptime = is_comptime_call,
.comptime_reason = comptime_reason,
.error_return_trace_index = block.error_return_trace_index,
.runtime_cond = block.runtime_cond,
.runtime_loop = block.runtime_loop,
.runtime_index = block.runtime_index,
};
const merges = &child_block.inlining.?.merges;
defer child_block.instructions.deinit(gpa);
defer merges.deinit(gpa);
try sema.emitBackwardBranch(block, call_src);
// Whether this call should be memoized, set to false if the call can
// mutate comptime state.
var should_memoize = true;
// If it's a comptime function call, we need to memoize it as long as no external
// comptime memory is mutated.
const memoized_arg_values = try sema.arena.alloc(InternPool.Index, func_ty_info.param_types.len);
const owner_info = mod.typeToFunc(fn_owner_decl.typeOf(mod)).?;
const new_param_types = try sema.arena.alloc(InternPool.Index, owner_info.param_types.len);
var new_fn_info: InternPool.GetFuncTypeKey = .{
.param_types = new_param_types,
.return_type = owner_info.return_type,
.noalias_bits = owner_info.noalias_bits,
.cc = if (owner_info.cc_is_generic) null else owner_info.cc,
.is_var_args = owner_info.is_var_args,
.is_noinline = owner_info.is_noinline,
.section_is_generic = owner_info.section_is_generic,
.addrspace_is_generic = owner_info.addrspace_is_generic,
.is_generic = owner_info.is_generic,
};
// This will have return instructions analyzed as break instructions to
// the block_inst above. Here we are performing "comptime/inline semantic analysis"
// for a function body, which means we must map the parameter ZIR instructions to
// the AIR instructions of the callsite. The callee could be a generic function
// which means its parameter type expressions must be resolved in order and used
// to successively coerce the arguments.
const fn_info = ics.callee().code.getFnInfo(module_fn.zir_body_inst.resolve(ip));
try ics.callee().inst_map.ensureSpaceForInstructions(gpa, fn_info.param_body);
var arg_i: u32 = 0;
for (fn_info.param_body) |inst| {
const opt_noreturn_ref = try analyzeInlineCallArg(
&ics,
block,
&child_block,
inst,
new_param_types,
&arg_i,
args_info,
is_comptime_call,
&should_memoize,
memoized_arg_values,
func_ty_info,
func,
);
if (opt_noreturn_ref) |ref| {
// Analyzing this argument gave a ref of a noreturn type. Terminate argument analysis here.
return ref;
}
}
// From here, we only really need to use the callee Sema. Make it the active one, then we
// can just use `sema` directly.
_ = ics.callee();
if (!inlining.has_comptime_args) {
if (module_fn.analysis(ip).state == .sema_failure)
return error.AnalysisFail;
var block_it = block;
while (block_it.inlining) |parent_inlining| {
if (!parent_inlining.has_comptime_args and parent_inlining.func == module_fn_index) {
const err_msg = try sema.errMsg(block, call_src, "inline call is recursive", .{});
return sema.failWithOwnedErrorMsg(null, err_msg);
}
block_it = parent_inlining.call_block;
}
}
// In case it is a generic function with an expression for the return type that depends
// on parameters, we must now do the same for the return type as we just did with
// each of the parameters, resolving the return type and providing it to the child
// `Sema` so that it can be used for the `ret_ptr` instruction.
const ret_ty_inst = if (fn_info.ret_ty_body.len != 0)
try sema.resolveInlineBody(&child_block, fn_info.ret_ty_body, module_fn.zir_body_inst.resolve(ip))
else
try sema.resolveInst(fn_info.ret_ty_ref);
const ret_ty_src: LazySrcLoc = .{ .node_offset_fn_type_ret_ty = 0 };
sema.fn_ret_ty = try sema.analyzeAsType(&child_block, ret_ty_src, ret_ty_inst);
if (module_fn.analysis(ip).inferred_error_set) {
// Create a fresh inferred error set type for inline/comptime calls.
const ies = try sema.arena.create(InferredErrorSet);
ies.* = .{ .func = .none };
sema.fn_ret_ty_ies = ies;
sema.fn_ret_ty = Type.fromInterned((try ip.get(gpa, .{ .error_union_type = .{
.error_set_type = .adhoc_inferred_error_set_type,
.payload_type = sema.fn_ret_ty.toIntern(),
} })));
}
// This `res2` is here instead of directly breaking from `res` due to a stage1
// bug generating invalid LLVM IR.
const res2: Air.Inst.Ref = res2: {
if (should_memoize and is_comptime_call) {
if (mod.intern_pool.getIfExists(.{ .memoized_call = .{
.func = module_fn_index,
.arg_values = memoized_arg_values,
.result = .none,
} })) |memoized_call_index| {
const memoized_call = mod.intern_pool.indexToKey(memoized_call_index).memoized_call;
break :res2 Air.internedToRef(memoized_call.result);
}
}
new_fn_info.return_type = sema.fn_ret_ty.toIntern();
if (!is_comptime_call and !block.is_typeof) {
const zir_tags = sema.code.instructions.items(.tag);
for (fn_info.param_body) |param| switch (zir_tags[@intFromEnum(param)]) {
.param, .param_comptime => {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(param)].pl_tok;
const extra = sema.code.extraData(Zir.Inst.Param, inst_data.payload_index);
const param_name = sema.code.nullTerminatedString(extra.data.name);
const inst = sema.inst_map.get(param).?;
try sema.addDbgVar(&child_block, inst, .dbg_var_val, param_name);
},
.param_anytype, .param_anytype_comptime => {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(param)].str_tok;
const param_name = inst_data.get(sema.code);
const inst = sema.inst_map.get(param).?;
try sema.addDbgVar(&child_block, inst, .dbg_var_val, param_name);
},
else => continue,
};
}
if (is_comptime_call and ensure_result_used) {
try sema.ensureResultUsed(block, sema.fn_ret_ty, call_src);
}
if (is_comptime_call or block.is_typeof) {
// Save the error trace as our first action in the function
// to match the behavior of runtime function calls.
const error_return_trace_index = try sema.analyzeSaveErrRetIndex(&child_block);
sema.error_return_trace_index_on_fn_entry = error_return_trace_index;
child_block.error_return_trace_index = error_return_trace_index;
}
const result = result: {
sema.analyzeFnBody(&child_block, fn_info.body) catch |err| switch (err) {
error.ComptimeReturn => break :result inlining.comptime_result,
else => |e| return e,
};
break :result try sema.resolveAnalyzedBlock(block, call_src, &child_block, merges, need_debug_scope);
};
if (is_comptime_call) {
const result_val = try sema.resolveConstValue(block, .unneeded, result, undefined);
const result_interned = result_val.toIntern();
// Transform ad-hoc inferred error set types into concrete error sets.
const result_transformed = try sema.resolveAdHocInferredErrorSet(block, call_src, result_interned);
// If the result can mutate comptime vars, we must not memoize it, as it contains
// a reference to `comptime_allocs` so is not stable across instances of `Sema`.
// TODO: check whether any external comptime memory was mutated by the
// comptime function call. If so, then do not memoize the call here.
if (should_memoize and !Value.fromInterned(result_interned).canMutateComptimeVarState(mod)) {
_ = try mod.intern(.{ .memoized_call = .{
.func = module_fn_index,
.arg_values = memoized_arg_values,
.result = result_transformed,
} });
}
break :res2 Air.internedToRef(result_transformed);
}
if (try sema.resolveValue(result)) |result_val| {
const result_transformed = try sema.resolveAdHocInferredErrorSet(block, call_src, result_val.toIntern());
break :res2 Air.internedToRef(result_transformed);
}
const new_ty = try sema.resolveAdHocInferredErrorSetTy(block, call_src, sema.typeOf(result).toIntern());
if (new_ty != .none) {
// TODO: mutate in place the previous instruction if possible
// rather than adding a bitcast instruction.
break :res2 try block.addBitCast(Type.fromInterned(new_ty), result);
}
break :res2 result;
};
break :res res2;
} else res: {
assert(!func_ty_info.is_generic);
const args = try sema.arena.alloc(Air.Inst.Ref, args_info.count());
for (args, 0..) |*arg_out, arg_idx| {
// Non-generic, so param types are already resolved
const param_ty = if (arg_idx < func_ty_info.param_types.len) ty: {
break :ty Type.fromInterned(func_ty_info.param_types.get(ip)[arg_idx]);
} else Type.fromInterned(InternPool.Index.var_args_param_type);
assert(!param_ty.isGenericPoison());
arg_out.* = try args_info.analyzeArg(sema, block, arg_idx, param_ty, func_ty_info, func);
try sema.validateRuntimeValue(block, args_info.argSrc(block, arg_idx), arg_out.*);
if (sema.typeOf(arg_out.*).zigTypeTag(mod) == .NoReturn) {
return arg_out.*;
}
}
if (call_dbg_node) |some| try sema.zirDbgStmt(block, some);
try sema.queueFullTypeResolution(Type.fromInterned(func_ty_info.return_type));
if (sema.owner_func_index != .none and Type.fromInterned(func_ty_info.return_type).isError(mod)) {
ip.funcAnalysis(sema.owner_func_index).calls_or_awaits_errorable_fn = true;
}
if (try sema.resolveValue(func)) |func_val| {
if (mod.intern_pool.isFuncBody(func_val.toIntern())) {
try mod.ensureFuncBodyAnalysisQueued(func_val.toIntern());
}
}
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Call).Struct.fields.len +
args.len);
const func_inst = try block.addInst(.{
.tag = call_tag,
.data = .{ .pl_op = .{
.operand = func,
.payload = sema.addExtraAssumeCapacity(Air.Call{
.args_len = @intCast(args.len),
}),
} },
});
sema.appendRefsAssumeCapacity(args);
if (call_tag == .call_always_tail) {
if (ensure_result_used) {
try sema.ensureResultUsed(block, sema.typeOf(func_inst), call_src);
}
return sema.handleTailCall(block, call_src, func_ty, func_inst);
}
if (block.wantSafety() and func_ty_info.return_type == .noreturn_type) skip_safety: {
// Function pointers and extern functions aren't guaranteed to
// actually be noreturn so we add a safety check for them.
if (try sema.resolveValue(func)) |func_val| {
switch (mod.intern_pool.indexToKey(func_val.toIntern())) {
.func => break :skip_safety,
.ptr => |ptr| switch (ptr.addr) {
.decl => |decl| if (!mod.declPtr(decl).isExtern(mod)) break :skip_safety,
else => {},
},
else => {},
}
}
try sema.safetyPanic(block, call_src, .noreturn_returned);
return .unreachable_value;
}
if (func_ty_info.return_type == .noreturn_type) {
_ = try block.addNoOp(.unreach);
return .unreachable_value;
}
break :res func_inst;
};
if (ensure_result_used) {
try sema.ensureResultUsed(block, sema.typeOf(result), call_src);
}
return result;
}
fn handleTailCall(sema: *Sema, block: *Block, call_src: LazySrcLoc, func_ty: Type, result: Air.Inst.Ref) !Air.Inst.Ref {
const mod = sema.mod;
const target = mod.getTarget();
const backend = mod.comp.getZigBackend();
if (!target_util.supportsTailCall(target, backend)) {
return sema.fail(block, call_src, "unable to perform tail call: compiler backend '{s}' does not support tail calls on target architecture '{s}' with the selected CPU feature flags", .{
@tagName(backend), @tagName(target.cpu.arch),
});
}
const func_decl = mod.funcOwnerDeclPtr(sema.owner_func_index);
if (!func_ty.eql(func_decl.typeOf(mod), mod)) {
return sema.fail(block, call_src, "unable to perform tail call: type of function being called '{}' does not match type of calling function '{}'", .{
func_ty.fmt(mod), func_decl.typeOf(mod).fmt(mod),
});
}
_ = try block.addUnOp(.ret, result);
return .unreachable_value;
}
/// Usually, returns null. If an argument was noreturn, returns that ref (which should become the call result).
fn analyzeInlineCallArg(
ics: *InlineCallSema,
arg_block: *Block,
param_block: *Block,
inst: Zir.Inst.Index,
new_param_types: []InternPool.Index,
arg_i: *u32,
args_info: CallArgsInfo,
is_comptime_call: bool,
should_memoize: *bool,
memoized_arg_values: []InternPool.Index,
func_ty_info: InternPool.Key.FuncType,
func_inst: Air.Inst.Ref,
) !?Air.Inst.Ref {
const mod = ics.sema.mod;
const ip = &mod.intern_pool;
const zir_tags = ics.callee().code.instructions.items(.tag);
switch (zir_tags[@intFromEnum(inst)]) {
.param_comptime, .param_anytype_comptime => param_block.inlining.?.has_comptime_args = true,
else => {},
}
switch (zir_tags[@intFromEnum(inst)]) {
.param, .param_comptime => {
// Evaluate the parameter type expression now that previous ones have
// been mapped, and coerce the corresponding argument to it.
const pl_tok = ics.callee().code.instructions.items(.data)[@intFromEnum(inst)].pl_tok;
const param_src = pl_tok.src();
const extra = ics.callee().code.extraData(Zir.Inst.Param, pl_tok.payload_index);
const param_body = ics.callee().code.bodySlice(extra.end, extra.data.body_len);
const param_ty = param_ty: {
const raw_param_ty = func_ty_info.param_types.get(ip)[arg_i.*];
if (raw_param_ty != .generic_poison_type) break :param_ty raw_param_ty;
const param_ty_inst = try ics.callee().resolveInlineBody(param_block, param_body, inst);
const param_ty = try ics.callee().analyzeAsType(param_block, param_src, param_ty_inst);
break :param_ty param_ty.toIntern();
};
new_param_types[arg_i.*] = param_ty;
const casted_arg = try args_info.analyzeArg(ics.caller(), arg_block, arg_i.*, Type.fromInterned(param_ty), func_ty_info, func_inst);
if (ics.caller().typeOf(casted_arg).zigTypeTag(mod) == .NoReturn) {
return casted_arg;
}
const arg_src = args_info.argSrc(arg_block, arg_i.*);
if (try ics.callee().typeRequiresComptime(Type.fromInterned(param_ty))) {
_ = try ics.caller().resolveConstValue(arg_block, arg_src, casted_arg, .{
.needed_comptime_reason = "argument to parameter with comptime-only type must be comptime-known",
.block_comptime_reason = param_block.comptime_reason,
});
} else if (!is_comptime_call and zir_tags[@intFromEnum(inst)] == .param_comptime) {
_ = try ics.caller().resolveConstValue(arg_block, arg_src, casted_arg, .{
.needed_comptime_reason = "parameter is comptime",
});
}
if (is_comptime_call) {
ics.callee().inst_map.putAssumeCapacityNoClobber(inst, casted_arg);
const arg_val = try ics.caller().resolveConstValue(arg_block, arg_src, casted_arg, .{
.needed_comptime_reason = "argument to function being called at comptime must be comptime-known",
.block_comptime_reason = param_block.comptime_reason,
});
switch (arg_val.toIntern()) {
.generic_poison, .generic_poison_type => {
// This function is currently evaluated as part of an as-of-yet unresolvable
// parameter or return type.
return error.GenericPoison;
},
else => {},
}
// Needed so that lazy values do not trigger
// assertion due to type not being resolved
// when the hash function is called.
const resolved_arg_val = try ics.caller().resolveLazyValue(arg_val);
should_memoize.* = should_memoize.* and !resolved_arg_val.canMutateComptimeVarState(mod);
memoized_arg_values[arg_i.*] = resolved_arg_val.toIntern();
} else {
ics.callee().inst_map.putAssumeCapacityNoClobber(inst, casted_arg);
}
if (try ics.caller().resolveValue(casted_arg)) |_| {
param_block.inlining.?.has_comptime_args = true;
}
arg_i.* += 1;
},
.param_anytype, .param_anytype_comptime => {
// No coercion needed.
const uncasted_arg = try args_info.analyzeArg(ics.caller(), arg_block, arg_i.*, Type.generic_poison, func_ty_info, func_inst);
if (ics.caller().typeOf(uncasted_arg).zigTypeTag(mod) == .NoReturn) {
return uncasted_arg;
}
const arg_src = args_info.argSrc(arg_block, arg_i.*);
new_param_types[arg_i.*] = ics.caller().typeOf(uncasted_arg).toIntern();
if (is_comptime_call) {
ics.callee().inst_map.putAssumeCapacityNoClobber(inst, uncasted_arg);
const arg_val = try ics.caller().resolveConstValue(arg_block, arg_src, uncasted_arg, .{
.needed_comptime_reason = "argument to function being called at comptime must be comptime-known",
.block_comptime_reason = param_block.comptime_reason,
});
switch (arg_val.toIntern()) {
.generic_poison, .generic_poison_type => {
// This function is currently evaluated as part of an as-of-yet unresolvable
// parameter or return type.
return error.GenericPoison;
},
else => {},
}
// Needed so that lazy values do not trigger
// assertion due to type not being resolved
// when the hash function is called.
const resolved_arg_val = try ics.caller().resolveLazyValue(arg_val);
should_memoize.* = should_memoize.* and !resolved_arg_val.canMutateComptimeVarState(mod);
memoized_arg_values[arg_i.*] = resolved_arg_val.toIntern();
} else {
if (zir_tags[@intFromEnum(inst)] == .param_anytype_comptime) {
_ = try ics.caller().resolveConstValue(arg_block, arg_src, uncasted_arg, .{
.needed_comptime_reason = "parameter is comptime",
});
}
ics.callee().inst_map.putAssumeCapacityNoClobber(inst, uncasted_arg);
}
if (try ics.caller().resolveValue(uncasted_arg)) |_| {
param_block.inlining.?.has_comptime_args = true;
}
arg_i.* += 1;
},
else => {},
}
return null;
}
fn instantiateGenericCall(
sema: *Sema,
block: *Block,
func: Air.Inst.Ref,
func_src: LazySrcLoc,
call_src: LazySrcLoc,
ensure_result_used: bool,
args_info: CallArgsInfo,
call_tag: Air.Inst.Tag,
call_dbg_node: ?Zir.Inst.Index,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const func_val = try sema.resolveConstDefinedValue(block, func_src, func, .{
.needed_comptime_reason = "generic function being called must be comptime-known",
});
const generic_owner = switch (mod.intern_pool.indexToKey(func_val.toIntern())) {
.func => func_val.toIntern(),
.ptr => |ptr| mod.declPtr(ptr.addr.decl).val.toIntern(),
else => unreachable,
};
const generic_owner_func = mod.intern_pool.indexToKey(generic_owner).func;
const generic_owner_ty_info = mod.typeToFunc(Type.fromInterned(generic_owner_func.ty)).?;
try sema.declareDependency(.{ .src_hash = generic_owner_func.zir_body_inst });
// Even though there may already be a generic instantiation corresponding
// to this callsite, we must evaluate the expressions of the generic
// function signature with the values of the callsite plugged in.
// Importantly, this may include type coercions that determine whether the
// instantiation is a match of a previous instantiation.
// The actual monomorphization happens via adding `func_instance` to
// `InternPool`.
const fn_owner_decl = mod.declPtr(generic_owner_func.owner_decl);
const namespace_index = fn_owner_decl.src_namespace;
const namespace = mod.namespacePtr(namespace_index);
const fn_zir = namespace.file_scope.zir;
const fn_info = fn_zir.getFnInfo(generic_owner_func.zir_body_inst.resolve(ip));
const comptime_args = try sema.arena.alloc(InternPool.Index, args_info.count());
@memset(comptime_args, .none);
// We may overestimate the number of runtime args, but this will definitely be sufficient.
const max_runtime_args = args_info.count() - @popCount(generic_owner_ty_info.comptime_bits);
var runtime_args = try std.ArrayListUnmanaged(Air.Inst.Ref).initCapacity(sema.arena, max_runtime_args);
// Re-run the block that creates the function, with the comptime parameters
// pre-populated inside `inst_map`. This causes `param_comptime` and
// `param_anytype_comptime` ZIR instructions to be ignored, resulting in a
// new, monomorphized function, with the comptime parameters elided.
var child_sema: Sema = .{
.mod = mod,
.gpa = gpa,
.arena = sema.arena,
.code = fn_zir,
// We pass the generic callsite's owner decl here because whatever `Decl`
// dependencies are chased at this point should be attached to the
// callsite, not the `Decl` associated with the `func_instance`.
.owner_decl = sema.owner_decl,
.owner_decl_index = sema.owner_decl_index,
.func_index = sema.owner_func_index,
// This may not be known yet, since the calling convention could be generic, but there
// should be no illegal instructions encountered while creating the function anyway.
.func_is_naked = false,
.fn_ret_ty = Type.void,
.fn_ret_ty_ies = null,
.owner_func_index = .none,
.comptime_args = comptime_args,
.generic_owner = generic_owner,
.generic_call_src = call_src,
.generic_call_decl = block.src_decl.toOptional(),
.branch_quota = sema.branch_quota,
.branch_count = sema.branch_count,
.comptime_err_ret_trace = sema.comptime_err_ret_trace,
};
defer child_sema.deinit();
var child_block: Block = .{
.parent = null,
.sema = &child_sema,
.src_decl = generic_owner_func.owner_decl,
.namespace = namespace_index,
.instructions = .{},
.inlining = null,
.is_comptime = true,
};
defer child_block.instructions.deinit(gpa);
try child_sema.inst_map.ensureSpaceForInstructions(gpa, fn_info.param_body);
for (fn_info.param_body[0..args_info.count()], 0..) |param_inst, arg_index| {
const param_tag = fn_zir.instructions.items(.tag)[@intFromEnum(param_inst)];
const param_ty = switch (generic_owner_ty_info.param_types.get(ip)[arg_index]) {
else => |ty| Type.fromInterned(ty), // parameter is not generic, so type is already resolved
.generic_poison_type => param_ty: {
// We have every parameter before this one, so can resolve this parameter's type now.
// However, first check the param type, since it may be anytype.
switch (param_tag) {
.param_anytype, .param_anytype_comptime => {
// The parameter doesn't have a type.
break :param_ty Type.generic_poison;
},
.param, .param_comptime => {
// We now know every prior parameter, so can resolve this
// parameter's type. The child sema has these types.
const param_data = fn_zir.instructions.items(.data)[@intFromEnum(param_inst)].pl_tok;
const param_extra = fn_zir.extraData(Zir.Inst.Param, param_data.payload_index);
const param_ty_body = fn_zir.bodySlice(param_extra.end, param_extra.data.body_len);
// Make sure any nested instructions don't clobber our work.
const prev_params = child_block.params;
const prev_no_partial_func_ty = child_sema.no_partial_func_ty;
const prev_generic_owner = child_sema.generic_owner;
const prev_generic_call_src = child_sema.generic_call_src;
const prev_generic_call_decl = child_sema.generic_call_decl;
child_block.params = .{};
child_sema.no_partial_func_ty = true;
child_sema.generic_owner = .none;
child_sema.generic_call_src = .unneeded;
child_sema.generic_call_decl = .none;
defer {
child_block.params = prev_params;
child_sema.no_partial_func_ty = prev_no_partial_func_ty;
child_sema.generic_owner = prev_generic_owner;
child_sema.generic_call_src = prev_generic_call_src;
child_sema.generic_call_decl = prev_generic_call_decl;
}
const param_ty_inst = try child_sema.resolveInlineBody(&child_block, param_ty_body, param_inst);
break :param_ty try child_sema.analyzeAsType(&child_block, param_data.src(), param_ty_inst);
},
else => unreachable,
}
},
};
const arg_ref = try args_info.analyzeArg(sema, block, arg_index, param_ty, generic_owner_ty_info, func);
try sema.validateRuntimeValue(block, args_info.argSrc(block, arg_index), arg_ref);
const arg_ty = sema.typeOf(arg_ref);
if (arg_ty.zigTypeTag(mod) == .NoReturn) {
// This terminates argument analysis.
return arg_ref;
}
const arg_is_comptime = switch (param_tag) {
.param_comptime, .param_anytype_comptime => true,
.param, .param_anytype => try sema.typeRequiresComptime(arg_ty),
else => unreachable,
};
if (arg_is_comptime) {
if (try sema.resolveValue(arg_ref)) |arg_val| {
comptime_args[arg_index] = arg_val.toIntern();
child_sema.inst_map.putAssumeCapacityNoClobber(
param_inst,
Air.internedToRef(arg_val.toIntern()),
);
} else switch (param_tag) {
.param_comptime,
.param_anytype_comptime,
=> return sema.failWithOwnedErrorMsg(block, msg: {
const arg_src = args_info.argSrc(block, arg_index);
const msg = try sema.errMsg(block, arg_src, "runtime-known argument passed to comptime parameter", .{});
errdefer msg.destroy(sema.gpa);
const param_src = switch (param_tag) {
.param_comptime => fn_zir.instructions.items(.data)[@intFromEnum(param_inst)].pl_tok.src(),
.param_anytype_comptime => fn_zir.instructions.items(.data)[@intFromEnum(param_inst)].str_tok.src(),
else => unreachable,
};
try child_sema.errNote(&child_block, param_src, msg, "declared comptime here", .{});
break :msg msg;
}),
.param,
.param_anytype,
=> return sema.failWithOwnedErrorMsg(block, msg: {
const arg_src = args_info.argSrc(block, arg_index);
const msg = try sema.errMsg(block, arg_src, "runtime-known argument passed to parameter of comptime-only type", .{});
errdefer msg.destroy(sema.gpa);
const param_src = switch (param_tag) {
.param => fn_zir.instructions.items(.data)[@intFromEnum(param_inst)].pl_tok.src(),
.param_anytype => fn_zir.instructions.items(.data)[@intFromEnum(param_inst)].str_tok.src(),
else => unreachable,
};
try child_sema.errNote(&child_block, param_src, msg, "declared here", .{});
const src_decl = mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsComptime(msg, src_decl.toSrcLoc(arg_src, mod), arg_ty);
break :msg msg;
}),
else => unreachable,
}
} else {
// The parameter is runtime-known.
try sema.queueFullTypeResolution(arg_ty);
child_sema.inst_map.putAssumeCapacityNoClobber(param_inst, try child_block.addInst(.{
.tag = .arg,
.data = .{ .arg = .{
.ty = Air.internedToRef(arg_ty.toIntern()),
.src_index = @intCast(arg_index),
} },
}));
const param_name: Zir.NullTerminatedString = switch (param_tag) {
.param_anytype => fn_zir.instructions.items(.data)[@intFromEnum(param_inst)].str_tok.start,
.param => name: {
const inst_data = fn_zir.instructions.items(.data)[@intFromEnum(param_inst)].pl_tok;
const extra = fn_zir.extraData(Zir.Inst.Param, inst_data.payload_index);
break :name extra.data.name;
},
else => unreachable,
};
try child_block.params.append(sema.arena, .{
.ty = arg_ty.toIntern(), // This is the type after coercion
.is_comptime = false, // We're adding only runtime args to the instantiation
.name = param_name,
});
runtime_args.appendAssumeCapacity(arg_ref);
}
}
// We've already handled parameters, so don't resolve the whole body. Instead, just
// do the instructions after the params (i.e. the func itself).
const new_func_inst = try child_sema.resolveInlineBody(&child_block, fn_info.param_body[args_info.count()..], fn_info.param_body_inst);
const callee_index = (child_sema.resolveConstDefinedValue(&child_block, .unneeded, new_func_inst, undefined) catch unreachable).toIntern();
const callee = mod.funcInfo(callee_index);
callee.branchQuota(ip).* = @max(callee.branchQuota(ip).*, sema.branch_quota);
try sema.addReferencedBy(block, call_src, callee.owner_decl);
// Make a runtime call to the new function, making sure to omit the comptime args.
const func_ty = Type.fromInterned(callee.ty);
const func_ty_info = mod.typeToFunc(func_ty).?;
// If the call evaluated to a return type that requires comptime, never mind
// our generic instantiation. Instead we need to perform a comptime call.
if (try sema.typeRequiresComptime(Type.fromInterned(func_ty_info.return_type))) {
return error.ComptimeReturn;
}
// Similarly, if the call evaluated to a generic type we need to instead
// call it inline.
if (func_ty_info.is_generic or func_ty_info.cc == .Inline) {
return error.GenericPoison;
}
try sema.queueFullTypeResolution(Type.fromInterned(func_ty_info.return_type));
if (call_dbg_node) |some| try sema.zirDbgStmt(block, some);
if (sema.owner_func_index != .none and
Type.fromInterned(func_ty_info.return_type).isError(mod))
{
ip.funcAnalysis(sema.owner_func_index).calls_or_awaits_errorable_fn = true;
}
try mod.ensureFuncBodyAnalysisQueued(callee_index);
try sema.air_extra.ensureUnusedCapacity(sema.gpa, @typeInfo(Air.Call).Struct.fields.len + runtime_args.items.len);
const result = try block.addInst(.{
.tag = call_tag,
.data = .{ .pl_op = .{
.operand = Air.internedToRef(callee_index),
.payload = sema.addExtraAssumeCapacity(Air.Call{
.args_len = @intCast(runtime_args.items.len),
}),
} },
});
sema.appendRefsAssumeCapacity(runtime_args.items);
if (ensure_result_used) {
try sema.ensureResultUsed(block, sema.typeOf(result), call_src);
}
if (call_tag == .call_always_tail) {
return sema.handleTailCall(block, call_src, func_ty, result);
}
if (func_ty.fnReturnType(mod).isNoReturn(mod)) {
_ = try block.addNoOp(.unreach);
return .unreachable_value;
}
return result;
}
fn resolveTupleLazyValues(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) CompileError!void {
const mod = sema.mod;
const ip = &mod.intern_pool;
const tuple = switch (ip.indexToKey(ty.toIntern())) {
.anon_struct_type => |tuple| tuple,
else => return,
};
for (tuple.types.get(ip), tuple.values.get(ip)) |field_ty, field_val| {
try sema.resolveTupleLazyValues(block, src, Type.fromInterned(field_ty));
if (field_val == .none) continue;
// TODO: mutate in intern pool
_ = try sema.resolveLazyValue(Value.fromInterned(field_val));
}
}
fn zirIntType(sema: *Sema, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const int_type = sema.code.instructions.items(.data)[@intFromEnum(inst)].int_type;
const ty = try mod.intType(int_type.signedness, int_type.bit_count);
return Air.internedToRef(ty.toIntern());
}
fn zirOptionalType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const operand_src: LazySrcLoc = .{ .node_offset_un_op = inst_data.src_node };
const child_type = try sema.resolveType(block, operand_src, inst_data.operand);
if (child_type.zigTypeTag(mod) == .Opaque) {
return sema.fail(block, operand_src, "opaque type '{}' cannot be optional", .{child_type.fmt(mod)});
} else if (child_type.zigTypeTag(mod) == .Null) {
return sema.fail(block, operand_src, "type '{}' cannot be optional", .{child_type.fmt(mod)});
}
const opt_type = try mod.optionalType(child_type.toIntern());
return Air.internedToRef(opt_type.toIntern());
}
fn zirArrayInitElemType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const bin = sema.code.instructions.items(.data)[@intFromEnum(inst)].bin;
const maybe_wrapped_indexable_ty = sema.resolveType(block, .unneeded, bin.lhs) catch |err| switch (err) {
// Since this is a ZIR instruction that returns a type, encountering
// generic poison should not result in a failed compilation, but the
// generic poison type. This prevents unnecessary failures when
// constructing types at compile-time.
error.GenericPoison => return .generic_poison_type,
else => |e| return e,
};
const indexable_ty = maybe_wrapped_indexable_ty.optEuBaseType(mod);
try sema.resolveTypeFields(indexable_ty);
assert(indexable_ty.isIndexable(mod)); // validated by a previous instruction
if (indexable_ty.zigTypeTag(mod) == .Struct) {
const elem_type = indexable_ty.structFieldType(@intFromEnum(bin.rhs), mod);
return Air.internedToRef(elem_type.toIntern());
} else {
const elem_type = indexable_ty.elemType2(mod);
return Air.internedToRef(elem_type.toIntern());
}
}
fn zirElemType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const un_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const maybe_wrapped_ptr_ty = sema.resolveType(block, .unneeded, un_node.operand) catch |err| switch (err) {
error.GenericPoison => return .generic_poison_type,
else => |e| return e,
};
const ptr_ty = maybe_wrapped_ptr_ty.optEuBaseType(mod);
assert(ptr_ty.zigTypeTag(mod) == .Pointer); // validated by a previous instruction
const elem_ty = ptr_ty.childType(mod);
if (elem_ty.toIntern() == .anyopaque_type) {
// The pointer's actual child type is effectively unknown, so it makes
// sense to represent it with a generic poison.
return .generic_poison_type;
}
return Air.internedToRef(ptr_ty.childType(mod).toIntern());
}
fn zirIndexablePtrElemType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const un_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = un_node.src();
const ptr_ty = sema.resolveType(block, src, un_node.operand) catch |err| switch (err) {
error.GenericPoison => return .generic_poison_type,
else => |e| return e,
};
try sema.checkMemOperand(block, src, ptr_ty);
const elem_ty = switch (ptr_ty.ptrSize(mod)) {
.Slice, .Many, .C => ptr_ty.childType(mod),
.One => ptr_ty.childType(mod).childType(mod),
};
return Air.internedToRef(elem_ty.toIntern());
}
fn zirVectorElemType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const un_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const vec_ty = sema.resolveType(block, .unneeded, un_node.operand) catch |err| switch (err) {
// Since this is a ZIR instruction that returns a type, encountering
// generic poison should not result in a failed compilation, but the
// generic poison type. This prevents unnecessary failures when
// constructing types at compile-time.
error.GenericPoison => return .generic_poison_type,
else => |e| return e,
};
if (!vec_ty.isVector(mod)) {
return sema.fail(block, un_node.src(), "expected vector type, found '{}'", .{vec_ty.fmt(mod)});
}
return Air.internedToRef(vec_ty.childType(mod).toIntern());
}
fn zirVectorType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const len_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const elem_type_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const len: u32 = @intCast(try sema.resolveInt(block, len_src, extra.lhs, Type.u32, .{
.needed_comptime_reason = "vector length must be comptime-known",
}));
const elem_type = try sema.resolveType(block, elem_type_src, extra.rhs);
try sema.checkVectorElemType(block, elem_type_src, elem_type);
const vector_type = try mod.vectorType(.{
.len = len,
.child = elem_type.toIntern(),
});
return Air.internedToRef(vector_type.toIntern());
}
fn zirArrayType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const len_src: LazySrcLoc = .{ .node_offset_array_type_len = inst_data.src_node };
const elem_src: LazySrcLoc = .{ .node_offset_array_type_elem = inst_data.src_node };
const len = try sema.resolveInt(block, len_src, extra.lhs, Type.usize, .{
.needed_comptime_reason = "array length must be comptime-known",
});
const elem_type = try sema.resolveType(block, elem_src, extra.rhs);
try sema.validateArrayElemType(block, elem_type, elem_src);
const array_ty = try sema.mod.arrayType(.{
.len = len,
.child = elem_type.toIntern(),
});
return Air.internedToRef(array_ty.toIntern());
}
fn zirArrayTypeSentinel(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.ArrayTypeSentinel, inst_data.payload_index).data;
const len_src: LazySrcLoc = .{ .node_offset_array_type_len = inst_data.src_node };
const sentinel_src: LazySrcLoc = .{ .node_offset_array_type_sentinel = inst_data.src_node };
const elem_src: LazySrcLoc = .{ .node_offset_array_type_elem = inst_data.src_node };
const len = try sema.resolveInt(block, len_src, extra.len, Type.usize, .{
.needed_comptime_reason = "array length must be comptime-known",
});
const elem_type = try sema.resolveType(block, elem_src, extra.elem_type);
try sema.validateArrayElemType(block, elem_type, elem_src);
const uncasted_sentinel = try sema.resolveInst(extra.sentinel);
const sentinel = try sema.coerce(block, elem_type, uncasted_sentinel, sentinel_src);
const sentinel_val = try sema.resolveConstDefinedValue(block, sentinel_src, sentinel, .{
.needed_comptime_reason = "array sentinel value must be comptime-known",
});
const array_ty = try sema.mod.arrayType(.{
.len = len,
.sentinel = sentinel_val.toIntern(),
.child = elem_type.toIntern(),
});
return Air.internedToRef(array_ty.toIntern());
}
fn validateArrayElemType(sema: *Sema, block: *Block, elem_type: Type, elem_src: LazySrcLoc) !void {
const mod = sema.mod;
if (elem_type.zigTypeTag(mod) == .Opaque) {
return sema.fail(block, elem_src, "array of opaque type '{}' not allowed", .{elem_type.fmt(mod)});
} else if (elem_type.zigTypeTag(mod) == .NoReturn) {
return sema.fail(block, elem_src, "array of 'noreturn' not allowed", .{});
}
}
fn zirAnyframeType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
if (true) {
return sema.failWithUseOfAsync(block, inst_data.src());
}
const mod = sema.mod;
const operand_src: LazySrcLoc = .{ .node_offset_anyframe_type = inst_data.src_node };
const return_type = try sema.resolveType(block, operand_src, inst_data.operand);
const anyframe_type = try mod.anyframeType(return_type);
return Air.internedToRef(anyframe_type.toIntern());
}
fn zirErrorUnionType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const error_set = try sema.resolveType(block, lhs_src, extra.lhs);
const payload = try sema.resolveType(block, rhs_src, extra.rhs);
if (error_set.zigTypeTag(mod) != .ErrorSet) {
return sema.fail(block, lhs_src, "expected error set type, found '{}'", .{
error_set.fmt(mod),
});
}
try sema.validateErrorUnionPayloadType(block, payload, rhs_src);
const err_union_ty = try mod.errorUnionType(error_set, payload);
return Air.internedToRef(err_union_ty.toIntern());
}
fn validateErrorUnionPayloadType(sema: *Sema, block: *Block, payload_ty: Type, payload_src: LazySrcLoc) !void {
const mod = sema.mod;
if (payload_ty.zigTypeTag(mod) == .Opaque) {
return sema.fail(block, payload_src, "error union with payload of opaque type '{}' not allowed", .{
payload_ty.fmt(mod),
});
} else if (payload_ty.zigTypeTag(mod) == .ErrorSet) {
return sema.fail(block, payload_src, "error union with payload of error set type '{}' not allowed", .{
payload_ty.fmt(mod),
});
}
}
fn zirErrorValue(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
_ = block;
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].str_tok;
const name = try mod.intern_pool.getOrPutString(sema.gpa, inst_data.get(sema.code));
_ = try mod.getErrorValue(name);
// Create an error set type with only this error value, and return the value.
const error_set_type = try mod.singleErrorSetType(name);
return Air.internedToRef((try mod.intern(.{ .err = .{
.ty = error_set_type.toIntern(),
.name = name,
} })));
}
fn zirIntFromError(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const ip = &mod.intern_pool;
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
const src = LazySrcLoc.nodeOffset(extra.node);
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const uncasted_operand = try sema.resolveInst(extra.operand);
const operand = try sema.coerce(block, Type.anyerror, uncasted_operand, operand_src);
const err_int_ty = try mod.errorIntType();
if (try sema.resolveValue(operand)) |val| {
if (val.isUndef(mod)) {
return mod.undefRef(err_int_ty);
}
const err_name = ip.indexToKey(val.toIntern()).err.name;
return Air.internedToRef((try mod.intValue(
err_int_ty,
try mod.getErrorValue(err_name),
)).toIntern());
}
const op_ty = sema.typeOf(uncasted_operand);
switch (try sema.resolveInferredErrorSetTy(block, src, op_ty.toIntern())) {
.anyerror_type => {},
else => |err_set_ty_index| {
const names = ip.indexToKey(err_set_ty_index).error_set_type.names;
switch (names.len) {
0 => return Air.internedToRef((try mod.intValue(err_int_ty, 0)).toIntern()),
1 => {
const int: Module.ErrorInt = @intCast(mod.global_error_set.getIndex(names.get(ip)[0]).?);
return mod.intRef(err_int_ty, int);
},
else => {},
}
},
}
try sema.requireRuntimeBlock(block, src, operand_src);
return block.addBitCast(err_int_ty, operand);
}
fn zirErrorFromInt(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
const src = LazySrcLoc.nodeOffset(extra.node);
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const uncasted_operand = try sema.resolveInst(extra.operand);
const err_int_ty = try mod.errorIntType();
const operand = try sema.coerce(block, err_int_ty, uncasted_operand, operand_src);
if (try sema.resolveDefinedValue(block, operand_src, operand)) |value| {
const int = try sema.usizeCast(block, operand_src, try value.toUnsignedIntAdvanced(sema));
if (int > mod.global_error_set.count() or int == 0)
return sema.fail(block, operand_src, "integer value '{d}' represents no error", .{int});
return Air.internedToRef((try mod.intern(.{ .err = .{
.ty = .anyerror_type,
.name = mod.global_error_set.keys()[int],
} })));
}
try sema.requireRuntimeBlock(block, src, operand_src);
if (block.wantSafety()) {
const is_lt_len = try block.addUnOp(.cmp_lt_errors_len, operand);
const zero_val = Air.internedToRef((try mod.intValue(err_int_ty, 0)).toIntern());
const is_non_zero = try block.addBinOp(.cmp_neq, operand, zero_val);
const ok = try block.addBinOp(.bool_and, is_lt_len, is_non_zero);
try sema.addSafetyCheck(block, src, ok, .invalid_error_code);
}
return block.addInst(.{
.tag = .bitcast,
.data = .{ .ty_op = .{
.ty = .anyerror_type,
.operand = operand,
} },
});
}
fn zirMergeErrorSets(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const ip = &mod.intern_pool;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
if (sema.typeOf(lhs).zigTypeTag(mod) == .Bool and sema.typeOf(rhs).zigTypeTag(mod) == .Bool) {
const msg = msg: {
const msg = try sema.errMsg(block, lhs_src, "expected error set type, found 'bool'", .{});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "'||' merges error sets; 'or' performs boolean OR", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
const lhs_ty = try sema.analyzeAsType(block, lhs_src, lhs);
const rhs_ty = try sema.analyzeAsType(block, rhs_src, rhs);
if (lhs_ty.zigTypeTag(mod) != .ErrorSet)
return sema.fail(block, lhs_src, "expected error set type, found '{}'", .{lhs_ty.fmt(mod)});
if (rhs_ty.zigTypeTag(mod) != .ErrorSet)
return sema.fail(block, rhs_src, "expected error set type, found '{}'", .{rhs_ty.fmt(mod)});
// Anything merged with anyerror is anyerror.
if (lhs_ty.toIntern() == .anyerror_type or rhs_ty.toIntern() == .anyerror_type) {
return .anyerror_type;
}
if (ip.isInferredErrorSetType(lhs_ty.toIntern())) {
switch (try sema.resolveInferredErrorSet(block, src, lhs_ty.toIntern())) {
// isAnyError might have changed from a false negative to a true
// positive after resolution.
.anyerror_type => return .anyerror_type,
else => {},
}
}
if (ip.isInferredErrorSetType(rhs_ty.toIntern())) {
switch (try sema.resolveInferredErrorSet(block, src, rhs_ty.toIntern())) {
// isAnyError might have changed from a false negative to a true
// positive after resolution.
.anyerror_type => return .anyerror_type,
else => {},
}
}
const err_set_ty = try sema.errorSetMerge(lhs_ty, rhs_ty);
return Air.internedToRef(err_set_ty.toIntern());
}
fn zirEnumLiteral(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
_ = block;
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].str_tok;
const name = inst_data.get(sema.code);
return Air.internedToRef((try mod.intern(.{
.enum_literal = try mod.intern_pool.getOrPutString(sema.gpa, name),
})));
}
fn zirIntFromEnum(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const operand = try sema.resolveInst(inst_data.operand);
const operand_ty = sema.typeOf(operand);
const enum_tag: Air.Inst.Ref = switch (operand_ty.zigTypeTag(mod)) {
.Enum => operand,
.Union => blk: {
try sema.resolveTypeFields(operand_ty);
const tag_ty = operand_ty.unionTagType(mod) orelse {
return sema.fail(
block,
operand_src,
"untagged union '{}' cannot be converted to integer",
.{src},
);
};
break :blk try sema.unionToTag(block, tag_ty, operand, operand_src);
},
else => {
return sema.fail(block, operand_src, "expected enum or tagged union, found '{}'", .{
operand_ty.fmt(mod),
});
},
};
const enum_tag_ty = sema.typeOf(enum_tag);
const int_tag_ty = enum_tag_ty.intTagType(mod);
// TODO: use correct solution
// https://github.com/ziglang/zig/issues/15909
if (enum_tag_ty.enumFieldCount(mod) == 0 and !enum_tag_ty.isNonexhaustiveEnum(mod)) {
return sema.fail(block, operand_src, "cannot use @intFromEnum on empty enum '{}'", .{
enum_tag_ty.fmt(mod),
});
}
if (try sema.typeHasOnePossibleValue(enum_tag_ty)) |opv| {
return Air.internedToRef((try mod.getCoerced(opv, int_tag_ty)).toIntern());
}
if (try sema.resolveValue(enum_tag)) |enum_tag_val| {
if (enum_tag_val.isUndef(mod)) {
return mod.undefRef(int_tag_ty);
}
const val = try enum_tag_val.intFromEnum(enum_tag_ty, mod);
return Air.internedToRef(val.toIntern());
}
try sema.requireRuntimeBlock(block, src, operand_src);
return block.addBitCast(int_tag_ty, enum_tag);
}
fn zirEnumFromInt(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@enumFromInt");
const operand = try sema.resolveInst(extra.rhs);
if (dest_ty.zigTypeTag(mod) != .Enum) {
return sema.fail(block, src, "expected enum, found '{}'", .{dest_ty.fmt(mod)});
}
_ = try sema.checkIntType(block, operand_src, sema.typeOf(operand));
if (try sema.resolveValue(operand)) |int_val| {
if (dest_ty.isNonexhaustiveEnum(mod)) {
const int_tag_ty = dest_ty.intTagType(mod);
if (try sema.intFitsInType(int_val, int_tag_ty, null)) {
return Air.internedToRef((try mod.getCoerced(int_val, dest_ty)).toIntern());
}
return sema.fail(block, src, "int value '{}' out of range of non-exhaustive enum '{}'", .{
int_val.fmtValue(mod), dest_ty.fmt(mod),
});
}
if (int_val.isUndef(mod)) {
return sema.failWithUseOfUndef(block, operand_src);
}
if (!(try sema.enumHasInt(dest_ty, int_val))) {
return sema.fail(block, src, "enum '{}' has no tag with value '{}'", .{
dest_ty.fmt(mod), int_val.fmtValue(mod),
});
}
return Air.internedToRef((try mod.getCoerced(int_val, dest_ty)).toIntern());
}
if (dest_ty.intTagType(mod).zigTypeTag(mod) == .ComptimeInt) {
return sema.failWithNeededComptime(block, operand_src, .{
.needed_comptime_reason = "value being casted to enum with 'comptime_int' tag type must be comptime-known",
});
}
if (try sema.typeHasOnePossibleValue(dest_ty)) |opv| {
const result = Air.internedToRef(opv.toIntern());
// The operand is runtime-known but the result is comptime-known. In
// this case we still need a safety check.
// TODO add a safety check here. we can't use is_named_enum_value -
// it needs to convert the enum back to int and make sure it equals the operand int.
return result;
}
try sema.requireRuntimeBlock(block, src, operand_src);
const result = try block.addTyOp(.intcast, dest_ty, operand);
if (block.wantSafety() and !dest_ty.isNonexhaustiveEnum(mod) and
mod.backendSupportsFeature(.is_named_enum_value))
{
const ok = try block.addUnOp(.is_named_enum_value, result);
try sema.addSafetyCheck(block, src, ok, .invalid_enum_value);
}
return result;
}
/// Pointer in, pointer out.
fn zirOptionalPayloadPtr(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
safety_check: bool,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const optional_ptr = try sema.resolveInst(inst_data.operand);
const src = inst_data.src();
return sema.analyzeOptionalPayloadPtr(block, src, optional_ptr, safety_check, false);
}
fn analyzeOptionalPayloadPtr(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
optional_ptr: Air.Inst.Ref,
safety_check: bool,
initializing: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const optional_ptr_ty = sema.typeOf(optional_ptr);
assert(optional_ptr_ty.zigTypeTag(mod) == .Pointer);
const opt_type = optional_ptr_ty.childType(mod);
if (opt_type.zigTypeTag(mod) != .Optional) {
return sema.fail(block, src, "expected optional type, found '{}'", .{opt_type.fmt(mod)});
}
const child_type = opt_type.optionalChild(mod);
const child_pointer = try sema.ptrType(.{
.child = child_type.toIntern(),
.flags = .{
.is_const = optional_ptr_ty.isConstPtr(mod),
.address_space = optional_ptr_ty.ptrAddressSpace(mod),
},
});
if (try sema.resolveDefinedValue(block, src, optional_ptr)) |ptr_val| {
if (initializing) {
if (!sema.isComptimeMutablePtr(ptr_val)) {
// If the pointer resulting from this function was stored at comptime,
// the optional non-null bit would be set that way. But in this case,
// we need to emit a runtime instruction to do it.
const opt_payload_ptr = try block.addTyOp(.optional_payload_ptr_set, child_pointer, optional_ptr);
try sema.checkKnownAllocPtr(block, optional_ptr, opt_payload_ptr);
}
return Air.internedToRef((try mod.intern(.{ .ptr = .{
.ty = child_pointer.toIntern(),
.addr = .{ .opt_payload = ptr_val.toIntern() },
} })));
}
if (try sema.pointerDeref(block, src, ptr_val, optional_ptr_ty)) |val| {
if (val.isNull(mod)) {
return sema.fail(block, src, "unable to unwrap null", .{});
}
// The same Value represents the pointer to the optional and the payload.
return Air.internedToRef((try mod.intern(.{ .ptr = .{
.ty = child_pointer.toIntern(),
.addr = .{ .opt_payload = ptr_val.toIntern() },
} })));
}
}
try sema.requireRuntimeBlock(block, src, null);
if (safety_check and block.wantSafety()) {
const is_non_null = try block.addUnOp(.is_non_null_ptr, optional_ptr);
try sema.addSafetyCheck(block, src, is_non_null, .unwrap_null);
}
if (initializing) {
const opt_payload_ptr = try block.addTyOp(.optional_payload_ptr_set, child_pointer, optional_ptr);
try sema.checkKnownAllocPtr(block, optional_ptr, opt_payload_ptr);
return opt_payload_ptr;
} else {
return block.addTyOp(.optional_payload_ptr, child_pointer, optional_ptr);
}
}
/// Value in, value out.
fn zirOptionalPayload(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
safety_check: bool,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const operand = try sema.resolveInst(inst_data.operand);
const operand_ty = sema.typeOf(operand);
const result_ty = switch (operand_ty.zigTypeTag(mod)) {
.Optional => operand_ty.optionalChild(mod),
.Pointer => t: {
if (operand_ty.ptrSize(mod) != .C) {
return sema.failWithExpectedOptionalType(block, src, operand_ty);
}
// TODO https://github.com/ziglang/zig/issues/6597
if (true) break :t operand_ty;
const ptr_info = operand_ty.ptrInfo(mod);
break :t try sema.ptrType(.{
.child = ptr_info.child,
.flags = .{
.alignment = ptr_info.flags.alignment,
.is_const = ptr_info.flags.is_const,
.is_volatile = ptr_info.flags.is_volatile,
.is_allowzero = ptr_info.flags.is_allowzero,
.address_space = ptr_info.flags.address_space,
},
});
},
else => return sema.failWithExpectedOptionalType(block, src, operand_ty),
};
if (try sema.resolveDefinedValue(block, src, operand)) |val| {
return if (val.optionalValue(mod)) |payload|
Air.internedToRef(payload.toIntern())
else
sema.fail(block, src, "unable to unwrap null", .{});
}
try sema.requireRuntimeBlock(block, src, null);
if (safety_check and block.wantSafety()) {
const is_non_null = try block.addUnOp(.is_non_null, operand);
try sema.addSafetyCheck(block, src, is_non_null, .unwrap_null);
}
return block.addTyOp(.optional_payload, result_ty, operand);
}
/// Value in, value out
fn zirErrUnionPayload(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const operand = try sema.resolveInst(inst_data.operand);
const operand_src = src;
const err_union_ty = sema.typeOf(operand);
if (err_union_ty.zigTypeTag(mod) != .ErrorUnion) {
return sema.fail(block, operand_src, "expected error union type, found '{}'", .{
err_union_ty.fmt(mod),
});
}
return sema.analyzeErrUnionPayload(block, src, err_union_ty, operand, operand_src, false);
}
fn analyzeErrUnionPayload(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
err_union_ty: Type,
operand: Air.Inst.Ref,
operand_src: LazySrcLoc,
safety_check: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const payload_ty = err_union_ty.errorUnionPayload(mod);
if (try sema.resolveDefinedValue(block, operand_src, operand)) |val| {
if (val.getErrorName(mod).unwrap()) |name| {
return sema.failWithComptimeErrorRetTrace(block, src, name);
}
return Air.internedToRef(mod.intern_pool.indexToKey(val.toIntern()).error_union.val.payload);
}
try sema.requireRuntimeBlock(block, src, null);
// If the error set has no fields then no safety check is needed.
if (safety_check and block.wantSafety() and
!err_union_ty.errorUnionSet(mod).errorSetIsEmpty(mod))
{
try sema.panicUnwrapError(block, src, operand, .unwrap_errunion_err, .is_non_err);
}
return block.addTyOp(.unwrap_errunion_payload, payload_ty, operand);
}
/// Pointer in, pointer out.
fn zirErrUnionPayloadPtr(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const operand = try sema.resolveInst(inst_data.operand);
const src = inst_data.src();
return sema.analyzeErrUnionPayloadPtr(block, src, operand, false, false);
}
fn analyzeErrUnionPayloadPtr(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
operand: Air.Inst.Ref,
safety_check: bool,
initializing: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const operand_ty = sema.typeOf(operand);
assert(operand_ty.zigTypeTag(mod) == .Pointer);
if (operand_ty.childType(mod).zigTypeTag(mod) != .ErrorUnion) {
return sema.fail(block, src, "expected error union type, found '{}'", .{
operand_ty.childType(mod).fmt(mod),
});
}
const err_union_ty = operand_ty.childType(mod);
const payload_ty = err_union_ty.errorUnionPayload(mod);
const operand_pointer_ty = try sema.ptrType(.{
.child = payload_ty.toIntern(),
.flags = .{
.is_const = operand_ty.isConstPtr(mod),
.address_space = operand_ty.ptrAddressSpace(mod),
},
});
if (try sema.resolveDefinedValue(block, src, operand)) |ptr_val| {
if (initializing) {
if (!sema.isComptimeMutablePtr(ptr_val)) {
// If the pointer resulting from this function was stored at comptime,
// the error union error code would be set that way. But in this case,
// we need to emit a runtime instruction to do it.
try sema.requireRuntimeBlock(block, src, null);
const eu_payload_ptr = try block.addTyOp(.errunion_payload_ptr_set, operand_pointer_ty, operand);
try sema.checkKnownAllocPtr(block, operand, eu_payload_ptr);
}
return Air.internedToRef((try mod.intern(.{ .ptr = .{
.ty = operand_pointer_ty.toIntern(),
.addr = .{ .eu_payload = ptr_val.toIntern() },
} })));
}
if (try sema.pointerDeref(block, src, ptr_val, operand_ty)) |val| {
if (val.getErrorName(mod).unwrap()) |name| {
return sema.failWithComptimeErrorRetTrace(block, src, name);
}
return Air.internedToRef((try mod.intern(.{ .ptr = .{
.ty = operand_pointer_ty.toIntern(),
.addr = .{ .eu_payload = ptr_val.toIntern() },
} })));
}
}
try sema.requireRuntimeBlock(block, src, null);
// If the error set has no fields then no safety check is needed.
if (safety_check and block.wantSafety() and
!err_union_ty.errorUnionSet(mod).errorSetIsEmpty(mod))
{
try sema.panicUnwrapError(block, src, operand, .unwrap_errunion_err_ptr, .is_non_err_ptr);
}
if (initializing) {
const eu_payload_ptr = try block.addTyOp(.errunion_payload_ptr_set, operand_pointer_ty, operand);
try sema.checkKnownAllocPtr(block, operand, eu_payload_ptr);
return eu_payload_ptr;
} else {
return block.addTyOp(.unwrap_errunion_payload_ptr, operand_pointer_ty, operand);
}
}
/// Value in, value out
fn zirErrUnionCode(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const operand = try sema.resolveInst(inst_data.operand);
return sema.analyzeErrUnionCode(block, src, operand);
}
fn analyzeErrUnionCode(sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const operand_ty = sema.typeOf(operand);
if (operand_ty.zigTypeTag(mod) != .ErrorUnion) {
return sema.fail(block, src, "expected error union type, found '{}'", .{
operand_ty.fmt(mod),
});
}
const result_ty = operand_ty.errorUnionSet(mod);
if (try sema.resolveDefinedValue(block, src, operand)) |val| {
return Air.internedToRef((try mod.intern(.{ .err = .{
.ty = result_ty.toIntern(),
.name = mod.intern_pool.indexToKey(val.toIntern()).error_union.val.err_name,
} })));
}
try sema.requireRuntimeBlock(block, src, null);
return block.addTyOp(.unwrap_errunion_err, result_ty, operand);
}
/// Pointer in, value out
fn zirErrUnionCodePtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const operand = try sema.resolveInst(inst_data.operand);
return sema.analyzeErrUnionCodePtr(block, src, operand);
}
fn analyzeErrUnionCodePtr(sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const operand_ty = sema.typeOf(operand);
assert(operand_ty.zigTypeTag(mod) == .Pointer);
if (operand_ty.childType(mod).zigTypeTag(mod) != .ErrorUnion) {
return sema.fail(block, src, "expected error union type, found '{}'", .{
operand_ty.childType(mod).fmt(mod),
});
}
const result_ty = operand_ty.childType(mod).errorUnionSet(mod);
if (try sema.resolveDefinedValue(block, src, operand)) |pointer_val| {
if (try sema.pointerDeref(block, src, pointer_val, operand_ty)) |val| {
assert(val.getErrorName(mod) != .none);
return Air.internedToRef((try mod.intern(.{ .err = .{
.ty = result_ty.toIntern(),
.name = mod.intern_pool.indexToKey(val.toIntern()).error_union.val.err_name,
} })));
}
}
try sema.requireRuntimeBlock(block, src, null);
return block.addTyOp(.unwrap_errunion_err_ptr, result_ty, operand);
}
fn zirFunc(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
inferred_error_set: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Func, inst_data.payload_index);
const target = sema.mod.getTarget();
const ret_ty_src: LazySrcLoc = .{ .node_offset_fn_type_ret_ty = inst_data.src_node };
var extra_index = extra.end;
const ret_ty: Type = switch (extra.data.ret_body_len) {
0 => Type.void,
1 => blk: {
const ret_ty_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
extra_index += 1;
if (sema.resolveType(block, ret_ty_src, ret_ty_ref)) |ret_ty| {
break :blk ret_ty;
} else |err| switch (err) {
error.GenericPoison => {
break :blk Type.generic_poison;
},
else => |e| return e,
}
},
else => blk: {
const ret_ty_body = sema.code.bodySlice(extra_index, extra.data.ret_body_len);
extra_index += ret_ty_body.len;
const ret_ty_val = try sema.resolveGenericBody(block, ret_ty_src, ret_ty_body, inst, Type.type, .{
.needed_comptime_reason = "return type must be comptime-known",
});
break :blk ret_ty_val.toType();
},
};
var src_locs: Zir.Inst.Func.SrcLocs = undefined;
const has_body = extra.data.body_len != 0;
if (has_body) {
extra_index += extra.data.body_len;
src_locs = sema.code.extraData(Zir.Inst.Func.SrcLocs, extra_index).data;
}
// If this instruction has a body it means it's the type of the `owner_decl`
// otherwise it's a function type without a `callconv` attribute and should
// never be `.C`.
const cc: std.builtin.CallingConvention = if (has_body and mod.declPtr(block.src_decl).is_exported)
.C
else
.Unspecified;
return sema.funcCommon(
block,
inst_data.src_node,
inst,
.none,
target_util.defaultAddressSpace(target, .function),
.default,
cc,
ret_ty,
false,
inferred_error_set,
false,
has_body,
src_locs,
null,
0,
false,
);
}
fn resolveGenericBody(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
body: []const Zir.Inst.Index,
func_inst: Zir.Inst.Index,
dest_ty: Type,
reason: NeededComptimeReason,
) !Value {
assert(body.len != 0);
const err = err: {
// Make sure any nested param instructions don't clobber our work.
const prev_params = block.params;
const prev_no_partial_func_type = sema.no_partial_func_ty;
const prev_generic_owner = sema.generic_owner;
const prev_generic_call_src = sema.generic_call_src;
const prev_generic_call_decl = sema.generic_call_decl;
block.params = .{};
sema.no_partial_func_ty = true;
sema.generic_owner = .none;
sema.generic_call_src = .unneeded;
sema.generic_call_decl = .none;
defer {
block.params = prev_params;
sema.no_partial_func_ty = prev_no_partial_func_type;
sema.generic_owner = prev_generic_owner;
sema.generic_call_src = prev_generic_call_src;
sema.generic_call_decl = prev_generic_call_decl;
}
const uncasted = sema.resolveInlineBody(block, body, func_inst) catch |err| break :err err;
const result = sema.coerce(block, dest_ty, uncasted, src) catch |err| break :err err;
const val = sema.resolveConstDefinedValue(block, src, result, reason) catch |err| break :err err;
return val;
};
switch (err) {
error.GenericPoison => {
if (dest_ty.toIntern() == .type_type) {
return Value.generic_poison_type;
} else {
return Value.generic_poison;
}
},
else => |e| return e,
}
}
/// Given a library name, examines if the library name should end up in
/// `link.File.Options.system_libs` table (for example, libc is always
/// specified via dedicated flag `link_libc` instead),
/// and puts it there if it doesn't exist.
/// It also dupes the library name which can then be saved as part of the
/// respective `Decl` (either `ExternFn` or `Var`).
/// The liveness of the duped library name is tied to liveness of `Module`.
/// To deallocate, call `deinit` on the respective `Decl` (`ExternFn` or `Var`).
fn handleExternLibName(
sema: *Sema,
block: *Block,
src_loc: LazySrcLoc,
lib_name: []const u8,
) CompileError!void {
blk: {
const mod = sema.mod;
const comp = mod.comp;
const target = mod.getTarget();
log.debug("extern fn symbol expected in lib '{s}'", .{lib_name});
if (target.is_libc_lib_name(lib_name)) {
if (!comp.config.link_libc) {
return sema.fail(
block,
src_loc,
"dependency on libc must be explicitly specified in the build command",
.{},
);
}
break :blk;
}
if (target.is_libcpp_lib_name(lib_name)) {
if (!comp.config.link_libcpp) return sema.fail(
block,
src_loc,
"dependency on libc++ must be explicitly specified in the build command",
.{},
);
break :blk;
}
if (mem.eql(u8, lib_name, "unwind")) {
if (!comp.config.link_libunwind) return sema.fail(
block,
src_loc,
"dependency on libunwind must be explicitly specified in the build command",
.{},
);
break :blk;
}
if (!target.isWasm() and !block.ownerModule().pic) {
return sema.fail(
block,
src_loc,
"dependency on dynamic library '{s}' requires enabling Position Independent Code. Fixed by '-l{s}' or '-fPIC'.",
.{ lib_name, lib_name },
);
}
comp.addLinkLib(lib_name) catch |err| {
return sema.fail(block, src_loc, "unable to add link lib '{s}': {s}", .{
lib_name, @errorName(err),
});
};
}
}
/// These are calling conventions that are confirmed to work with variadic functions.
/// Any calling conventions not included here are either not yet verified to work with variadic
/// functions or there are no more other calling conventions that support variadic functions.
const calling_conventions_supporting_var_args = [_]std.builtin.CallingConvention{
.C,
};
fn callConvSupportsVarArgs(cc: std.builtin.CallingConvention) bool {
return for (calling_conventions_supporting_var_args) |supported_cc| {
if (cc == supported_cc) return true;
} else false;
}
fn checkCallConvSupportsVarArgs(sema: *Sema, block: *Block, src: LazySrcLoc, cc: std.builtin.CallingConvention) CompileError!void {
const CallingConventionsSupportingVarArgsList = struct {
pub fn format(_: @This(), comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype) !void {
_ = fmt;
_ = options;
for (calling_conventions_supporting_var_args, 0..) |cc_inner, i| {
if (i != 0)
try writer.writeAll(", ");
try writer.print("'.{s}'", .{@tagName(cc_inner)});
}
}
};
if (!callConvSupportsVarArgs(cc)) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "variadic function does not support '.{s}' calling convention", .{@tagName(cc)});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "supported calling conventions: {}", .{CallingConventionsSupportingVarArgsList{}});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
}
const Section = union(enum) {
generic,
default,
explicit: InternPool.NullTerminatedString,
};
fn funcCommon(
sema: *Sema,
block: *Block,
src_node_offset: i32,
func_inst: Zir.Inst.Index,
/// null means generic poison
alignment: ?Alignment,
/// null means generic poison
address_space: ?std.builtin.AddressSpace,
section: Section,
/// null means generic poison
cc: ?std.builtin.CallingConvention,
/// this might be Type.generic_poison
bare_return_type: Type,
var_args: bool,
inferred_error_set: bool,
is_extern: bool,
has_body: bool,
src_locs: Zir.Inst.Func.SrcLocs,
opt_lib_name: ?[]const u8,
noalias_bits: u32,
is_noinline: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const gpa = sema.gpa;
const target = mod.getTarget();
const ip = &mod.intern_pool;
const ret_ty_src: LazySrcLoc = .{ .node_offset_fn_type_ret_ty = src_node_offset };
const cc_src: LazySrcLoc = .{ .node_offset_fn_type_cc = src_node_offset };
const func_src = LazySrcLoc.nodeOffset(src_node_offset);
var is_generic = bare_return_type.isGenericPoison() or
alignment == null or
address_space == null or
section == .generic or
cc == null;
if (var_args) {
if (is_generic) {
return sema.fail(block, func_src, "generic function cannot be variadic", .{});
}
try sema.checkCallConvSupportsVarArgs(block, cc_src, cc.?);
}
const is_source_decl = sema.generic_owner == .none;
// In the case of generic calling convention, or generic alignment, we use
// default values which are only meaningful for the generic function, *not*
// the instantiation, which can depend on comptime parameters.
// Related proposal: https://github.com/ziglang/zig/issues/11834
const cc_resolved = cc orelse .Unspecified;
var comptime_bits: u32 = 0;
for (block.params.items(.ty), block.params.items(.is_comptime), 0..) |param_ty_ip, param_is_comptime, i| {
const param_ty = Type.fromInterned(param_ty_ip);
const is_noalias = blk: {
const index = std.math.cast(u5, i) orelse break :blk false;
break :blk @as(u1, @truncate(noalias_bits >> index)) != 0;
};
const param_src: LazySrcLoc = .{ .fn_proto_param = .{
.decl = block.src_decl,
.fn_proto_node_offset = src_node_offset,
.param_index = @intCast(i),
} };
const requires_comptime = try sema.typeRequiresComptime(param_ty);
if (param_is_comptime or requires_comptime) {
comptime_bits |= @as(u32, 1) << @intCast(i); // TODO: handle cast error
}
const this_generic = param_ty.isGenericPoison();
is_generic = is_generic or this_generic;
if (param_is_comptime and !target_util.fnCallConvAllowsZigTypes(target, cc_resolved)) {
return sema.fail(block, param_src, "comptime parameters not allowed in function with calling convention '{s}'", .{@tagName(cc_resolved)});
}
if (this_generic and !sema.no_partial_func_ty and !target_util.fnCallConvAllowsZigTypes(target, cc_resolved)) {
return sema.fail(block, param_src, "generic parameters not allowed in function with calling convention '{s}'", .{@tagName(cc_resolved)});
}
if (!param_ty.isValidParamType(mod)) {
const opaque_str = if (param_ty.zigTypeTag(mod) == .Opaque) "opaque " else "";
return sema.fail(block, param_src, "parameter of {s}type '{}' not allowed", .{
opaque_str, param_ty.fmt(mod),
});
}
if (!this_generic and !target_util.fnCallConvAllowsZigTypes(target, cc_resolved) and !try sema.validateExternType(param_ty, .param_ty)) {
const msg = msg: {
const msg = try sema.errMsg(block, param_src, "parameter of type '{}' not allowed in function with calling convention '{s}'", .{
param_ty.fmt(mod), @tagName(cc_resolved),
});
errdefer msg.destroy(sema.gpa);
const src_decl = mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsNotExtern(msg, src_decl.toSrcLoc(param_src, mod), param_ty, .param_ty);
try sema.addDeclaredHereNote(msg, param_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
if (is_source_decl and requires_comptime and !param_is_comptime and has_body and !block.is_comptime) {
const msg = msg: {
const msg = try sema.errMsg(block, param_src, "parameter of type '{}' must be declared comptime", .{
param_ty.fmt(mod),
});
errdefer msg.destroy(sema.gpa);
const src_decl = mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsComptime(msg, src_decl.toSrcLoc(param_src, mod), param_ty);
try sema.addDeclaredHereNote(msg, param_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
if (is_source_decl and !this_generic and is_noalias and
!(param_ty.zigTypeTag(mod) == .Pointer or param_ty.isPtrLikeOptional(mod)))
{
return sema.fail(block, param_src, "non-pointer parameter declared noalias", .{});
}
}
var ret_ty_requires_comptime = false;
const ret_poison = if (sema.typeRequiresComptime(bare_return_type)) |ret_comptime| rp: {
ret_ty_requires_comptime = ret_comptime;
break :rp bare_return_type.isGenericPoison();
} else |err| switch (err) {
error.GenericPoison => rp: {
is_generic = true;
break :rp true;
},
else => |e| return e,
};
const final_is_generic = is_generic or comptime_bits != 0 or ret_ty_requires_comptime;
const param_types = block.params.items(.ty);
if (!is_source_decl) {
assert(has_body);
assert(!is_generic);
assert(comptime_bits == 0);
assert(cc != null);
assert(section != .generic);
assert(address_space != null);
assert(!var_args);
if (inferred_error_set) {
try sema.validateErrorUnionPayloadType(block, bare_return_type, ret_ty_src);
}
const func_index = try ip.getFuncInstance(gpa, .{
.param_types = param_types,
.noalias_bits = noalias_bits,
.bare_return_type = bare_return_type.toIntern(),
.cc = cc_resolved,
.alignment = alignment.?,
.section = switch (section) {
.generic => unreachable,
.default => .none,
.explicit => |x| x.toOptional(),
},
.is_noinline = is_noinline,
.inferred_error_set = inferred_error_set,
.generic_owner = sema.generic_owner,
.comptime_args = sema.comptime_args,
});
return finishFunc(
sema,
block,
func_index,
.none,
ret_poison,
bare_return_type,
ret_ty_src,
cc_resolved,
is_source_decl,
ret_ty_requires_comptime,
func_inst,
cc_src,
is_noinline,
is_generic,
final_is_generic,
);
}
// extern_func and func_decl functions take ownership of `sema.owner_decl`.
sema.owner_decl.@"linksection" = switch (section) {
.generic => .none,
.default => .none,
.explicit => |section_name| section_name.toOptional(),
};
sema.owner_decl.alignment = alignment orelse .none;
sema.owner_decl.@"addrspace" = address_space orelse .generic;
if (inferred_error_set) {
assert(!is_extern);
assert(has_body);
if (!ret_poison)
try sema.validateErrorUnionPayloadType(block, bare_return_type, ret_ty_src);
const func_index = try ip.getFuncDeclIes(gpa, .{
.owner_decl = sema.owner_decl_index,
.param_types = param_types,
.noalias_bits = noalias_bits,
.comptime_bits = comptime_bits,
.bare_return_type = bare_return_type.toIntern(),
.cc = cc,
.alignment = alignment,
.section_is_generic = section == .generic,
.addrspace_is_generic = address_space == null,
.is_var_args = var_args,
.is_generic = final_is_generic,
.is_noinline = is_noinline,
.zir_body_inst = try ip.trackZir(gpa, block.getFileScope(mod), func_inst),
.lbrace_line = src_locs.lbrace_line,
.rbrace_line = src_locs.rbrace_line,
.lbrace_column = @as(u16, @truncate(src_locs.columns)),
.rbrace_column = @as(u16, @truncate(src_locs.columns >> 16)),
});
return finishFunc(
sema,
block,
func_index,
.none,
ret_poison,
bare_return_type,
ret_ty_src,
cc_resolved,
is_source_decl,
ret_ty_requires_comptime,
func_inst,
cc_src,
is_noinline,
is_generic,
final_is_generic,
);
}
const func_ty = try ip.getFuncType(gpa, .{
.param_types = param_types,
.noalias_bits = noalias_bits,
.comptime_bits = comptime_bits,
.return_type = bare_return_type.toIntern(),
.cc = cc,
.section_is_generic = section == .generic,
.addrspace_is_generic = address_space == null,
.is_var_args = var_args,
.is_generic = final_is_generic,
.is_noinline = is_noinline,
});
if (is_extern) {
assert(comptime_bits == 0);
assert(cc != null);
assert(alignment != null);
assert(section != .generic);
assert(address_space != null);
assert(!is_generic);
if (opt_lib_name) |lib_name| try sema.handleExternLibName(block, .{
.node_offset_lib_name = src_node_offset,
}, lib_name);
const func_index = try ip.getExternFunc(gpa, .{
.ty = func_ty,
.decl = sema.owner_decl_index,
.lib_name = try mod.intern_pool.getOrPutStringOpt(gpa, opt_lib_name),
});
return finishFunc(
sema,
block,
func_index,
func_ty,
ret_poison,
bare_return_type,
ret_ty_src,
cc_resolved,
is_source_decl,
ret_ty_requires_comptime,
func_inst,
cc_src,
is_noinline,
is_generic,
final_is_generic,
);
}
if (has_body) {
const func_index = try ip.getFuncDecl(gpa, .{
.owner_decl = sema.owner_decl_index,
.ty = func_ty,
.cc = cc,
.is_noinline = is_noinline,
.zir_body_inst = try ip.trackZir(gpa, block.getFileScope(mod), func_inst),
.lbrace_line = src_locs.lbrace_line,
.rbrace_line = src_locs.rbrace_line,
.lbrace_column = @as(u16, @truncate(src_locs.columns)),
.rbrace_column = @as(u16, @truncate(src_locs.columns >> 16)),
});
return finishFunc(
sema,
block,
func_index,
func_ty,
ret_poison,
bare_return_type,
ret_ty_src,
cc_resolved,
is_source_decl,
ret_ty_requires_comptime,
func_inst,
cc_src,
is_noinline,
is_generic,
final_is_generic,
);
}
return finishFunc(
sema,
block,
.none,
func_ty,
ret_poison,
bare_return_type,
ret_ty_src,
cc_resolved,
is_source_decl,
ret_ty_requires_comptime,
func_inst,
cc_src,
is_noinline,
is_generic,
final_is_generic,
);
}
fn finishFunc(
sema: *Sema,
block: *Block,
opt_func_index: InternPool.Index,
func_ty: InternPool.Index,
ret_poison: bool,
bare_return_type: Type,
ret_ty_src: LazySrcLoc,
cc_resolved: std.builtin.CallingConvention,
is_source_decl: bool,
ret_ty_requires_comptime: bool,
func_inst: Zir.Inst.Index,
cc_src: LazySrcLoc,
is_noinline: bool,
is_generic: bool,
final_is_generic: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
const gpa = sema.gpa;
const target = mod.getTarget();
const return_type: Type = if (opt_func_index == .none or ret_poison)
bare_return_type
else
Type.fromInterned(ip.funcTypeReturnType(ip.typeOf(opt_func_index)));
if (!return_type.isValidReturnType(mod)) {
const opaque_str = if (return_type.zigTypeTag(mod) == .Opaque) "opaque " else "";
return sema.fail(block, ret_ty_src, "{s}return type '{}' not allowed", .{
opaque_str, return_type.fmt(mod),
});
}
if (!ret_poison and !target_util.fnCallConvAllowsZigTypes(target, cc_resolved) and
!try sema.validateExternType(return_type, .ret_ty))
{
const msg = msg: {
const msg = try sema.errMsg(block, ret_ty_src, "return type '{}' not allowed in function with calling convention '{s}'", .{
return_type.fmt(mod), @tagName(cc_resolved),
});
errdefer msg.destroy(gpa);
const src_decl = mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsNotExtern(msg, src_decl.toSrcLoc(ret_ty_src, mod), return_type, .ret_ty);
try sema.addDeclaredHereNote(msg, return_type);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
// If the return type is comptime-only but not dependent on parameters then
// all parameter types also need to be comptime.
if (is_source_decl and opt_func_index != .none and ret_ty_requires_comptime and !block.is_comptime) comptime_check: {
for (block.params.items(.is_comptime)) |is_comptime| {
if (!is_comptime) break;
} else break :comptime_check;
const msg = try sema.errMsg(
block,
ret_ty_src,
"function with comptime-only return type '{}' requires all parameters to be comptime",
.{return_type.fmt(mod)},
);
try sema.explainWhyTypeIsComptime(msg, sema.owner_decl.toSrcLoc(ret_ty_src, mod), return_type);
const tags = sema.code.instructions.items(.tag);
const data = sema.code.instructions.items(.data);
const param_body = sema.code.getParamBody(func_inst);
for (
block.params.items(.is_comptime),
block.params.items(.name),
param_body[0..block.params.len],
) |is_comptime, name_nts, param_index| {
if (!is_comptime) {
const param_src = switch (tags[@intFromEnum(param_index)]) {
.param => data[@intFromEnum(param_index)].pl_tok.src(),
.param_anytype => data[@intFromEnum(param_index)].str_tok.src(),
else => unreachable,
};
const name = sema.code.nullTerminatedString(name_nts);
if (name.len != 0) {
try sema.errNote(block, param_src, msg, "param '{s}' is required to be comptime", .{name});
} else {
try sema.errNote(block, param_src, msg, "param is required to be comptime", .{});
}
}
}
return sema.failWithOwnedErrorMsg(block, msg);
}
const arch = target.cpu.arch;
if (@as(?[]const u8, switch (cc_resolved) {
.Unspecified, .C, .Naked, .Async, .Inline => null,
.Interrupt => switch (arch) {
.x86, .x86_64, .avr, .msp430 => null,
else => "x86, x86_64, AVR, and MSP430",
},
.Signal => switch (arch) {
.avr => null,
else => "AVR",
},
.Stdcall, .Fastcall, .Thiscall => switch (arch) {
.x86 => null,
else => "x86",
},
.Vectorcall => switch (arch) {
.x86, .aarch64, .aarch64_be, .aarch64_32 => null,
else => "x86 and AArch64",
},
.APCS, .AAPCS, .AAPCSVFP => switch (arch) {
.arm, .armeb, .aarch64, .aarch64_be, .aarch64_32, .thumb, .thumbeb => null,
else => "ARM",
},
.SysV, .Win64 => switch (arch) {
.x86_64 => null,
else => "x86_64",
},
.Kernel => switch (arch) {
.nvptx, .nvptx64, .amdgcn, .spirv32, .spirv64 => null,
else => "nvptx, amdgcn and SPIR-V",
},
.Fragment, .Vertex => switch (arch) {
.spirv32, .spirv64 => null,
else => "SPIR-V",
},
})) |allowed_platform| {
return sema.fail(block, cc_src, "callconv '{s}' is only available on {s}, not {s}", .{
@tagName(cc_resolved),
allowed_platform,
@tagName(arch),
});
}
if (cc_resolved == .Inline and is_noinline) {
return sema.fail(block, cc_src, "'noinline' function cannot have callconv 'Inline'", .{});
}
if (is_generic and sema.no_partial_func_ty) return error.GenericPoison;
if (!final_is_generic and sema.wantErrorReturnTracing(return_type)) {
// Make sure that StackTrace's fields are resolved so that the backend can
// lower this fn type.
const unresolved_stack_trace_ty = try sema.getBuiltinType("StackTrace");
try sema.resolveTypeFields(unresolved_stack_trace_ty);
}
return Air.internedToRef(if (opt_func_index != .none) opt_func_index else func_ty);
}
fn zirParam(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
comptime_syntax: bool,
) CompileError!void {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_tok;
const src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.Param, inst_data.payload_index);
const param_name: Zir.NullTerminatedString = extra.data.name;
const body = sema.code.bodySlice(extra.end, extra.data.body_len);
const param_ty = param_ty: {
const err = err: {
// Make sure any nested param instructions don't clobber our work.
const prev_params = block.params;
const prev_no_partial_func_type = sema.no_partial_func_ty;
const prev_generic_owner = sema.generic_owner;
const prev_generic_call_src = sema.generic_call_src;
const prev_generic_call_decl = sema.generic_call_decl;
block.params = .{};
sema.no_partial_func_ty = true;
sema.generic_owner = .none;
sema.generic_call_src = .unneeded;
sema.generic_call_decl = .none;
defer {
block.params = prev_params;
sema.no_partial_func_ty = prev_no_partial_func_type;
sema.generic_owner = prev_generic_owner;
sema.generic_call_src = prev_generic_call_src;
sema.generic_call_decl = prev_generic_call_decl;
}
if (sema.resolveInlineBody(block, body, inst)) |param_ty_inst| {
if (sema.analyzeAsType(block, src, param_ty_inst)) |param_ty| {
break :param_ty param_ty;
} else |err| break :err err;
} else |err| break :err err;
};
switch (err) {
error.GenericPoison => {
// The type is not available until the generic instantiation.
// We result the param instruction with a poison value and
// insert an anytype parameter.
try block.params.append(sema.arena, .{
.ty = .generic_poison_type,
.is_comptime = comptime_syntax,
.name = param_name,
});
sema.inst_map.putAssumeCapacity(inst, .generic_poison);
return;
},
else => |e| return e,
}
};
const is_comptime = sema.typeRequiresComptime(param_ty) catch |err| switch (err) {
error.GenericPoison => {
// The type is not available until the generic instantiation.
// We result the param instruction with a poison value and
// insert an anytype parameter.
try block.params.append(sema.arena, .{
.ty = .generic_poison_type,
.is_comptime = comptime_syntax,
.name = param_name,
});
sema.inst_map.putAssumeCapacity(inst, .generic_poison);
return;
},
else => |e| return e,
} or comptime_syntax;
try block.params.append(sema.arena, .{
.ty = param_ty.toIntern(),
.is_comptime = comptime_syntax,
.name = param_name,
});
if (is_comptime) {
// If this is a comptime parameter we can add a constant generic_poison
// since this is also a generic parameter.
sema.inst_map.putAssumeCapacity(inst, .generic_poison);
} else {
// Otherwise we need a dummy runtime instruction.
const result_index: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
try sema.air_instructions.append(sema.gpa, .{
.tag = .alloc,
.data = .{ .ty = param_ty },
});
sema.inst_map.putAssumeCapacity(inst, result_index.toRef());
}
}
fn zirParamAnytype(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
comptime_syntax: bool,
) CompileError!void {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].str_tok;
const param_name: Zir.NullTerminatedString = inst_data.start;
// We are evaluating a generic function without any comptime args provided.
try block.params.append(sema.arena, .{
.ty = .generic_poison_type,
.is_comptime = comptime_syntax,
.name = param_name,
});
sema.inst_map.putAssumeCapacity(inst, .generic_poison);
}
fn zirAsNode(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.As, inst_data.payload_index).data;
return sema.analyzeAs(block, src, extra.dest_type, extra.operand, false);
}
fn zirAsShiftOperand(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.As, inst_data.payload_index).data;
return sema.analyzeAs(block, src, extra.dest_type, extra.operand, true);
}
fn analyzeAs(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
zir_dest_type: Zir.Inst.Ref,
zir_operand: Zir.Inst.Ref,
no_cast_to_comptime_int: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const operand = try sema.resolveInst(zir_operand);
if (zir_dest_type == .var_args_param_type) return operand;
const operand_air_inst = sema.resolveInst(zir_dest_type) catch |err| switch (err) {
error.GenericPoison => return operand,
else => |e| return e,
};
if (operand_air_inst == .var_args_param_type) return operand;
const dest_ty = sema.analyzeAsType(block, src, operand_air_inst) catch |err| switch (err) {
error.GenericPoison => return operand,
else => |e| return e,
};
const dest_ty_tag = dest_ty.zigTypeTagOrPoison(mod) catch |err| switch (err) {
error.GenericPoison => return operand,
};
if (dest_ty_tag == .NoReturn) {
return sema.fail(block, src, "cannot cast to noreturn", .{});
}
const is_ret = if (zir_dest_type.toIndex()) |ptr_index|
sema.code.instructions.items(.tag)[@intFromEnum(ptr_index)] == .ret_type
else
false;
return sema.coerceExtra(block, dest_ty, operand, src, .{ .is_ret = is_ret, .no_cast_to_comptime_int = no_cast_to_comptime_int }) catch |err| switch (err) {
error.NotCoercible => unreachable,
else => |e| return e,
};
}
fn zirIntFromPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const ptr_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const operand = try sema.resolveInst(inst_data.operand);
const operand_ty = sema.typeOf(operand);
const ptr_ty = operand_ty.scalarType(mod);
const is_vector = operand_ty.zigTypeTag(mod) == .Vector;
if (!ptr_ty.isPtrAtRuntime(mod)) {
return sema.fail(block, ptr_src, "expected pointer, found '{}'", .{ptr_ty.fmt(mod)});
}
const pointee_ty = ptr_ty.childType(mod);
if (try sema.typeRequiresComptime(ptr_ty)) {
const msg = msg: {
const msg = try sema.errMsg(block, ptr_src, "comptime-only type '{}' has no pointer address", .{pointee_ty.fmt(mod)});
errdefer msg.destroy(sema.gpa);
const src_decl = mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsComptime(msg, src_decl.toSrcLoc(ptr_src, mod), pointee_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
if (try sema.resolveValueIntable(operand)) |operand_val| ct: {
if (!is_vector) {
return Air.internedToRef((try mod.intValue(
Type.usize,
(try operand_val.getUnsignedIntAdvanced(mod, sema)).?,
)).toIntern());
}
const len = operand_ty.vectorLen(mod);
const dest_ty = try mod.vectorType(.{ .child = .usize_type, .len = len });
const new_elems = try sema.arena.alloc(InternPool.Index, len);
for (new_elems, 0..) |*new_elem, i| {
const ptr_val = try operand_val.elemValue(mod, i);
const addr = try ptr_val.getUnsignedIntAdvanced(mod, sema) orelse {
// A vector element wasn't an integer pointer. This is a runtime operation.
break :ct;
};
new_elem.* = (try mod.intValue(
Type.usize,
addr,
)).toIntern();
}
return Air.internedToRef(try mod.intern(.{ .aggregate = .{
.ty = dest_ty.toIntern(),
.storage = .{ .elems = new_elems },
} }));
}
try sema.requireRuntimeBlock(block, inst_data.src(), ptr_src);
try sema.validateRuntimeValue(block, ptr_src, operand);
if (!is_vector) {
return block.addUnOp(.int_from_ptr, operand);
}
const len = operand_ty.vectorLen(mod);
const dest_ty = try mod.vectorType(.{ .child = .usize_type, .len = len });
const new_elems = try sema.arena.alloc(Air.Inst.Ref, len);
for (new_elems, 0..) |*new_elem, i| {
const idx_ref = try mod.intRef(Type.usize, i);
const old_elem = try block.addBinOp(.array_elem_val, operand, idx_ref);
new_elem.* = try block.addUnOp(.int_from_ptr, old_elem);
}
return block.addAggregateInit(dest_ty, new_elems);
}
fn zirFieldVal(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const field_name_src: LazySrcLoc = .{ .node_offset_field_name = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Field, inst_data.payload_index).data;
const field_name = try mod.intern_pool.getOrPutString(sema.gpa, sema.code.nullTerminatedString(extra.field_name_start));
const object = try sema.resolveInst(extra.lhs);
return sema.fieldVal(block, src, object, field_name, field_name_src);
}
fn zirFieldPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const field_name_src: LazySrcLoc = .{ .node_offset_field_name = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Field, inst_data.payload_index).data;
const field_name = try mod.intern_pool.getOrPutString(sema.gpa, sema.code.nullTerminatedString(extra.field_name_start));
const object_ptr = try sema.resolveInst(extra.lhs);
return sema.fieldPtr(block, src, object_ptr, field_name, field_name_src, false);
}
fn zirStructInitFieldPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const field_name_src: LazySrcLoc = .{ .node_offset_field_name_init = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Field, inst_data.payload_index).data;
const field_name = try mod.intern_pool.getOrPutString(sema.gpa, sema.code.nullTerminatedString(extra.field_name_start));
const object_ptr = try sema.resolveInst(extra.lhs);
const struct_ty = sema.typeOf(object_ptr).childType(mod);
switch (struct_ty.zigTypeTag(mod)) {
.Struct, .Union => {
return sema.fieldPtr(block, src, object_ptr, field_name, field_name_src, true);
},
else => {
return sema.failWithStructInitNotSupported(block, src, struct_ty);
},
}
}
fn zirFieldValNamed(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const field_name_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.FieldNamed, inst_data.payload_index).data;
const object = try sema.resolveInst(extra.lhs);
const field_name = try sema.resolveConstStringIntern(block, field_name_src, extra.field_name, .{
.needed_comptime_reason = "field name must be comptime-known",
});
return sema.fieldVal(block, src, object, field_name, field_name_src);
}
fn zirFieldPtrNamed(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const field_name_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.FieldNamed, inst_data.payload_index).data;
const object_ptr = try sema.resolveInst(extra.lhs);
const field_name = try sema.resolveConstStringIntern(block, field_name_src, extra.field_name, .{
.needed_comptime_reason = "field name must be comptime-known",
});
return sema.fieldPtr(block, src, object_ptr, field_name, field_name_src, false);
}
fn zirIntCast(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@intCast");
const operand = try sema.resolveInst(extra.rhs);
return sema.intCast(block, inst_data.src(), dest_ty, src, operand, operand_src, true);
}
fn intCast(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
dest_ty: Type,
dest_ty_src: LazySrcLoc,
operand: Air.Inst.Ref,
operand_src: LazySrcLoc,
runtime_safety: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const operand_ty = sema.typeOf(operand);
const dest_scalar_ty = try sema.checkIntOrVectorAllowComptime(block, dest_ty, dest_ty_src);
const operand_scalar_ty = try sema.checkIntOrVectorAllowComptime(block, operand_ty, operand_src);
if (try sema.isComptimeKnown(operand)) {
return sema.coerce(block, dest_ty, operand, operand_src);
} else if (dest_scalar_ty.zigTypeTag(mod) == .ComptimeInt) {
return sema.fail(block, operand_src, "unable to cast runtime value to 'comptime_int'", .{});
}
try sema.checkVectorizableBinaryOperands(block, operand_src, dest_ty, operand_ty, dest_ty_src, operand_src);
const is_vector = dest_ty.zigTypeTag(mod) == .Vector;
if ((try sema.typeHasOnePossibleValue(dest_ty))) |opv| {
// requirement: intCast(u0, input) iff input == 0
if (runtime_safety and block.wantSafety()) {
try sema.requireRuntimeBlock(block, src, operand_src);
const wanted_info = dest_scalar_ty.intInfo(mod);
const wanted_bits = wanted_info.bits;
if (wanted_bits == 0) {
const ok = if (is_vector) ok: {
const zeros = try sema.splat(operand_ty, try mod.intValue(operand_scalar_ty, 0));
const zero_inst = Air.internedToRef(zeros.toIntern());
const is_in_range = try block.addCmpVector(operand, zero_inst, .eq);
const all_in_range = try block.addInst(.{
.tag = .reduce,
.data = .{ .reduce = .{ .operand = is_in_range, .operation = .And } },
});
break :ok all_in_range;
} else ok: {
const zero_inst = Air.internedToRef((try mod.intValue(operand_ty, 0)).toIntern());
const is_in_range = try block.addBinOp(.cmp_lte, operand, zero_inst);
break :ok is_in_range;
};
try sema.addSafetyCheck(block, src, ok, .cast_truncated_data);
}
}
return Air.internedToRef(opv.toIntern());
}
try sema.requireRuntimeBlock(block, src, operand_src);
if (runtime_safety and block.wantSafety()) {
const actual_info = operand_scalar_ty.intInfo(mod);
const wanted_info = dest_scalar_ty.intInfo(mod);
const actual_bits = actual_info.bits;
const wanted_bits = wanted_info.bits;
const actual_value_bits = actual_bits - @intFromBool(actual_info.signedness == .signed);
const wanted_value_bits = wanted_bits - @intFromBool(wanted_info.signedness == .signed);
// range shrinkage
// requirement: int value fits into target type
if (wanted_value_bits < actual_value_bits) {
const dest_max_val_scalar = try dest_scalar_ty.maxIntScalar(mod, operand_scalar_ty);
const dest_max_val = try sema.splat(operand_ty, dest_max_val_scalar);
const dest_max = Air.internedToRef(dest_max_val.toIntern());
const diff = try block.addBinOp(.sub_wrap, dest_max, operand);
if (actual_info.signedness == .signed) {
// Reinterpret the sign-bit as part of the value. This will make
// negative differences (`operand` > `dest_max`) appear too big.
const unsigned_scalar_operand_ty = try mod.intType(.unsigned, actual_bits);
const unsigned_operand_ty = if (is_vector) try mod.vectorType(.{
.len = dest_ty.vectorLen(mod),
.child = unsigned_scalar_operand_ty.toIntern(),
}) else unsigned_scalar_operand_ty;
const diff_unsigned = try block.addBitCast(unsigned_operand_ty, diff);
// If the destination type is signed, then we need to double its
// range to account for negative values.
const dest_range_val = if (wanted_info.signedness == .signed) range_val: {
const one_scalar = try mod.intValue(unsigned_scalar_operand_ty, 1);
const one = if (is_vector) Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = unsigned_operand_ty.toIntern(),
.storage = .{ .repeated_elem = one_scalar.toIntern() },
} }))) else one_scalar;
const range_minus_one = try dest_max_val.shl(one, unsigned_operand_ty, sema.arena, mod);
break :range_val try sema.intAdd(range_minus_one, one, unsigned_operand_ty, undefined);
} else try mod.getCoerced(dest_max_val, unsigned_operand_ty);
const dest_range = Air.internedToRef(dest_range_val.toIntern());
const ok = if (is_vector) ok: {
const is_in_range = try block.addCmpVector(diff_unsigned, dest_range, .lte);
const all_in_range = try block.addInst(.{
.tag = if (block.float_mode == .optimized) .reduce_optimized else .reduce,
.data = .{ .reduce = .{
.operand = is_in_range,
.operation = .And,
} },
});
break :ok all_in_range;
} else ok: {
const is_in_range = try block.addBinOp(.cmp_lte, diff_unsigned, dest_range);
break :ok is_in_range;
};
// TODO negative_to_unsigned?
try sema.addSafetyCheck(block, src, ok, .cast_truncated_data);
} else {
const ok = if (is_vector) ok: {
const is_in_range = try block.addCmpVector(diff, dest_max, .lte);
const all_in_range = try block.addInst(.{
.tag = if (block.float_mode == .optimized) .reduce_optimized else .reduce,
.data = .{ .reduce = .{
.operand = is_in_range,
.operation = .And,
} },
});
break :ok all_in_range;
} else ok: {
const is_in_range = try block.addBinOp(.cmp_lte, diff, dest_max);
break :ok is_in_range;
};
try sema.addSafetyCheck(block, src, ok, .cast_truncated_data);
}
} else if (actual_info.signedness == .signed and wanted_info.signedness == .unsigned) {
// no shrinkage, yes sign loss
// requirement: signed to unsigned >= 0
const ok = if (is_vector) ok: {
const scalar_zero = try mod.intValue(operand_scalar_ty, 0);
const zero_val = try sema.splat(operand_ty, scalar_zero);
const zero_inst = Air.internedToRef(zero_val.toIntern());
const is_in_range = try block.addCmpVector(operand, zero_inst, .gte);
const all_in_range = try block.addInst(.{
.tag = if (block.float_mode == .optimized) .reduce_optimized else .reduce,
.data = .{ .reduce = .{
.operand = is_in_range,
.operation = .And,
} },
});
break :ok all_in_range;
} else ok: {
const zero_inst = Air.internedToRef((try mod.intValue(operand_ty, 0)).toIntern());
const is_in_range = try block.addBinOp(.cmp_gte, operand, zero_inst);
break :ok is_in_range;
};
try sema.addSafetyCheck(block, src, ok, .negative_to_unsigned);
}
}
return block.addTyOp(.intcast, dest_ty, operand);
}
fn zirBitcast(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@bitCast");
const operand = try sema.resolveInst(extra.rhs);
const operand_ty = sema.typeOf(operand);
switch (dest_ty.zigTypeTag(mod)) {
.AnyFrame,
.ComptimeFloat,
.ComptimeInt,
.EnumLiteral,
.ErrorSet,
.ErrorUnion,
.Fn,
.Frame,
.NoReturn,
.Null,
.Opaque,
.Optional,
.Type,
.Undefined,
.Void,
=> return sema.fail(block, src, "cannot @bitCast to '{}'", .{dest_ty.fmt(mod)}),
.Enum => {
const msg = msg: {
const msg = try sema.errMsg(block, src, "cannot @bitCast to '{}'", .{dest_ty.fmt(mod)});
errdefer msg.destroy(sema.gpa);
switch (operand_ty.zigTypeTag(mod)) {
.Int, .ComptimeInt => try sema.errNote(block, src, msg, "use @enumFromInt to cast from '{}'", .{operand_ty.fmt(mod)}),
else => {},
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
},
.Pointer => {
const msg = msg: {
const msg = try sema.errMsg(block, src, "cannot @bitCast to '{}'", .{dest_ty.fmt(mod)});
errdefer msg.destroy(sema.gpa);
switch (operand_ty.zigTypeTag(mod)) {
.Int, .ComptimeInt => try sema.errNote(block, src, msg, "use @ptrFromInt to cast from '{}'", .{operand_ty.fmt(mod)}),
.Pointer => try sema.errNote(block, src, msg, "use @ptrCast to cast from '{}'", .{operand_ty.fmt(mod)}),
else => {},
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
},
.Struct, .Union => if (dest_ty.containerLayout(mod) == .auto) {
const container = switch (dest_ty.zigTypeTag(mod)) {
.Struct => "struct",
.Union => "union",
else => unreachable,
};
return sema.fail(block, src, "cannot @bitCast to '{}'; {s} does not have a guaranteed in-memory layout", .{
dest_ty.fmt(mod), container,
});
},
.Array,
.Bool,
.Float,
.Int,
.Vector,
=> {},
}
switch (operand_ty.zigTypeTag(mod)) {
.AnyFrame,
.ComptimeFloat,
.ComptimeInt,
.EnumLiteral,
.ErrorSet,
.ErrorUnion,
.Fn,
.Frame,
.NoReturn,
.Null,
.Opaque,
.Optional,
.Type,
.Undefined,
.Void,
=> return sema.fail(block, operand_src, "cannot @bitCast from '{}'", .{operand_ty.fmt(mod)}),
.Enum => {
const msg = msg: {
const msg = try sema.errMsg(block, operand_src, "cannot @bitCast from '{}'", .{operand_ty.fmt(mod)});
errdefer msg.destroy(sema.gpa);
switch (dest_ty.zigTypeTag(mod)) {
.Int, .ComptimeInt => try sema.errNote(block, operand_src, msg, "use @intFromEnum to cast to '{}'", .{dest_ty.fmt(mod)}),
else => {},
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
},
.Pointer => {
const msg = msg: {
const msg = try sema.errMsg(block, operand_src, "cannot @bitCast from '{}'", .{operand_ty.fmt(mod)});
errdefer msg.destroy(sema.gpa);
switch (dest_ty.zigTypeTag(mod)) {
.Int, .ComptimeInt => try sema.errNote(block, operand_src, msg, "use @intFromPtr to cast to '{}'", .{dest_ty.fmt(mod)}),
.Pointer => try sema.errNote(block, operand_src, msg, "use @ptrCast to cast to '{}'", .{dest_ty.fmt(mod)}),
else => {},
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
},
.Struct, .Union => if (operand_ty.containerLayout(mod) == .auto) {
const container = switch (operand_ty.zigTypeTag(mod)) {
.Struct => "struct",
.Union => "union",
else => unreachable,
};
return sema.fail(block, operand_src, "cannot @bitCast from '{}'; {s} does not have a guaranteed in-memory layout", .{
operand_ty.fmt(mod), container,
});
},
.Array,
.Bool,
.Float,
.Int,
.Vector,
=> {},
}
return sema.bitCast(block, dest_ty, operand, inst_data.src(), operand_src);
}
fn zirFloatCast(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@floatCast");
const dest_scalar_ty = dest_ty.scalarType(mod);
const operand = try sema.resolveInst(extra.rhs);
const operand_ty = sema.typeOf(operand);
const operand_scalar_ty = operand_ty.scalarType(mod);
try sema.checkVectorizableBinaryOperands(block, operand_src, dest_ty, operand_ty, src, operand_src);
const is_vector = dest_ty.zigTypeTag(mod) == .Vector;
const target = mod.getTarget();
const dest_is_comptime_float = switch (dest_scalar_ty.zigTypeTag(mod)) {
.ComptimeFloat => true,
.Float => false,
else => return sema.fail(
block,
src,
"expected float or vector type, found '{}'",
.{dest_ty.fmt(mod)},
),
};
switch (operand_scalar_ty.zigTypeTag(mod)) {
.ComptimeFloat, .Float, .ComptimeInt => {},
else => return sema.fail(
block,
operand_src,
"expected float or vector type, found '{}'",
.{operand_ty.fmt(mod)},
),
}
if (try sema.resolveValue(operand)) |operand_val| {
if (!is_vector) {
return Air.internedToRef((try operand_val.floatCast(dest_ty, mod)).toIntern());
}
const vec_len = operand_ty.vectorLen(mod);
const new_elems = try sema.arena.alloc(InternPool.Index, vec_len);
for (new_elems, 0..) |*new_elem, i| {
const old_elem = try operand_val.elemValue(mod, i);
new_elem.* = (try old_elem.floatCast(dest_scalar_ty, mod)).toIntern();
}
return Air.internedToRef(try mod.intern(.{ .aggregate = .{
.ty = dest_ty.toIntern(),
.storage = .{ .elems = new_elems },
} }));
}
if (dest_is_comptime_float) {
return sema.fail(block, operand_src, "unable to cast runtime value to 'comptime_float'", .{});
}
try sema.requireRuntimeBlock(block, inst_data.src(), operand_src);
const src_bits = operand_scalar_ty.floatBits(target);
const dst_bits = dest_scalar_ty.floatBits(target);
if (dst_bits >= src_bits) {
return sema.coerce(block, dest_ty, operand, operand_src);
}
if (!is_vector) {
return block.addTyOp(.fptrunc, dest_ty, operand);
}
const vec_len = operand_ty.vectorLen(mod);
const new_elems = try sema.arena.alloc(Air.Inst.Ref, vec_len);
for (new_elems, 0..) |*new_elem, i| {
const idx_ref = try mod.intRef(Type.usize, i);
const old_elem = try block.addBinOp(.array_elem_val, operand, idx_ref);
new_elem.* = try block.addTyOp(.fptrunc, dest_scalar_ty, old_elem);
}
return block.addAggregateInit(dest_ty, new_elems);
}
fn zirElemVal(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const array = try sema.resolveInst(extra.lhs);
const elem_index = try sema.resolveInst(extra.rhs);
return sema.elemVal(block, src, array, elem_index, src, false);
}
fn zirElemValNode(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const elem_index_src: LazySrcLoc = .{ .node_offset_array_access_index = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const array = try sema.resolveInst(extra.lhs);
const uncoerced_elem_index = try sema.resolveInst(extra.rhs);
const elem_index = try sema.coerce(block, Type.usize, uncoerced_elem_index, elem_index_src);
return sema.elemVal(block, src, array, elem_index, elem_index_src, true);
}
fn zirElemValImm(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].elem_val_imm;
const array = try sema.resolveInst(inst_data.operand);
const elem_index = try mod.intRef(Type.usize, inst_data.idx);
return sema.elemVal(block, .unneeded, array, elem_index, .unneeded, false);
}
fn zirElemPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const array_ptr = try sema.resolveInst(extra.lhs);
const elem_index = try sema.resolveInst(extra.rhs);
const indexable_ty = sema.typeOf(array_ptr);
if (indexable_ty.zigTypeTag(mod) != .Pointer) {
const capture_src: LazySrcLoc = .{ .for_capture_from_input = inst_data.src_node };
const msg = msg: {
const msg = try sema.errMsg(block, capture_src, "pointer capture of non pointer type '{}'", .{
indexable_ty.fmt(mod),
});
errdefer msg.destroy(sema.gpa);
if (indexable_ty.isIndexable(mod)) {
try sema.errNote(block, src, msg, "consider using '&' here", .{});
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
return sema.elemPtrOneLayerOnly(block, src, array_ptr, elem_index, src, false, false);
}
fn zirElemPtrNode(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const elem_index_src: LazySrcLoc = .{ .node_offset_array_access_index = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const array_ptr = try sema.resolveInst(extra.lhs);
const uncoerced_elem_index = try sema.resolveInst(extra.rhs);
const elem_index = try sema.coerce(block, Type.usize, uncoerced_elem_index, elem_index_src);
return sema.elemPtr(block, src, array_ptr, elem_index, elem_index_src, false, true);
}
fn zirArrayInitElemPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.ElemPtrImm, inst_data.payload_index).data;
const array_ptr = try sema.resolveInst(extra.ptr);
const elem_index = try sema.mod.intRef(Type.usize, extra.index);
const array_ty = sema.typeOf(array_ptr).childType(mod);
switch (array_ty.zigTypeTag(mod)) {
.Array, .Vector => {},
else => if (!array_ty.isTuple(mod)) {
return sema.failWithArrayInitNotSupported(block, src, array_ty);
},
}
return sema.elemPtr(block, src, array_ptr, elem_index, src, true, true);
}
fn zirSliceStart(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.SliceStart, inst_data.payload_index).data;
const array_ptr = try sema.resolveInst(extra.lhs);
const start = try sema.resolveInst(extra.start);
const ptr_src: LazySrcLoc = .{ .node_offset_slice_ptr = inst_data.src_node };
const start_src: LazySrcLoc = .{ .node_offset_slice_start = inst_data.src_node };
const end_src: LazySrcLoc = .{ .node_offset_slice_end = inst_data.src_node };
return sema.analyzeSlice(block, src, array_ptr, start, .none, .none, .unneeded, ptr_src, start_src, end_src, false);
}
fn zirSliceEnd(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.SliceEnd, inst_data.payload_index).data;
const array_ptr = try sema.resolveInst(extra.lhs);
const start = try sema.resolveInst(extra.start);
const end = try sema.resolveInst(extra.end);
const ptr_src: LazySrcLoc = .{ .node_offset_slice_ptr = inst_data.src_node };
const start_src: LazySrcLoc = .{ .node_offset_slice_start = inst_data.src_node };
const end_src: LazySrcLoc = .{ .node_offset_slice_end = inst_data.src_node };
return sema.analyzeSlice(block, src, array_ptr, start, end, .none, .unneeded, ptr_src, start_src, end_src, false);
}
fn zirSliceSentinel(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const sentinel_src: LazySrcLoc = .{ .node_offset_slice_sentinel = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.SliceSentinel, inst_data.payload_index).data;
const array_ptr = try sema.resolveInst(extra.lhs);
const start = try sema.resolveInst(extra.start);
const end: Air.Inst.Ref = if (extra.end == .none) .none else try sema.resolveInst(extra.end);
const sentinel = try sema.resolveInst(extra.sentinel);
const ptr_src: LazySrcLoc = .{ .node_offset_slice_ptr = inst_data.src_node };
const start_src: LazySrcLoc = .{ .node_offset_slice_start = inst_data.src_node };
const end_src: LazySrcLoc = .{ .node_offset_slice_end = inst_data.src_node };
return sema.analyzeSlice(block, src, array_ptr, start, end, sentinel, sentinel_src, ptr_src, start_src, end_src, false);
}
fn zirSliceLength(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.SliceLength, inst_data.payload_index).data;
const array_ptr = try sema.resolveInst(extra.lhs);
const start = try sema.resolveInst(extra.start);
const len = try sema.resolveInst(extra.len);
const sentinel = if (extra.sentinel == .none) .none else try sema.resolveInst(extra.sentinel);
const ptr_src: LazySrcLoc = .{ .node_offset_slice_ptr = inst_data.src_node };
const start_src: LazySrcLoc = .{ .node_offset_slice_start = extra.start_src_node_offset };
const end_src: LazySrcLoc = .{ .node_offset_slice_end = inst_data.src_node };
const sentinel_src: LazySrcLoc = if (sentinel == .none)
.unneeded
else
.{ .node_offset_slice_sentinel = inst_data.src_node };
return sema.analyzeSlice(block, src, array_ptr, start, len, sentinel, sentinel_src, ptr_src, start_src, end_src, true);
}
/// Holds common data used when analyzing or resolving switch prong bodies,
/// including setting up captures.
const SwitchProngAnalysis = struct {
sema: *Sema,
/// The block containing the `switch_block` itself.
parent_block: *Block,
/// The raw switch operand value (*not* the condition). Always defined.
operand: Air.Inst.Ref,
/// May be `undefined` if no prong has a by-ref capture.
operand_ptr: Air.Inst.Ref,
/// The switch condition value. For unions, `operand` is the union and `cond` is its tag.
cond: Air.Inst.Ref,
/// If this switch is on an error set, this is the type to assign to the
/// `else` prong. If `null`, the prong should be unreachable.
else_error_ty: ?Type,
/// The index of the `switch_block` instruction itself.
switch_block_inst: Zir.Inst.Index,
/// The dummy index into which inline tag captures should be placed. May be
/// undefined if no prong has a tag capture.
tag_capture_inst: Zir.Inst.Index,
/// Resolve a switch prong which is determined at comptime to have no peers.
/// Uses `resolveBlockBody`. Sets up captures as needed.
fn resolveProngComptime(
spa: SwitchProngAnalysis,
child_block: *Block,
prong_type: enum { normal, special },
prong_body: []const Zir.Inst.Index,
capture: Zir.Inst.SwitchBlock.ProngInfo.Capture,
/// Must use the `scalar_capture`, `special_capture`, or `multi_capture` union field.
raw_capture_src: Module.SwitchProngSrc,
/// The set of all values which can reach this prong. May be undefined
/// if the prong is special or contains ranges.
case_vals: []const Air.Inst.Ref,
/// The inline capture of this prong. If this is not an inline prong,
/// this is `.none`.
inline_case_capture: Air.Inst.Ref,
/// Whether this prong has an inline tag capture. If `true`, then
/// `inline_case_capture` cannot be `.none`.
has_tag_capture: bool,
merges: *Block.Merges,
) CompileError!Air.Inst.Ref {
const sema = spa.sema;
const src = sema.code.instructions.items(.data)[@intFromEnum(spa.switch_block_inst)].pl_node.src();
if (has_tag_capture) {
const tag_ref = try spa.analyzeTagCapture(child_block, raw_capture_src, inline_case_capture);
sema.inst_map.putAssumeCapacity(spa.tag_capture_inst, tag_ref);
}
defer if (has_tag_capture) assert(sema.inst_map.remove(spa.tag_capture_inst));
switch (capture) {
.none => {
return sema.resolveBlockBody(spa.parent_block, src, child_block, prong_body, spa.switch_block_inst, merges);
},
.by_val, .by_ref => {
const capture_ref = try spa.analyzeCapture(
child_block,
capture == .by_ref,
prong_type == .special,
raw_capture_src,
case_vals,
inline_case_capture,
);
if (sema.typeOf(capture_ref).isNoReturn(sema.mod)) {
// This prong should be unreachable!
return .unreachable_value;
}
sema.inst_map.putAssumeCapacity(spa.switch_block_inst, capture_ref);
defer assert(sema.inst_map.remove(spa.switch_block_inst));
return sema.resolveBlockBody(spa.parent_block, src, child_block, prong_body, spa.switch_block_inst, merges);
},
}
}
/// Analyze a switch prong which may have peers at runtime.
/// Uses `analyzeBodyRuntimeBreak`. Sets up captures as needed.
fn analyzeProngRuntime(
spa: SwitchProngAnalysis,
case_block: *Block,
prong_type: enum { normal, special },
prong_body: []const Zir.Inst.Index,
capture: Zir.Inst.SwitchBlock.ProngInfo.Capture,
/// Must use the `scalar`, `special`, or `multi_capture` union field.
raw_capture_src: Module.SwitchProngSrc,
/// The set of all values which can reach this prong. May be undefined
/// if the prong is special or contains ranges.
case_vals: []const Air.Inst.Ref,
/// The inline capture of this prong. If this is not an inline prong,
/// this is `.none`.
inline_case_capture: Air.Inst.Ref,
/// Whether this prong has an inline tag capture. If `true`, then
/// `inline_case_capture` cannot be `.none`.
has_tag_capture: bool,
) CompileError!void {
const sema = spa.sema;
if (has_tag_capture) {
const tag_ref = try spa.analyzeTagCapture(case_block, raw_capture_src, inline_case_capture);
sema.inst_map.putAssumeCapacity(spa.tag_capture_inst, tag_ref);
}
defer if (has_tag_capture) assert(sema.inst_map.remove(spa.tag_capture_inst));
switch (capture) {
.none => {
return sema.analyzeBodyRuntimeBreak(case_block, prong_body);
},
.by_val, .by_ref => {
const capture_ref = try spa.analyzeCapture(
case_block,
capture == .by_ref,
prong_type == .special,
raw_capture_src,
case_vals,
inline_case_capture,
);
if (sema.typeOf(capture_ref).isNoReturn(sema.mod)) {
// No need to analyze any further, the prong is unreachable
return;
}
sema.inst_map.putAssumeCapacity(spa.switch_block_inst, capture_ref);
defer assert(sema.inst_map.remove(spa.switch_block_inst));
return sema.analyzeBodyRuntimeBreak(case_block, prong_body);
},
}
}
fn analyzeTagCapture(
spa: SwitchProngAnalysis,
block: *Block,
raw_capture_src: Module.SwitchProngSrc,
inline_case_capture: Air.Inst.Ref,
) CompileError!Air.Inst.Ref {
const sema = spa.sema;
const mod = sema.mod;
const operand_ty = sema.typeOf(spa.operand);
if (operand_ty.zigTypeTag(mod) != .Union) {
const zir_datas = sema.code.instructions.items(.data);
const switch_node_offset = zir_datas[@intFromEnum(spa.switch_block_inst)].pl_node.src_node;
const raw_tag_capture_src: Module.SwitchProngSrc = switch (raw_capture_src) {
.scalar_capture => |i| .{ .scalar_tag_capture = i },
.multi_capture => |i| .{ .multi_tag_capture = i },
.special_capture => .special_tag_capture,
else => unreachable,
};
const capture_src = raw_tag_capture_src.resolve(mod, mod.declPtr(block.src_decl), switch_node_offset, .none);
return sema.fail(block, capture_src, "cannot capture tag of non-union type '{}'", .{
operand_ty.fmt(mod),
});
}
assert(inline_case_capture != .none);
return inline_case_capture;
}
fn analyzeCapture(
spa: SwitchProngAnalysis,
block: *Block,
capture_byref: bool,
is_special_prong: bool,
raw_capture_src: Module.SwitchProngSrc,
case_vals: []const Air.Inst.Ref,
inline_case_capture: Air.Inst.Ref,
) CompileError!Air.Inst.Ref {
const sema = spa.sema;
const mod = sema.mod;
const ip = &mod.intern_pool;
const zir_datas = sema.code.instructions.items(.data);
const switch_node_offset = zir_datas[@intFromEnum(spa.switch_block_inst)].pl_node.src_node;
const operand_ty = sema.typeOf(spa.operand);
const operand_ptr_ty = if (capture_byref) sema.typeOf(spa.operand_ptr) else undefined;
const operand_src: LazySrcLoc = .{ .node_offset_switch_operand = switch_node_offset };
if (inline_case_capture != .none) {
const item_val = sema.resolveConstDefinedValue(block, .unneeded, inline_case_capture, undefined) catch unreachable;
if (operand_ty.zigTypeTag(mod) == .Union) {
const field_index: u32 = @intCast(operand_ty.unionTagFieldIndex(item_val, mod).?);
const union_obj = mod.typeToUnion(operand_ty).?;
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[field_index]);
if (capture_byref) {
const ptr_field_ty = try sema.ptrType(.{
.child = field_ty.toIntern(),
.flags = .{
.is_const = !operand_ptr_ty.ptrIsMutable(mod),
.is_volatile = operand_ptr_ty.isVolatilePtr(mod),
.address_space = operand_ptr_ty.ptrAddressSpace(mod),
},
});
if (try sema.resolveDefinedValue(block, operand_src, spa.operand_ptr)) |union_ptr| {
return Air.internedToRef((try mod.intern(.{ .ptr = .{
.ty = ptr_field_ty.toIntern(),
.addr = .{ .field = .{
.base = union_ptr.toIntern(),
.index = field_index,
} },
} })));
}
return block.addStructFieldPtr(spa.operand_ptr, field_index, ptr_field_ty);
} else {
if (try sema.resolveDefinedValue(block, operand_src, spa.operand)) |union_val| {
const tag_and_val = ip.indexToKey(union_val.toIntern()).un;
return Air.internedToRef(tag_and_val.val);
}
return block.addStructFieldVal(spa.operand, field_index, field_ty);
}
} else if (capture_byref) {
return anonDeclRef(sema, item_val.toIntern());
} else {
return inline_case_capture;
}
}
if (is_special_prong) {
if (capture_byref) {
return spa.operand_ptr;
}
switch (operand_ty.zigTypeTag(mod)) {
.ErrorSet => if (spa.else_error_ty) |ty| {
return sema.bitCast(block, ty, spa.operand, operand_src, null);
} else {
try block.addUnreachable(operand_src, false);
return .unreachable_value;
},
else => return spa.operand,
}
}
switch (operand_ty.zigTypeTag(mod)) {
.Union => {
const union_obj = mod.typeToUnion(operand_ty).?;
const first_item_val = sema.resolveConstDefinedValue(block, .unneeded, case_vals[0], undefined) catch unreachable;
const first_field_index: u32 = mod.unionTagFieldIndex(union_obj, first_item_val).?;
const first_field_ty = Type.fromInterned(union_obj.field_types.get(ip)[first_field_index]);
const field_indices = try sema.arena.alloc(u32, case_vals.len);
for (case_vals, field_indices) |item, *field_idx| {
const item_val = sema.resolveConstDefinedValue(block, .unneeded, item, undefined) catch unreachable;
field_idx.* = mod.unionTagFieldIndex(union_obj, item_val).?;
}
// Fast path: if all the operands are the same type already, we don't need to hit
// PTR! This will also allow us to emit simpler code.
const same_types = for (field_indices[1..]) |field_idx| {
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[field_idx]);
if (!field_ty.eql(first_field_ty, sema.mod)) break false;
} else true;
const capture_ty = if (same_types) first_field_ty else capture_ty: {
// We need values to run PTR on, so make a bunch of undef constants.
const dummy_captures = try sema.arena.alloc(Air.Inst.Ref, case_vals.len);
for (dummy_captures, field_indices) |*dummy, field_idx| {
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[field_idx]);
dummy.* = try mod.undefRef(field_ty);
}
const case_srcs = try sema.arena.alloc(?LazySrcLoc, case_vals.len);
@memset(case_srcs, .unneeded);
break :capture_ty sema.resolvePeerTypes(block, .unneeded, dummy_captures, .{ .override = case_srcs }) catch |err| switch (err) {
error.NeededSourceLocation => {
// This must be a multi-prong so this must be a `multi_capture` src
const multi_idx = raw_capture_src.multi_capture;
const src_decl_ptr = sema.mod.declPtr(block.src_decl);
for (case_srcs, 0..) |*case_src, i| {
const raw_case_src: Module.SwitchProngSrc = .{ .multi = .{ .prong = multi_idx, .item = @intCast(i) } };
case_src.* = raw_case_src.resolve(mod, src_decl_ptr, switch_node_offset, .none);
}
const capture_src = raw_capture_src.resolve(mod, src_decl_ptr, switch_node_offset, .none);
_ = sema.resolvePeerTypes(block, capture_src, dummy_captures, .{ .override = case_srcs }) catch |err1| switch (err1) {
error.AnalysisFail => {
const msg = sema.err orelse return error.AnalysisFail;
try sema.reparentOwnedErrorMsg(block, capture_src, msg, "capture group with incompatible types", .{});
return error.AnalysisFail;
},
else => |e| return e,
};
unreachable;
},
else => |e| return e,
};
};
// By-reference captures have some further restrictions which make them easier to emit
if (capture_byref) {
const operand_ptr_info = operand_ptr_ty.ptrInfo(mod);
const capture_ptr_ty = resolve: {
// By-ref captures of hetereogeneous types are only allowed if all field
// pointer types are peer resolvable to each other.
// We need values to run PTR on, so make a bunch of undef constants.
const dummy_captures = try sema.arena.alloc(Air.Inst.Ref, case_vals.len);
for (field_indices, dummy_captures) |field_idx, *dummy| {
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[field_idx]);
const field_ptr_ty = try sema.ptrType(.{
.child = field_ty.toIntern(),
.flags = .{
.is_const = operand_ptr_info.flags.is_const,
.is_volatile = operand_ptr_info.flags.is_volatile,
.address_space = operand_ptr_info.flags.address_space,
.alignment = union_obj.fieldAlign(ip, field_idx),
},
});
dummy.* = try mod.undefRef(field_ptr_ty);
}
const case_srcs = try sema.arena.alloc(?LazySrcLoc, case_vals.len);
@memset(case_srcs, .unneeded);
break :resolve sema.resolvePeerTypes(block, .unneeded, dummy_captures, .{ .override = case_srcs }) catch |err| switch (err) {
error.NeededSourceLocation => {
// This must be a multi-prong so this must be a `multi_capture` src
const multi_idx = raw_capture_src.multi_capture;
const src_decl_ptr = sema.mod.declPtr(block.src_decl);
for (case_srcs, 0..) |*case_src, i| {
const raw_case_src: Module.SwitchProngSrc = .{ .multi = .{ .prong = multi_idx, .item = @intCast(i) } };
case_src.* = raw_case_src.resolve(mod, src_decl_ptr, switch_node_offset, .none);
}
const capture_src = raw_capture_src.resolve(mod, src_decl_ptr, switch_node_offset, .none);
_ = sema.resolvePeerTypes(block, capture_src, dummy_captures, .{ .override = case_srcs }) catch |err1| switch (err1) {
error.AnalysisFail => {
const msg = sema.err orelse return error.AnalysisFail;
try sema.errNote(block, capture_src, msg, "this coercion is only possible when capturing by value", .{});
try sema.reparentOwnedErrorMsg(block, capture_src, msg, "capture group with incompatible types", .{});
return error.AnalysisFail;
},
else => |e| return e,
};
unreachable;
},
else => |e| return e,
};
};
if (try sema.resolveDefinedValue(block, operand_src, spa.operand_ptr)) |op_ptr_val| {
if (op_ptr_val.isUndef(mod)) return mod.undefRef(capture_ptr_ty);
return Air.internedToRef((try mod.intern(.{ .ptr = .{
.ty = capture_ptr_ty.toIntern(),
.addr = .{ .field = .{
.base = op_ptr_val.toIntern(),
.index = first_field_index,
} },
} })));
}
try sema.requireRuntimeBlock(block, operand_src, null);
return block.addStructFieldPtr(spa.operand_ptr, first_field_index, capture_ptr_ty);
}
if (try sema.resolveDefinedValue(block, operand_src, spa.operand)) |operand_val| {
if (operand_val.isUndef(mod)) return mod.undefRef(capture_ty);
const union_val = ip.indexToKey(operand_val.toIntern()).un;
if (Value.fromInterned(union_val.tag).isUndef(mod)) return mod.undefRef(capture_ty);
const uncoerced = Air.internedToRef(union_val.val);
return sema.coerce(block, capture_ty, uncoerced, operand_src);
}
try sema.requireRuntimeBlock(block, operand_src, null);
if (same_types) {
return block.addStructFieldVal(spa.operand, first_field_index, capture_ty);
}
// We may have to emit a switch block which coerces the operand to the capture type.
// If we can, try to avoid that using in-memory coercions.
const first_non_imc = in_mem: {
for (field_indices, 0..) |field_idx, i| {
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[field_idx]);
if (.ok != try sema.coerceInMemoryAllowed(block, capture_ty, field_ty, false, sema.mod.getTarget(), .unneeded, .unneeded)) {
break :in_mem i;
}
}
// All fields are in-memory coercible to the resolved type!
// Just take the first field and bitcast the result.
const uncoerced = try block.addStructFieldVal(spa.operand, first_field_index, first_field_ty);
return block.addBitCast(capture_ty, uncoerced);
};
// By-val capture with heterogeneous types which are not all in-memory coercible to
// the resolved capture type. We finally have to fall back to the ugly method.
// However, let's first track which operands are in-memory coercible. There may well
// be several, and we can squash all of these cases into the same switch prong using
// a simple bitcast. We'll make this the 'else' prong.
var in_mem_coercible = try std.DynamicBitSet.initFull(sema.arena, field_indices.len);
in_mem_coercible.unset(first_non_imc);
{
const next = first_non_imc + 1;
for (field_indices[next..], next..) |field_idx, i| {
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[field_idx]);
if (.ok != try sema.coerceInMemoryAllowed(block, capture_ty, field_ty, false, sema.mod.getTarget(), .unneeded, .unneeded)) {
in_mem_coercible.unset(i);
}
}
}
const capture_block_inst = try block.addInstAsIndex(.{
.tag = .block,
.data = .{
.ty_pl = .{
.ty = Air.internedToRef(capture_ty.toIntern()),
.payload = undefined, // updated below
},
},
});
const prong_count = field_indices.len - in_mem_coercible.count();
const estimated_extra = prong_count * 6; // 2 for Case, 1 item, probably 3 insts
var cases_extra = try std.ArrayList(u32).initCapacity(sema.gpa, estimated_extra);
defer cases_extra.deinit();
{
// Non-bitcast cases
var it = in_mem_coercible.iterator(.{ .kind = .unset });
while (it.next()) |idx| {
var coerce_block = block.makeSubBlock();
defer coerce_block.instructions.deinit(sema.gpa);
const field_idx = field_indices[idx];
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[field_idx]);
const uncoerced = try coerce_block.addStructFieldVal(spa.operand, field_idx, field_ty);
const coerced = sema.coerce(&coerce_block, capture_ty, uncoerced, .unneeded) catch |err| switch (err) {
error.NeededSourceLocation => {
const multi_idx = raw_capture_src.multi_capture;
const src_decl_ptr = sema.mod.declPtr(block.src_decl);
const raw_case_src: Module.SwitchProngSrc = .{ .multi = .{ .prong = multi_idx, .item = @intCast(idx) } };
const case_src = raw_case_src.resolve(mod, src_decl_ptr, switch_node_offset, .none);
_ = try sema.coerce(&coerce_block, capture_ty, uncoerced, case_src);
unreachable;
},
else => |e| return e,
};
_ = try coerce_block.addBr(capture_block_inst, coerced);
try cases_extra.ensureUnusedCapacity(3 + coerce_block.instructions.items.len);
cases_extra.appendAssumeCapacity(1); // items_len
cases_extra.appendAssumeCapacity(@intCast(coerce_block.instructions.items.len)); // body_len
cases_extra.appendAssumeCapacity(@intFromEnum(case_vals[idx])); // item
cases_extra.appendSliceAssumeCapacity(@ptrCast(coerce_block.instructions.items)); // body
}
}
const else_body_len = len: {
// 'else' prong uses a bitcast
var coerce_block = block.makeSubBlock();
defer coerce_block.instructions.deinit(sema.gpa);
const first_imc_item_idx = in_mem_coercible.findFirstSet().?;
const first_imc_field_idx = field_indices[first_imc_item_idx];
const first_imc_field_ty = Type.fromInterned(union_obj.field_types.get(ip)[first_imc_field_idx]);
const uncoerced = try coerce_block.addStructFieldVal(spa.operand, first_imc_field_idx, first_imc_field_ty);
const coerced = try coerce_block.addBitCast(capture_ty, uncoerced);
_ = try coerce_block.addBr(capture_block_inst, coerced);
try cases_extra.appendSlice(@ptrCast(coerce_block.instructions.items));
break :len coerce_block.instructions.items.len;
};
try sema.air_extra.ensureUnusedCapacity(sema.gpa, @typeInfo(Air.SwitchBr).Struct.fields.len +
cases_extra.items.len +
@typeInfo(Air.Block).Struct.fields.len +
1);
const switch_br_inst: u32 = @intCast(sema.air_instructions.len);
try sema.air_instructions.append(sema.gpa, .{
.tag = .switch_br,
.data = .{ .pl_op = .{
.operand = spa.cond,
.payload = sema.addExtraAssumeCapacity(Air.SwitchBr{
.cases_len = @intCast(prong_count),
.else_body_len = @intCast(else_body_len),
}),
} },
});
sema.air_extra.appendSliceAssumeCapacity(cases_extra.items);
// Set up block body
sema.air_instructions.items(.data)[@intFromEnum(capture_block_inst)].ty_pl.payload = sema.addExtraAssumeCapacity(Air.Block{
.body_len = 1,
});
sema.air_extra.appendAssumeCapacity(switch_br_inst);
return capture_block_inst.toRef();
},
.ErrorSet => {
if (capture_byref) {
const capture_src = raw_capture_src.resolve(mod, mod.declPtr(block.src_decl), switch_node_offset, .none);
return sema.fail(
block,
capture_src,
"error set cannot be captured by reference",
.{},
);
}
if (case_vals.len == 1) {
const item_val = sema.resolveConstDefinedValue(block, .unneeded, case_vals[0], undefined) catch unreachable;
const item_ty = try mod.singleErrorSetType(item_val.getErrorName(mod).unwrap().?);
return sema.bitCast(block, item_ty, spa.operand, operand_src, null);
}
var names: InferredErrorSet.NameMap = .{};
try names.ensureUnusedCapacity(sema.arena, case_vals.len);
for (case_vals) |err| {
const err_val = sema.resolveConstDefinedValue(block, .unneeded, err, undefined) catch unreachable;
names.putAssumeCapacityNoClobber(err_val.getErrorName(mod).unwrap().?, {});
}
const error_ty = try mod.errorSetFromUnsortedNames(names.keys());
return sema.bitCast(block, error_ty, spa.operand, operand_src, null);
},
else => {
// In this case the capture value is just the passed-through value
// of the switch condition.
if (capture_byref) {
return spa.operand_ptr;
} else {
return spa.operand;
}
},
}
}
};
fn switchCond(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
operand: Air.Inst.Ref,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const operand_ty = sema.typeOf(operand);
switch (operand_ty.zigTypeTag(mod)) {
.Type,
.Void,
.Bool,
.Int,
.Float,
.ComptimeFloat,
.ComptimeInt,
.EnumLiteral,
.Pointer,
.Fn,
.ErrorSet,
.Enum,
=> {
if (operand_ty.isSlice(mod)) {
return sema.fail(block, src, "switch on type '{}'", .{operand_ty.fmt(mod)});
}
if ((try sema.typeHasOnePossibleValue(operand_ty))) |opv| {
return Air.internedToRef(opv.toIntern());
}
return operand;
},
.Union => {
try sema.resolveTypeFields(operand_ty);
const enum_ty = operand_ty.unionTagType(mod) orelse {
const msg = msg: {
const msg = try sema.errMsg(block, src, "switch on union with no attached enum", .{});
errdefer msg.destroy(sema.gpa);
if (operand_ty.declSrcLocOrNull(mod)) |union_src| {
try mod.errNoteNonLazy(union_src, msg, "consider 'union(enum)' here", .{});
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
};
return sema.unionToTag(block, enum_ty, operand, src);
},
.ErrorUnion,
.NoReturn,
.Array,
.Struct,
.Undefined,
.Null,
.Optional,
.Opaque,
.Vector,
.Frame,
.AnyFrame,
=> return sema.fail(block, src, "switch on type '{}'", .{operand_ty.fmt(mod)}),
}
}
const SwitchErrorSet = std.AutoHashMap(InternPool.NullTerminatedString, Module.SwitchProngSrc);
fn zirSwitchBlockErrUnion(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const gpa = sema.gpa;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const switch_src = inst_data.src();
const switch_src_node_offset = inst_data.src_node;
const switch_operand_src: LazySrcLoc = .{ .node_offset_switch_operand = switch_src_node_offset };
const else_prong_src: LazySrcLoc = .{ .node_offset_switch_special_prong = switch_src_node_offset };
const extra = sema.code.extraData(Zir.Inst.SwitchBlockErrUnion, inst_data.payload_index);
const main_operand_src: LazySrcLoc = .{ .node_offset_if_cond = extra.data.main_src_node_offset };
const main_src: LazySrcLoc = .{ .node_offset_main_token = extra.data.main_src_node_offset };
const raw_operand_val = try sema.resolveInst(extra.data.operand);
// AstGen guarantees that the instruction immediately preceding
// switch_block_err_union is a dbg_stmt
const cond_dbg_node_index: Zir.Inst.Index = @enumFromInt(@intFromEnum(inst) - 1);
var header_extra_index: usize = extra.end;
const scalar_cases_len = extra.data.bits.scalar_cases_len;
const multi_cases_len = if (extra.data.bits.has_multi_cases) blk: {
const multi_cases_len = sema.code.extra[header_extra_index];
header_extra_index += 1;
break :blk multi_cases_len;
} else 0;
const err_capture_inst: Zir.Inst.Index = if (extra.data.bits.any_uses_err_capture) blk: {
const err_capture_inst: Zir.Inst.Index = @enumFromInt(sema.code.extra[header_extra_index]);
header_extra_index += 1;
// SwitchProngAnalysis wants inst_map to have space for the tag capture.
// Note that the normal capture is referred to via the switch block
// index, which there is already necessarily space for.
try sema.inst_map.ensureSpaceForInstructions(gpa, &.{err_capture_inst});
break :blk err_capture_inst;
} else undefined;
var case_vals = try std.ArrayListUnmanaged(Air.Inst.Ref).initCapacity(gpa, scalar_cases_len + 2 * multi_cases_len);
defer case_vals.deinit(gpa);
const NonError = struct {
body: []const Zir.Inst.Index,
end: usize,
capture: Zir.Inst.SwitchBlock.ProngInfo.Capture,
};
const non_error_case: NonError = non_error: {
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[header_extra_index]);
const extra_body_start = header_extra_index + 1;
break :non_error .{
.body = sema.code.bodySlice(extra_body_start, info.body_len),
.end = extra_body_start + info.body_len,
.capture = info.capture,
};
};
const Else = struct {
body: []const Zir.Inst.Index,
end: usize,
is_inline: bool,
has_capture: bool,
};
const else_case: Else = if (!extra.data.bits.has_else) .{
.body = &.{},
.end = non_error_case.end,
.is_inline = false,
.has_capture = false,
} else special: {
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[non_error_case.end]);
const extra_body_start = non_error_case.end + 1;
assert(info.capture != .by_ref);
assert(!info.has_tag_capture);
break :special .{
.body = sema.code.bodySlice(extra_body_start, info.body_len),
.end = extra_body_start + info.body_len,
.is_inline = info.is_inline,
.has_capture = info.capture != .none,
};
};
var seen_errors = SwitchErrorSet.init(gpa);
defer seen_errors.deinit();
const operand_ty = sema.typeOf(raw_operand_val);
const operand_err_set = if (extra.data.bits.payload_is_ref)
operand_ty.childType(mod)
else
operand_ty;
if (operand_err_set.zigTypeTag(mod) != .ErrorUnion) {
return sema.fail(block, switch_src, "expected error union type, found '{}'", .{
operand_ty.fmt(mod),
});
}
const operand_err_set_ty = operand_err_set.errorUnionSet(mod);
const block_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
try sema.air_instructions.append(gpa, .{
.tag = .block,
.data = undefined,
});
var label: Block.Label = .{
.zir_block = inst,
.merges = .{
.src_locs = .{},
.results = .{},
.br_list = .{},
.block_inst = block_inst,
},
};
var child_block: Block = .{
.parent = block,
.sema = sema,
.src_decl = block.src_decl,
.namespace = block.namespace,
.instructions = .{},
.label = &label,
.inlining = block.inlining,
.is_comptime = block.is_comptime,
.comptime_reason = block.comptime_reason,
.is_typeof = block.is_typeof,
.c_import_buf = block.c_import_buf,
.runtime_cond = block.runtime_cond,
.runtime_loop = block.runtime_loop,
.runtime_index = block.runtime_index,
.error_return_trace_index = block.error_return_trace_index,
.want_safety = block.want_safety,
};
const merges = &child_block.label.?.merges;
defer child_block.instructions.deinit(gpa);
defer merges.deinit(gpa);
const resolved_err_set = try sema.resolveInferredErrorSetTy(block, main_src, operand_err_set_ty.toIntern());
if (Type.fromInterned(resolved_err_set).errorSetIsEmpty(mod)) {
return sema.resolveBlockBody(block, main_operand_src, &child_block, non_error_case.body, inst, merges);
}
const else_error_ty: ?Type = try validateErrSetSwitch(
sema,
block,
&seen_errors,
&case_vals,
operand_err_set_ty,
inst_data,
scalar_cases_len,
multi_cases_len,
.{ .body = else_case.body, .end = else_case.end, .src = else_prong_src },
extra.data.bits.has_else,
);
var spa: SwitchProngAnalysis = .{
.sema = sema,
.parent_block = block,
.operand = undefined, // must be set to the unwrapped error code before use
.operand_ptr = .none,
.cond = raw_operand_val,
.else_error_ty = else_error_ty,
.switch_block_inst = inst,
.tag_capture_inst = undefined,
};
if (try sema.resolveDefinedValue(&child_block, main_src, raw_operand_val)) |ov| {
const operand_val = if (extra.data.bits.payload_is_ref)
(try sema.pointerDeref(&child_block, main_src, ov, operand_ty)).?
else
ov;
if (operand_val.errorUnionIsPayload(mod)) {
return sema.resolveBlockBody(block, main_operand_src, &child_block, non_error_case.body, inst, merges);
} else {
const err_val = Value.fromInterned(try mod.intern(.{
.err = .{
.ty = operand_err_set_ty.toIntern(),
.name = operand_val.getErrorName(mod).unwrap().?,
},
}));
spa.operand = if (extra.data.bits.payload_is_ref)
try sema.analyzeErrUnionCodePtr(block, switch_operand_src, raw_operand_val)
else
try sema.analyzeErrUnionCode(block, switch_operand_src, raw_operand_val);
if (extra.data.bits.any_uses_err_capture) {
sema.inst_map.putAssumeCapacity(err_capture_inst, spa.operand);
}
defer if (extra.data.bits.any_uses_err_capture) assert(sema.inst_map.remove(err_capture_inst));
return resolveSwitchComptime(
sema,
spa,
&child_block,
try sema.switchCond(block, switch_operand_src, spa.operand),
err_val,
operand_err_set_ty,
.{
.body = else_case.body,
.end = else_case.end,
.capture = if (else_case.has_capture) .by_val else .none,
.is_inline = else_case.is_inline,
.has_tag_capture = false,
},
case_vals,
scalar_cases_len,
multi_cases_len,
true,
false,
);
}
}
if (scalar_cases_len + multi_cases_len == 0) {
if (else_error_ty) |ty| if (ty.errorSetIsEmpty(mod)) {
return sema.resolveBlockBody(block, main_operand_src, &child_block, non_error_case.body, inst, merges);
};
}
if (child_block.is_comptime) {
_ = try sema.resolveConstDefinedValue(&child_block, main_operand_src, raw_operand_val, .{
.needed_comptime_reason = "condition in comptime switch must be comptime-known",
.block_comptime_reason = child_block.comptime_reason,
});
unreachable;
}
const cond = if (extra.data.bits.payload_is_ref) blk: {
try sema.checkErrorType(block, main_src, sema.typeOf(raw_operand_val).elemType2(mod));
const loaded = try sema.analyzeLoad(block, main_src, raw_operand_val, main_src);
break :blk try sema.analyzeIsNonErr(block, main_src, loaded);
} else blk: {
try sema.checkErrorType(block, main_src, sema.typeOf(raw_operand_val));
break :blk try sema.analyzeIsNonErr(block, main_src, raw_operand_val);
};
var sub_block = child_block.makeSubBlock();
sub_block.runtime_loop = null;
sub_block.runtime_cond = mod.declPtr(child_block.src_decl).toSrcLoc(main_operand_src, mod);
sub_block.runtime_index.increment();
sub_block.need_debug_scope = null; // this body is emitted regardless
defer sub_block.instructions.deinit(gpa);
try sema.analyzeBodyRuntimeBreak(&sub_block, non_error_case.body);
const true_instructions = try sub_block.instructions.toOwnedSlice(gpa);
defer gpa.free(true_instructions);
spa.operand = if (extra.data.bits.payload_is_ref)
try sema.analyzeErrUnionCodePtr(&sub_block, switch_operand_src, raw_operand_val)
else
try sema.analyzeErrUnionCode(&sub_block, switch_operand_src, raw_operand_val);
if (extra.data.bits.any_uses_err_capture) {
sema.inst_map.putAssumeCapacity(err_capture_inst, spa.operand);
}
defer if (extra.data.bits.any_uses_err_capture) assert(sema.inst_map.remove(err_capture_inst));
_ = try sema.analyzeSwitchRuntimeBlock(
spa,
&sub_block,
switch_src,
try sema.switchCond(block, switch_operand_src, spa.operand),
operand_err_set_ty,
switch_operand_src,
case_vals,
.{
.body = else_case.body,
.end = else_case.end,
.capture = if (else_case.has_capture) .by_val else .none,
.is_inline = else_case.is_inline,
.has_tag_capture = false,
},
scalar_cases_len,
multi_cases_len,
false,
undefined,
true,
switch_src_node_offset,
else_prong_src,
undefined,
seen_errors,
undefined,
undefined,
undefined,
cond_dbg_node_index,
true,
);
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.CondBr).Struct.fields.len +
true_instructions.len + sub_block.instructions.items.len);
_ = try child_block.addInst(.{
.tag = .cond_br,
.data = .{ .pl_op = .{
.operand = cond,
.payload = sema.addExtraAssumeCapacity(Air.CondBr{
.then_body_len = @intCast(true_instructions.len),
.else_body_len = @intCast(sub_block.instructions.items.len),
}),
} },
});
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(true_instructions));
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(sub_block.instructions.items));
return sema.resolveAnalyzedBlock(block, main_src, &child_block, merges, false);
}
fn zirSwitchBlock(sema: *Sema, block: *Block, inst: Zir.Inst.Index, operand_is_ref: bool) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const gpa = sema.gpa;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const src_node_offset = inst_data.src_node;
const operand_src: LazySrcLoc = .{ .node_offset_switch_operand = src_node_offset };
const special_prong_src: LazySrcLoc = .{ .node_offset_switch_special_prong = src_node_offset };
const extra = sema.code.extraData(Zir.Inst.SwitchBlock, inst_data.payload_index);
const raw_operand_val: Air.Inst.Ref, const raw_operand_ptr: Air.Inst.Ref = blk: {
const maybe_ptr = try sema.resolveInst(extra.data.operand);
if (operand_is_ref) {
const val = try sema.analyzeLoad(block, src, maybe_ptr, operand_src);
break :blk .{ val, maybe_ptr };
} else {
break :blk .{ maybe_ptr, undefined };
}
};
const operand = try sema.switchCond(block, operand_src, raw_operand_val);
// AstGen guarantees that the instruction immediately preceding
// switch_block(_ref) is a dbg_stmt
const cond_dbg_node_index: Zir.Inst.Index = @enumFromInt(@intFromEnum(inst) - 1);
var header_extra_index: usize = extra.end;
const scalar_cases_len = extra.data.bits.scalar_cases_len;
const multi_cases_len = if (extra.data.bits.has_multi_cases) blk: {
const multi_cases_len = sema.code.extra[header_extra_index];
header_extra_index += 1;
break :blk multi_cases_len;
} else 0;
const tag_capture_inst: Zir.Inst.Index = if (extra.data.bits.any_has_tag_capture) blk: {
const tag_capture_inst: Zir.Inst.Index = @enumFromInt(sema.code.extra[header_extra_index]);
header_extra_index += 1;
// SwitchProngAnalysis wants inst_map to have space for the tag capture.
// Note that the normal capture is referred to via the switch block
// index, which there is already necessarily space for.
try sema.inst_map.ensureSpaceForInstructions(gpa, &.{tag_capture_inst});
break :blk tag_capture_inst;
} else undefined;
var case_vals = try std.ArrayListUnmanaged(Air.Inst.Ref).initCapacity(gpa, scalar_cases_len + 2 * multi_cases_len);
defer case_vals.deinit(gpa);
const special_prong = extra.data.bits.specialProng();
const special: SpecialProng = switch (special_prong) {
.none => .{
.body = &.{},
.end = header_extra_index,
.capture = .none,
.is_inline = false,
.has_tag_capture = false,
},
.under, .@"else" => blk: {
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[header_extra_index]);
const extra_body_start = header_extra_index + 1;
break :blk .{
.body = sema.code.bodySlice(extra_body_start, info.body_len),
.end = extra_body_start + info.body_len,
.capture = info.capture,
.is_inline = info.is_inline,
.has_tag_capture = info.has_tag_capture,
};
},
};
const maybe_union_ty = sema.typeOf(raw_operand_val);
const union_originally = maybe_union_ty.zigTypeTag(mod) == .Union;
// Duplicate checking variables later also used for `inline else`.
var seen_enum_fields: []?Module.SwitchProngSrc = &.{};
var seen_errors = SwitchErrorSet.init(gpa);
var range_set = RangeSet.init(gpa, mod);
var true_count: u8 = 0;
var false_count: u8 = 0;
defer {
range_set.deinit();
gpa.free(seen_enum_fields);
seen_errors.deinit();
}
var empty_enum = false;
const operand_ty = sema.typeOf(operand);
const err_set = operand_ty.zigTypeTag(mod) == .ErrorSet;
var else_error_ty: ?Type = null;
// Validate usage of '_' prongs.
if (special_prong == .under and (!operand_ty.isNonexhaustiveEnum(mod) or union_originally)) {
const msg = msg: {
const msg = try sema.errMsg(
block,
src,
"'_' prong only allowed when switching on non-exhaustive enums",
.{},
);
errdefer msg.destroy(gpa);
try sema.errNote(
block,
special_prong_src,
msg,
"'_' prong here",
.{},
);
try sema.errNote(
block,
src,
msg,
"consider using 'else'",
.{},
);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
// Validate for duplicate items, missing else prong, and invalid range.
switch (operand_ty.zigTypeTag(mod)) {
.Union => unreachable, // handled in `switchCond`
.Enum => {
seen_enum_fields = try gpa.alloc(?Module.SwitchProngSrc, operand_ty.enumFieldCount(mod));
empty_enum = seen_enum_fields.len == 0 and !operand_ty.isNonexhaustiveEnum(mod);
@memset(seen_enum_fields, null);
// `range_set` is used for non-exhaustive enum values that do not correspond to any tags.
var extra_index: usize = special.end;
{
var scalar_i: u32 = 0;
while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
const item_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
extra_index += 1;
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
extra_index += 1 + info.body_len;
case_vals.appendAssumeCapacity(try sema.validateSwitchItemEnum(
block,
seen_enum_fields,
&range_set,
item_ref,
operand_ty,
src_node_offset,
.{ .scalar = scalar_i },
));
}
}
{
var multi_i: u32 = 0;
while (multi_i < multi_cases_len) : (multi_i += 1) {
const items_len = sema.code.extra[extra_index];
extra_index += 1;
const ranges_len = sema.code.extra[extra_index];
extra_index += 1;
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
extra_index += 1;
const items = sema.code.refSlice(extra_index, items_len);
extra_index += items_len + info.body_len;
try case_vals.ensureUnusedCapacity(gpa, items.len);
for (items, 0..) |item_ref, item_i| {
case_vals.appendAssumeCapacity(try sema.validateSwitchItemEnum(
block,
seen_enum_fields,
&range_set,
item_ref,
operand_ty,
src_node_offset,
.{ .multi = .{ .prong = multi_i, .item = @intCast(item_i) } },
));
}
try sema.validateSwitchNoRange(block, ranges_len, operand_ty, src_node_offset);
}
}
const all_tags_handled = for (seen_enum_fields) |seen_src| {
if (seen_src == null) break false;
} else true;
if (special_prong == .@"else") {
if (all_tags_handled and !operand_ty.isNonexhaustiveEnum(mod)) return sema.fail(
block,
special_prong_src,
"unreachable else prong; all cases already handled",
.{},
);
} else if (!all_tags_handled) {
const msg = msg: {
const msg = try sema.errMsg(
block,
src,
"switch must handle all possibilities",
.{},
);
errdefer msg.destroy(sema.gpa);
for (seen_enum_fields, 0..) |seen_src, i| {
if (seen_src != null) continue;
const field_name = operand_ty.enumFieldName(i, mod);
try sema.addFieldErrNote(
operand_ty,
i,
msg,
"unhandled enumeration value: '{}'",
.{field_name.fmt(&mod.intern_pool)},
);
}
try mod.errNoteNonLazy(
operand_ty.declSrcLoc(mod),
msg,
"enum '{}' declared here",
.{operand_ty.fmt(mod)},
);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
} else if (special_prong == .none and operand_ty.isNonexhaustiveEnum(mod) and !union_originally) {
return sema.fail(
block,
src,
"switch on non-exhaustive enum must include 'else' or '_' prong",
.{},
);
}
},
.ErrorSet => else_error_ty = try validateErrSetSwitch(
sema,
block,
&seen_errors,
&case_vals,
operand_ty,
inst_data,
scalar_cases_len,
multi_cases_len,
.{ .body = special.body, .end = special.end, .src = special_prong_src },
special_prong == .@"else",
),
.Int, .ComptimeInt => {
var extra_index: usize = special.end;
{
var scalar_i: u32 = 0;
while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
const item_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
extra_index += 1;
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
extra_index += 1 + info.body_len;
case_vals.appendAssumeCapacity(try sema.validateSwitchItemInt(
block,
&range_set,
item_ref,
operand_ty,
src_node_offset,
.{ .scalar = scalar_i },
));
}
}
{
var multi_i: u32 = 0;
while (multi_i < multi_cases_len) : (multi_i += 1) {
const items_len = sema.code.extra[extra_index];
extra_index += 1;
const ranges_len = sema.code.extra[extra_index];
extra_index += 1;
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
extra_index += 1;
const items = sema.code.refSlice(extra_index, items_len);
extra_index += items_len;
try case_vals.ensureUnusedCapacity(gpa, items.len);
for (items, 0..) |item_ref, item_i| {
case_vals.appendAssumeCapacity(try sema.validateSwitchItemInt(
block,
&range_set,
item_ref,
operand_ty,
src_node_offset,
.{ .multi = .{ .prong = multi_i, .item = @intCast(item_i) } },
));
}
try case_vals.ensureUnusedCapacity(gpa, 2 * ranges_len);
var range_i: u32 = 0;
while (range_i < ranges_len) : (range_i += 1) {
const item_first: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
extra_index += 1;
const item_last: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
extra_index += 1;
const vals = try sema.validateSwitchRange(
block,
&range_set,
item_first,
item_last,
operand_ty,
src_node_offset,
.{ .range = .{ .prong = multi_i, .item = range_i } },
);
case_vals.appendAssumeCapacity(vals[0]);
case_vals.appendAssumeCapacity(vals[1]);
}
extra_index += info.body_len;
}
}
check_range: {
if (operand_ty.zigTypeTag(mod) == .Int) {
const min_int = try operand_ty.minInt(mod, operand_ty);
const max_int = try operand_ty.maxInt(mod, operand_ty);
if (try range_set.spans(min_int.toIntern(), max_int.toIntern())) {
if (special_prong == .@"else") {
return sema.fail(
block,
special_prong_src,
"unreachable else prong; all cases already handled",
.{},
);
}
break :check_range;
}
}
if (special_prong != .@"else") {
return sema.fail(
block,
src,
"switch must handle all possibilities",
.{},
);
}
}
},
.Bool => {
var extra_index: usize = special.end;
{
var scalar_i: u32 = 0;
while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
const item_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
extra_index += 1;
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
extra_index += 1 + info.body_len;
case_vals.appendAssumeCapacity(try sema.validateSwitchItemBool(
block,
&true_count,
&false_count,
item_ref,
src_node_offset,
.{ .scalar = scalar_i },
));
}
}
{
var multi_i: u32 = 0;
while (multi_i < multi_cases_len) : (multi_i += 1) {
const items_len = sema.code.extra[extra_index];
extra_index += 1;
const ranges_len = sema.code.extra[extra_index];
extra_index += 1;
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
extra_index += 1;
const items = sema.code.refSlice(extra_index, items_len);
extra_index += items_len + info.body_len;
try case_vals.ensureUnusedCapacity(gpa, items.len);
for (items, 0..) |item_ref, item_i| {
case_vals.appendAssumeCapacity(try sema.validateSwitchItemBool(
block,
&true_count,
&false_count,
item_ref,
src_node_offset,
.{ .multi = .{ .prong = multi_i, .item = @intCast(item_i) } },
));
}
try sema.validateSwitchNoRange(block, ranges_len, operand_ty, src_node_offset);
}
}
switch (special_prong) {
.@"else" => {
if (true_count + false_count == 2) {
return sema.fail(
block,
special_prong_src,
"unreachable else prong; all cases already handled",
.{},
);
}
},
.under, .none => {
if (true_count + false_count < 2) {
return sema.fail(
block,
src,
"switch must handle all possibilities",
.{},
);
}
},
}
},
.EnumLiteral, .Void, .Fn, .Pointer, .Type => {
if (special_prong != .@"else") {
return sema.fail(
block,
src,
"else prong required when switching on type '{}'",
.{operand_ty.fmt(mod)},
);
}
var seen_values = ValueSrcMap{};
defer seen_values.deinit(gpa);
var extra_index: usize = special.end;
{
var scalar_i: u32 = 0;
while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
const item_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
extra_index += 1;
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
extra_index += 1;
extra_index += info.body_len;
case_vals.appendAssumeCapacity(try sema.validateSwitchItemSparse(
block,
&seen_values,
item_ref,
operand_ty,
src_node_offset,
.{ .scalar = scalar_i },
));
}
}
{
var multi_i: u32 = 0;
while (multi_i < multi_cases_len) : (multi_i += 1) {
const items_len = sema.code.extra[extra_index];
extra_index += 1;
const ranges_len = sema.code.extra[extra_index];
extra_index += 1;
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
extra_index += 1;
const items = sema.code.refSlice(extra_index, items_len);
extra_index += items_len + info.body_len;
try case_vals.ensureUnusedCapacity(gpa, items.len);
for (items, 0..) |item_ref, item_i| {
case_vals.appendAssumeCapacity(try sema.validateSwitchItemSparse(
block,
&seen_values,
item_ref,
operand_ty,
src_node_offset,
.{ .multi = .{ .prong = multi_i, .item = @intCast(item_i) } },
));
}
try sema.validateSwitchNoRange(block, ranges_len, operand_ty, src_node_offset);
}
}
},
.ErrorUnion,
.NoReturn,
.Array,
.Struct,
.Undefined,
.Null,
.Optional,
.Opaque,
.Vector,
.Frame,
.AnyFrame,
.ComptimeFloat,
.Float,
=> return sema.fail(block, operand_src, "invalid switch operand type '{}'", .{
operand_ty.fmt(mod),
}),
}
const spa: SwitchProngAnalysis = .{
.sema = sema,
.parent_block = block,
.operand = raw_operand_val,
.operand_ptr = raw_operand_ptr,
.cond = operand,
.else_error_ty = else_error_ty,
.switch_block_inst = inst,
.tag_capture_inst = tag_capture_inst,
};
const block_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
try sema.air_instructions.append(gpa, .{
.tag = .block,
.data = undefined,
});
var label: Block.Label = .{
.zir_block = inst,
.merges = .{
.src_locs = .{},
.results = .{},
.br_list = .{},
.block_inst = block_inst,
},
};
var child_block: Block = .{
.parent = block,
.sema = sema,
.src_decl = block.src_decl,
.namespace = block.namespace,
.instructions = .{},
.label = &label,
.inlining = block.inlining,
.is_comptime = block.is_comptime,
.comptime_reason = block.comptime_reason,
.is_typeof = block.is_typeof,
.c_import_buf = block.c_import_buf,
.runtime_cond = block.runtime_cond,
.runtime_loop = block.runtime_loop,
.runtime_index = block.runtime_index,
.want_safety = block.want_safety,
.error_return_trace_index = block.error_return_trace_index,
};
const merges = &child_block.label.?.merges;
defer child_block.instructions.deinit(gpa);
defer merges.deinit(gpa);
if (try sema.resolveDefinedValue(&child_block, src, operand)) |operand_val| {
return resolveSwitchComptime(
sema,
spa,
&child_block,
operand,
operand_val,
operand_ty,
special,
case_vals,
scalar_cases_len,
multi_cases_len,
err_set,
empty_enum,
);
}
if (scalar_cases_len + multi_cases_len == 0 and !special.is_inline) {
if (empty_enum) {
return .void_value;
}
if (special_prong == .none) {
return sema.fail(block, src, "switch must handle all possibilities", .{});
}
if (err_set and try sema.maybeErrorUnwrap(block, special.body, operand, operand_src, false)) {
return .unreachable_value;
}
if (mod.backendSupportsFeature(.is_named_enum_value) and block.wantSafety() and operand_ty.zigTypeTag(mod) == .Enum and
(!operand_ty.isNonexhaustiveEnum(mod) or union_originally))
{
try sema.zirDbgStmt(block, cond_dbg_node_index);
const ok = try block.addUnOp(.is_named_enum_value, operand);
try sema.addSafetyCheck(block, src, ok, .corrupt_switch);
}
return spa.resolveProngComptime(
&child_block,
.special,
special.body,
special.capture,
.special_capture,
undefined, // case_vals may be undefined for special prongs
.none,
false,
merges,
);
}
if (child_block.is_comptime) {
_ = try sema.resolveConstDefinedValue(&child_block, operand_src, operand, .{
.needed_comptime_reason = "condition in comptime switch must be comptime-known",
.block_comptime_reason = child_block.comptime_reason,
});
unreachable;
}
_ = try sema.analyzeSwitchRuntimeBlock(
spa,
&child_block,
src,
operand,
operand_ty,
operand_src,
case_vals,
special,
scalar_cases_len,
multi_cases_len,
union_originally,
maybe_union_ty,
err_set,
src_node_offset,
special_prong_src,
seen_enum_fields,
seen_errors,
range_set,
true_count,
false_count,
cond_dbg_node_index,
false,
);
return sema.resolveAnalyzedBlock(block, src, &child_block, merges, false);
}
const SpecialProng = struct {
body: []const Zir.Inst.Index,
end: usize,
capture: Zir.Inst.SwitchBlock.ProngInfo.Capture,
is_inline: bool,
has_tag_capture: bool,
};
fn analyzeSwitchRuntimeBlock(
sema: *Sema,
spa: SwitchProngAnalysis,
child_block: *Block,
src: LazySrcLoc,
operand: Air.Inst.Ref,
operand_ty: Type,
operand_src: LazySrcLoc,
case_vals: std.ArrayListUnmanaged(Air.Inst.Ref),
special: SpecialProng,
scalar_cases_len: usize,
multi_cases_len: usize,
union_originally: bool,
maybe_union_ty: Type,
err_set: bool,
src_node_offset: i32,
special_prong_src: LazySrcLoc,
seen_enum_fields: []?Module.SwitchProngSrc,
seen_errors: SwitchErrorSet,
range_set: RangeSet,
true_count: u8,
false_count: u8,
cond_dbg_node_index: Zir.Inst.Index,
allow_err_code_unwrap: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const block = child_block.parent.?;
const estimated_cases_extra = (scalar_cases_len + multi_cases_len) *
@typeInfo(Air.SwitchBr.Case).Struct.fields.len + 2;
var cases_extra = try std.ArrayListUnmanaged(u32).initCapacity(gpa, estimated_cases_extra);
defer cases_extra.deinit(gpa);
var case_block = child_block.makeSubBlock();
case_block.runtime_loop = null;
case_block.runtime_cond = mod.declPtr(child_block.src_decl).toSrcLoc(operand_src, mod);
case_block.runtime_index.increment();
case_block.need_debug_scope = null; // this body is emitted regardless
defer case_block.instructions.deinit(gpa);
var extra_index: usize = special.end;
var scalar_i: usize = 0;
while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
extra_index += 1;
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
extra_index += 1;
const body = sema.code.bodySlice(extra_index, info.body_len);
extra_index += info.body_len;
case_block.instructions.shrinkRetainingCapacity(0);
case_block.error_return_trace_index = child_block.error_return_trace_index;
const item = case_vals.items[scalar_i];
// `item` is already guaranteed to be constant known.
const analyze_body = if (union_originally) blk: {
const unresolved_item_val = sema.resolveConstDefinedValue(block, .unneeded, item, undefined) catch unreachable;
const item_val = sema.resolveLazyValue(unresolved_item_val) catch unreachable;
const field_ty = maybe_union_ty.unionFieldType(item_val, mod).?;
break :blk field_ty.zigTypeTag(mod) != .NoReturn;
} else true;
if (err_set and try sema.maybeErrorUnwrap(&case_block, body, operand, operand_src, allow_err_code_unwrap)) {
// nothing to do here
} else if (analyze_body) {
try spa.analyzeProngRuntime(
&case_block,
.normal,
body,
info.capture,
.{ .scalar_capture = @intCast(scalar_i) },
&.{item},
if (info.is_inline) item else .none,
info.has_tag_capture,
);
} else {
_ = try case_block.addNoOp(.unreach);
}
try cases_extra.ensureUnusedCapacity(gpa, 3 + case_block.instructions.items.len);
cases_extra.appendAssumeCapacity(1); // items_len
cases_extra.appendAssumeCapacity(@intCast(case_block.instructions.items.len));
cases_extra.appendAssumeCapacity(@intFromEnum(item));
cases_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
}
var is_first = true;
var prev_cond_br: Air.Inst.Index = undefined;
var first_else_body: []const Air.Inst.Index = &.{};
defer gpa.free(first_else_body);
var prev_then_body: []const Air.Inst.Index = &.{};
defer gpa.free(prev_then_body);
var cases_len = scalar_cases_len;
var case_val_idx: usize = scalar_cases_len;
var multi_i: u32 = 0;
while (multi_i < multi_cases_len) : (multi_i += 1) {
const items_len = sema.code.extra[extra_index];
extra_index += 1;
const ranges_len = sema.code.extra[extra_index];
extra_index += 1;
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
extra_index += 1 + items_len;
const items = case_vals.items[case_val_idx..][0..items_len];
case_val_idx += items_len;
case_block.instructions.shrinkRetainingCapacity(0);
case_block.error_return_trace_index = child_block.error_return_trace_index;
// Generate all possible cases as scalar prongs.
if (info.is_inline) {
const body_start = extra_index + 2 * ranges_len;
const body = sema.code.bodySlice(body_start, info.body_len);
var emit_bb = false;
var range_i: u32 = 0;
while (range_i < ranges_len) : (range_i += 1) {
const range_items = case_vals.items[case_val_idx..][0..2];
extra_index += 2;
case_val_idx += 2;
const item_first_ref = range_items[0];
const item_last_ref = range_items[1];
var item = sema.resolveConstDefinedValue(block, .unneeded, item_first_ref, undefined) catch unreachable;
const item_last = sema.resolveConstDefinedValue(block, .unneeded, item_last_ref, undefined) catch unreachable;
while (item.compareScalar(.lte, item_last, operand_ty, mod)) : ({
// Previous validation has resolved any possible lazy values.
item = sema.intAddScalar(item, try mod.intValue(operand_ty, 1), operand_ty) catch |err| switch (err) {
error.Overflow => unreachable,
else => |e| return e,
};
}) {
cases_len += 1;
const item_ref = Air.internedToRef(item.toIntern());
case_block.instructions.shrinkRetainingCapacity(0);
case_block.error_return_trace_index = child_block.error_return_trace_index;
if (emit_bb) sema.emitBackwardBranch(block, .unneeded) catch |err| switch (err) {
error.NeededSourceLocation => {
const case_src = Module.SwitchProngSrc{
.range = .{ .prong = multi_i, .item = range_i },
};
const decl = mod.declPtr(case_block.src_decl);
try sema.emitBackwardBranch(block, case_src.resolve(mod, decl, src_node_offset, .none));
unreachable;
},
else => return err,
};
emit_bb = true;
try spa.analyzeProngRuntime(
&case_block,
.normal,
body,
info.capture,
.{ .multi_capture = multi_i },
undefined, // case_vals may be undefined for ranges
item_ref,
info.has_tag_capture,
);
try cases_extra.ensureUnusedCapacity(gpa, 3 + case_block.instructions.items.len);
cases_extra.appendAssumeCapacity(1); // items_len
cases_extra.appendAssumeCapacity(@intCast(case_block.instructions.items.len));
cases_extra.appendAssumeCapacity(@intFromEnum(item_ref));
cases_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
if (item.compareScalar(.eq, item_last, operand_ty, mod)) break;
}
}
for (items, 0..) |item, item_i| {
cases_len += 1;
case_block.instructions.shrinkRetainingCapacity(0);
case_block.error_return_trace_index = child_block.error_return_trace_index;
const analyze_body = if (union_originally) blk: {
const item_val = sema.resolveConstDefinedValue(block, .unneeded, item, undefined) catch unreachable;
const field_ty = maybe_union_ty.unionFieldType(item_val, mod).?;
break :blk field_ty.zigTypeTag(mod) != .NoReturn;
} else true;
if (emit_bb) sema.emitBackwardBranch(block, .unneeded) catch |err| switch (err) {
error.NeededSourceLocation => {
const case_src = Module.SwitchProngSrc{
.multi = .{ .prong = multi_i, .item = @intCast(item_i) },
};
const decl = mod.declPtr(case_block.src_decl);
try sema.emitBackwardBranch(block, case_src.resolve(mod, decl, src_node_offset, .none));
unreachable;
},
else => return err,
};
emit_bb = true;
if (analyze_body) {
try spa.analyzeProngRuntime(
&case_block,
.normal,
body,
info.capture,
.{ .multi_capture = multi_i },
&.{item},
item,
info.has_tag_capture,
);
} else {
_ = try case_block.addNoOp(.unreach);
}
try cases_extra.ensureUnusedCapacity(gpa, 3 + case_block.instructions.items.len);
cases_extra.appendAssumeCapacity(1); // items_len
cases_extra.appendAssumeCapacity(@intCast(case_block.instructions.items.len));
cases_extra.appendAssumeCapacity(@intFromEnum(item));
cases_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
}
extra_index += info.body_len;
continue;
}
var any_ok: Air.Inst.Ref = .none;
// If there are any ranges, we have to put all the items into the
// else prong. Otherwise, we can take advantage of multiple items
// mapping to the same body.
if (ranges_len == 0) {
cases_len += 1;
const analyze_body = if (union_originally)
for (items) |item| {
const item_val = sema.resolveConstDefinedValue(block, .unneeded, item, undefined) catch unreachable;
const field_ty = maybe_union_ty.unionFieldType(item_val, mod).?;
if (field_ty.zigTypeTag(mod) != .NoReturn) break true;
} else false
else
true;
const body = sema.code.bodySlice(extra_index, info.body_len);
extra_index += info.body_len;
if (err_set and try sema.maybeErrorUnwrap(&case_block, body, operand, operand_src, allow_err_code_unwrap)) {
// nothing to do here
} else if (analyze_body) {
try spa.analyzeProngRuntime(
&case_block,
.normal,
body,
info.capture,
.{ .multi_capture = multi_i },
items,
.none,
false,
);
} else {
_ = try case_block.addNoOp(.unreach);
}
try cases_extra.ensureUnusedCapacity(gpa, 2 + items.len +
case_block.instructions.items.len);
cases_extra.appendAssumeCapacity(@intCast(items.len));
cases_extra.appendAssumeCapacity(@intCast(case_block.instructions.items.len));
for (items) |item| {
cases_extra.appendAssumeCapacity(@intFromEnum(item));
}
cases_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
} else {
for (items) |item| {
const cmp_ok = try case_block.addBinOp(if (case_block.float_mode == .optimized) .cmp_eq_optimized else .cmp_eq, operand, item);
if (any_ok != .none) {
any_ok = try case_block.addBinOp(.bool_or, any_ok, cmp_ok);
} else {
any_ok = cmp_ok;
}
}
var range_i: usize = 0;
while (range_i < ranges_len) : (range_i += 1) {
const range_items = case_vals.items[case_val_idx..][0..2];
extra_index += 2;
case_val_idx += 2;
const item_first = range_items[0];
const item_last = range_items[1];
// operand >= first and operand <= last
const range_first_ok = try case_block.addBinOp(
if (case_block.float_mode == .optimized) .cmp_gte_optimized else .cmp_gte,
operand,
item_first,
);
const range_last_ok = try case_block.addBinOp(
if (case_block.float_mode == .optimized) .cmp_lte_optimized else .cmp_lte,
operand,
item_last,
);
const range_ok = try case_block.addBinOp(
.bool_and,
range_first_ok,
range_last_ok,
);
if (any_ok != .none) {
any_ok = try case_block.addBinOp(.bool_or, any_ok, range_ok);
} else {
any_ok = range_ok;
}
}
const new_cond_br = try case_block.addInstAsIndex(.{ .tag = .cond_br, .data = .{
.pl_op = .{
.operand = any_ok,
.payload = undefined,
},
} });
var cond_body = try case_block.instructions.toOwnedSlice(gpa);
defer gpa.free(cond_body);
case_block.instructions.shrinkRetainingCapacity(0);
case_block.error_return_trace_index = child_block.error_return_trace_index;
const body = sema.code.bodySlice(extra_index, info.body_len);
extra_index += info.body_len;
if (err_set and try sema.maybeErrorUnwrap(&case_block, body, operand, operand_src, allow_err_code_unwrap)) {
// nothing to do here
} else {
try spa.analyzeProngRuntime(
&case_block,
.normal,
body,
info.capture,
.{ .multi_capture = multi_i },
items,
.none,
false,
);
}
if (is_first) {
is_first = false;
first_else_body = cond_body;
cond_body = &.{};
} else {
try sema.air_extra.ensureUnusedCapacity(
gpa,
@typeInfo(Air.CondBr).Struct.fields.len + prev_then_body.len + cond_body.len,
);
sema.air_instructions.items(.data)[@intFromEnum(prev_cond_br)].pl_op.payload =
sema.addExtraAssumeCapacity(Air.CondBr{
.then_body_len = @intCast(prev_then_body.len),
.else_body_len = @intCast(cond_body.len),
});
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(prev_then_body));
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(cond_body));
}
gpa.free(prev_then_body);
prev_then_body = try case_block.instructions.toOwnedSlice(gpa);
prev_cond_br = new_cond_br;
}
}
var final_else_body: []const Air.Inst.Index = &.{};
if (special.body.len != 0 or !is_first or case_block.wantSafety()) {
var emit_bb = false;
if (special.is_inline) switch (operand_ty.zigTypeTag(mod)) {
.Enum => {
if (operand_ty.isNonexhaustiveEnum(mod) and !union_originally) {
return sema.fail(block, special_prong_src, "cannot enumerate values of type '{}' for 'inline else'", .{
operand_ty.fmt(mod),
});
}
for (seen_enum_fields, 0..) |f, i| {
if (f != null) continue;
cases_len += 1;
const item_val = try mod.enumValueFieldIndex(operand_ty, @intCast(i));
const item_ref = Air.internedToRef(item_val.toIntern());
case_block.instructions.shrinkRetainingCapacity(0);
case_block.error_return_trace_index = child_block.error_return_trace_index;
const analyze_body = if (union_originally) blk: {
const field_ty = maybe_union_ty.unionFieldType(item_val, mod).?;
break :blk field_ty.zigTypeTag(mod) != .NoReturn;
} else true;
if (emit_bb) try sema.emitBackwardBranch(block, special_prong_src);
emit_bb = true;
if (analyze_body) {
try spa.analyzeProngRuntime(
&case_block,
.special,
special.body,
special.capture,
.special_capture,
&.{item_ref},
item_ref,
special.has_tag_capture,
);
} else {
_ = try case_block.addNoOp(.unreach);
}
try cases_extra.ensureUnusedCapacity(gpa, 3 + case_block.instructions.items.len);
cases_extra.appendAssumeCapacity(1); // items_len
cases_extra.appendAssumeCapacity(@intCast(case_block.instructions.items.len));
cases_extra.appendAssumeCapacity(@intFromEnum(item_ref));
cases_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
}
},
.ErrorSet => {
if (operand_ty.isAnyError(mod)) {
return sema.fail(block, special_prong_src, "cannot enumerate values of type '{}' for 'inline else'", .{
operand_ty.fmt(mod),
});
}
const error_names = operand_ty.errorSetNames(mod);
for (0..error_names.len) |name_index| {
const error_name = error_names.get(ip)[name_index];
if (seen_errors.contains(error_name)) continue;
cases_len += 1;
const item_val = try mod.intern(.{ .err = .{
.ty = operand_ty.toIntern(),
.name = error_name,
} });
const item_ref = Air.internedToRef(item_val);
case_block.instructions.shrinkRetainingCapacity(0);
case_block.error_return_trace_index = child_block.error_return_trace_index;
if (emit_bb) try sema.emitBackwardBranch(block, special_prong_src);
emit_bb = true;
try spa.analyzeProngRuntime(
&case_block,
.special,
special.body,
special.capture,
.special_capture,
&.{item_ref},
item_ref,
special.has_tag_capture,
);
try cases_extra.ensureUnusedCapacity(gpa, 3 + case_block.instructions.items.len);
cases_extra.appendAssumeCapacity(1); // items_len
cases_extra.appendAssumeCapacity(@intCast(case_block.instructions.items.len));
cases_extra.appendAssumeCapacity(@intFromEnum(item_ref));
cases_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
}
},
.Int => {
var it = try RangeSetUnhandledIterator.init(sema, operand_ty, range_set);
while (try it.next()) |cur| {
cases_len += 1;
const item_ref = Air.internedToRef(cur);
case_block.instructions.shrinkRetainingCapacity(0);
case_block.error_return_trace_index = child_block.error_return_trace_index;
if (emit_bb) try sema.emitBackwardBranch(block, special_prong_src);
emit_bb = true;
try spa.analyzeProngRuntime(
&case_block,
.special,
special.body,
special.capture,
.special_capture,
&.{item_ref},
item_ref,
special.has_tag_capture,
);
try cases_extra.ensureUnusedCapacity(gpa, 3 + case_block.instructions.items.len);
cases_extra.appendAssumeCapacity(1); // items_len
cases_extra.appendAssumeCapacity(@intCast(case_block.instructions.items.len));
cases_extra.appendAssumeCapacity(@intFromEnum(item_ref));
cases_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
}
},
.Bool => {
if (true_count == 0) {
cases_len += 1;
case_block.instructions.shrinkRetainingCapacity(0);
case_block.error_return_trace_index = child_block.error_return_trace_index;
if (emit_bb) try sema.emitBackwardBranch(block, special_prong_src);
emit_bb = true;
try spa.analyzeProngRuntime(
&case_block,
.special,
special.body,
special.capture,
.special_capture,
&.{.bool_true},
.bool_true,
special.has_tag_capture,
);
try cases_extra.ensureUnusedCapacity(gpa, 3 + case_block.instructions.items.len);
cases_extra.appendAssumeCapacity(1); // items_len
cases_extra.appendAssumeCapacity(@intCast(case_block.instructions.items.len));
cases_extra.appendAssumeCapacity(@intFromEnum(Air.Inst.Ref.bool_true));
cases_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
}
if (false_count == 0) {
cases_len += 1;
case_block.instructions.shrinkRetainingCapacity(0);
case_block.error_return_trace_index = child_block.error_return_trace_index;
if (emit_bb) try sema.emitBackwardBranch(block, special_prong_src);
emit_bb = true;
try spa.analyzeProngRuntime(
&case_block,
.special,
special.body,
special.capture,
.special_capture,
&.{.bool_false},
.bool_false,
special.has_tag_capture,
);
try cases_extra.ensureUnusedCapacity(gpa, 3 + case_block.instructions.items.len);
cases_extra.appendAssumeCapacity(1); // items_len
cases_extra.appendAssumeCapacity(@intCast(case_block.instructions.items.len));
cases_extra.appendAssumeCapacity(@intFromEnum(Air.Inst.Ref.bool_false));
cases_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
}
},
else => return sema.fail(block, special_prong_src, "cannot enumerate values of type '{}' for 'inline else'", .{
operand_ty.fmt(mod),
}),
};
case_block.instructions.shrinkRetainingCapacity(0);
case_block.error_return_trace_index = child_block.error_return_trace_index;
if (mod.backendSupportsFeature(.is_named_enum_value) and
special.body.len != 0 and block.wantSafety() and
operand_ty.zigTypeTag(mod) == .Enum and
(!operand_ty.isNonexhaustiveEnum(mod) or union_originally))
{
try sema.zirDbgStmt(&case_block, cond_dbg_node_index);
const ok = try case_block.addUnOp(.is_named_enum_value, operand);
try sema.addSafetyCheck(&case_block, src, ok, .corrupt_switch);
}
const analyze_body = if (union_originally and !special.is_inline)
for (seen_enum_fields, 0..) |seen_field, index| {
if (seen_field != null) continue;
const union_obj = mod.typeToUnion(maybe_union_ty).?;
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[index]);
if (field_ty.zigTypeTag(mod) != .NoReturn) break true;
} else false
else
true;
if (special.body.len != 0 and err_set and
try sema.maybeErrorUnwrap(&case_block, special.body, operand, operand_src, allow_err_code_unwrap))
{
// nothing to do here
} else if (special.body.len != 0 and analyze_body and !special.is_inline) {
try spa.analyzeProngRuntime(
&case_block,
.special,
special.body,
special.capture,
.special_capture,
undefined, // case_vals may be undefined for special prongs
.none,
false,
);
} else {
// We still need a terminator in this block, but we have proven
// that it is unreachable.
if (case_block.wantSafety()) {
try sema.zirDbgStmt(&case_block, cond_dbg_node_index);
try sema.safetyPanic(&case_block, src, .corrupt_switch);
} else {
_ = try case_block.addNoOp(.unreach);
}
}
if (is_first) {
final_else_body = case_block.instructions.items;
} else {
try sema.air_extra.ensureUnusedCapacity(gpa, prev_then_body.len +
@typeInfo(Air.CondBr).Struct.fields.len + case_block.instructions.items.len);
sema.air_instructions.items(.data)[@intFromEnum(prev_cond_br)].pl_op.payload =
sema.addExtraAssumeCapacity(Air.CondBr{
.then_body_len = @intCast(prev_then_body.len),
.else_body_len = @intCast(case_block.instructions.items.len),
});
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(prev_then_body));
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
final_else_body = first_else_body;
}
}
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.SwitchBr).Struct.fields.len +
cases_extra.items.len + final_else_body.len);
const payload_index = sema.addExtraAssumeCapacity(Air.SwitchBr{
.cases_len = @intCast(cases_len),
.else_body_len = @intCast(final_else_body.len),
});
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(cases_extra.items));
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(final_else_body));
return try child_block.addInst(.{
.tag = .switch_br,
.data = .{ .pl_op = .{
.operand = operand,
.payload = payload_index,
} },
});
}
fn resolveSwitchComptime(
sema: *Sema,
spa: SwitchProngAnalysis,
child_block: *Block,
cond_operand: Air.Inst.Ref,
operand_val: Value,
operand_ty: Type,
special: SpecialProng,
case_vals: std.ArrayListUnmanaged(Air.Inst.Ref),
scalar_cases_len: u32,
multi_cases_len: u32,
err_set: bool,
empty_enum: bool,
) CompileError!Air.Inst.Ref {
const merges = &child_block.label.?.merges;
const resolved_operand_val = try sema.resolveLazyValue(operand_val);
var extra_index: usize = special.end;
{
var scalar_i: usize = 0;
while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
extra_index += 1;
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
extra_index += 1;
const body = sema.code.bodySlice(extra_index, info.body_len);
extra_index += info.body_len;
const item = case_vals.items[scalar_i];
const item_val = sema.resolveConstDefinedValue(child_block, .unneeded, item, undefined) catch unreachable;
if (operand_val.eql(item_val, operand_ty, sema.mod)) {
if (err_set) try sema.maybeErrorUnwrapComptime(child_block, body, cond_operand);
return spa.resolveProngComptime(
child_block,
.normal,
body,
info.capture,
.{ .scalar_capture = @intCast(scalar_i) },
&.{item},
if (info.is_inline) cond_operand else .none,
info.has_tag_capture,
merges,
);
}
}
}
{
var multi_i: usize = 0;
var case_val_idx: usize = scalar_cases_len;
while (multi_i < multi_cases_len) : (multi_i += 1) {
const items_len = sema.code.extra[extra_index];
extra_index += 1;
const ranges_len = sema.code.extra[extra_index];
extra_index += 1;
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
extra_index += 1 + items_len;
const body = sema.code.bodySlice(extra_index + 2 * ranges_len, info.body_len);
const items = case_vals.items[case_val_idx..][0..items_len];
case_val_idx += items_len;
for (items) |item| {
// Validation above ensured these will succeed.
const item_val = sema.resolveConstDefinedValue(child_block, .unneeded, item, undefined) catch unreachable;
if (operand_val.eql(item_val, operand_ty, sema.mod)) {
if (err_set) try sema.maybeErrorUnwrapComptime(child_block, body, cond_operand);
return spa.resolveProngComptime(
child_block,
.normal,
body,
info.capture,
.{ .multi_capture = @intCast(multi_i) },
items,
if (info.is_inline) cond_operand else .none,
info.has_tag_capture,
merges,
);
}
}
var range_i: usize = 0;
while (range_i < ranges_len) : (range_i += 1) {
const range_items = case_vals.items[case_val_idx..][0..2];
extra_index += 2;
case_val_idx += 2;
// Validation above ensured these will succeed.
const first_val = sema.resolveConstDefinedValue(child_block, .unneeded, range_items[0], undefined) catch unreachable;
const last_val = sema.resolveConstDefinedValue(child_block, .unneeded, range_items[1], undefined) catch unreachable;
if ((try sema.compareAll(resolved_operand_val, .gte, first_val, operand_ty)) and
(try sema.compareAll(resolved_operand_val, .lte, last_val, operand_ty)))
{
if (err_set) try sema.maybeErrorUnwrapComptime(child_block, body, cond_operand);
return spa.resolveProngComptime(
child_block,
.normal,
body,
info.capture,
.{ .multi_capture = @intCast(multi_i) },
undefined, // case_vals may be undefined for ranges
if (info.is_inline) cond_operand else .none,
info.has_tag_capture,
merges,
);
}
}
extra_index += info.body_len;
}
}
if (err_set) try sema.maybeErrorUnwrapComptime(child_block, special.body, cond_operand);
if (empty_enum) {
return .void_value;
}
return spa.resolveProngComptime(
child_block,
.special,
special.body,
special.capture,
.special_capture,
undefined, // case_vals may be undefined for special prongs
if (special.is_inline) cond_operand else .none,
special.has_tag_capture,
merges,
);
}
const RangeSetUnhandledIterator = struct {
mod: *Module,
cur: ?InternPool.Index,
max: InternPool.Index,
range_i: usize,
ranges: []const RangeSet.Range,
limbs: []math.big.Limb,
const preallocated_limbs = math.big.int.calcTwosCompLimbCount(128);
fn init(sema: *Sema, ty: Type, range_set: RangeSet) !RangeSetUnhandledIterator {
const mod = sema.mod;
const int_type = mod.intern_pool.indexToKey(ty.toIntern()).int_type;
const needed_limbs = math.big.int.calcTwosCompLimbCount(int_type.bits);
return .{
.mod = mod,
.cur = (try ty.minInt(mod, ty)).toIntern(),
.max = (try ty.maxInt(mod, ty)).toIntern(),
.range_i = 0,
.ranges = range_set.ranges.items,
.limbs = if (needed_limbs > preallocated_limbs)
try sema.arena.alloc(math.big.Limb, needed_limbs)
else
&.{},
};
}
fn addOne(it: *const RangeSetUnhandledIterator, val: InternPool.Index) !?InternPool.Index {
if (val == it.max) return null;
const int = it.mod.intern_pool.indexToKey(val).int;
switch (int.storage) {
inline .u64, .i64 => |val_int| {
const next_int = @addWithOverflow(val_int, 1);
if (next_int[1] == 0)
return (try it.mod.intValue(Type.fromInterned(int.ty), next_int[0])).toIntern();
},
.big_int => {},
.lazy_align, .lazy_size => unreachable,
}
var val_space: InternPool.Key.Int.Storage.BigIntSpace = undefined;
const val_bigint = int.storage.toBigInt(&val_space);
var result_limbs: [preallocated_limbs]math.big.Limb = undefined;
var result_bigint = math.big.int.Mutable.init(
if (it.limbs.len > 0) it.limbs else &result_limbs,
0,
);
result_bigint.addScalar(val_bigint, 1);
return (try it.mod.intValue_big(Type.fromInterned(int.ty), result_bigint.toConst())).toIntern();
}
fn next(it: *RangeSetUnhandledIterator) !?InternPool.Index {
var cur = it.cur orelse return null;
while (it.range_i < it.ranges.len and cur == it.ranges[it.range_i].first) {
defer it.range_i += 1;
cur = (try it.addOne(it.ranges[it.range_i].last)) orelse {
it.cur = null;
return null;
};
}
it.cur = try it.addOne(cur);
return cur;
}
};
const ResolvedSwitchItem = struct {
ref: Air.Inst.Ref,
val: InternPool.Index,
};
fn resolveSwitchItemVal(
sema: *Sema,
block: *Block,
item_ref: Zir.Inst.Ref,
/// Coerce `item_ref` to this type.
coerce_ty: Type,
switch_node_offset: i32,
switch_prong_src: Module.SwitchProngSrc,
range_expand: Module.SwitchProngSrc.RangeExpand,
) CompileError!ResolvedSwitchItem {
const mod = sema.mod;
const uncoerced_item = try sema.resolveInst(item_ref);
// Constructing a LazySrcLoc is costly because we only have the switch AST node.
// Only if we know for sure we need to report a compile error do we resolve the
// full source locations.
const item = sema.coerce(block, coerce_ty, uncoerced_item, .unneeded) catch |err| switch (err) {
error.NeededSourceLocation => {
const src = switch_prong_src.resolve(mod, mod.declPtr(block.src_decl), switch_node_offset, range_expand);
_ = try sema.coerce(block, coerce_ty, uncoerced_item, src);
unreachable;
},
else => |e| return e,
};
const maybe_lazy = sema.resolveConstDefinedValue(block, .unneeded, item, undefined) catch |err| switch (err) {
error.NeededSourceLocation => {
const src = switch_prong_src.resolve(mod, mod.declPtr(block.src_decl), switch_node_offset, range_expand);
_ = try sema.resolveConstDefinedValue(block, src, item, .{
.needed_comptime_reason = "switch prong values must be comptime-known",
});
unreachable;
},
else => |e| return e,
};
const val = try sema.resolveLazyValue(maybe_lazy);
const new_item = if (val.toIntern() != maybe_lazy.toIntern()) blk: {
break :blk Air.internedToRef(val.toIntern());
} else item;
return .{ .ref = new_item, .val = val.toIntern() };
}
fn validateErrSetSwitch(
sema: *Sema,
block: *Block,
seen_errors: *SwitchErrorSet,
case_vals: *std.ArrayListUnmanaged(Air.Inst.Ref),
operand_ty: Type,
inst_data: std.meta.FieldType(Zir.Inst.Data, .pl_node),
scalar_cases_len: u32,
multi_cases_len: u32,
else_case: struct { body: []const Zir.Inst.Index, end: usize, src: LazySrcLoc },
has_else: bool,
) CompileError!?Type {
const gpa = sema.gpa;
const mod = sema.mod;
const ip = &mod.intern_pool;
const src_node_offset = inst_data.src_node;
const src = inst_data.src();
var extra_index: usize = else_case.end;
{
var scalar_i: u32 = 0;
while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
const item_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
extra_index += 1;
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
extra_index += 1 + info.body_len;
case_vals.appendAssumeCapacity(try sema.validateSwitchItemError(
block,
seen_errors,
item_ref,
operand_ty,
src_node_offset,
.{ .scalar = scalar_i },
));
}
}
{
var multi_i: u32 = 0;
while (multi_i < multi_cases_len) : (multi_i += 1) {
const items_len = sema.code.extra[extra_index];
extra_index += 1;
const ranges_len = sema.code.extra[extra_index];
extra_index += 1;
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
extra_index += 1;
const items = sema.code.refSlice(extra_index, items_len);
extra_index += items_len + info.body_len;
try case_vals.ensureUnusedCapacity(gpa, items.len);
for (items, 0..) |item_ref, item_i| {
case_vals.appendAssumeCapacity(try sema.validateSwitchItemError(
block,
seen_errors,
item_ref,
operand_ty,
src_node_offset,
.{ .multi = .{ .prong = multi_i, .item = @intCast(item_i) } },
));
}
try sema.validateSwitchNoRange(block, ranges_len, operand_ty, src_node_offset);
}
}
switch (try sema.resolveInferredErrorSetTy(block, src, operand_ty.toIntern())) {
.anyerror_type => {
if (!has_else) {
return sema.fail(
block,
src,
"else prong required when switching on type 'anyerror'",
.{},
);
}
return Type.anyerror;
},
else => |err_set_ty_index| else_validation: {
const error_names = ip.indexToKey(err_set_ty_index).error_set_type.names;
var maybe_msg: ?*Module.ErrorMsg = null;
errdefer if (maybe_msg) |msg| msg.destroy(sema.gpa);
for (error_names.get(ip)) |error_name| {
if (!seen_errors.contains(error_name) and !has_else) {
const msg = maybe_msg orelse blk: {
maybe_msg = try sema.errMsg(
block,
src,
"switch must handle all possibilities",
.{},
);
break :blk maybe_msg.?;
};
try sema.errNote(
block,
src,
msg,
"unhandled error value: 'error.{}'",
.{error_name.fmt(ip)},
);
}
}
if (maybe_msg) |msg| {
maybe_msg = null;
try sema.addDeclaredHereNote(msg, operand_ty);
return sema.failWithOwnedErrorMsg(block, msg);
}
if (has_else and seen_errors.count() == error_names.len) {
// In order to enable common patterns for generic code allow simple else bodies
// else => unreachable,
// else => return,
// else => |e| return e,
// even if all the possible errors were already handled.
const tags = sema.code.instructions.items(.tag);
const datas = sema.code.instructions.items(.data);
for (else_case.body) |else_inst| switch (tags[@intFromEnum(else_inst)]) {
.dbg_stmt,
.dbg_var_val,
.ret_type,
.as_node,
.ret_node,
.@"unreachable",
.@"defer",
.defer_err_code,
.err_union_code,
.ret_err_value_code,
.save_err_ret_index,
.restore_err_ret_index_unconditional,
.restore_err_ret_index_fn_entry,
.is_non_err,
.ret_is_non_err,
.condbr,
=> {},
.extended => switch (datas[@intFromEnum(else_inst)].extended.opcode) {
.restore_err_ret_index => {},
else => break,
},
else => break,
} else break :else_validation;
return sema.fail(
block,
else_case.src,
"unreachable else prong; all cases already handled",
.{},
);
}
var names: InferredErrorSet.NameMap = .{};
try names.ensureUnusedCapacity(sema.arena, error_names.len);
for (error_names.get(ip)) |error_name| {
if (seen_errors.contains(error_name)) continue;
names.putAssumeCapacityNoClobber(error_name, {});
}
// No need to keep the hash map metadata correct; here we
// extract the (sorted) keys only.
return try mod.errorSetFromUnsortedNames(names.keys());
},
}
return null;
}
fn validateSwitchRange(
sema: *Sema,
block: *Block,
range_set: *RangeSet,
first_ref: Zir.Inst.Ref,
last_ref: Zir.Inst.Ref,
operand_ty: Type,
src_node_offset: i32,
switch_prong_src: Module.SwitchProngSrc,
) CompileError![2]Air.Inst.Ref {
const mod = sema.mod;
const first = try sema.resolveSwitchItemVal(block, first_ref, operand_ty, src_node_offset, switch_prong_src, .first);
const last = try sema.resolveSwitchItemVal(block, last_ref, operand_ty, src_node_offset, switch_prong_src, .last);
if (try Value.fromInterned(first.val).compareAll(.gt, Value.fromInterned(last.val), operand_ty, mod)) {
const src = switch_prong_src.resolve(mod, mod.declPtr(block.src_decl), src_node_offset, .first);
return sema.fail(block, src, "range start value is greater than the end value", .{});
}
const maybe_prev_src = try range_set.add(first.val, last.val, switch_prong_src);
try sema.validateSwitchDupe(block, maybe_prev_src, switch_prong_src, src_node_offset);
return .{ first.ref, last.ref };
}
fn validateSwitchItemInt(
sema: *Sema,
block: *Block,
range_set: *RangeSet,
item_ref: Zir.Inst.Ref,
operand_ty: Type,
src_node_offset: i32,
switch_prong_src: Module.SwitchProngSrc,
) CompileError!Air.Inst.Ref {
const item = try sema.resolveSwitchItemVal(block, item_ref, operand_ty, src_node_offset, switch_prong_src, .none);
const maybe_prev_src = try range_set.add(item.val, item.val, switch_prong_src);
try sema.validateSwitchDupe(block, maybe_prev_src, switch_prong_src, src_node_offset);
return item.ref;
}
fn validateSwitchItemEnum(
sema: *Sema,
block: *Block,
seen_fields: []?Module.SwitchProngSrc,
range_set: *RangeSet,
item_ref: Zir.Inst.Ref,
operand_ty: Type,
src_node_offset: i32,
switch_prong_src: Module.SwitchProngSrc,
) CompileError!Air.Inst.Ref {
const ip = &sema.mod.intern_pool;
const item = try sema.resolveSwitchItemVal(block, item_ref, operand_ty, src_node_offset, switch_prong_src, .none);
const int = ip.indexToKey(item.val).enum_tag.int;
const field_index = ip.loadEnumType(ip.typeOf(item.val)).tagValueIndex(ip, int) orelse {
const maybe_prev_src = try range_set.add(int, int, switch_prong_src);
try sema.validateSwitchDupe(block, maybe_prev_src, switch_prong_src, src_node_offset);
return item.ref;
};
const maybe_prev_src = seen_fields[field_index];
seen_fields[field_index] = switch_prong_src;
try sema.validateSwitchDupe(block, maybe_prev_src, switch_prong_src, src_node_offset);
return item.ref;
}
fn validateSwitchItemError(
sema: *Sema,
block: *Block,
seen_errors: *SwitchErrorSet,
item_ref: Zir.Inst.Ref,
operand_ty: Type,
src_node_offset: i32,
switch_prong_src: Module.SwitchProngSrc,
) CompileError!Air.Inst.Ref {
const ip = &sema.mod.intern_pool;
const item = try sema.resolveSwitchItemVal(block, item_ref, operand_ty, src_node_offset, switch_prong_src, .none);
const error_name = ip.indexToKey(item.val).err.name;
const maybe_prev_src = if (try seen_errors.fetchPut(error_name, switch_prong_src)) |prev|
prev.value
else
null;
try sema.validateSwitchDupe(block, maybe_prev_src, switch_prong_src, src_node_offset);
return item.ref;
}
fn validateSwitchDupe(
sema: *Sema,
block: *Block,
maybe_prev_src: ?Module.SwitchProngSrc,
switch_prong_src: Module.SwitchProngSrc,
src_node_offset: i32,
) CompileError!void {
const prev_prong_src = maybe_prev_src orelse return;
const mod = sema.mod;
const block_src_decl = mod.declPtr(block.src_decl);
const src = switch_prong_src.resolve(mod, block_src_decl, src_node_offset, .none);
const prev_src = prev_prong_src.resolve(mod, block_src_decl, src_node_offset, .none);
const msg = msg: {
const msg = try sema.errMsg(
block,
src,
"duplicate switch value",
.{},
);
errdefer msg.destroy(sema.gpa);
try sema.errNote(
block,
prev_src,
msg,
"previous value here",
.{},
);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
fn validateSwitchItemBool(
sema: *Sema,
block: *Block,
true_count: *u8,
false_count: *u8,
item_ref: Zir.Inst.Ref,
src_node_offset: i32,
switch_prong_src: Module.SwitchProngSrc,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const item = try sema.resolveSwitchItemVal(block, item_ref, Type.bool, src_node_offset, switch_prong_src, .none);
if (Value.fromInterned(item.val).toBool()) {
true_count.* += 1;
} else {
false_count.* += 1;
}
if (true_count.* > 1 or false_count.* > 1) {
const block_src_decl = sema.mod.declPtr(block.src_decl);
const src = switch_prong_src.resolve(mod, block_src_decl, src_node_offset, .none);
return sema.fail(block, src, "duplicate switch value", .{});
}
return item.ref;
}
const ValueSrcMap = std.AutoHashMapUnmanaged(InternPool.Index, Module.SwitchProngSrc);
fn validateSwitchItemSparse(
sema: *Sema,
block: *Block,
seen_values: *ValueSrcMap,
item_ref: Zir.Inst.Ref,
operand_ty: Type,
src_node_offset: i32,
switch_prong_src: Module.SwitchProngSrc,
) CompileError!Air.Inst.Ref {
const item = try sema.resolveSwitchItemVal(block, item_ref, operand_ty, src_node_offset, switch_prong_src, .none);
const kv = (try seen_values.fetchPut(sema.gpa, item.val, switch_prong_src)) orelse return item.ref;
try sema.validateSwitchDupe(block, kv.value, switch_prong_src, src_node_offset);
unreachable;
}
fn validateSwitchNoRange(
sema: *Sema,
block: *Block,
ranges_len: u32,
operand_ty: Type,
src_node_offset: i32,
) CompileError!void {
if (ranges_len == 0)
return;
const operand_src: LazySrcLoc = .{ .node_offset_switch_operand = src_node_offset };
const range_src: LazySrcLoc = .{ .node_offset_switch_range = src_node_offset };
const msg = msg: {
const msg = try sema.errMsg(
block,
operand_src,
"ranges not allowed when switching on type '{}'",
.{operand_ty.fmt(sema.mod)},
);
errdefer msg.destroy(sema.gpa);
try sema.errNote(
block,
range_src,
msg,
"range here",
.{},
);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
fn maybeErrorUnwrap(
sema: *Sema,
block: *Block,
body: []const Zir.Inst.Index,
operand: Air.Inst.Ref,
operand_src: LazySrcLoc,
allow_err_code_inst: bool,
) !bool {
const mod = sema.mod;
if (!mod.backendSupportsFeature(.panic_unwrap_error)) return false;
const tags = sema.code.instructions.items(.tag);
for (body) |inst| {
switch (tags[@intFromEnum(inst)]) {
.@"unreachable" => if (!block.wantSafety()) return false,
.err_union_code => if (!allow_err_code_inst) return false,
.save_err_ret_index,
.dbg_stmt,
.str,
.as_node,
.panic,
.field_val,
=> {},
else => return false,
}
}
for (body) |inst| {
const air_inst = switch (tags[@intFromEnum(inst)]) {
.err_union_code => continue,
.dbg_stmt => {
try sema.zirDbgStmt(block, inst);
continue;
},
.save_err_ret_index => {
try sema.zirSaveErrRetIndex(block, inst);
continue;
},
.str => try sema.zirStr(inst),
.as_node => try sema.zirAsNode(block, inst),
.field_val => try sema.zirFieldVal(block, inst),
.@"unreachable" => {
if (!mod.comp.formatted_panics) {
try sema.safetyPanic(block, operand_src, .unwrap_error);
return true;
}
const panic_fn = try sema.getBuiltin("panicUnwrapError");
const err_return_trace = try sema.getErrorReturnTrace(block);
const args: [2]Air.Inst.Ref = .{ err_return_trace, operand };
try sema.callBuiltin(block, operand_src, panic_fn, .auto, &args, .@"safety check");
return true;
},
.panic => {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const msg_inst = try sema.resolveInst(inst_data.operand);
const panic_fn = try sema.getBuiltin("panic");
const err_return_trace = try sema.getErrorReturnTrace(block);
const args: [3]Air.Inst.Ref = .{ msg_inst, err_return_trace, .null_value };
try sema.callBuiltin(block, operand_src, panic_fn, .auto, &args, .@"safety check");
return true;
},
else => unreachable,
};
if (sema.typeOf(air_inst).isNoReturn(mod))
return true;
sema.inst_map.putAssumeCapacity(inst, air_inst);
}
unreachable;
}
fn maybeErrorUnwrapCondbr(sema: *Sema, block: *Block, body: []const Zir.Inst.Index, cond: Zir.Inst.Ref, cond_src: LazySrcLoc) !void {
const mod = sema.mod;
const index = cond.toIndex() orelse return;
if (sema.code.instructions.items(.tag)[@intFromEnum(index)] != .is_non_err) return;
const err_inst_data = sema.code.instructions.items(.data)[@intFromEnum(index)].un_node;
const err_operand = try sema.resolveInst(err_inst_data.operand);
const operand_ty = sema.typeOf(err_operand);
if (operand_ty.zigTypeTag(mod) == .ErrorSet) {
try sema.maybeErrorUnwrapComptime(block, body, err_operand);
return;
}
if (try sema.resolveDefinedValue(block, cond_src, err_operand)) |val| {
if (!operand_ty.isError(mod)) return;
if (val.getErrorName(mod) == .none) return;
try sema.maybeErrorUnwrapComptime(block, body, err_operand);
}
}
fn maybeErrorUnwrapComptime(sema: *Sema, block: *Block, body: []const Zir.Inst.Index, operand: Air.Inst.Ref) !void {
const tags = sema.code.instructions.items(.tag);
const inst = for (body) |inst| {
switch (tags[@intFromEnum(inst)]) {
.dbg_stmt,
.save_err_ret_index,
=> {},
.@"unreachable" => break inst,
else => return,
}
} else return;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].@"unreachable";
const src = inst_data.src();
if (try sema.resolveDefinedValue(block, src, operand)) |val| {
if (val.getErrorName(sema.mod).unwrap()) |name| {
return sema.failWithComptimeErrorRetTrace(block, src, name);
}
}
}
fn zirHasField(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const name_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const ty = try sema.resolveType(block, ty_src, extra.lhs);
const field_name = try sema.resolveConstStringIntern(block, name_src, extra.rhs, .{
.needed_comptime_reason = "field name must be comptime-known",
});
try sema.resolveTypeFields(ty);
const ip = &mod.intern_pool;
const has_field = hf: {
switch (ip.indexToKey(ty.toIntern())) {
.ptr_type => |ptr_type| switch (ptr_type.flags.size) {
.Slice => {
if (ip.stringEqlSlice(field_name, "ptr")) break :hf true;
if (ip.stringEqlSlice(field_name, "len")) break :hf true;
break :hf false;
},
else => {},
},
.anon_struct_type => |anon_struct| {
if (anon_struct.names.len != 0) {
break :hf mem.indexOfScalar(InternPool.NullTerminatedString, anon_struct.names.get(ip), field_name) != null;
} else {
const field_index = field_name.toUnsigned(ip) orelse break :hf false;
break :hf field_index < ty.structFieldCount(mod);
}
},
.struct_type => {
break :hf ip.loadStructType(ty.toIntern()).nameIndex(ip, field_name) != null;
},
.union_type => {
const union_type = ip.loadUnionType(ty.toIntern());
break :hf union_type.loadTagType(ip).nameIndex(ip, field_name) != null;
},
.enum_type => {
break :hf ip.loadEnumType(ty.toIntern()).nameIndex(ip, field_name) != null;
},
.array_type => break :hf ip.stringEqlSlice(field_name, "len"),
else => {},
}
return sema.fail(block, ty_src, "type '{}' does not support '@hasField'", .{
ty.fmt(mod),
});
};
return if (has_field) .bool_true else .bool_false;
}
fn zirHasDecl(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const src = inst_data.src();
const lhs_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const container_type = try sema.resolveType(block, lhs_src, extra.lhs);
const decl_name = try sema.resolveConstStringIntern(block, rhs_src, extra.rhs, .{
.needed_comptime_reason = "decl name must be comptime-known",
});
try sema.checkNamespaceType(block, lhs_src, container_type);
if (container_type.typeDeclInst(mod)) |type_decl_inst| {
try sema.declareDependency(.{ .namespace_name = .{
.namespace = type_decl_inst,
.name = decl_name,
} });
}
const namespace = container_type.getNamespaceIndex(mod);
if (try sema.lookupInNamespace(block, src, namespace, decl_name, true)) |decl_index| {
const decl = mod.declPtr(decl_index);
if (decl.is_pub or decl.getFileScope(mod) == block.getFileScope(mod)) {
return .bool_true;
}
}
return .bool_false;
}
fn zirImport(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].str_tok;
const operand_src = inst_data.src();
const operand = inst_data.get(sema.code);
const result = mod.importFile(block.getFileScope(mod), operand) catch |err| switch (err) {
error.ImportOutsideModulePath => {
return sema.fail(block, operand_src, "import of file outside module path: '{s}'", .{operand});
},
error.ModuleNotFound => {
return sema.fail(block, operand_src, "no module named '{s}' available within module {s}", .{
operand, block.getFileScope(mod).mod.fully_qualified_name,
});
},
else => {
// TODO: these errors are file system errors; make sure an update() will
// retry this and not cache the file system error, which may be transient.
return sema.fail(block, operand_src, "unable to open '{s}': {s}", .{ operand, @errorName(err) });
},
};
try mod.ensureFileAnalyzed(result.file);
const file_root_decl_index = result.file.root_decl.unwrap().?;
return sema.analyzeDeclVal(block, operand_src, file_root_decl_index);
}
fn zirEmbedFile(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const name = try sema.resolveConstString(block, operand_src, inst_data.operand, .{
.needed_comptime_reason = "file path name must be comptime-known",
});
if (name.len == 0) {
return sema.fail(block, operand_src, "file path name cannot be empty", .{});
}
const src_loc = mod.declPtr(block.src_decl).toSrcLoc(operand_src, mod);
const val = mod.embedFile(block.getFileScope(mod), name, src_loc) catch |err| switch (err) {
error.ImportOutsideModulePath => {
return sema.fail(block, operand_src, "embed of file outside package path: '{s}'", .{name});
},
else => {
// TODO: these errors are file system errors; make sure an update() will
// retry this and not cache the file system error, which may be transient.
return sema.fail(block, operand_src, "unable to open '{s}': {s}", .{ name, @errorName(err) });
},
};
return Air.internedToRef(val);
}
fn zirRetErrValueCode(sema: *Sema, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].str_tok;
const name = try mod.intern_pool.getOrPutString(sema.gpa, inst_data.get(sema.code));
_ = try mod.getErrorValue(name);
const error_set_type = try mod.singleErrorSetType(name);
return Air.internedToRef((try mod.intern(.{ .err = .{
.ty = error_set_type.toIntern(),
.name = name,
} })));
}
fn zirShl(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
air_tag: Air.Inst.Tag,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
const scalar_ty = lhs_ty.scalarType(mod);
const scalar_rhs_ty = rhs_ty.scalarType(mod);
// TODO coerce rhs if air_tag is not shl_sat
const rhs_is_comptime_int = try sema.checkIntType(block, rhs_src, scalar_rhs_ty);
const maybe_lhs_val = try sema.resolveValueIntable(lhs);
const maybe_rhs_val = try sema.resolveValueIntable(rhs);
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
return mod.undefRef(sema.typeOf(lhs));
}
// If rhs is 0, return lhs without doing any calculations.
if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
return lhs;
}
if (scalar_ty.zigTypeTag(mod) != .ComptimeInt and air_tag != .shl_sat) {
const bit_value = try mod.intValue(Type.comptime_int, scalar_ty.intInfo(mod).bits);
if (rhs_ty.zigTypeTag(mod) == .Vector) {
var i: usize = 0;
while (i < rhs_ty.vectorLen(mod)) : (i += 1) {
const rhs_elem = try rhs_val.elemValue(mod, i);
if (rhs_elem.compareHetero(.gte, bit_value, mod)) {
return sema.fail(block, rhs_src, "shift amount '{}' at index '{d}' is too large for operand type '{}'", .{
rhs_elem.fmtValue(mod),
i,
scalar_ty.fmt(mod),
});
}
}
} else if (rhs_val.compareHetero(.gte, bit_value, mod)) {
return sema.fail(block, rhs_src, "shift amount '{}' is too large for operand type '{}'", .{
rhs_val.fmtValue(mod),
scalar_ty.fmt(mod),
});
}
}
if (rhs_ty.zigTypeTag(mod) == .Vector) {
var i: usize = 0;
while (i < rhs_ty.vectorLen(mod)) : (i += 1) {
const rhs_elem = try rhs_val.elemValue(mod, i);
if (rhs_elem.compareHetero(.lt, try mod.intValue(scalar_rhs_ty, 0), mod)) {
return sema.fail(block, rhs_src, "shift by negative amount '{}' at index '{d}'", .{
rhs_elem.fmtValue(mod),
i,
});
}
}
} else if (rhs_val.compareHetero(.lt, try mod.intValue(rhs_ty, 0), mod)) {
return sema.fail(block, rhs_src, "shift by negative amount '{}'", .{
rhs_val.fmtValue(mod),
});
}
}
const runtime_src = if (maybe_lhs_val) |lhs_val| rs: {
if (lhs_val.isUndef(mod)) return mod.undefRef(lhs_ty);
const rhs_val = maybe_rhs_val orelse {
if (scalar_ty.zigTypeTag(mod) == .ComptimeInt) {
return sema.fail(block, src, "LHS of shift must be a fixed-width integer type, or RHS must be comptime-known", .{});
}
break :rs rhs_src;
};
const val = if (scalar_ty.zigTypeTag(mod) == .ComptimeInt)
try lhs_val.shl(rhs_val, lhs_ty, sema.arena, mod)
else switch (air_tag) {
.shl_exact => val: {
const shifted = try lhs_val.shlWithOverflow(rhs_val, lhs_ty, sema.arena, mod);
if (shifted.overflow_bit.compareAllWithZero(.eq, mod)) {
break :val shifted.wrapped_result;
}
return sema.fail(block, src, "operation caused overflow", .{});
},
.shl_sat => try lhs_val.shlSat(rhs_val, lhs_ty, sema.arena, mod),
.shl => try lhs_val.shlTrunc(rhs_val, lhs_ty, sema.arena, mod),
else => unreachable,
};
return Air.internedToRef(val.toIntern());
} else lhs_src;
const new_rhs = if (air_tag == .shl_sat) rhs: {
// Limit the RHS type for saturating shl to be an integer as small as the LHS.
if (rhs_is_comptime_int or
scalar_rhs_ty.intInfo(mod).bits > scalar_ty.intInfo(mod).bits)
{
const max_int = Air.internedToRef((try lhs_ty.maxInt(mod, lhs_ty)).toIntern());
const rhs_limited = try sema.analyzeMinMax(block, rhs_src, .min, &.{ rhs, max_int }, &.{ rhs_src, rhs_src });
break :rhs try sema.intCast(block, src, lhs_ty, rhs_src, rhs_limited, rhs_src, false);
} else {
break :rhs rhs;
}
} else rhs;
try sema.requireRuntimeBlock(block, src, runtime_src);
if (block.wantSafety()) {
const bit_count = scalar_ty.intInfo(mod).bits;
if (!std.math.isPowerOfTwo(bit_count)) {
const bit_count_val = try mod.intValue(scalar_rhs_ty, bit_count);
const ok = if (rhs_ty.zigTypeTag(mod) == .Vector) ok: {
const bit_count_inst = Air.internedToRef((try sema.splat(rhs_ty, bit_count_val)).toIntern());
const lt = try block.addCmpVector(rhs, bit_count_inst, .lt);
break :ok try block.addInst(.{
.tag = .reduce,
.data = .{ .reduce = .{
.operand = lt,
.operation = .And,
} },
});
} else ok: {
const bit_count_inst = Air.internedToRef(bit_count_val.toIntern());
break :ok try block.addBinOp(.cmp_lt, rhs, bit_count_inst);
};
try sema.addSafetyCheck(block, src, ok, .shift_rhs_too_big);
}
if (air_tag == .shl_exact) {
const op_ov_tuple_ty = try sema.overflowArithmeticTupleType(lhs_ty);
const op_ov = try block.addInst(.{
.tag = .shl_with_overflow,
.data = .{ .ty_pl = .{
.ty = Air.internedToRef(op_ov_tuple_ty.toIntern()),
.payload = try sema.addExtra(Air.Bin{
.lhs = lhs,
.rhs = rhs,
}),
} },
});
const ov_bit = try sema.tupleFieldValByIndex(block, src, op_ov, 1, op_ov_tuple_ty);
const any_ov_bit = if (lhs_ty.zigTypeTag(mod) == .Vector)
try block.addInst(.{
.tag = if (block.float_mode == .optimized) .reduce_optimized else .reduce,
.data = .{ .reduce = .{
.operand = ov_bit,
.operation = .Or,
} },
})
else
ov_bit;
const zero_ov = Air.internedToRef((try mod.intValue(Type.u1, 0)).toIntern());
const no_ov = try block.addBinOp(.cmp_eq, any_ov_bit, zero_ov);
try sema.addSafetyCheck(block, src, no_ov, .shl_overflow);
return sema.tupleFieldValByIndex(block, src, op_ov, 0, op_ov_tuple_ty);
}
}
return block.addBinOp(air_tag, lhs, new_rhs);
}
fn zirShr(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
air_tag: Air.Inst.Tag,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
const scalar_ty = lhs_ty.scalarType(mod);
const maybe_lhs_val = try sema.resolveValueIntable(lhs);
const maybe_rhs_val = try sema.resolveValueIntable(rhs);
const runtime_src = if (maybe_rhs_val) |rhs_val| rs: {
if (rhs_val.isUndef(mod)) {
return mod.undefRef(lhs_ty);
}
// If rhs is 0, return lhs without doing any calculations.
if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
return lhs;
}
if (scalar_ty.zigTypeTag(mod) != .ComptimeInt) {
const bit_value = try mod.intValue(Type.comptime_int, scalar_ty.intInfo(mod).bits);
if (rhs_ty.zigTypeTag(mod) == .Vector) {
var i: usize = 0;
while (i < rhs_ty.vectorLen(mod)) : (i += 1) {
const rhs_elem = try rhs_val.elemValue(mod, i);
if (rhs_elem.compareHetero(.gte, bit_value, mod)) {
return sema.fail(block, rhs_src, "shift amount '{}' at index '{d}' is too large for operand type '{}'", .{
rhs_elem.fmtValue(mod),
i,
scalar_ty.fmt(mod),
});
}
}
} else if (rhs_val.compareHetero(.gte, bit_value, mod)) {
return sema.fail(block, rhs_src, "shift amount '{}' is too large for operand type '{}'", .{
rhs_val.fmtValue(mod),
scalar_ty.fmt(mod),
});
}
}
if (rhs_ty.zigTypeTag(mod) == .Vector) {
var i: usize = 0;
while (i < rhs_ty.vectorLen(mod)) : (i += 1) {
const rhs_elem = try rhs_val.elemValue(mod, i);
if (rhs_elem.compareHetero(.lt, try mod.intValue(rhs_ty.childType(mod), 0), mod)) {
return sema.fail(block, rhs_src, "shift by negative amount '{}' at index '{d}'", .{
rhs_elem.fmtValue(mod),
i,
});
}
}
} else if (rhs_val.compareHetero(.lt, try mod.intValue(rhs_ty, 0), mod)) {
return sema.fail(block, rhs_src, "shift by negative amount '{}'", .{
rhs_val.fmtValue(mod),
});
}
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
return mod.undefRef(lhs_ty);
}
if (air_tag == .shr_exact) {
// Detect if any ones would be shifted out.
const truncated = try lhs_val.intTruncBitsAsValue(lhs_ty, sema.arena, .unsigned, rhs_val, mod);
if (!(try truncated.compareAllWithZeroAdvanced(.eq, sema))) {
return sema.fail(block, src, "exact shift shifted out 1 bits", .{});
}
}
const val = try lhs_val.shr(rhs_val, lhs_ty, sema.arena, mod);
return Air.internedToRef(val.toIntern());
} else {
break :rs lhs_src;
}
} else rhs_src;
if (maybe_rhs_val == null and scalar_ty.zigTypeTag(mod) == .ComptimeInt) {
return sema.fail(block, src, "LHS of shift must be a fixed-width integer type, or RHS must be comptime-known", .{});
}
try sema.requireRuntimeBlock(block, src, runtime_src);
const result = try block.addBinOp(air_tag, lhs, rhs);
if (block.wantSafety()) {
const bit_count = scalar_ty.intInfo(mod).bits;
if (!std.math.isPowerOfTwo(bit_count)) {
const bit_count_val = try mod.intValue(rhs_ty.scalarType(mod), bit_count);
const ok = if (rhs_ty.zigTypeTag(mod) == .Vector) ok: {
const bit_count_inst = Air.internedToRef((try sema.splat(rhs_ty, bit_count_val)).toIntern());
const lt = try block.addCmpVector(rhs, bit_count_inst, .lt);
break :ok try block.addInst(.{
.tag = .reduce,
.data = .{ .reduce = .{
.operand = lt,
.operation = .And,
} },
});
} else ok: {
const bit_count_inst = Air.internedToRef(bit_count_val.toIntern());
break :ok try block.addBinOp(.cmp_lt, rhs, bit_count_inst);
};
try sema.addSafetyCheck(block, src, ok, .shift_rhs_too_big);
}
if (air_tag == .shr_exact) {
const back = try block.addBinOp(.shl, result, rhs);
const ok = if (rhs_ty.zigTypeTag(mod) == .Vector) ok: {
const eql = try block.addCmpVector(lhs, back, .eq);
break :ok try block.addInst(.{
.tag = if (block.float_mode == .optimized) .reduce_optimized else .reduce,
.data = .{ .reduce = .{
.operand = eql,
.operation = .And,
} },
});
} else try block.addBinOp(.cmp_eq, lhs, back);
try sema.addSafetyCheck(block, src, ok, .shr_overflow);
}
}
return result;
}
fn zirBitwise(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
air_tag: Air.Inst.Tag,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
const instructions = &[_]Air.Inst.Ref{ lhs, rhs };
const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{ .override = &[_]?LazySrcLoc{ lhs_src, rhs_src } });
const scalar_type = resolved_type.scalarType(mod);
const scalar_tag = scalar_type.zigTypeTag(mod);
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt;
if (!is_int) {
return sema.fail(block, src, "invalid operands to binary bitwise expression: '{s}' and '{s}'", .{ @tagName(lhs_ty.zigTypeTag(mod)), @tagName(rhs_ty.zigTypeTag(mod)) });
}
const runtime_src = runtime: {
// TODO: ask the linker what kind of relocations are available, and
// in some cases emit a Value that means "this decl's address AND'd with this operand".
if (try sema.resolveValueIntable(casted_lhs)) |lhs_val| {
if (try sema.resolveValueIntable(casted_rhs)) |rhs_val| {
const result_val = switch (air_tag) {
.bit_and => try lhs_val.bitwiseAnd(rhs_val, resolved_type, sema.arena, mod),
.bit_or => try lhs_val.bitwiseOr(rhs_val, resolved_type, sema.arena, mod),
.xor => try lhs_val.bitwiseXor(rhs_val, resolved_type, sema.arena, mod),
else => unreachable,
};
return Air.internedToRef(result_val.toIntern());
} else {
break :runtime rhs_src;
}
} else {
break :runtime lhs_src;
}
};
try sema.requireRuntimeBlock(block, src, runtime_src);
return block.addBinOp(air_tag, casted_lhs, casted_rhs);
}
fn zirBitNot(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_un_op = inst_data.src_node };
const operand = try sema.resolveInst(inst_data.operand);
const operand_type = sema.typeOf(operand);
const scalar_type = operand_type.scalarType(mod);
if (scalar_type.zigTypeTag(mod) != .Int) {
return sema.fail(block, src, "unable to perform binary not operation on type '{}'", .{
operand_type.fmt(mod),
});
}
if (try sema.resolveValue(operand)) |val| {
if (val.isUndef(mod)) {
return mod.undefRef(operand_type);
} else if (operand_type.zigTypeTag(mod) == .Vector) {
const vec_len = try sema.usizeCast(block, operand_src, operand_type.vectorLen(mod));
const elems = try sema.arena.alloc(InternPool.Index, vec_len);
for (elems, 0..) |*elem, i| {
const elem_val = try val.elemValue(mod, i);
elem.* = (try elem_val.bitwiseNot(scalar_type, sema.arena, mod)).toIntern();
}
return Air.internedToRef((try mod.intern(.{ .aggregate = .{
.ty = operand_type.toIntern(),
.storage = .{ .elems = elems },
} })));
} else {
const result_val = try val.bitwiseNot(operand_type, sema.arena, mod);
return Air.internedToRef(result_val.toIntern());
}
}
try sema.requireRuntimeBlock(block, src, null);
return block.addTyOp(.not, operand_type, operand);
}
fn analyzeTupleCat(
sema: *Sema,
block: *Block,
src_node: i32,
lhs: Air.Inst.Ref,
rhs: Air.Inst.Ref,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
const src = LazySrcLoc.nodeOffset(src_node);
const lhs_len = lhs_ty.structFieldCount(mod);
const rhs_len = rhs_ty.structFieldCount(mod);
const dest_fields = lhs_len + rhs_len;
if (dest_fields == 0) {
return Air.internedToRef(Value.empty_struct.toIntern());
}
if (lhs_len == 0) {
return rhs;
}
if (rhs_len == 0) {
return lhs;
}
const final_len = try sema.usizeCast(block, src, dest_fields);
const types = try sema.arena.alloc(InternPool.Index, final_len);
const values = try sema.arena.alloc(InternPool.Index, final_len);
const opt_runtime_src = rs: {
var runtime_src: ?LazySrcLoc = null;
var i: u32 = 0;
while (i < lhs_len) : (i += 1) {
types[i] = lhs_ty.structFieldType(i, mod).toIntern();
const default_val = lhs_ty.structFieldDefaultValue(i, mod);
values[i] = default_val.toIntern();
const operand_src: LazySrcLoc = .{ .array_cat_lhs = .{
.array_cat_offset = src_node,
.elem_index = i,
} };
if (default_val.toIntern() == .unreachable_value) {
runtime_src = operand_src;
values[i] = .none;
}
}
i = 0;
while (i < rhs_len) : (i += 1) {
types[i + lhs_len] = rhs_ty.structFieldType(i, mod).toIntern();
const default_val = rhs_ty.structFieldDefaultValue(i, mod);
values[i + lhs_len] = default_val.toIntern();
const operand_src: LazySrcLoc = .{ .array_cat_rhs = .{
.array_cat_offset = src_node,
.elem_index = i,
} };
if (default_val.toIntern() == .unreachable_value) {
runtime_src = operand_src;
values[i + lhs_len] = .none;
}
}
break :rs runtime_src;
};
const tuple_ty = try mod.intern_pool.getAnonStructType(mod.gpa, .{
.types = types,
.values = values,
.names = &.{},
});
const runtime_src = opt_runtime_src orelse {
const tuple_val = try mod.intern(.{ .aggregate = .{
.ty = tuple_ty,
.storage = .{ .elems = values },
} });
return Air.internedToRef(tuple_val);
};
try sema.requireRuntimeBlock(block, src, runtime_src);
const element_refs = try sema.arena.alloc(Air.Inst.Ref, final_len);
var i: u32 = 0;
while (i < lhs_len) : (i += 1) {
const operand_src: LazySrcLoc = .{ .array_cat_lhs = .{
.array_cat_offset = src_node,
.elem_index = i,
} };
element_refs[i] = try sema.tupleFieldValByIndex(block, operand_src, lhs, i, lhs_ty);
}
i = 0;
while (i < rhs_len) : (i += 1) {
const operand_src: LazySrcLoc = .{ .array_cat_rhs = .{
.array_cat_offset = src_node,
.elem_index = i,
} };
element_refs[i + lhs_len] =
try sema.tupleFieldValByIndex(block, operand_src, rhs, i, rhs_ty);
}
return block.addAggregateInit(Type.fromInterned(tuple_ty), element_refs);
}
fn zirArrayCat(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
const src = inst_data.src();
const lhs_is_tuple = lhs_ty.isTuple(mod);
const rhs_is_tuple = rhs_ty.isTuple(mod);
if (lhs_is_tuple and rhs_is_tuple) {
return sema.analyzeTupleCat(block, inst_data.src_node, lhs, rhs);
}
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const lhs_info = try sema.getArrayCatInfo(block, lhs_src, lhs, rhs_ty) orelse lhs_info: {
if (lhs_is_tuple) break :lhs_info @as(Type.ArrayInfo, undefined);
return sema.fail(block, lhs_src, "expected indexable; found '{}'", .{lhs_ty.fmt(mod)});
};
const rhs_info = try sema.getArrayCatInfo(block, rhs_src, rhs, lhs_ty) orelse {
assert(!rhs_is_tuple);
return sema.fail(block, rhs_src, "expected indexable; found '{}'", .{rhs_ty.fmt(mod)});
};
const resolved_elem_ty = t: {
var trash_block = block.makeSubBlock();
trash_block.is_comptime = false;
defer trash_block.instructions.deinit(sema.gpa);
const instructions = [_]Air.Inst.Ref{
try trash_block.addBitCast(lhs_info.elem_type, .void_value),
try trash_block.addBitCast(rhs_info.elem_type, .void_value),
};
break :t try sema.resolvePeerTypes(block, src, &instructions, .{
.override = &[_]?LazySrcLoc{ lhs_src, rhs_src },
});
};
// When there is a sentinel mismatch, no sentinel on the result.
// Otherwise, use the sentinel value provided by either operand,
// coercing it to the peer-resolved element type.
const res_sent_val: ?Value = s: {
if (lhs_info.sentinel) |lhs_sent_val| {
const lhs_sent = Air.internedToRef(lhs_sent_val.toIntern());
if (rhs_info.sentinel) |rhs_sent_val| {
const rhs_sent = Air.internedToRef(rhs_sent_val.toIntern());
const lhs_sent_casted = try sema.coerce(block, resolved_elem_ty, lhs_sent, lhs_src);
const rhs_sent_casted = try sema.coerce(block, resolved_elem_ty, rhs_sent, rhs_src);
const lhs_sent_casted_val = (try sema.resolveDefinedValue(block, lhs_src, lhs_sent_casted)).?;
const rhs_sent_casted_val = (try sema.resolveDefinedValue(block, rhs_src, rhs_sent_casted)).?;
if (try sema.valuesEqual(lhs_sent_casted_val, rhs_sent_casted_val, resolved_elem_ty)) {
break :s lhs_sent_casted_val;
} else {
break :s null;
}
} else {
const lhs_sent_casted = try sema.coerce(block, resolved_elem_ty, lhs_sent, lhs_src);
const lhs_sent_casted_val = (try sema.resolveDefinedValue(block, lhs_src, lhs_sent_casted)).?;
break :s lhs_sent_casted_val;
}
} else {
if (rhs_info.sentinel) |rhs_sent_val| {
const rhs_sent = Air.internedToRef(rhs_sent_val.toIntern());
const rhs_sent_casted = try sema.coerce(block, resolved_elem_ty, rhs_sent, rhs_src);
const rhs_sent_casted_val = (try sema.resolveDefinedValue(block, rhs_src, rhs_sent_casted)).?;
break :s rhs_sent_casted_val;
} else {
break :s null;
}
}
};
const lhs_len = try sema.usizeCast(block, lhs_src, lhs_info.len);
const rhs_len = try sema.usizeCast(block, rhs_src, rhs_info.len);
const result_len = std.math.add(usize, lhs_len, rhs_len) catch |err| switch (err) {
error.Overflow => return sema.fail(
block,
src,
"concatenating arrays of length {d} and {d} produces an array too large for this compiler implementation to handle",
.{ lhs_len, rhs_len },
),
};
const result_ty = try mod.arrayType(.{
.len = result_len,
.sentinel = if (res_sent_val) |v| v.toIntern() else .none,
.child = resolved_elem_ty.toIntern(),
});
const ptr_addrspace = p: {
if (lhs_ty.zigTypeTag(mod) == .Pointer) break :p lhs_ty.ptrAddressSpace(mod);
if (rhs_ty.zigTypeTag(mod) == .Pointer) break :p rhs_ty.ptrAddressSpace(mod);
break :p null;
};
const runtime_src = if (switch (lhs_ty.zigTypeTag(mod)) {
.Array, .Struct => try sema.resolveValue(lhs),
.Pointer => try sema.resolveDefinedValue(block, lhs_src, lhs),
else => unreachable,
}) |lhs_val| rs: {
if (switch (rhs_ty.zigTypeTag(mod)) {
.Array, .Struct => try sema.resolveValue(rhs),
.Pointer => try sema.resolveDefinedValue(block, rhs_src, rhs),
else => unreachable,
}) |rhs_val| {
const lhs_sub_val = if (lhs_ty.isSinglePointer(mod))
try sema.pointerDeref(block, lhs_src, lhs_val, lhs_ty) orelse break :rs lhs_src
else if (lhs_ty.isSlice(mod))
try sema.maybeDerefSliceAsArray(block, lhs_src, lhs_val) orelse break :rs lhs_src
else
lhs_val;
const rhs_sub_val = if (rhs_ty.isSinglePointer(mod))
try sema.pointerDeref(block, rhs_src, rhs_val, rhs_ty) orelse break :rs rhs_src
else if (rhs_ty.isSlice(mod))
try sema.maybeDerefSliceAsArray(block, rhs_src, rhs_val) orelse break :rs rhs_src
else
rhs_val;
const element_vals = try sema.arena.alloc(InternPool.Index, result_len);
var elem_i: u32 = 0;
while (elem_i < lhs_len) : (elem_i += 1) {
const lhs_elem_i = elem_i;
const elem_default_val = if (lhs_is_tuple) lhs_ty.structFieldDefaultValue(lhs_elem_i, mod) else Value.@"unreachable";
const elem_val = if (elem_default_val.toIntern() == .unreachable_value) try lhs_sub_val.elemValue(mod, lhs_elem_i) else elem_default_val;
const elem_val_inst = Air.internedToRef(elem_val.toIntern());
const operand_src: LazySrcLoc = .{ .array_cat_lhs = .{
.array_cat_offset = inst_data.src_node,
.elem_index = elem_i,
} };
const coerced_elem_val_inst = try sema.coerce(block, resolved_elem_ty, elem_val_inst, operand_src);
const coerced_elem_val = try sema.resolveConstValue(block, operand_src, coerced_elem_val_inst, undefined);
element_vals[elem_i] = coerced_elem_val.toIntern();
}
while (elem_i < result_len) : (elem_i += 1) {
const rhs_elem_i = elem_i - lhs_len;
const elem_default_val = if (rhs_is_tuple) rhs_ty.structFieldDefaultValue(rhs_elem_i, mod) else Value.@"unreachable";
const elem_val = if (elem_default_val.toIntern() == .unreachable_value) try rhs_sub_val.elemValue(mod, rhs_elem_i) else elem_default_val;
const elem_val_inst = Air.internedToRef(elem_val.toIntern());
const operand_src: LazySrcLoc = .{ .array_cat_rhs = .{
.array_cat_offset = inst_data.src_node,
.elem_index = @intCast(rhs_elem_i),
} };
const coerced_elem_val_inst = try sema.coerce(block, resolved_elem_ty, elem_val_inst, operand_src);
const coerced_elem_val = try sema.resolveConstValue(block, operand_src, coerced_elem_val_inst, undefined);
element_vals[elem_i] = coerced_elem_val.toIntern();
}
return sema.addConstantMaybeRef(try mod.intern(.{ .aggregate = .{
.ty = result_ty.toIntern(),
.storage = .{ .elems = element_vals },
} }), ptr_addrspace != null);
} else break :rs rhs_src;
} else lhs_src;
try sema.requireRuntimeBlock(block, src, runtime_src);
if (ptr_addrspace) |ptr_as| {
const alloc_ty = try sema.ptrType(.{
.child = result_ty.toIntern(),
.flags = .{ .address_space = ptr_as },
});
const alloc = try block.addTy(.alloc, alloc_ty);
const elem_ptr_ty = try sema.ptrType(.{
.child = resolved_elem_ty.toIntern(),
.flags = .{ .address_space = ptr_as },
});
var elem_i: u32 = 0;
while (elem_i < lhs_len) : (elem_i += 1) {
const elem_index = try mod.intRef(Type.usize, elem_i);
const elem_ptr = try block.addPtrElemPtr(alloc, elem_index, elem_ptr_ty);
const operand_src: LazySrcLoc = .{ .array_cat_lhs = .{
.array_cat_offset = inst_data.src_node,
.elem_index = elem_i,
} };
const init = try sema.elemVal(block, operand_src, lhs, elem_index, src, true);
try sema.storePtr2(block, src, elem_ptr, src, init, operand_src, .store);
}
while (elem_i < result_len) : (elem_i += 1) {
const rhs_elem_i = elem_i - lhs_len;
const elem_index = try mod.intRef(Type.usize, elem_i);
const rhs_index = try mod.intRef(Type.usize, rhs_elem_i);
const elem_ptr = try block.addPtrElemPtr(alloc, elem_index, elem_ptr_ty);
const operand_src: LazySrcLoc = .{ .array_cat_rhs = .{
.array_cat_offset = inst_data.src_node,
.elem_index = @intCast(rhs_elem_i),
} };
const init = try sema.elemVal(block, operand_src, rhs, rhs_index, src, true);
try sema.storePtr2(block, src, elem_ptr, src, init, operand_src, .store);
}
if (res_sent_val) |sent_val| {
const elem_index = try mod.intRef(Type.usize, result_len);
const elem_ptr = try block.addPtrElemPtr(alloc, elem_index, elem_ptr_ty);
const init = Air.internedToRef((try mod.getCoerced(sent_val, lhs_info.elem_type)).toIntern());
try sema.storePtr2(block, src, elem_ptr, src, init, lhs_src, .store);
}
return alloc;
}
const element_refs = try sema.arena.alloc(Air.Inst.Ref, result_len);
{
var elem_i: u32 = 0;
while (elem_i < lhs_len) : (elem_i += 1) {
const index = try mod.intRef(Type.usize, elem_i);
const operand_src: LazySrcLoc = .{ .array_cat_lhs = .{
.array_cat_offset = inst_data.src_node,
.elem_index = elem_i,
} };
const init = try sema.elemVal(block, operand_src, lhs, index, src, true);
element_refs[elem_i] = try sema.coerce(block, resolved_elem_ty, init, operand_src);
}
while (elem_i < result_len) : (elem_i += 1) {
const rhs_elem_i = elem_i - lhs_len;
const index = try mod.intRef(Type.usize, rhs_elem_i);
const operand_src: LazySrcLoc = .{ .array_cat_rhs = .{
.array_cat_offset = inst_data.src_node,
.elem_index = @intCast(rhs_elem_i),
} };
const init = try sema.elemVal(block, operand_src, rhs, index, src, true);
element_refs[elem_i] = try sema.coerce(block, resolved_elem_ty, init, operand_src);
}
}
return block.addAggregateInit(result_ty, element_refs);
}
fn getArrayCatInfo(sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref, peer_ty: Type) !?Type.ArrayInfo {
const mod = sema.mod;
const operand_ty = sema.typeOf(operand);
switch (operand_ty.zigTypeTag(mod)) {
.Array => return operand_ty.arrayInfo(mod),
.Pointer => {
const ptr_info = operand_ty.ptrInfo(mod);
switch (ptr_info.flags.size) {
.Slice => {
const val = try sema.resolveConstDefinedValue(block, src, operand, .{
.needed_comptime_reason = "slice value being concatenated must be comptime-known",
});
return Type.ArrayInfo{
.elem_type = Type.fromInterned(ptr_info.child),
.sentinel = switch (ptr_info.sentinel) {
.none => null,
else => Value.fromInterned(ptr_info.sentinel),
},
.len = try val.sliceLen(sema),
};
},
.One => {
if (Type.fromInterned(ptr_info.child).zigTypeTag(mod) == .Array) {
return Type.fromInterned(ptr_info.child).arrayInfo(mod);
}
},
.C, .Many => {},
}
},
.Struct => {
if (operand_ty.isTuple(mod) and peer_ty.isIndexable(mod)) {
assert(!peer_ty.isTuple(mod));
return .{
.elem_type = peer_ty.elemType2(mod),
.sentinel = null,
.len = operand_ty.arrayLen(mod),
};
}
},
else => {},
}
return null;
}
fn analyzeTupleMul(
sema: *Sema,
block: *Block,
src_node: i32,
operand: Air.Inst.Ref,
factor: usize,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const operand_ty = sema.typeOf(operand);
const src = LazySrcLoc.nodeOffset(src_node);
const len_src: LazySrcLoc = .{ .node_offset_bin_rhs = src_node };
const tuple_len = operand_ty.structFieldCount(mod);
const final_len = std.math.mul(usize, tuple_len, factor) catch
return sema.fail(block, len_src, "operation results in overflow", .{});
if (final_len == 0) {
return Air.internedToRef(Value.empty_struct.toIntern());
}
const types = try sema.arena.alloc(InternPool.Index, final_len);
const values = try sema.arena.alloc(InternPool.Index, final_len);
const opt_runtime_src = rs: {
var runtime_src: ?LazySrcLoc = null;
for (0..tuple_len) |i| {
types[i] = operand_ty.structFieldType(i, mod).toIntern();
values[i] = operand_ty.structFieldDefaultValue(i, mod).toIntern();
const operand_src: LazySrcLoc = .{ .array_cat_lhs = .{
.array_cat_offset = src_node,
.elem_index = @intCast(i),
} };
if (values[i] == .unreachable_value) {
runtime_src = operand_src;
values[i] = .none; // TODO don't treat unreachable_value as special
}
}
for (0..factor) |i| {
mem.copyForwards(InternPool.Index, types[tuple_len * i ..], types[0..tuple_len]);
mem.copyForwards(InternPool.Index, values[tuple_len * i ..], values[0..tuple_len]);
}
break :rs runtime_src;
};
const tuple_ty = try mod.intern_pool.getAnonStructType(mod.gpa, .{
.types = types,
.values = values,
.names = &.{},
});
const runtime_src = opt_runtime_src orelse {
const tuple_val = try mod.intern(.{ .aggregate = .{
.ty = tuple_ty,
.storage = .{ .elems = values },
} });
return Air.internedToRef(tuple_val);
};
try sema.requireRuntimeBlock(block, src, runtime_src);
const element_refs = try sema.arena.alloc(Air.Inst.Ref, final_len);
var i: u32 = 0;
while (i < tuple_len) : (i += 1) {
const operand_src: LazySrcLoc = .{ .array_cat_lhs = .{
.array_cat_offset = src_node,
.elem_index = i,
} };
element_refs[i] = try sema.tupleFieldValByIndex(block, operand_src, operand, @intCast(i), operand_ty);
}
i = 1;
while (i < factor) : (i += 1) {
@memcpy(element_refs[tuple_len * i ..][0..tuple_len], element_refs[0..tuple_len]);
}
return block.addAggregateInit(Type.fromInterned(tuple_ty), element_refs);
}
fn zirArrayMul(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.ArrayMul, inst_data.payload_index).data;
const uncoerced_lhs = try sema.resolveInst(extra.lhs);
const uncoerced_lhs_ty = sema.typeOf(uncoerced_lhs);
const src: LazySrcLoc = inst_data.src();
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const operator_src: LazySrcLoc = .{ .node_offset_main_token = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const lhs, const lhs_ty = coerced_lhs: {
// If we have a result type, we might be able to do this more efficiently
// by coercing the LHS first. Specifically, if we want an array or vector
// and have a tuple, coerce the tuple immediately.
no_coerce: {
if (extra.res_ty == .none) break :no_coerce;
const res_ty_inst = try sema.resolveInst(extra.res_ty);
const res_ty = try sema.analyzeAsType(block, src, res_ty_inst);
if (res_ty.isGenericPoison()) break :no_coerce;
if (!uncoerced_lhs_ty.isTuple(mod)) break :no_coerce;
const lhs_len = uncoerced_lhs_ty.structFieldCount(mod);
const lhs_dest_ty = switch (res_ty.zigTypeTag(mod)) {
else => break :no_coerce,
.Array => try mod.arrayType(.{
.child = res_ty.childType(mod).toIntern(),
.len = lhs_len,
.sentinel = if (res_ty.sentinel(mod)) |s| s.toIntern() else .none,
}),
.Vector => try mod.vectorType(.{
.child = res_ty.childType(mod).toIntern(),
.len = lhs_len,
}),
};
// Attempt to coerce to this type, but don't emit an error if it fails. Instead,
// just exit out of this path and let the usual error happen later, so that error
// messages are consistent.
const coerced = sema.coerceExtra(block, lhs_dest_ty, uncoerced_lhs, lhs_src, .{ .report_err = false }) catch |err| switch (err) {
error.NotCoercible => break :no_coerce,
else => |e| return e,
};
break :coerced_lhs .{ coerced, lhs_dest_ty };
}
break :coerced_lhs .{ uncoerced_lhs, uncoerced_lhs_ty };
};
if (lhs_ty.isTuple(mod)) {
// In `**` rhs must be comptime-known, but lhs can be runtime-known
const factor = try sema.resolveInt(block, rhs_src, extra.rhs, Type.usize, .{
.needed_comptime_reason = "array multiplication factor must be comptime-known",
});
const factor_casted = try sema.usizeCast(block, rhs_src, factor);
return sema.analyzeTupleMul(block, inst_data.src_node, lhs, factor_casted);
}
// Analyze the lhs first, to catch the case that someone tried to do exponentiation
const lhs_info = try sema.getArrayCatInfo(block, lhs_src, lhs, lhs_ty) orelse {
const msg = msg: {
const msg = try sema.errMsg(block, lhs_src, "expected indexable; found '{}'", .{lhs_ty.fmt(mod)});
errdefer msg.destroy(sema.gpa);
switch (lhs_ty.zigTypeTag(mod)) {
.Int, .Float, .ComptimeFloat, .ComptimeInt, .Vector => {
try sema.errNote(block, operator_src, msg, "this operator multiplies arrays; use std.math.pow for exponentiation", .{});
},
else => {},
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
};
// In `**` rhs must be comptime-known, but lhs can be runtime-known
const factor = try sema.resolveInt(block, rhs_src, extra.rhs, Type.usize, .{
.needed_comptime_reason = "array multiplication factor must be comptime-known",
});
const result_len_u64 = std.math.mul(u64, lhs_info.len, factor) catch
return sema.fail(block, rhs_src, "operation results in overflow", .{});
const result_len = try sema.usizeCast(block, src, result_len_u64);
const result_ty = try mod.arrayType(.{
.len = result_len,
.sentinel = if (lhs_info.sentinel) |s| s.toIntern() else .none,
.child = lhs_info.elem_type.toIntern(),
});
const ptr_addrspace = if (lhs_ty.zigTypeTag(mod) == .Pointer) lhs_ty.ptrAddressSpace(mod) else null;
const lhs_len = try sema.usizeCast(block, lhs_src, lhs_info.len);
if (try sema.resolveDefinedValue(block, lhs_src, lhs)) |lhs_val| ct: {
const lhs_sub_val = if (lhs_ty.isSinglePointer(mod))
try sema.pointerDeref(block, lhs_src, lhs_val, lhs_ty) orelse break :ct
else if (lhs_ty.isSlice(mod))
try sema.maybeDerefSliceAsArray(block, lhs_src, lhs_val) orelse break :ct
else
lhs_val;
const val = v: {
// Optimization for the common pattern of a single element repeated N times, such
// as zero-filling a byte array.
if (lhs_len == 1 and lhs_info.sentinel == null) {
const elem_val = try lhs_sub_val.elemValue(mod, 0);
break :v try mod.intern(.{ .aggregate = .{
.ty = result_ty.toIntern(),
.storage = .{ .repeated_elem = elem_val.toIntern() },
} });
}
const element_vals = try sema.arena.alloc(InternPool.Index, result_len);
var elem_i: usize = 0;
while (elem_i < result_len) {
var lhs_i: usize = 0;
while (lhs_i < lhs_len) : (lhs_i += 1) {
const elem_val = try lhs_sub_val.elemValue(mod, lhs_i);
element_vals[elem_i] = elem_val.toIntern();
elem_i += 1;
}
}
break :v try mod.intern(.{ .aggregate = .{
.ty = result_ty.toIntern(),
.storage = .{ .elems = element_vals },
} });
};
return sema.addConstantMaybeRef(val, ptr_addrspace != null);
}
try sema.requireRuntimeBlock(block, src, lhs_src);
// Grab all the LHS values ahead of time, rather than repeatedly emitting instructions
// to get the same elem values.
const lhs_vals = try sema.arena.alloc(Air.Inst.Ref, lhs_len);
for (lhs_vals, 0..) |*lhs_val, idx| {
const idx_ref = try mod.intRef(Type.usize, idx);
lhs_val.* = try sema.elemVal(block, lhs_src, lhs, idx_ref, src, false);
}
if (ptr_addrspace) |ptr_as| {
const alloc_ty = try sema.ptrType(.{
.child = result_ty.toIntern(),
.flags = .{ .address_space = ptr_as },
});
const alloc = try block.addTy(.alloc, alloc_ty);
const elem_ptr_ty = try sema.ptrType(.{
.child = lhs_info.elem_type.toIntern(),
.flags = .{ .address_space = ptr_as },
});
var elem_i: usize = 0;
while (elem_i < result_len) {
for (lhs_vals) |lhs_val| {
const elem_index = try mod.intRef(Type.usize, elem_i);
const elem_ptr = try block.addPtrElemPtr(alloc, elem_index, elem_ptr_ty);
try sema.storePtr2(block, src, elem_ptr, src, lhs_val, lhs_src, .store);
elem_i += 1;
}
}
if (lhs_info.sentinel) |sent_val| {
const elem_index = try mod.intRef(Type.usize, result_len);
const elem_ptr = try block.addPtrElemPtr(alloc, elem_index, elem_ptr_ty);
const init = Air.internedToRef(sent_val.toIntern());
try sema.storePtr2(block, src, elem_ptr, src, init, lhs_src, .store);
}
return alloc;
}
const element_refs = try sema.arena.alloc(Air.Inst.Ref, result_len);
for (0..try sema.usizeCast(block, rhs_src, factor)) |i| {
@memcpy(element_refs[i * lhs_len ..][0..lhs_len], lhs_vals);
}
return block.addAggregateInit(result_ty, element_refs);
}
fn zirNegate(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const lhs_src = src;
const rhs_src: LazySrcLoc = .{ .node_offset_un_op = inst_data.src_node };
const rhs = try sema.resolveInst(inst_data.operand);
const rhs_ty = sema.typeOf(rhs);
const rhs_scalar_ty = rhs_ty.scalarType(mod);
if (rhs_scalar_ty.isUnsignedInt(mod) or switch (rhs_scalar_ty.zigTypeTag(mod)) {
.Int, .ComptimeInt, .Float, .ComptimeFloat => false,
else => true,
}) {
return sema.fail(block, src, "negation of type '{}'", .{rhs_ty.fmt(mod)});
}
if (rhs_scalar_ty.isAnyFloat()) {
// We handle float negation here to ensure negative zero is represented in the bits.
if (try sema.resolveValue(rhs)) |rhs_val| {
if (rhs_val.isUndef(mod)) return mod.undefRef(rhs_ty);
return Air.internedToRef((try rhs_val.floatNeg(rhs_ty, sema.arena, mod)).toIntern());
}
try sema.requireRuntimeBlock(block, src, null);
return block.addUnOp(if (block.float_mode == .optimized) .neg_optimized else .neg, rhs);
}
const lhs = Air.internedToRef((try sema.splat(rhs_ty, try mod.intValue(rhs_scalar_ty, 0))).toIntern());
return sema.analyzeArithmetic(block, .sub, lhs, rhs, src, lhs_src, rhs_src, true);
}
fn zirNegateWrap(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const lhs_src = src;
const rhs_src: LazySrcLoc = .{ .node_offset_un_op = inst_data.src_node };
const rhs = try sema.resolveInst(inst_data.operand);
const rhs_ty = sema.typeOf(rhs);
const rhs_scalar_ty = rhs_ty.scalarType(mod);
switch (rhs_scalar_ty.zigTypeTag(mod)) {
.Int, .ComptimeInt, .Float, .ComptimeFloat => {},
else => return sema.fail(block, src, "negation of type '{}'", .{rhs_ty.fmt(mod)}),
}
const lhs = Air.internedToRef((try sema.splat(rhs_ty, try mod.intValue(rhs_scalar_ty, 0))).toIntern());
return sema.analyzeArithmetic(block, .subwrap, lhs, rhs, src, lhs_src, rhs_src, true);
}
fn zirArithmetic(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
zir_tag: Zir.Inst.Tag,
safety: bool,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
return sema.analyzeArithmetic(block, zir_tag, lhs, rhs, src, lhs_src, rhs_src, safety);
}
fn zirDiv(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison(mod);
const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison(mod);
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
try sema.checkInvalidPtrArithmetic(block, src, lhs_ty);
const instructions = &[_]Air.Inst.Ref{ lhs, rhs };
const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{
.override = &[_]?LazySrcLoc{ lhs_src, rhs_src },
});
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
const lhs_scalar_ty = lhs_ty.scalarType(mod);
const rhs_scalar_ty = rhs_ty.scalarType(mod);
const scalar_tag = resolved_type.scalarType(mod).zigTypeTag(mod);
const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt;
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .div);
const maybe_lhs_val = try sema.resolveValueIntable(casted_lhs);
const maybe_rhs_val = try sema.resolveValueIntable(casted_rhs);
if ((lhs_ty.zigTypeTag(mod) == .ComptimeFloat and rhs_ty.zigTypeTag(mod) == .ComptimeInt) or
(lhs_ty.zigTypeTag(mod) == .ComptimeInt and rhs_ty.zigTypeTag(mod) == .ComptimeFloat))
{
// If it makes a difference whether we coerce to ints or floats before doing the division, error.
// If lhs % rhs is 0, it doesn't matter.
const lhs_val = maybe_lhs_val orelse unreachable;
const rhs_val = maybe_rhs_val orelse unreachable;
const rem = lhs_val.floatRem(rhs_val, resolved_type, sema.arena, mod) catch unreachable;
if (!rem.compareAllWithZero(.eq, mod)) {
return sema.fail(
block,
src,
"ambiguous coercion of division operands '{}' and '{}'; non-zero remainder '{}'",
.{ lhs_ty.fmt(mod), rhs_ty.fmt(mod), rem.fmtValue(mod) },
);
}
}
// TODO: emit compile error when .div is used on integers and there would be an
// ambiguous result between div_floor and div_trunc.
// For integers:
// If the lhs is zero, then zero is returned regardless of rhs.
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined:
// * if lhs type is signed:
// * if rhs is comptime-known and not -1, result is undefined
// * if rhs is -1 or runtime-known, compile error because there is a
// possible value (-min_int / -1) for which division would be
// illegal behavior.
// * if lhs type is unsigned, undef is returned regardless of rhs.
//
// For floats:
// If the rhs is zero:
// * comptime_float: compile error for division by zero.
// * other float type:
// * if the lhs is zero: QNaN
// * otherwise: +Inf or -Inf depending on lhs sign
// If the rhs is undefined:
// * comptime_float: compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// * other float type: result is undefined
// If the lhs is undefined, result is undefined.
switch (scalar_tag) {
.Int, .ComptimeInt, .ComptimeFloat => {
if (maybe_lhs_val) |lhs_val| {
if (!lhs_val.isUndef(mod)) {
if (try lhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
const scalar_zero = switch (scalar_tag) {
.ComptimeFloat, .Float => try mod.floatValue(resolved_type.scalarType(mod), 0.0),
.ComptimeInt, .Int => try mod.intValue(resolved_type.scalarType(mod), 0),
else => unreachable,
};
const zero_val = try sema.splat(resolved_type, scalar_zero);
return Air.internedToRef(zero_val.toIntern());
}
}
}
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
return sema.failWithUseOfUndef(block, rhs_src);
}
if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) {
return sema.failWithDivideByZero(block, rhs_src);
}
// TODO: if the RHS is one, return the LHS directly
}
},
else => {},
}
const runtime_src = rs: {
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
if (lhs_scalar_ty.isSignedInt(mod) and rhs_scalar_ty.isSignedInt(mod)) {
if (maybe_rhs_val) |rhs_val| {
if (try sema.compareAll(rhs_val, .neq, try mod.intValue(resolved_type, -1), resolved_type)) {
return mod.undefRef(resolved_type);
}
}
return sema.failWithUseOfUndef(block, rhs_src);
}
return mod.undefRef(resolved_type);
}
if (maybe_rhs_val) |rhs_val| {
if (is_int) {
var overflow_idx: ?usize = null;
const res = try lhs_val.intDiv(rhs_val, resolved_type, &overflow_idx, sema.arena, mod);
if (overflow_idx) |vec_idx| {
return sema.failWithIntegerOverflow(block, src, resolved_type, res, vec_idx);
}
return Air.internedToRef(res.toIntern());
} else {
return Air.internedToRef((try lhs_val.floatDiv(rhs_val, resolved_type, sema.arena, mod)).toIntern());
}
} else {
break :rs rhs_src;
}
} else {
break :rs lhs_src;
}
};
try sema.requireRuntimeBlock(block, src, runtime_src);
if (block.wantSafety()) {
try sema.addDivIntOverflowSafety(block, src, resolved_type, lhs_scalar_ty, maybe_lhs_val, maybe_rhs_val, casted_lhs, casted_rhs, is_int);
try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int);
}
const air_tag = if (is_int) blk: {
if (lhs_ty.isSignedInt(mod) or rhs_ty.isSignedInt(mod)) {
return sema.fail(
block,
src,
"division with '{}' and '{}': signed integers must use @divTrunc, @divFloor, or @divExact",
.{ lhs_ty.fmt(mod), rhs_ty.fmt(mod) },
);
}
break :blk Air.Inst.Tag.div_trunc;
} else switch (block.float_mode) {
.optimized => Air.Inst.Tag.div_float_optimized,
.strict => Air.Inst.Tag.div_float,
};
return block.addBinOp(air_tag, casted_lhs, casted_rhs);
}
fn zirDivExact(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison(mod);
const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison(mod);
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
try sema.checkInvalidPtrArithmetic(block, src, lhs_ty);
const instructions = &[_]Air.Inst.Ref{ lhs, rhs };
const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{
.override = &[_]?LazySrcLoc{ lhs_src, rhs_src },
});
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
const lhs_scalar_ty = lhs_ty.scalarType(mod);
const scalar_tag = resolved_type.scalarType(mod).zigTypeTag(mod);
const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt;
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .div_exact);
const maybe_lhs_val = try sema.resolveValueIntable(casted_lhs);
const maybe_rhs_val = try sema.resolveValueIntable(casted_rhs);
const runtime_src = rs: {
// For integers:
// If the lhs is zero, then zero is returned regardless of rhs.
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined, compile error because there is a possible
// value for which the division would result in a remainder.
// TODO: emit runtime safety for if there is a remainder
// TODO: emit runtime safety for division by zero
//
// For floats:
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined, compile error because there is a possible
// value for which the division would result in a remainder.
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
return sema.failWithUseOfUndef(block, rhs_src);
} else {
if (try lhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
const scalar_zero = switch (scalar_tag) {
.ComptimeFloat, .Float => try mod.floatValue(resolved_type.scalarType(mod), 0.0),
.ComptimeInt, .Int => try mod.intValue(resolved_type.scalarType(mod), 0),
else => unreachable,
};
const zero_val = try sema.splat(resolved_type, scalar_zero);
return Air.internedToRef(zero_val.toIntern());
}
}
}
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
return sema.failWithUseOfUndef(block, rhs_src);
}
if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) {
return sema.failWithDivideByZero(block, rhs_src);
}
// TODO: if the RHS is one, return the LHS directly
}
if (maybe_lhs_val) |lhs_val| {
if (maybe_rhs_val) |rhs_val| {
if (is_int) {
const modulus_val = try lhs_val.intMod(rhs_val, resolved_type, sema.arena, mod);
if (!(modulus_val.compareAllWithZero(.eq, mod))) {
return sema.fail(block, src, "exact division produced remainder", .{});
}
var overflow_idx: ?usize = null;
const res = try lhs_val.intDiv(rhs_val, resolved_type, &overflow_idx, sema.arena, mod);
if (overflow_idx) |vec_idx| {
return sema.failWithIntegerOverflow(block, src, resolved_type, res, vec_idx);
}
return Air.internedToRef(res.toIntern());
} else {
const modulus_val = try lhs_val.floatMod(rhs_val, resolved_type, sema.arena, mod);
if (!(modulus_val.compareAllWithZero(.eq, mod))) {
return sema.fail(block, src, "exact division produced remainder", .{});
}
return Air.internedToRef((try lhs_val.floatDiv(rhs_val, resolved_type, sema.arena, mod)).toIntern());
}
} else break :rs rhs_src;
} else break :rs lhs_src;
};
try sema.requireRuntimeBlock(block, src, runtime_src);
// Depending on whether safety is enabled, we will have a slightly different strategy
// here. The `div_exact` AIR instruction causes undefined behavior if a remainder
// is produced, so in the safety check case, it cannot be used. Instead we do a
// div_trunc and check for remainder.
if (block.wantSafety()) {
try sema.addDivIntOverflowSafety(block, src, resolved_type, lhs_scalar_ty, maybe_lhs_val, maybe_rhs_val, casted_lhs, casted_rhs, is_int);
try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int);
const result = try block.addBinOp(.div_trunc, casted_lhs, casted_rhs);
const ok = if (!is_int) ok: {
const floored = try block.addUnOp(.floor, result);
if (resolved_type.zigTypeTag(mod) == .Vector) {
const eql = try block.addCmpVector(result, floored, .eq);
break :ok try block.addInst(.{
.tag = switch (block.float_mode) {
.strict => .reduce,
.optimized => .reduce_optimized,
},
.data = .{ .reduce = .{
.operand = eql,
.operation = .And,
} },
});
} else {
const is_in_range = try block.addBinOp(switch (block.float_mode) {
.strict => .cmp_eq,
.optimized => .cmp_eq_optimized,
}, result, floored);
break :ok is_in_range;
}
} else ok: {
const remainder = try block.addBinOp(.rem, casted_lhs, casted_rhs);
const scalar_zero = switch (scalar_tag) {
.ComptimeFloat, .Float => try mod.floatValue(resolved_type.scalarType(mod), 0.0),
.ComptimeInt, .Int => try mod.intValue(resolved_type.scalarType(mod), 0),
else => unreachable,
};
if (resolved_type.zigTypeTag(mod) == .Vector) {
const zero_val = try sema.splat(resolved_type, scalar_zero);
const zero = Air.internedToRef(zero_val.toIntern());
const eql = try block.addCmpVector(remainder, zero, .eq);
break :ok try block.addInst(.{
.tag = .reduce,
.data = .{ .reduce = .{
.operand = eql,
.operation = .And,
} },
});
} else {
const zero = Air.internedToRef(scalar_zero.toIntern());
const is_in_range = try block.addBinOp(.cmp_eq, remainder, zero);
break :ok is_in_range;
}
};
try sema.addSafetyCheck(block, src, ok, .exact_division_remainder);
return result;
}
return block.addBinOp(airTag(block, is_int, .div_exact, .div_exact_optimized), casted_lhs, casted_rhs);
}
fn zirDivFloor(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison(mod);
const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison(mod);
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
try sema.checkInvalidPtrArithmetic(block, src, lhs_ty);
const instructions = &[_]Air.Inst.Ref{ lhs, rhs };
const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{
.override = &[_]?LazySrcLoc{ lhs_src, rhs_src },
});
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
const lhs_scalar_ty = lhs_ty.scalarType(mod);
const rhs_scalar_ty = rhs_ty.scalarType(mod);
const scalar_tag = resolved_type.scalarType(mod).zigTypeTag(mod);
const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt;
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .div_floor);
const maybe_lhs_val = try sema.resolveValueIntable(casted_lhs);
const maybe_rhs_val = try sema.resolveValueIntable(casted_rhs);
const runtime_src = rs: {
// For integers:
// If the lhs is zero, then zero is returned regardless of rhs.
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined:
// * if lhs type is signed:
// * if rhs is comptime-known and not -1, result is undefined
// * if rhs is -1 or runtime-known, compile error because there is a
// possible value (-min_int / -1) for which division would be
// illegal behavior.
// * if lhs type is unsigned, undef is returned regardless of rhs.
// TODO: emit runtime safety for division by zero
//
// For floats:
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined, result is undefined.
if (maybe_lhs_val) |lhs_val| {
if (!lhs_val.isUndef(mod)) {
if (try lhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
const scalar_zero = switch (scalar_tag) {
.ComptimeFloat, .Float => try mod.floatValue(resolved_type.scalarType(mod), 0.0),
.ComptimeInt, .Int => try mod.intValue(resolved_type.scalarType(mod), 0),
else => unreachable,
};
const zero_val = try sema.splat(resolved_type, scalar_zero);
return Air.internedToRef(zero_val.toIntern());
}
}
}
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
return sema.failWithUseOfUndef(block, rhs_src);
}
if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) {
return sema.failWithDivideByZero(block, rhs_src);
}
// TODO: if the RHS is one, return the LHS directly
}
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
if (lhs_scalar_ty.isSignedInt(mod) and rhs_scalar_ty.isSignedInt(mod)) {
if (maybe_rhs_val) |rhs_val| {
if (try sema.compareAll(rhs_val, .neq, try mod.intValue(resolved_type, -1), resolved_type)) {
return mod.undefRef(resolved_type);
}
}
return sema.failWithUseOfUndef(block, rhs_src);
}
return mod.undefRef(resolved_type);
}
if (maybe_rhs_val) |rhs_val| {
if (is_int) {
return Air.internedToRef((try lhs_val.intDivFloor(rhs_val, resolved_type, sema.arena, mod)).toIntern());
} else {
return Air.internedToRef((try lhs_val.floatDivFloor(rhs_val, resolved_type, sema.arena, mod)).toIntern());
}
} else break :rs rhs_src;
} else break :rs lhs_src;
};
try sema.requireRuntimeBlock(block, src, runtime_src);
if (block.wantSafety()) {
try sema.addDivIntOverflowSafety(block, src, resolved_type, lhs_scalar_ty, maybe_lhs_val, maybe_rhs_val, casted_lhs, casted_rhs, is_int);
try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int);
}
return block.addBinOp(airTag(block, is_int, .div_floor, .div_floor_optimized), casted_lhs, casted_rhs);
}
fn zirDivTrunc(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison(mod);
const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison(mod);
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
try sema.checkInvalidPtrArithmetic(block, src, lhs_ty);
const instructions = &[_]Air.Inst.Ref{ lhs, rhs };
const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{
.override = &[_]?LazySrcLoc{ lhs_src, rhs_src },
});
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
const lhs_scalar_ty = lhs_ty.scalarType(mod);
const rhs_scalar_ty = rhs_ty.scalarType(mod);
const scalar_tag = resolved_type.scalarType(mod).zigTypeTag(mod);
const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt;
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .div_trunc);
const maybe_lhs_val = try sema.resolveValueIntable(casted_lhs);
const maybe_rhs_val = try sema.resolveValueIntable(casted_rhs);
const runtime_src = rs: {
// For integers:
// If the lhs is zero, then zero is returned regardless of rhs.
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined:
// * if lhs type is signed:
// * if rhs is comptime-known and not -1, result is undefined
// * if rhs is -1 or runtime-known, compile error because there is a
// possible value (-min_int / -1) for which division would be
// illegal behavior.
// * if lhs type is unsigned, undef is returned regardless of rhs.
// TODO: emit runtime safety for division by zero
//
// For floats:
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined, result is undefined.
if (maybe_lhs_val) |lhs_val| {
if (!lhs_val.isUndef(mod)) {
if (try lhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
const scalar_zero = switch (scalar_tag) {
.ComptimeFloat, .Float => try mod.floatValue(resolved_type.scalarType(mod), 0.0),
.ComptimeInt, .Int => try mod.intValue(resolved_type.scalarType(mod), 0),
else => unreachable,
};
const zero_val = try sema.splat(resolved_type, scalar_zero);
return Air.internedToRef(zero_val.toIntern());
}
}
}
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
return sema.failWithUseOfUndef(block, rhs_src);
}
if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) {
return sema.failWithDivideByZero(block, rhs_src);
}
}
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
if (lhs_scalar_ty.isSignedInt(mod) and rhs_scalar_ty.isSignedInt(mod)) {
if (maybe_rhs_val) |rhs_val| {
if (try sema.compareAll(rhs_val, .neq, try mod.intValue(resolved_type, -1), resolved_type)) {
return mod.undefRef(resolved_type);
}
}
return sema.failWithUseOfUndef(block, rhs_src);
}
return mod.undefRef(resolved_type);
}
if (maybe_rhs_val) |rhs_val| {
if (is_int) {
var overflow_idx: ?usize = null;
const res = try lhs_val.intDiv(rhs_val, resolved_type, &overflow_idx, sema.arena, mod);
if (overflow_idx) |vec_idx| {
return sema.failWithIntegerOverflow(block, src, resolved_type, res, vec_idx);
}
return Air.internedToRef(res.toIntern());
} else {
return Air.internedToRef((try lhs_val.floatDivTrunc(rhs_val, resolved_type, sema.arena, mod)).toIntern());
}
} else break :rs rhs_src;
} else break :rs lhs_src;
};
try sema.requireRuntimeBlock(block, src, runtime_src);
if (block.wantSafety()) {
try sema.addDivIntOverflowSafety(block, src, resolved_type, lhs_scalar_ty, maybe_lhs_val, maybe_rhs_val, casted_lhs, casted_rhs, is_int);
try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int);
}
return block.addBinOp(airTag(block, is_int, .div_trunc, .div_trunc_optimized), casted_lhs, casted_rhs);
}
fn addDivIntOverflowSafety(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
resolved_type: Type,
lhs_scalar_ty: Type,
maybe_lhs_val: ?Value,
maybe_rhs_val: ?Value,
casted_lhs: Air.Inst.Ref,
casted_rhs: Air.Inst.Ref,
is_int: bool,
) CompileError!void {
const mod = sema.mod;
if (!is_int) return;
// If the LHS is unsigned, it cannot cause overflow.
if (!lhs_scalar_ty.isSignedInt(mod)) return;
// If the LHS is widened to a larger integer type, no overflow is possible.
if (lhs_scalar_ty.intInfo(mod).bits < resolved_type.intInfo(mod).bits) {
return;
}
const min_int = try resolved_type.minInt(mod, resolved_type);
const neg_one_scalar = try mod.intValue(lhs_scalar_ty, -1);
const neg_one = try sema.splat(resolved_type, neg_one_scalar);
// If the LHS is comptime-known to be not equal to the min int,
// no overflow is possible.
if (maybe_lhs_val) |lhs_val| {
if (try lhs_val.compareAll(.neq, min_int, resolved_type, mod)) return;
}
// If the RHS is comptime-known to not be equal to -1, no overflow is possible.
if (maybe_rhs_val) |rhs_val| {
if (try rhs_val.compareAll(.neq, neg_one, resolved_type, mod)) return;
}
var ok: Air.Inst.Ref = .none;
if (resolved_type.zigTypeTag(mod) == .Vector) {
if (maybe_lhs_val == null) {
const min_int_ref = Air.internedToRef(min_int.toIntern());
ok = try block.addCmpVector(casted_lhs, min_int_ref, .neq);
}
if (maybe_rhs_val == null) {
const neg_one_ref = Air.internedToRef(neg_one.toIntern());
const rhs_ok = try block.addCmpVector(casted_rhs, neg_one_ref, .neq);
if (ok == .none) {
ok = rhs_ok;
} else {
ok = try block.addBinOp(.bool_or, ok, rhs_ok);
}
}
assert(ok != .none);
ok = try block.addInst(.{
.tag = .reduce,
.data = .{ .reduce = .{
.operand = ok,
.operation = .And,
} },
});
} else {
if (maybe_lhs_val == null) {
const min_int_ref = Air.internedToRef(min_int.toIntern());
ok = try block.addBinOp(.cmp_neq, casted_lhs, min_int_ref);
}
if (maybe_rhs_val == null) {
const neg_one_ref = Air.internedToRef(neg_one.toIntern());
const rhs_ok = try block.addBinOp(.cmp_neq, casted_rhs, neg_one_ref);
if (ok == .none) {
ok = rhs_ok;
} else {
ok = try block.addBinOp(.bool_or, ok, rhs_ok);
}
}
assert(ok != .none);
}
try sema.addSafetyCheck(block, src, ok, .integer_overflow);
}
fn addDivByZeroSafety(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
resolved_type: Type,
maybe_rhs_val: ?Value,
casted_rhs: Air.Inst.Ref,
is_int: bool,
) CompileError!void {
// Strict IEEE floats have well-defined division by zero.
if (!is_int and block.float_mode == .strict) return;
// If rhs was comptime-known to be zero a compile error would have been
// emitted above.
if (maybe_rhs_val != null) return;
const mod = sema.mod;
const scalar_zero = if (is_int)
try mod.intValue(resolved_type.scalarType(mod), 0)
else
try mod.floatValue(resolved_type.scalarType(mod), 0.0);
const ok = if (resolved_type.zigTypeTag(mod) == .Vector) ok: {
const zero_val = try sema.splat(resolved_type, scalar_zero);
const zero = Air.internedToRef(zero_val.toIntern());
const ok = try block.addCmpVector(casted_rhs, zero, .neq);
break :ok try block.addInst(.{
.tag = if (is_int) .reduce else .reduce_optimized,
.data = .{ .reduce = .{
.operand = ok,
.operation = .And,
} },
});
} else ok: {
const zero = Air.internedToRef(scalar_zero.toIntern());
break :ok try block.addBinOp(if (is_int) .cmp_neq else .cmp_neq_optimized, casted_rhs, zero);
};
try sema.addSafetyCheck(block, src, ok, .divide_by_zero);
}
fn airTag(block: *Block, is_int: bool, normal: Air.Inst.Tag, optimized: Air.Inst.Tag) Air.Inst.Tag {
if (is_int) return normal;
return switch (block.float_mode) {
.strict => normal,
.optimized => optimized,
};
}
fn zirModRem(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison(mod);
const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison(mod);
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
try sema.checkInvalidPtrArithmetic(block, src, lhs_ty);
const instructions = &[_]Air.Inst.Ref{ lhs, rhs };
const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{
.override = &[_]?LazySrcLoc{ lhs_src, rhs_src },
});
const is_vector = resolved_type.zigTypeTag(mod) == .Vector;
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
const lhs_scalar_ty = lhs_ty.scalarType(mod);
const rhs_scalar_ty = rhs_ty.scalarType(mod);
const scalar_tag = resolved_type.scalarType(mod).zigTypeTag(mod);
const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt;
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .mod_rem);
const maybe_lhs_val = try sema.resolveValueIntable(casted_lhs);
const maybe_rhs_val = try sema.resolveValueIntable(casted_rhs);
const runtime_src = rs: {
// For integers:
// Either operand being undef is a compile error because there exists
// a possible value (TODO what is it?) that would invoke illegal behavior.
// TODO: can lhs undef be handled better?
//
// For floats:
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined, result is undefined.
//
// For either one: if the result would be different between @mod and @rem,
// then emit a compile error saying you have to pick one.
if (is_int) {
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
return sema.failWithUseOfUndef(block, lhs_src);
}
if (try lhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
const scalar_zero = switch (scalar_tag) {
.ComptimeFloat, .Float => try mod.floatValue(resolved_type.scalarType(mod), 0.0),
.ComptimeInt, .Int => try mod.intValue(resolved_type.scalarType(mod), 0),
else => unreachable,
};
const zero_val = if (is_vector) Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = resolved_type.toIntern(),
.storage = .{ .repeated_elem = scalar_zero.toIntern() },
} }))) else scalar_zero;
return Air.internedToRef(zero_val.toIntern());
}
} else if (lhs_scalar_ty.isSignedInt(mod)) {
return sema.failWithModRemNegative(block, lhs_src, lhs_ty, rhs_ty);
}
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
return sema.failWithUseOfUndef(block, rhs_src);
}
if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) {
return sema.failWithDivideByZero(block, rhs_src);
}
if (!(try rhs_val.compareAllWithZeroAdvanced(.gte, sema))) {
return sema.failWithModRemNegative(block, rhs_src, lhs_ty, rhs_ty);
}
if (maybe_lhs_val) |lhs_val| {
const rem_result = try sema.intRem(resolved_type, lhs_val, rhs_val);
// If this answer could possibly be different by doing `intMod`,
// we must emit a compile error. Otherwise, it's OK.
if (!(try lhs_val.compareAllWithZeroAdvanced(.gte, sema)) and
!(try rem_result.compareAllWithZeroAdvanced(.eq, sema)))
{
return sema.failWithModRemNegative(block, lhs_src, lhs_ty, rhs_ty);
}
return Air.internedToRef(rem_result.toIntern());
}
break :rs lhs_src;
} else if (rhs_scalar_ty.isSignedInt(mod)) {
return sema.failWithModRemNegative(block, rhs_src, lhs_ty, rhs_ty);
} else {
break :rs rhs_src;
}
}
// float operands
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
return sema.failWithUseOfUndef(block, rhs_src);
}
if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) {
return sema.failWithDivideByZero(block, rhs_src);
}
if (!(try rhs_val.compareAllWithZeroAdvanced(.gte, sema))) {
return sema.failWithModRemNegative(block, rhs_src, lhs_ty, rhs_ty);
}
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod) or !(try lhs_val.compareAllWithZeroAdvanced(.gte, sema))) {
return sema.failWithModRemNegative(block, lhs_src, lhs_ty, rhs_ty);
}
return Air.internedToRef((try lhs_val.floatRem(rhs_val, resolved_type, sema.arena, mod)).toIntern());
} else {
return sema.failWithModRemNegative(block, lhs_src, lhs_ty, rhs_ty);
}
} else {
return sema.failWithModRemNegative(block, rhs_src, lhs_ty, rhs_ty);
}
};
try sema.requireRuntimeBlock(block, src, runtime_src);
if (block.wantSafety()) {
try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int);
}
const air_tag = airTag(block, is_int, .rem, .rem_optimized);
return block.addBinOp(air_tag, casted_lhs, casted_rhs);
}
fn intRem(
sema: *Sema,
ty: Type,
lhs: Value,
rhs: Value,
) CompileError!Value {
const mod = sema.mod;
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try sema.arena.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = (try sema.intRemScalar(lhs_elem, rhs_elem, scalar_ty)).toIntern();
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return sema.intRemScalar(lhs, rhs, ty);
}
fn intRemScalar(sema: *Sema, lhs: Value, rhs: Value, scalar_ty: Type) CompileError!Value {
const mod = sema.mod;
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = try lhs.toBigIntAdvanced(&lhs_space, mod, sema);
const rhs_bigint = try rhs.toBigIntAdvanced(&rhs_space, mod, sema);
const limbs_q = try sema.arena.alloc(
math.big.Limb,
lhs_bigint.limbs.len,
);
const limbs_r = try sema.arena.alloc(
math.big.Limb,
// TODO: consider reworking Sema to re-use Values rather than
// always producing new Value objects.
rhs_bigint.limbs.len,
);
const limbs_buffer = try sema.arena.alloc(
math.big.Limb,
math.big.int.calcDivLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len),
);
var result_q = math.big.int.Mutable{ .limbs = limbs_q, .positive = undefined, .len = undefined };
var result_r = math.big.int.Mutable{ .limbs = limbs_r, .positive = undefined, .len = undefined };
result_q.divTrunc(&result_r, lhs_bigint, rhs_bigint, limbs_buffer);
return mod.intValue_big(scalar_ty, result_r.toConst());
}
fn zirMod(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison(mod);
const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison(mod);
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
try sema.checkInvalidPtrArithmetic(block, src, lhs_ty);
const instructions = &[_]Air.Inst.Ref{ lhs, rhs };
const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{
.override = &[_]?LazySrcLoc{ lhs_src, rhs_src },
});
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
const scalar_tag = resolved_type.scalarType(mod).zigTypeTag(mod);
const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt;
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .mod);
const maybe_lhs_val = try sema.resolveValueIntable(casted_lhs);
const maybe_rhs_val = try sema.resolveValueIntable(casted_rhs);
const runtime_src = rs: {
// For integers:
// Either operand being undef is a compile error because there exists
// a possible value (TODO what is it?) that would invoke illegal behavior.
// TODO: can lhs zero be handled better?
// TODO: can lhs undef be handled better?
//
// For floats:
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined, result is undefined.
if (is_int) {
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
return sema.failWithUseOfUndef(block, lhs_src);
}
}
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
return sema.failWithUseOfUndef(block, rhs_src);
}
if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) {
return sema.failWithDivideByZero(block, rhs_src);
}
if (maybe_lhs_val) |lhs_val| {
return Air.internedToRef((try lhs_val.intMod(rhs_val, resolved_type, sema.arena, mod)).toIntern());
}
break :rs lhs_src;
} else {
break :rs rhs_src;
}
}
// float operands
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
return sema.failWithUseOfUndef(block, rhs_src);
}
if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) {
return sema.failWithDivideByZero(block, rhs_src);
}
}
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
return mod.undefRef(resolved_type);
}
if (maybe_rhs_val) |rhs_val| {
return Air.internedToRef((try lhs_val.floatMod(rhs_val, resolved_type, sema.arena, mod)).toIntern());
} else break :rs rhs_src;
} else break :rs lhs_src;
};
try sema.requireRuntimeBlock(block, src, runtime_src);
if (block.wantSafety()) {
try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int);
}
const air_tag = airTag(block, is_int, .mod, .mod_optimized);
return block.addBinOp(air_tag, casted_lhs, casted_rhs);
}
fn zirRem(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison(mod);
const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison(mod);
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
try sema.checkInvalidPtrArithmetic(block, src, lhs_ty);
const instructions = &[_]Air.Inst.Ref{ lhs, rhs };
const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{
.override = &[_]?LazySrcLoc{ lhs_src, rhs_src },
});
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
const scalar_tag = resolved_type.scalarType(mod).zigTypeTag(mod);
const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt;
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .rem);
const maybe_lhs_val = try sema.resolveValueIntable(casted_lhs);
const maybe_rhs_val = try sema.resolveValueIntable(casted_rhs);
const runtime_src = rs: {
// For integers:
// Either operand being undef is a compile error because there exists
// a possible value (TODO what is it?) that would invoke illegal behavior.
// TODO: can lhs zero be handled better?
// TODO: can lhs undef be handled better?
//
// For floats:
// If the rhs is zero, compile error for division by zero.
// If the rhs is undefined, compile error because there is a possible
// value (zero) for which the division would be illegal behavior.
// If the lhs is undefined, result is undefined.
if (is_int) {
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
return sema.failWithUseOfUndef(block, lhs_src);
}
}
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
return sema.failWithUseOfUndef(block, rhs_src);
}
if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) {
return sema.failWithDivideByZero(block, rhs_src);
}
if (maybe_lhs_val) |lhs_val| {
return Air.internedToRef((try sema.intRem(resolved_type, lhs_val, rhs_val)).toIntern());
}
break :rs lhs_src;
} else {
break :rs rhs_src;
}
}
// float operands
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
return sema.failWithUseOfUndef(block, rhs_src);
}
if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) {
return sema.failWithDivideByZero(block, rhs_src);
}
}
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
return mod.undefRef(resolved_type);
}
if (maybe_rhs_val) |rhs_val| {
return Air.internedToRef((try lhs_val.floatRem(rhs_val, resolved_type, sema.arena, mod)).toIntern());
} else break :rs rhs_src;
} else break :rs lhs_src;
};
try sema.requireRuntimeBlock(block, src, runtime_src);
if (block.wantSafety()) {
try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int);
}
const air_tag = airTag(block, is_int, .rem, .rem_optimized);
return block.addBinOp(air_tag, casted_lhs, casted_rhs);
}
fn zirOverflowArithmetic(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
zir_tag: Zir.Inst.Extended,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data;
const src = LazySrcLoc.nodeOffset(extra.node);
const lhs_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const rhs_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = extra.node };
const uncasted_lhs = try sema.resolveInst(extra.lhs);
const uncasted_rhs = try sema.resolveInst(extra.rhs);
const lhs_ty = sema.typeOf(uncasted_lhs);
const rhs_ty = sema.typeOf(uncasted_rhs);
const mod = sema.mod;
const ip = &mod.intern_pool;
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
const instructions = &[_]Air.Inst.Ref{ uncasted_lhs, uncasted_rhs };
const dest_ty = if (zir_tag == .shl_with_overflow)
lhs_ty
else
try sema.resolvePeerTypes(block, src, instructions, .{
.override = &[_]?LazySrcLoc{ lhs_src, rhs_src },
});
const rhs_dest_ty = if (zir_tag == .shl_with_overflow)
try sema.log2IntType(block, lhs_ty, src)
else
dest_ty;
const lhs = try sema.coerce(block, dest_ty, uncasted_lhs, lhs_src);
const rhs = try sema.coerce(block, rhs_dest_ty, uncasted_rhs, rhs_src);
if (dest_ty.scalarType(mod).zigTypeTag(mod) != .Int) {
return sema.fail(block, src, "expected vector of integers or integer tag type, found '{}'", .{dest_ty.fmt(mod)});
}
const maybe_lhs_val = try sema.resolveValue(lhs);
const maybe_rhs_val = try sema.resolveValue(rhs);
const tuple_ty = try sema.overflowArithmeticTupleType(dest_ty);
const overflow_ty = Type.fromInterned(ip.indexToKey(tuple_ty.toIntern()).anon_struct_type.types.get(ip)[1]);
var result: struct {
inst: Air.Inst.Ref = .none,
wrapped: Value = Value.@"unreachable",
overflow_bit: Value,
} = result: {
const zero_bit = try mod.intValue(Type.u1, 0);
switch (zir_tag) {
.add_with_overflow => {
// If either of the arguments is zero, `false` is returned and the other is stored
// to the result, even if it is undefined..
// Otherwise, if either of the argument is undefined, undefined is returned.
if (maybe_lhs_val) |lhs_val| {
if (!lhs_val.isUndef(mod) and (try lhs_val.compareAllWithZeroAdvanced(.eq, sema))) {
break :result .{ .overflow_bit = try sema.splat(overflow_ty, zero_bit), .inst = rhs };
}
}
if (maybe_rhs_val) |rhs_val| {
if (!rhs_val.isUndef(mod) and (try rhs_val.compareAllWithZeroAdvanced(.eq, sema))) {
break :result .{ .overflow_bit = try sema.splat(overflow_ty, zero_bit), .inst = lhs };
}
}
if (maybe_lhs_val) |lhs_val| {
if (maybe_rhs_val) |rhs_val| {
if (lhs_val.isUndef(mod) or rhs_val.isUndef(mod)) {
break :result .{ .overflow_bit = Value.undef, .wrapped = Value.undef };
}
const result = try sema.intAddWithOverflow(lhs_val, rhs_val, dest_ty);
break :result .{ .overflow_bit = result.overflow_bit, .wrapped = result.wrapped_result };
}
}
},
.sub_with_overflow => {
// If the rhs is zero, then the result is lhs and no overflow occured.
// Otherwise, if either result is undefined, both results are undefined.
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
break :result .{ .overflow_bit = Value.undef, .wrapped = Value.undef };
} else if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
break :result .{ .overflow_bit = try sema.splat(overflow_ty, zero_bit), .inst = lhs };
} else if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
break :result .{ .overflow_bit = Value.undef, .wrapped = Value.undef };
}
const result = try sema.intSubWithOverflow(lhs_val, rhs_val, dest_ty);
break :result .{ .overflow_bit = result.overflow_bit, .wrapped = result.wrapped_result };
}
}
},
.mul_with_overflow => {
// If either of the arguments is zero, the result is zero and no overflow occured.
// If either of the arguments is one, the result is the other and no overflow occured.
// Otherwise, if either of the arguments is undefined, both results are undefined.
const scalar_one = try mod.intValue(dest_ty.scalarType(mod), 1);
if (maybe_lhs_val) |lhs_val| {
if (!lhs_val.isUndef(mod)) {
if (try lhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
break :result .{ .overflow_bit = try sema.splat(overflow_ty, zero_bit), .inst = lhs };
} else if (try sema.compareAll(lhs_val, .eq, try sema.splat(dest_ty, scalar_one), dest_ty)) {
break :result .{ .overflow_bit = try sema.splat(overflow_ty, zero_bit), .inst = rhs };
}
}
}
if (maybe_rhs_val) |rhs_val| {
if (!rhs_val.isUndef(mod)) {
if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
break :result .{ .overflow_bit = try sema.splat(overflow_ty, zero_bit), .inst = rhs };
} else if (try sema.compareAll(rhs_val, .eq, try sema.splat(dest_ty, scalar_one), dest_ty)) {
break :result .{ .overflow_bit = try sema.splat(overflow_ty, zero_bit), .inst = lhs };
}
}
}
if (maybe_lhs_val) |lhs_val| {
if (maybe_rhs_val) |rhs_val| {
if (lhs_val.isUndef(mod) or rhs_val.isUndef(mod)) {
break :result .{ .overflow_bit = Value.undef, .wrapped = Value.undef };
}
const result = try lhs_val.intMulWithOverflow(rhs_val, dest_ty, sema.arena, mod);
break :result .{ .overflow_bit = result.overflow_bit, .wrapped = result.wrapped_result };
}
}
},
.shl_with_overflow => {
// If lhs is zero, the result is zero and no overflow occurred.
// If rhs is zero, the result is lhs (even if undefined) and no overflow occurred.
// Oterhwise if either of the arguments is undefined, both results are undefined.
if (maybe_lhs_val) |lhs_val| {
if (!lhs_val.isUndef(mod) and (try lhs_val.compareAllWithZeroAdvanced(.eq, sema))) {
break :result .{ .overflow_bit = try sema.splat(overflow_ty, zero_bit), .inst = lhs };
}
}
if (maybe_rhs_val) |rhs_val| {
if (!rhs_val.isUndef(mod) and (try rhs_val.compareAllWithZeroAdvanced(.eq, sema))) {
break :result .{ .overflow_bit = try sema.splat(overflow_ty, zero_bit), .inst = lhs };
}
}
if (maybe_lhs_val) |lhs_val| {
if (maybe_rhs_val) |rhs_val| {
if (lhs_val.isUndef(mod) or rhs_val.isUndef(mod)) {
break :result .{ .overflow_bit = Value.undef, .wrapped = Value.undef };
}
const result = try lhs_val.shlWithOverflow(rhs_val, dest_ty, sema.arena, mod);
break :result .{ .overflow_bit = result.overflow_bit, .wrapped = result.wrapped_result };
}
}
},
else => unreachable,
}
const air_tag: Air.Inst.Tag = switch (zir_tag) {
.add_with_overflow => .add_with_overflow,
.mul_with_overflow => .mul_with_overflow,
.sub_with_overflow => .sub_with_overflow,
.shl_with_overflow => .shl_with_overflow,
else => unreachable,
};
const runtime_src = if (maybe_lhs_val == null) lhs_src else rhs_src;
try sema.requireRuntimeBlock(block, src, runtime_src);
return block.addInst(.{
.tag = air_tag,
.data = .{ .ty_pl = .{
.ty = Air.internedToRef(tuple_ty.toIntern()),
.payload = try block.sema.addExtra(Air.Bin{
.lhs = lhs,
.rhs = rhs,
}),
} },
});
};
if (result.inst != .none) {
if (try sema.resolveValue(result.inst)) |some| {
result.wrapped = some;
result.inst = .none;
}
}
if (result.inst == .none) {
return Air.internedToRef((try mod.intern(.{ .aggregate = .{
.ty = tuple_ty.toIntern(),
.storage = .{ .elems = &.{
result.wrapped.toIntern(),
result.overflow_bit.toIntern(),
} },
} })));
}
const element_refs = try sema.arena.alloc(Air.Inst.Ref, 2);
element_refs[0] = result.inst;
element_refs[1] = Air.internedToRef(result.overflow_bit.toIntern());
return block.addAggregateInit(tuple_ty, element_refs);
}
fn splat(sema: *Sema, ty: Type, val: Value) !Value {
const mod = sema.mod;
if (ty.zigTypeTag(mod) != .Vector) return val;
const repeated = try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .repeated_elem = val.toIntern() },
} });
return Value.fromInterned(repeated);
}
fn overflowArithmeticTupleType(sema: *Sema, ty: Type) !Type {
const mod = sema.mod;
const ip = &mod.intern_pool;
const ov_ty = if (ty.zigTypeTag(mod) == .Vector) try mod.vectorType(.{
.len = ty.vectorLen(mod),
.child = .u1_type,
}) else Type.u1;
const types = [2]InternPool.Index{ ty.toIntern(), ov_ty.toIntern() };
const values = [2]InternPool.Index{ .none, .none };
const tuple_ty = try ip.getAnonStructType(mod.gpa, .{
.types = &types,
.values = &values,
.names = &.{},
});
return Type.fromInterned(tuple_ty);
}
fn analyzeArithmetic(
sema: *Sema,
block: *Block,
/// TODO performance investigation: make this comptime?
zir_tag: Zir.Inst.Tag,
lhs: Air.Inst.Ref,
rhs: Air.Inst.Ref,
src: LazySrcLoc,
lhs_src: LazySrcLoc,
rhs_src: LazySrcLoc,
want_safety: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison(mod);
const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison(mod);
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
if (lhs_zig_ty_tag == .Pointer) switch (lhs_ty.ptrSize(mod)) {
.One, .Slice => {},
.Many, .C => {
const air_tag: Air.Inst.Tag = switch (zir_tag) {
.add => .ptr_add,
.sub => .ptr_sub,
else => return sema.fail(block, src, "invalid pointer arithmetic operator", .{}),
};
return sema.analyzePtrArithmetic(block, src, lhs, rhs, air_tag, lhs_src, rhs_src);
},
};
const instructions = &[_]Air.Inst.Ref{ lhs, rhs };
const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{
.override = &[_]?LazySrcLoc{ lhs_src, rhs_src },
});
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
const scalar_type = resolved_type.scalarType(mod);
const scalar_tag = scalar_type.zigTypeTag(mod);
const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt;
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, zir_tag);
const maybe_lhs_val = try sema.resolveValueIntable(casted_lhs);
const maybe_rhs_val = try sema.resolveValueIntable(casted_rhs);
const runtime_src: LazySrcLoc, const air_tag: Air.Inst.Tag, const air_tag_safe: Air.Inst.Tag = rs: {
switch (zir_tag) {
.add, .add_unsafe => {
// For integers:intAddSat
// If either of the operands are zero, then the other operand is
// returned, even if it is undefined.
// If either of the operands are undefined, it's a compile error
// because there is a possible value for which the addition would
// overflow (max_int), causing illegal behavior.
// For floats: either operand being undef makes the result undef.
if (maybe_lhs_val) |lhs_val| {
if (!lhs_val.isUndef(mod) and (try lhs_val.compareAllWithZeroAdvanced(.eq, sema))) {
return casted_rhs;
}
}
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
if (is_int) {
return sema.failWithUseOfUndef(block, rhs_src);
} else {
return mod.undefRef(resolved_type);
}
}
if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
return casted_lhs;
}
}
const air_tag: Air.Inst.Tag = if (block.float_mode == .optimized) .add_optimized else .add;
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
if (is_int) {
return sema.failWithUseOfUndef(block, lhs_src);
} else {
return mod.undefRef(resolved_type);
}
}
if (maybe_rhs_val) |rhs_val| {
if (is_int) {
var overflow_idx: ?usize = null;
const sum = try sema.intAdd(lhs_val, rhs_val, resolved_type, &overflow_idx);
if (overflow_idx) |vec_idx| {
return sema.failWithIntegerOverflow(block, src, resolved_type, sum, vec_idx);
}
return Air.internedToRef(sum.toIntern());
} else {
return Air.internedToRef((try Value.floatAdd(lhs_val, rhs_val, resolved_type, sema.arena, mod)).toIntern());
}
} else break :rs .{ rhs_src, air_tag, .add_safe };
} else break :rs .{ lhs_src, air_tag, .add_safe };
},
.addwrap => {
// Integers only; floats are checked above.
// If either of the operands are zero, the other operand is returned.
// If either of the operands are undefined, the result is undefined.
if (maybe_lhs_val) |lhs_val| {
if (!lhs_val.isUndef(mod) and (try lhs_val.compareAllWithZeroAdvanced(.eq, sema))) {
return casted_rhs;
}
}
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
return mod.undefRef(resolved_type);
}
if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
return casted_lhs;
}
if (maybe_lhs_val) |lhs_val| {
return Air.internedToRef((try sema.numberAddWrapScalar(lhs_val, rhs_val, resolved_type)).toIntern());
} else break :rs .{ lhs_src, .add_wrap, .add_wrap };
} else break :rs .{ rhs_src, .add_wrap, .add_wrap };
},
.add_sat => {
// Integers only; floats are checked above.
// If either of the operands are zero, then the other operand is returned.
// If either of the operands are undefined, the result is undefined.
if (maybe_lhs_val) |lhs_val| {
if (!lhs_val.isUndef(mod) and (try lhs_val.compareAllWithZeroAdvanced(.eq, sema))) {
return casted_rhs;
}
}
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
return mod.undefRef(resolved_type);
}
if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
return casted_lhs;
}
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
return mod.undefRef(resolved_type);
}
const val = if (scalar_tag == .ComptimeInt)
try sema.intAdd(lhs_val, rhs_val, resolved_type, undefined)
else
try lhs_val.intAddSat(rhs_val, resolved_type, sema.arena, mod);
return Air.internedToRef(val.toIntern());
} else break :rs .{
lhs_src,
.add_sat,
.add_sat,
};
} else break :rs .{
rhs_src,
.add_sat,
.add_sat,
};
},
.sub => {
// For integers:
// If the rhs is zero, then the other operand is
// returned, even if it is undefined.
// If either of the operands are undefined, it's a compile error
// because there is a possible value for which the subtraction would
// overflow, causing illegal behavior.
// For floats: either operand being undef makes the result undef.
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
if (is_int) {
return sema.failWithUseOfUndef(block, rhs_src);
} else {
return mod.undefRef(resolved_type);
}
}
if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
return casted_lhs;
}
}
const air_tag: Air.Inst.Tag = if (block.float_mode == .optimized) .sub_optimized else .sub;
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
if (is_int) {
return sema.failWithUseOfUndef(block, lhs_src);
} else {
return mod.undefRef(resolved_type);
}
}
if (maybe_rhs_val) |rhs_val| {
if (is_int) {
var overflow_idx: ?usize = null;
const diff = try sema.intSub(lhs_val, rhs_val, resolved_type, &overflow_idx);
if (overflow_idx) |vec_idx| {
return sema.failWithIntegerOverflow(block, src, resolved_type, diff, vec_idx);
}
return Air.internedToRef(diff.toIntern());
} else {
return Air.internedToRef((try Value.floatSub(lhs_val, rhs_val, resolved_type, sema.arena, mod)).toIntern());
}
} else break :rs .{ rhs_src, air_tag, .sub_safe };
} else break :rs .{ lhs_src, air_tag, .sub_safe };
},
.subwrap => {
// Integers only; floats are checked above.
// If the RHS is zero, then the LHS is returned, even if it is undefined.
// If either of the operands are undefined, the result is undefined.
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
return mod.undefRef(resolved_type);
}
if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
return casted_lhs;
}
}
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
return mod.undefRef(resolved_type);
}
if (maybe_rhs_val) |rhs_val| {
return Air.internedToRef((try sema.numberSubWrapScalar(lhs_val, rhs_val, resolved_type)).toIntern());
} else break :rs .{ rhs_src, .sub_wrap, .sub_wrap };
} else break :rs .{ lhs_src, .sub_wrap, .sub_wrap };
},
.sub_sat => {
// Integers only; floats are checked above.
// If the RHS is zero, then the LHS is returned, even if it is undefined.
// If either of the operands are undefined, the result is undefined.
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
return mod.undefRef(resolved_type);
}
if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
return casted_lhs;
}
}
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
return mod.undefRef(resolved_type);
}
if (maybe_rhs_val) |rhs_val| {
const val = if (scalar_tag == .ComptimeInt)
try sema.intSub(lhs_val, rhs_val, resolved_type, undefined)
else
try lhs_val.intSubSat(rhs_val, resolved_type, sema.arena, mod);
return Air.internedToRef(val.toIntern());
} else break :rs .{ rhs_src, .sub_sat, .sub_sat };
} else break :rs .{ lhs_src, .sub_sat, .sub_sat };
},
.mul => {
// For integers:
// If either of the operands are zero, the result is zero.
// If either of the operands are one, the result is the other
// operand, even if it is undefined.
// If either of the operands are undefined, it's a compile error
// because there is a possible value for which the addition would
// overflow (max_int), causing illegal behavior.
//
// For floats:
// If either of the operands are undefined, the result is undefined.
// If either of the operands are inf, and the other operand is zero,
// the result is nan.
// If either of the operands are nan, the result is nan.
const scalar_zero = switch (scalar_tag) {
.ComptimeFloat, .Float => try mod.floatValue(scalar_type, 0.0),
.ComptimeInt, .Int => try mod.intValue(scalar_type, 0),
else => unreachable,
};
const scalar_one = switch (scalar_tag) {
.ComptimeFloat, .Float => try mod.floatValue(scalar_type, 1.0),
.ComptimeInt, .Int => try mod.intValue(scalar_type, 1),
else => unreachable,
};
if (maybe_lhs_val) |lhs_val| {
if (!lhs_val.isUndef(mod)) {
if (lhs_val.isNan(mod)) {
return Air.internedToRef(lhs_val.toIntern());
}
if (try lhs_val.compareAllWithZeroAdvanced(.eq, sema)) lz: {
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isNan(mod)) {
return Air.internedToRef(rhs_val.toIntern());
}
if (rhs_val.isInf(mod)) {
return Air.internedToRef((try mod.floatValue(resolved_type, std.math.nan(f128))).toIntern());
}
} else if (resolved_type.isAnyFloat()) {
break :lz;
}
const zero_val = try sema.splat(resolved_type, scalar_zero);
return Air.internedToRef(zero_val.toIntern());
}
if (try sema.compareAll(lhs_val, .eq, try sema.splat(resolved_type, scalar_one), resolved_type)) {
return casted_rhs;
}
}
}
const air_tag: Air.Inst.Tag = if (block.float_mode == .optimized) .mul_optimized else .mul;
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
if (is_int) {
return sema.failWithUseOfUndef(block, rhs_src);
} else {
return mod.undefRef(resolved_type);
}
}
if (rhs_val.isNan(mod)) {
return Air.internedToRef(rhs_val.toIntern());
}
if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) rz: {
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isInf(mod)) {
return Air.internedToRef((try mod.floatValue(resolved_type, std.math.nan(f128))).toIntern());
}
} else if (resolved_type.isAnyFloat()) {
break :rz;
}
const zero_val = try sema.splat(resolved_type, scalar_zero);
return Air.internedToRef(zero_val.toIntern());
}
if (try sema.compareAll(rhs_val, .eq, try sema.splat(resolved_type, scalar_one), resolved_type)) {
return casted_lhs;
}
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
if (is_int) {
return sema.failWithUseOfUndef(block, lhs_src);
} else {
return mod.undefRef(resolved_type);
}
}
if (is_int) {
var overflow_idx: ?usize = null;
const product = try lhs_val.intMul(rhs_val, resolved_type, &overflow_idx, sema.arena, mod);
if (overflow_idx) |vec_idx| {
return sema.failWithIntegerOverflow(block, src, resolved_type, product, vec_idx);
}
return Air.internedToRef(product.toIntern());
} else {
return Air.internedToRef((try lhs_val.floatMul(rhs_val, resolved_type, sema.arena, mod)).toIntern());
}
} else break :rs .{ lhs_src, air_tag, .mul_safe };
} else break :rs .{ rhs_src, air_tag, .mul_safe };
},
.mulwrap => {
// Integers only; floats are handled above.
// If either of the operands are zero, result is zero.
// If either of the operands are one, result is the other operand.
// If either of the operands are undefined, result is undefined.
const scalar_zero = switch (scalar_tag) {
.ComptimeFloat, .Float => try mod.floatValue(scalar_type, 0.0),
.ComptimeInt, .Int => try mod.intValue(scalar_type, 0),
else => unreachable,
};
const scalar_one = switch (scalar_tag) {
.ComptimeFloat, .Float => try mod.floatValue(scalar_type, 1.0),
.ComptimeInt, .Int => try mod.intValue(scalar_type, 1),
else => unreachable,
};
if (maybe_lhs_val) |lhs_val| {
if (!lhs_val.isUndef(mod)) {
if (try lhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
const zero_val = try sema.splat(resolved_type, scalar_zero);
return Air.internedToRef(zero_val.toIntern());
}
if (try sema.compareAll(lhs_val, .eq, try sema.splat(resolved_type, scalar_one), resolved_type)) {
return casted_rhs;
}
}
}
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
return mod.undefRef(resolved_type);
}
if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
const zero_val = try sema.splat(resolved_type, scalar_zero);
return Air.internedToRef(zero_val.toIntern());
}
if (try sema.compareAll(rhs_val, .eq, try sema.splat(resolved_type, scalar_one), resolved_type)) {
return casted_lhs;
}
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
return mod.undefRef(resolved_type);
}
return Air.internedToRef((try lhs_val.numberMulWrap(rhs_val, resolved_type, sema.arena, mod)).toIntern());
} else break :rs .{ lhs_src, .mul_wrap, .mul_wrap };
} else break :rs .{ rhs_src, .mul_wrap, .mul_wrap };
},
.mul_sat => {
// Integers only; floats are checked above.
// If either of the operands are zero, result is zero.
// If either of the operands are one, result is the other operand.
// If either of the operands are undefined, result is undefined.
const scalar_zero = switch (scalar_tag) {
.ComptimeFloat, .Float => try mod.floatValue(scalar_type, 0.0),
.ComptimeInt, .Int => try mod.intValue(scalar_type, 0),
else => unreachable,
};
const scalar_one = switch (scalar_tag) {
.ComptimeFloat, .Float => try mod.floatValue(scalar_type, 1.0),
.ComptimeInt, .Int => try mod.intValue(scalar_type, 1),
else => unreachable,
};
if (maybe_lhs_val) |lhs_val| {
if (!lhs_val.isUndef(mod)) {
if (try lhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
const zero_val = try sema.splat(resolved_type, scalar_zero);
return Air.internedToRef(zero_val.toIntern());
}
if (try sema.compareAll(lhs_val, .eq, try sema.splat(resolved_type, scalar_one), resolved_type)) {
return casted_rhs;
}
}
}
if (maybe_rhs_val) |rhs_val| {
if (rhs_val.isUndef(mod)) {
return mod.undefRef(resolved_type);
}
if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) {
const zero_val = try sema.splat(resolved_type, scalar_zero);
return Air.internedToRef(zero_val.toIntern());
}
if (try sema.compareAll(rhs_val, .eq, try sema.splat(resolved_type, scalar_one), resolved_type)) {
return casted_lhs;
}
if (maybe_lhs_val) |lhs_val| {
if (lhs_val.isUndef(mod)) {
return mod.undefRef(resolved_type);
}
const val = if (scalar_tag == .ComptimeInt)
try lhs_val.intMul(rhs_val, resolved_type, undefined, sema.arena, mod)
else
try lhs_val.intMulSat(rhs_val, resolved_type, sema.arena, mod);
return Air.internedToRef(val.toIntern());
} else break :rs .{ lhs_src, .mul_sat, .mul_sat };
} else break :rs .{ rhs_src, .mul_sat, .mul_sat };
},
else => unreachable,
}
};
try sema.requireRuntimeBlock(block, src, runtime_src);
if (block.wantSafety() and want_safety and scalar_tag == .Int) {
if (mod.backendSupportsFeature(.safety_checked_instructions)) {
if (air_tag != air_tag_safe) {
_ = try sema.preparePanicId(block, .integer_overflow);
}
return block.addBinOp(air_tag_safe, casted_lhs, casted_rhs);
} else {
const maybe_op_ov: ?Air.Inst.Tag = switch (air_tag) {
.add => .add_with_overflow,
.sub => .sub_with_overflow,
.mul => .mul_with_overflow,
else => null,
};
if (maybe_op_ov) |op_ov_tag| {
const op_ov_tuple_ty = try sema.overflowArithmeticTupleType(resolved_type);
const op_ov = try block.addInst(.{
.tag = op_ov_tag,
.data = .{ .ty_pl = .{
.ty = Air.internedToRef(op_ov_tuple_ty.toIntern()),
.payload = try sema.addExtra(Air.Bin{
.lhs = casted_lhs,
.rhs = casted_rhs,
}),
} },
});
const ov_bit = try sema.tupleFieldValByIndex(block, src, op_ov, 1, op_ov_tuple_ty);
const any_ov_bit = if (resolved_type.zigTypeTag(mod) == .Vector)
try block.addInst(.{
.tag = if (block.float_mode == .optimized) .reduce_optimized else .reduce,
.data = .{ .reduce = .{
.operand = ov_bit,
.operation = .Or,
} },
})
else
ov_bit;
const zero_ov = Air.internedToRef((try mod.intValue(Type.u1, 0)).toIntern());
const no_ov = try block.addBinOp(.cmp_eq, any_ov_bit, zero_ov);
try sema.addSafetyCheck(block, src, no_ov, .integer_overflow);
return sema.tupleFieldValByIndex(block, src, op_ov, 0, op_ov_tuple_ty);
}
}
}
return block.addBinOp(air_tag, casted_lhs, casted_rhs);
}
fn analyzePtrArithmetic(
sema: *Sema,
block: *Block,
op_src: LazySrcLoc,
ptr: Air.Inst.Ref,
uncasted_offset: Air.Inst.Ref,
air_tag: Air.Inst.Tag,
ptr_src: LazySrcLoc,
offset_src: LazySrcLoc,
) CompileError!Air.Inst.Ref {
// TODO if the operand is comptime-known to be negative, or is a negative int,
// coerce to isize instead of usize.
const offset = try sema.coerce(block, Type.usize, uncasted_offset, offset_src);
const mod = sema.mod;
const opt_ptr_val = try sema.resolveValue(ptr);
const opt_off_val = try sema.resolveDefinedValue(block, offset_src, offset);
const ptr_ty = sema.typeOf(ptr);
const ptr_info = ptr_ty.ptrInfo(mod);
assert(ptr_info.flags.size == .Many or ptr_info.flags.size == .C);
const new_ptr_ty = t: {
// Calculate the new pointer alignment.
// This code is duplicated in `elemPtrType`.
if (ptr_info.flags.alignment == .none) {
// ABI-aligned pointer. Any pointer arithmetic maintains the same ABI-alignedness.
break :t ptr_ty;
}
// If the addend is not a comptime-known value we can still count on
// it being a multiple of the type size.
const elem_size = try sema.typeAbiSize(Type.fromInterned(ptr_info.child));
const addend = if (opt_off_val) |off_val| a: {
const off_int = try sema.usizeCast(block, offset_src, try off_val.toUnsignedIntAdvanced(sema));
break :a elem_size * off_int;
} else elem_size;
// The resulting pointer is aligned to the lcd between the offset (an
// arbitrary number) and the alignment factor (always a power of two,
// non zero).
const new_align: Alignment = @enumFromInt(@min(
@ctz(addend),
@intFromEnum(ptr_info.flags.alignment),
));
assert(new_align != .none);
break :t try sema.ptrType(.{
.child = ptr_info.child,
.sentinel = ptr_info.sentinel,
.flags = .{
.size = ptr_info.flags.size,
.alignment = new_align,
.is_const = ptr_info.flags.is_const,
.is_volatile = ptr_info.flags.is_volatile,
.is_allowzero = ptr_info.flags.is_allowzero,
.address_space = ptr_info.flags.address_space,
},
});
};
const runtime_src = rs: {
if (opt_ptr_val) |ptr_val| {
if (opt_off_val) |offset_val| {
if (ptr_val.isUndef(mod)) return mod.undefRef(new_ptr_ty);
const offset_int = try sema.usizeCast(block, offset_src, try offset_val.toUnsignedIntAdvanced(sema));
if (offset_int == 0) return ptr;
if (try ptr_val.getUnsignedIntAdvanced(mod, sema)) |addr| {
const elem_size = try sema.typeAbiSize(Type.fromInterned(ptr_info.child));
const new_addr = switch (air_tag) {
.ptr_add => addr + elem_size * offset_int,
.ptr_sub => addr - elem_size * offset_int,
else => unreachable,
};
const new_ptr_val = try mod.ptrIntValue(new_ptr_ty, new_addr);
return Air.internedToRef(new_ptr_val.toIntern());
}
if (air_tag == .ptr_sub) {
return sema.fail(block, op_src, "TODO implement Sema comptime pointer subtraction", .{});
}
const new_ptr_val = try ptr_val.elemPtr(new_ptr_ty, offset_int, mod);
return Air.internedToRef(new_ptr_val.toIntern());
} else break :rs offset_src;
} else break :rs ptr_src;
};
try sema.requireRuntimeBlock(block, op_src, runtime_src);
return block.addInst(.{
.tag = air_tag,
.data = .{ .ty_pl = .{
.ty = Air.internedToRef(new_ptr_ty.toIntern()),
.payload = try sema.addExtra(Air.Bin{
.lhs = ptr,
.rhs = offset,
}),
} },
});
}
fn zirLoad(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const ptr_src = src; // TODO better source location
const ptr = try sema.resolveInst(inst_data.operand);
return sema.analyzeLoad(block, src, ptr, ptr_src);
}
fn zirAsm(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
tmpl_is_expr: bool,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const extra = sema.code.extraData(Zir.Inst.Asm, extended.operand);
const src = LazySrcLoc.nodeOffset(extra.data.src_node);
const ret_ty_src: LazySrcLoc = .{ .node_offset_asm_ret_ty = extra.data.src_node };
const outputs_len: u5 = @truncate(extended.small);
const inputs_len: u5 = @truncate(extended.small >> 5);
const clobbers_len: u5 = @truncate(extended.small >> 10);
const is_volatile = @as(u1, @truncate(extended.small >> 15)) != 0;
const is_global_assembly = sema.func_index == .none;
const zir_tags = sema.code.instructions.items(.tag);
const asm_source: []const u8 = if (tmpl_is_expr) blk: {
const tmpl: Zir.Inst.Ref = @enumFromInt(@intFromEnum(extra.data.asm_source));
const s: []const u8 = try sema.resolveConstString(block, src, tmpl, .{
.needed_comptime_reason = "assembly code must be comptime-known",
});
break :blk s;
} else sema.code.nullTerminatedString(extra.data.asm_source);
if (is_global_assembly) {
if (outputs_len != 0) {
return sema.fail(block, src, "module-level assembly does not support outputs", .{});
}
if (inputs_len != 0) {
return sema.fail(block, src, "module-level assembly does not support inputs", .{});
}
if (clobbers_len != 0) {
return sema.fail(block, src, "module-level assembly does not support clobbers", .{});
}
if (is_volatile) {
return sema.fail(block, src, "volatile keyword is redundant on module-level assembly", .{});
}
try sema.mod.addGlobalAssembly(sema.owner_decl_index, asm_source);
return .void_value;
}
if (block.is_comptime) {
try sema.requireRuntimeBlock(block, src, null);
}
var extra_i = extra.end;
var output_type_bits = extra.data.output_type_bits;
var needed_capacity: usize = @typeInfo(Air.Asm).Struct.fields.len + outputs_len + inputs_len;
const ConstraintName = struct { c: []const u8, n: []const u8 };
const out_args = try sema.arena.alloc(Air.Inst.Ref, outputs_len);
const outputs = try sema.arena.alloc(ConstraintName, outputs_len);
var expr_ty = Air.Inst.Ref.void_type;
for (out_args, 0..) |*arg, out_i| {
const output = sema.code.extraData(Zir.Inst.Asm.Output, extra_i);
extra_i = output.end;
const is_type = @as(u1, @truncate(output_type_bits)) != 0;
output_type_bits >>= 1;
if (is_type) {
// Indicate the output is the asm instruction return value.
arg.* = .none;
const out_ty = try sema.resolveType(block, ret_ty_src, output.data.operand);
try sema.queueFullTypeResolution(out_ty);
expr_ty = Air.internedToRef(out_ty.toIntern());
} else {
arg.* = try sema.resolveInst(output.data.operand);
}
const constraint = sema.code.nullTerminatedString(output.data.constraint);
const name = sema.code.nullTerminatedString(output.data.name);
needed_capacity += (constraint.len + name.len + (2 + 3)) / 4;
if (output.data.operand.toIndex()) |index| {
if (zir_tags[@intFromEnum(index)] == .ref) {
// TODO: better error location; it would be even nicer if there were notes that pointed at the output and the variable definition
return sema.fail(block, src, "asm cannot output to const local '{s}'", .{name});
}
}
outputs[out_i] = .{ .c = constraint, .n = name };
}
const args = try sema.arena.alloc(Air.Inst.Ref, inputs_len);
const inputs = try sema.arena.alloc(ConstraintName, inputs_len);
const mod = sema.mod;
for (args, 0..) |*arg, arg_i| {
const input = sema.code.extraData(Zir.Inst.Asm.Input, extra_i);
extra_i = input.end;
const uncasted_arg = try sema.resolveInst(input.data.operand);
const uncasted_arg_ty = sema.typeOf(uncasted_arg);
switch (uncasted_arg_ty.zigTypeTag(mod)) {
.ComptimeInt => arg.* = try sema.coerce(block, Type.usize, uncasted_arg, src),
.ComptimeFloat => arg.* = try sema.coerce(block, Type.f64, uncasted_arg, src),
else => {
arg.* = uncasted_arg;
try sema.queueFullTypeResolution(uncasted_arg_ty);
},
}
const constraint = sema.code.nullTerminatedString(input.data.constraint);
const name = sema.code.nullTerminatedString(input.data.name);
needed_capacity += (constraint.len + name.len + (2 + 3)) / 4;
inputs[arg_i] = .{ .c = constraint, .n = name };
}
const clobbers = try sema.arena.alloc([]const u8, clobbers_len);
for (clobbers) |*name| {
const name_index: Zir.NullTerminatedString = @enumFromInt(sema.code.extra[extra_i]);
name.* = sema.code.nullTerminatedString(name_index);
extra_i += 1;
needed_capacity += name.*.len / 4 + 1;
}
needed_capacity += (asm_source.len + 3) / 4;
const gpa = sema.gpa;
try sema.air_extra.ensureUnusedCapacity(gpa, needed_capacity);
const asm_air = try block.addInst(.{
.tag = .assembly,
.data = .{ .ty_pl = .{
.ty = expr_ty,
.payload = sema.addExtraAssumeCapacity(Air.Asm{
.source_len = @intCast(asm_source.len),
.outputs_len = outputs_len,
.inputs_len = @intCast(args.len),
.flags = (@as(u32, @intFromBool(is_volatile)) << 31) | @as(u32, @intCast(clobbers.len)),
}),
} },
});
sema.appendRefsAssumeCapacity(out_args);
sema.appendRefsAssumeCapacity(args);
for (outputs) |o| {
const buffer = mem.sliceAsBytes(sema.air_extra.unusedCapacitySlice());
@memcpy(buffer[0..o.c.len], o.c);
buffer[o.c.len] = 0;
@memcpy(buffer[o.c.len + 1 ..][0..o.n.len], o.n);
buffer[o.c.len + 1 + o.n.len] = 0;
sema.air_extra.items.len += (o.c.len + o.n.len + (2 + 3)) / 4;
}
for (inputs) |input| {
const buffer = mem.sliceAsBytes(sema.air_extra.unusedCapacitySlice());
@memcpy(buffer[0..input.c.len], input.c);
buffer[input.c.len] = 0;
@memcpy(buffer[input.c.len + 1 ..][0..input.n.len], input.n);
buffer[input.c.len + 1 + input.n.len] = 0;
sema.air_extra.items.len += (input.c.len + input.n.len + (2 + 3)) / 4;
}
for (clobbers) |clobber| {
const buffer = mem.sliceAsBytes(sema.air_extra.unusedCapacitySlice());
@memcpy(buffer[0..clobber.len], clobber);
buffer[clobber.len] = 0;
sema.air_extra.items.len += clobber.len / 4 + 1;
}
{
const buffer = mem.sliceAsBytes(sema.air_extra.unusedCapacitySlice());
@memcpy(buffer[0..asm_source.len], asm_source);
sema.air_extra.items.len += (asm_source.len + 3) / 4;
}
return asm_air;
}
/// Only called for equality operators. See also `zirCmp`.
fn zirCmpEq(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
op: std.math.CompareOperator,
air_tag: Air.Inst.Tag,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const src: LazySrcLoc = inst_data.src();
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
const lhs_ty_tag = lhs_ty.zigTypeTag(mod);
const rhs_ty_tag = rhs_ty.zigTypeTag(mod);
if (lhs_ty_tag == .Null and rhs_ty_tag == .Null) {
// null == null, null != null
return if (op == .eq) .bool_true else .bool_false;
}
// comparing null with optionals
if (lhs_ty_tag == .Null and (rhs_ty_tag == .Optional or rhs_ty.isCPtr(mod))) {
return sema.analyzeIsNull(block, src, rhs, op == .neq);
}
if (rhs_ty_tag == .Null and (lhs_ty_tag == .Optional or lhs_ty.isCPtr(mod))) {
return sema.analyzeIsNull(block, src, lhs, op == .neq);
}
if (lhs_ty_tag == .Null or rhs_ty_tag == .Null) {
const non_null_type = if (lhs_ty_tag == .Null) rhs_ty else lhs_ty;
return sema.fail(block, src, "comparison of '{}' with null", .{non_null_type.fmt(mod)});
}
if (lhs_ty_tag == .Union and (rhs_ty_tag == .EnumLiteral or rhs_ty_tag == .Enum)) {
return sema.analyzeCmpUnionTag(block, src, lhs, lhs_src, rhs, rhs_src, op);
}
if (rhs_ty_tag == .Union and (lhs_ty_tag == .EnumLiteral or lhs_ty_tag == .Enum)) {
return sema.analyzeCmpUnionTag(block, src, rhs, rhs_src, lhs, lhs_src, op);
}
if (lhs_ty_tag == .ErrorSet and rhs_ty_tag == .ErrorSet) {
const runtime_src: LazySrcLoc = src: {
if (try sema.resolveValue(lhs)) |lval| {
if (try sema.resolveValue(rhs)) |rval| {
if (lval.isUndef(mod) or rval.isUndef(mod)) {
return mod.undefRef(Type.bool);
}
const lkey = mod.intern_pool.indexToKey(lval.toIntern());
const rkey = mod.intern_pool.indexToKey(rval.toIntern());
return if ((lkey.err.name == rkey.err.name) == (op == .eq))
.bool_true
else
.bool_false;
} else {
break :src rhs_src;
}
} else {
break :src lhs_src;
}
};
try sema.requireRuntimeBlock(block, src, runtime_src);
return block.addBinOp(air_tag, lhs, rhs);
}
if (lhs_ty_tag == .Type and rhs_ty_tag == .Type) {
const lhs_as_type = try sema.analyzeAsType(block, lhs_src, lhs);
const rhs_as_type = try sema.analyzeAsType(block, rhs_src, rhs);
return if (lhs_as_type.eql(rhs_as_type, mod) == (op == .eq)) .bool_true else .bool_false;
}
return sema.analyzeCmp(block, src, lhs, rhs, op, lhs_src, rhs_src, true);
}
fn analyzeCmpUnionTag(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
un: Air.Inst.Ref,
un_src: LazySrcLoc,
tag: Air.Inst.Ref,
tag_src: LazySrcLoc,
op: std.math.CompareOperator,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const union_ty = sema.typeOf(un);
try sema.resolveTypeFields(union_ty);
const union_tag_ty = union_ty.unionTagType(mod) orelse {
const msg = msg: {
const msg = try sema.errMsg(block, un_src, "comparison of union and enum literal is only valid for tagged union types", .{});
errdefer msg.destroy(sema.gpa);
try mod.errNoteNonLazy(union_ty.declSrcLoc(mod), msg, "union '{}' is not a tagged union", .{union_ty.fmt(mod)});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
};
// Coerce both the union and the tag to the union's tag type, and then execute the
// enum comparison codepath.
const coerced_tag = try sema.coerce(block, union_tag_ty, tag, tag_src);
const coerced_union = try sema.coerce(block, union_tag_ty, un, un_src);
if (try sema.resolveValue(coerced_tag)) |enum_val| {
if (enum_val.isUndef(mod)) return mod.undefRef(Type.bool);
const field_ty = union_ty.unionFieldType(enum_val, mod).?;
if (field_ty.zigTypeTag(mod) == .NoReturn) {
return .bool_false;
}
}
return sema.cmpSelf(block, src, coerced_union, coerced_tag, op, un_src, tag_src);
}
/// Only called for non-equality operators. See also `zirCmpEq`.
fn zirCmp(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
op: std.math.CompareOperator,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const src: LazySrcLoc = inst_data.src();
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
return sema.analyzeCmp(block, src, lhs, rhs, op, lhs_src, rhs_src, false);
}
fn analyzeCmp(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
lhs: Air.Inst.Ref,
rhs: Air.Inst.Ref,
op: std.math.CompareOperator,
lhs_src: LazySrcLoc,
rhs_src: LazySrcLoc,
is_equality_cmp: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
if (lhs_ty.zigTypeTag(mod) != .Optional and rhs_ty.zigTypeTag(mod) != .Optional) {
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
}
if (lhs_ty.zigTypeTag(mod) == .Vector and rhs_ty.zigTypeTag(mod) == .Vector) {
return sema.cmpVector(block, src, lhs, rhs, op, lhs_src, rhs_src);
}
if (lhs_ty.isNumeric(mod) and rhs_ty.isNumeric(mod)) {
// This operation allows any combination of integer and float types, regardless of the
// signed-ness, comptime-ness, and bit-width. So peer type resolution is incorrect for
// numeric types.
return sema.cmpNumeric(block, src, lhs, rhs, op, lhs_src, rhs_src);
}
if (is_equality_cmp and lhs_ty.zigTypeTag(mod) == .ErrorUnion and rhs_ty.zigTypeTag(mod) == .ErrorSet) {
const casted_lhs = try sema.analyzeErrUnionCode(block, lhs_src, lhs);
return sema.cmpSelf(block, src, casted_lhs, rhs, op, lhs_src, rhs_src);
}
if (is_equality_cmp and lhs_ty.zigTypeTag(mod) == .ErrorSet and rhs_ty.zigTypeTag(mod) == .ErrorUnion) {
const casted_rhs = try sema.analyzeErrUnionCode(block, rhs_src, rhs);
return sema.cmpSelf(block, src, lhs, casted_rhs, op, lhs_src, rhs_src);
}
const instructions = &[_]Air.Inst.Ref{ lhs, rhs };
const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{ .override = &[_]?LazySrcLoc{ lhs_src, rhs_src } });
if (!resolved_type.isSelfComparable(mod, is_equality_cmp)) {
return sema.fail(block, src, "operator {s} not allowed for type '{}'", .{
compareOperatorName(op), resolved_type.fmt(mod),
});
}
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
return sema.cmpSelf(block, src, casted_lhs, casted_rhs, op, lhs_src, rhs_src);
}
fn compareOperatorName(comp: std.math.CompareOperator) []const u8 {
return switch (comp) {
.lt => "<",
.lte => "<=",
.eq => "==",
.gte => ">=",
.gt => ">",
.neq => "!=",
};
}
fn cmpSelf(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
casted_lhs: Air.Inst.Ref,
casted_rhs: Air.Inst.Ref,
op: std.math.CompareOperator,
lhs_src: LazySrcLoc,
rhs_src: LazySrcLoc,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const resolved_type = sema.typeOf(casted_lhs);
const runtime_src: LazySrcLoc = src: {
if (try sema.resolveValue(casted_lhs)) |lhs_val| {
if (lhs_val.isUndef(mod)) return mod.undefRef(Type.bool);
if (try sema.resolveValue(casted_rhs)) |rhs_val| {
if (rhs_val.isUndef(mod)) return mod.undefRef(Type.bool);
if (resolved_type.zigTypeTag(mod) == .Vector) {
const cmp_val = try sema.compareVector(lhs_val, op, rhs_val, resolved_type);
return Air.internedToRef(cmp_val.toIntern());
}
return if (try sema.compareAll(lhs_val, op, rhs_val, resolved_type))
.bool_true
else
.bool_false;
} else {
if (resolved_type.zigTypeTag(mod) == .Bool) {
// We can lower bool eq/neq more efficiently.
return sema.runtimeBoolCmp(block, src, op, casted_rhs, lhs_val.toBool(), rhs_src);
}
break :src rhs_src;
}
} else {
// For bools, we still check the other operand, because we can lower
// bool eq/neq more efficiently.
if (resolved_type.zigTypeTag(mod) == .Bool) {
if (try sema.resolveValue(casted_rhs)) |rhs_val| {
if (rhs_val.isUndef(mod)) return mod.undefRef(Type.bool);
return sema.runtimeBoolCmp(block, src, op, casted_lhs, rhs_val.toBool(), lhs_src);
}
}
break :src lhs_src;
}
};
try sema.requireRuntimeBlock(block, src, runtime_src);
if (resolved_type.zigTypeTag(mod) == .Vector) {
return block.addCmpVector(casted_lhs, casted_rhs, op);
}
const tag = Air.Inst.Tag.fromCmpOp(op, block.float_mode == .optimized);
return block.addBinOp(tag, casted_lhs, casted_rhs);
}
/// cmp_eq (x, false) => not(x)
/// cmp_eq (x, true ) => x
/// cmp_neq(x, false) => x
/// cmp_neq(x, true ) => not(x)
fn runtimeBoolCmp(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
op: std.math.CompareOperator,
lhs: Air.Inst.Ref,
rhs: bool,
runtime_src: LazySrcLoc,
) CompileError!Air.Inst.Ref {
if ((op == .neq) == rhs) {
try sema.requireRuntimeBlock(block, src, runtime_src);
return block.addTyOp(.not, Type.bool, lhs);
} else {
return lhs;
}
}
fn zirSizeOf(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const ty = try sema.resolveType(block, operand_src, inst_data.operand);
switch (ty.zigTypeTag(mod)) {
.Fn,
.NoReturn,
.Undefined,
.Null,
.Opaque,
=> return sema.fail(block, operand_src, "no size available for type '{}'", .{ty.fmt(mod)}),
.Type,
.EnumLiteral,
.ComptimeFloat,
.ComptimeInt,
.Void,
=> return mod.intRef(Type.comptime_int, 0),
.Bool,
.Int,
.Float,
.Pointer,
.Array,
.Struct,
.Optional,
.ErrorUnion,
.ErrorSet,
.Enum,
.Union,
.Vector,
.Frame,
.AnyFrame,
=> {},
}
const val = try ty.lazyAbiSize(mod);
if (val.isLazySize(mod)) {
try sema.queueFullTypeResolution(ty);
}
return Air.internedToRef(val.toIntern());
}
fn zirBitSizeOf(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const operand_ty = try sema.resolveType(block, operand_src, inst_data.operand);
switch (operand_ty.zigTypeTag(mod)) {
.Fn,
.NoReturn,
.Undefined,
.Null,
.Opaque,
=> return sema.fail(block, operand_src, "no size available for type '{}'", .{operand_ty.fmt(mod)}),
.Type,
.EnumLiteral,
.ComptimeFloat,
.ComptimeInt,
.Void,
=> return mod.intRef(Type.comptime_int, 0),
.Bool,
.Int,
.Float,
.Pointer,
.Array,
.Struct,
.Optional,
.ErrorUnion,
.ErrorSet,
.Enum,
.Union,
.Vector,
.Frame,
.AnyFrame,
=> {},
}
const bit_size = try operand_ty.bitSizeAdvanced(mod, sema);
return mod.intRef(Type.comptime_int, bit_size);
}
fn zirThis(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const this_decl_index = mod.namespacePtr(block.namespace).decl_index;
const src = LazySrcLoc.nodeOffset(@bitCast(extended.operand));
return sema.analyzeDeclVal(block, src, this_decl_index);
}
fn zirClosureGet(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
const captures = mod.namespacePtr(block.namespace).getType(mod).getCaptures(mod);
const src_node: i32 = @bitCast(extended.operand);
const src = LazySrcLoc.nodeOffset(src_node);
const capture_ty = switch (captures.get(ip)[extended.small].unwrap()) {
.@"comptime" => |index| return Air.internedToRef(index),
.runtime => |index| index,
.decl_val => |decl_index| return sema.analyzeDeclVal(block, src, decl_index),
.decl_ref => |decl_index| return sema.analyzeDeclRef(decl_index),
};
// The comptime case is handled already above. Runtime case below.
if (!block.is_typeof and sema.func_index == .none) {
const msg = msg: {
const name = name: {
const file = sema.owner_decl.getFileScope(mod);
const tree = file.getTree(sema.gpa) catch |err| {
// In this case we emit a warning + a less precise source location.
log.warn("unable to load {s}: {s}", .{
file.sub_file_path, @errorName(err),
});
break :name null;
};
const node = sema.owner_decl.relativeToNodeIndex(src_node);
const token = tree.nodes.items(.main_token)[node];
break :name tree.tokenSlice(token);
};
const msg = if (name) |some|
try sema.errMsg(block, src, "'{s}' not accessible outside function scope", .{some})
else
try sema.errMsg(block, src, "variable not accessible outside function scope", .{});
errdefer msg.destroy(sema.gpa);
// TODO add "declared here" note
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
if (!block.is_typeof and !block.is_comptime and sema.func_index != .none) {
const msg = msg: {
const name = name: {
const file = sema.owner_decl.getFileScope(mod);
const tree = file.getTree(sema.gpa) catch |err| {
// In this case we emit a warning + a less precise source location.
log.warn("unable to load {s}: {s}", .{
file.sub_file_path, @errorName(err),
});
break :name null;
};
const node = sema.owner_decl.relativeToNodeIndex(src_node);
const token = tree.nodes.items(.main_token)[node];
break :name tree.tokenSlice(token);
};
const msg = if (name) |some|
try sema.errMsg(block, src, "'{s}' not accessible from inner function", .{some})
else
try sema.errMsg(block, src, "variable not accessible from inner function", .{});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, LazySrcLoc.nodeOffset(0), msg, "crossed function definition here", .{});
// TODO add "declared here" note
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
assert(block.is_typeof);
// We need a dummy runtime instruction with the correct type.
return block.addTy(.alloc, Type.fromInterned(capture_ty));
}
fn zirRetAddr(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
) CompileError!Air.Inst.Ref {
_ = extended;
if (block.is_comptime) {
// TODO: we could give a meaningful lazy value here. #14938
return sema.mod.intRef(Type.usize, 0);
} else {
return block.addNoOp(.ret_addr);
}
}
fn zirFrameAddress(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
) CompileError!Air.Inst.Ref {
const src = LazySrcLoc.nodeOffset(@bitCast(extended.operand));
try sema.requireRuntimeBlock(block, src, null);
return try block.addNoOp(.frame_addr);
}
fn zirBuiltinSrc(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
) CompileError!Air.Inst.Ref {
_ = block;
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const extra = sema.code.extraData(Zir.Inst.Src, extended.operand).data;
const fn_owner_decl = mod.funcOwnerDeclPtr(sema.func_index);
const ip = &mod.intern_pool;
const gpa = sema.gpa;
const func_name_val = v: {
// This dupe prevents InternPool string pool memory from being reallocated
// while a reference exists.
const bytes = try sema.arena.dupe(u8, ip.stringToSlice(fn_owner_decl.name));
const array_ty = try ip.get(gpa, .{ .array_type = .{
.len = bytes.len,
.sentinel = .zero_u8,
.child = .u8_type,
} });
break :v try ip.get(gpa, .{ .slice = .{
.ty = .slice_const_u8_sentinel_0_type,
.ptr = try ip.get(gpa, .{ .ptr = .{
.ty = .manyptr_const_u8_sentinel_0_type,
.addr = .{ .anon_decl = .{
.orig_ty = .slice_const_u8_sentinel_0_type,
.val = try ip.get(gpa, .{ .aggregate = .{
.ty = array_ty,
.storage = .{ .bytes = bytes },
} }),
} },
} }),
.len = (try mod.intValue(Type.usize, bytes.len)).toIntern(),
} });
};
const file_name_val = v: {
// The compiler must not call realpath anywhere.
const bytes = try fn_owner_decl.getFileScope(mod).fullPathZ(sema.arena);
const array_ty = try ip.get(gpa, .{ .array_type = .{
.len = bytes.len,
.sentinel = .zero_u8,
.child = .u8_type,
} });
break :v try ip.get(gpa, .{ .slice = .{
.ty = .slice_const_u8_sentinel_0_type,
.ptr = try ip.get(gpa, .{ .ptr = .{
.ty = .manyptr_const_u8_sentinel_0_type,
.addr = .{ .anon_decl = .{
.orig_ty = .slice_const_u8_sentinel_0_type,
.val = try ip.get(gpa, .{ .aggregate = .{
.ty = array_ty,
.storage = .{ .bytes = bytes },
} }),
} },
} }),
.len = (try mod.intValue(Type.usize, bytes.len)).toIntern(),
} });
};
const src_loc_ty = try sema.getBuiltinType("SourceLocation");
const fields = .{
// file: [:0]const u8,
file_name_val,
// fn_name: [:0]const u8,
func_name_val,
// line: u32,
(try mod.intValue(Type.u32, extra.line + 1)).toIntern(),
// column: u32,
(try mod.intValue(Type.u32, extra.column + 1)).toIntern(),
};
return Air.internedToRef((try mod.intern(.{ .aggregate = .{
.ty = src_loc_ty.toIntern(),
.storage = .{ .elems = &fields },
} })));
}
fn zirTypeInfo(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const ty = try sema.resolveType(block, src, inst_data.operand);
const type_info_ty = try sema.getBuiltinType("Type");
const type_info_tag_ty = type_info_ty.unionTagType(mod).?;
if (ty.typeDeclInst(mod)) |type_decl_inst| {
try sema.declareDependency(.{ .namespace = type_decl_inst });
}
switch (ty.zigTypeTag(mod)) {
.Type,
.Void,
.Bool,
.NoReturn,
.ComptimeFloat,
.ComptimeInt,
.Undefined,
.Null,
.EnumLiteral,
=> |type_info_tag| return Air.internedToRef((try mod.intern(.{ .un = .{
.ty = type_info_ty.toIntern(),
.tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(type_info_tag))).toIntern(),
.val = .void_value,
} }))),
.Fn => {
const fn_info_decl_index = (try sema.namespaceLookup(
block,
src,
type_info_ty.getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "Fn"),
)).?;
try sema.ensureDeclAnalyzed(fn_info_decl_index);
const fn_info_decl = mod.declPtr(fn_info_decl_index);
const fn_info_ty = fn_info_decl.val.toType();
const param_info_decl_index = (try sema.namespaceLookup(
block,
src,
fn_info_ty.getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "Param"),
)).?;
try sema.ensureDeclAnalyzed(param_info_decl_index);
const param_info_decl = mod.declPtr(param_info_decl_index);
const param_info_ty = param_info_decl.val.toType();
const func_ty_info = mod.typeToFunc(ty).?;
const param_vals = try sema.arena.alloc(InternPool.Index, func_ty_info.param_types.len);
for (param_vals, 0..) |*param_val, i| {
const param_ty = func_ty_info.param_types.get(ip)[i];
const is_generic = param_ty == .generic_poison_type;
const param_ty_val = try ip.get(gpa, .{ .opt = .{
.ty = try ip.get(gpa, .{ .opt_type = .type_type }),
.val = if (is_generic) .none else param_ty,
} });
const is_noalias = blk: {
const index = std.math.cast(u5, i) orelse break :blk false;
break :blk @as(u1, @truncate(func_ty_info.noalias_bits >> index)) != 0;
};
const param_fields = .{
// is_generic: bool,
Value.makeBool(is_generic).toIntern(),
// is_noalias: bool,
Value.makeBool(is_noalias).toIntern(),
// type: ?type,
param_ty_val,
};
param_val.* = try mod.intern(.{ .aggregate = .{
.ty = param_info_ty.toIntern(),
.storage = .{ .elems = &param_fields },
} });
}
const args_val = v: {
const new_decl_ty = try mod.arrayType(.{
.len = param_vals.len,
.child = param_info_ty.toIntern(),
});
const new_decl_val = try mod.intern(.{ .aggregate = .{
.ty = new_decl_ty.toIntern(),
.storage = .{ .elems = param_vals },
} });
const slice_ty = (try sema.ptrType(.{
.child = param_info_ty.toIntern(),
.flags = .{
.size = .Slice,
.is_const = true,
},
})).toIntern();
const manyptr_ty = Type.fromInterned(slice_ty).slicePtrFieldType(mod).toIntern();
break :v try mod.intern(.{ .slice = .{
.ty = slice_ty,
.ptr = try mod.intern(.{ .ptr = .{
.ty = manyptr_ty,
.addr = .{ .anon_decl = .{
.orig_ty = manyptr_ty,
.val = new_decl_val,
} },
} }),
.len = (try mod.intValue(Type.usize, param_vals.len)).toIntern(),
} });
};
const ret_ty_opt = try mod.intern(.{ .opt = .{
.ty = try ip.get(gpa, .{ .opt_type = .type_type }),
.val = if (func_ty_info.return_type == .generic_poison_type)
.none
else
func_ty_info.return_type,
} });
const callconv_ty = try sema.getBuiltinType("CallingConvention");
const field_values = .{
// calling_convention: CallingConvention,
(try mod.enumValueFieldIndex(callconv_ty, @intFromEnum(func_ty_info.cc))).toIntern(),
// is_generic: bool,
Value.makeBool(func_ty_info.is_generic).toIntern(),
// is_var_args: bool,
Value.makeBool(func_ty_info.is_var_args).toIntern(),
// return_type: ?type,
ret_ty_opt,
// args: []const Fn.Param,
args_val,
};
return Air.internedToRef((try mod.intern(.{ .un = .{
.ty = type_info_ty.toIntern(),
.tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Fn))).toIntern(),
.val = try mod.intern(.{ .aggregate = .{
.ty = fn_info_ty.toIntern(),
.storage = .{ .elems = &field_values },
} }),
} })));
},
.Int => {
const int_info_decl_index = (try sema.namespaceLookup(
block,
src,
type_info_ty.getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "Int"),
)).?;
try sema.ensureDeclAnalyzed(int_info_decl_index);
const int_info_decl = mod.declPtr(int_info_decl_index);
const int_info_ty = int_info_decl.val.toType();
const signedness_ty = try sema.getBuiltinType("Signedness");
const info = ty.intInfo(mod);
const field_values = .{
// signedness: Signedness,
(try mod.enumValueFieldIndex(signedness_ty, @intFromEnum(info.signedness))).toIntern(),
// bits: u16,
(try mod.intValue(Type.u16, info.bits)).toIntern(),
};
return Air.internedToRef((try mod.intern(.{ .un = .{
.ty = type_info_ty.toIntern(),
.tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Int))).toIntern(),
.val = try mod.intern(.{ .aggregate = .{
.ty = int_info_ty.toIntern(),
.storage = .{ .elems = &field_values },
} }),
} })));
},
.Float => {
const float_info_decl_index = (try sema.namespaceLookup(
block,
src,
type_info_ty.getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "Float"),
)).?;
try sema.ensureDeclAnalyzed(float_info_decl_index);
const float_info_decl = mod.declPtr(float_info_decl_index);
const float_info_ty = float_info_decl.val.toType();
const field_vals = .{
// bits: u16,
(try mod.intValue(Type.u16, ty.bitSize(mod))).toIntern(),
};
return Air.internedToRef((try mod.intern(.{ .un = .{
.ty = type_info_ty.toIntern(),
.tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Float))).toIntern(),
.val = try mod.intern(.{ .aggregate = .{
.ty = float_info_ty.toIntern(),
.storage = .{ .elems = &field_vals },
} }),
} })));
},
.Pointer => {
const info = ty.ptrInfo(mod);
const alignment = if (info.flags.alignment.toByteUnits()) |alignment|
try mod.intValue(Type.comptime_int, alignment)
else
try Type.fromInterned(info.child).lazyAbiAlignment(mod);
const addrspace_ty = try sema.getBuiltinType("AddressSpace");
const pointer_ty = t: {
const decl_index = (try sema.namespaceLookup(
block,
src,
(try sema.getBuiltinType("Type")).getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "Pointer"),
)).?;
try sema.ensureDeclAnalyzed(decl_index);
const decl = mod.declPtr(decl_index);
break :t decl.val.toType();
};
const ptr_size_ty = t: {
const decl_index = (try sema.namespaceLookup(
block,
src,
pointer_ty.getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "Size"),
)).?;
try sema.ensureDeclAnalyzed(decl_index);
const decl = mod.declPtr(decl_index);
break :t decl.val.toType();
};
const field_values = .{
// size: Size,
(try mod.enumValueFieldIndex(ptr_size_ty, @intFromEnum(info.flags.size))).toIntern(),
// is_const: bool,
Value.makeBool(info.flags.is_const).toIntern(),
// is_volatile: bool,
Value.makeBool(info.flags.is_volatile).toIntern(),
// alignment: comptime_int,
alignment.toIntern(),
// address_space: AddressSpace
(try mod.enumValueFieldIndex(addrspace_ty, @intFromEnum(info.flags.address_space))).toIntern(),
// child: type,
info.child,
// is_allowzero: bool,
Value.makeBool(info.flags.is_allowzero).toIntern(),
// sentinel: ?*const anyopaque,
(try sema.optRefValue(switch (info.sentinel) {
.none => null,
else => Value.fromInterned(info.sentinel),
})).toIntern(),
};
return Air.internedToRef((try mod.intern(.{ .un = .{
.ty = type_info_ty.toIntern(),
.tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Pointer))).toIntern(),
.val = try mod.intern(.{ .aggregate = .{
.ty = pointer_ty.toIntern(),
.storage = .{ .elems = &field_values },
} }),
} })));
},
.Array => {
const array_field_ty = t: {
const array_field_ty_decl_index = (try sema.namespaceLookup(
block,
src,
type_info_ty.getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "Array"),
)).?;
try sema.ensureDeclAnalyzed(array_field_ty_decl_index);
const array_field_ty_decl = mod.declPtr(array_field_ty_decl_index);
break :t array_field_ty_decl.val.toType();
};
const info = ty.arrayInfo(mod);
const field_values = .{
// len: comptime_int,
(try mod.intValue(Type.comptime_int, info.len)).toIntern(),
// child: type,
info.elem_type.toIntern(),
// sentinel: ?*const anyopaque,
(try sema.optRefValue(info.sentinel)).toIntern(),
};
return Air.internedToRef((try mod.intern(.{ .un = .{
.ty = type_info_ty.toIntern(),
.tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Array))).toIntern(),
.val = try mod.intern(.{ .aggregate = .{
.ty = array_field_ty.toIntern(),
.storage = .{ .elems = &field_values },
} }),
} })));
},
.Vector => {
const vector_field_ty = t: {
const vector_field_ty_decl_index = (try sema.namespaceLookup(
block,
src,
type_info_ty.getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "Vector"),
)).?;
try sema.ensureDeclAnalyzed(vector_field_ty_decl_index);
const vector_field_ty_decl = mod.declPtr(vector_field_ty_decl_index);
break :t vector_field_ty_decl.val.toType();
};
const info = ty.arrayInfo(mod);
const field_values = .{
// len: comptime_int,
(try mod.intValue(Type.comptime_int, info.len)).toIntern(),
// child: type,
info.elem_type.toIntern(),
};
return Air.internedToRef((try mod.intern(.{ .un = .{
.ty = type_info_ty.toIntern(),
.tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Vector))).toIntern(),
.val = try mod.intern(.{ .aggregate = .{
.ty = vector_field_ty.toIntern(),
.storage = .{ .elems = &field_values },
} }),
} })));
},
.Optional => {
const optional_field_ty = t: {
const optional_field_ty_decl_index = (try sema.namespaceLookup(
block,
src,
type_info_ty.getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "Optional"),
)).?;
try sema.ensureDeclAnalyzed(optional_field_ty_decl_index);
const optional_field_ty_decl = mod.declPtr(optional_field_ty_decl_index);
break :t optional_field_ty_decl.val.toType();
};
const field_values = .{
// child: type,
ty.optionalChild(mod).toIntern(),
};
return Air.internedToRef((try mod.intern(.{ .un = .{
.ty = type_info_ty.toIntern(),
.tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Optional))).toIntern(),
.val = try mod.intern(.{ .aggregate = .{
.ty = optional_field_ty.toIntern(),
.storage = .{ .elems = &field_values },
} }),
} })));
},
.ErrorSet => {
// Get the Error type
const error_field_ty = t: {
const set_field_ty_decl_index = (try sema.namespaceLookup(
block,
src,
type_info_ty.getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "Error"),
)).?;
try sema.ensureDeclAnalyzed(set_field_ty_decl_index);
const set_field_ty_decl = mod.declPtr(set_field_ty_decl_index);
break :t set_field_ty_decl.val.toType();
};
try sema.queueFullTypeResolution(error_field_ty);
// Build our list of Error values
// Optional value is only null if anyerror
// Value can be zero-length slice otherwise
const error_field_vals = switch (try sema.resolveInferredErrorSetTy(block, src, ty.toIntern())) {
.anyerror_type => null,
else => |err_set_ty_index| blk: {
const names = ip.indexToKey(err_set_ty_index).error_set_type.names;
const vals = try sema.arena.alloc(InternPool.Index, names.len);
for (vals, 0..) |*field_val, i| {
// TODO: write something like getCoercedInts to avoid needing to dupe
const name = try sema.arena.dupeZ(u8, ip.stringToSlice(names.get(ip)[i]));
const name_val = v: {
const new_decl_ty = try mod.arrayType(.{
.len = name.len,
.sentinel = .zero_u8,
.child = .u8_type,
});
const new_decl_val = try mod.intern(.{ .aggregate = .{
.ty = new_decl_ty.toIntern(),
.storage = .{ .bytes = name },
} });
break :v try mod.intern(.{ .slice = .{
.ty = .slice_const_u8_sentinel_0_type,
.ptr = try mod.intern(.{ .ptr = .{
.ty = .manyptr_const_u8_sentinel_0_type,
.addr = .{ .anon_decl = .{
.val = new_decl_val,
.orig_ty = .slice_const_u8_sentinel_0_type,
} },
} }),
.len = (try mod.intValue(Type.usize, name.len)).toIntern(),
} });
};
const error_field_fields = .{
// name: [:0]const u8,
name_val,
};
field_val.* = try mod.intern(.{ .aggregate = .{
.ty = error_field_ty.toIntern(),
.storage = .{ .elems = &error_field_fields },
} });
}
break :blk vals;
},
};
// Build our ?[]const Error value
const slice_errors_ty = try sema.ptrType(.{
.child = error_field_ty.toIntern(),
.flags = .{
.size = .Slice,
.is_const = true,
},
});
const opt_slice_errors_ty = try mod.optionalType(slice_errors_ty.toIntern());
const errors_payload_val: InternPool.Index = if (error_field_vals) |vals| v: {
const array_errors_ty = try mod.arrayType(.{
.len = vals.len,
.child = error_field_ty.toIntern(),
});
const new_decl_val = try mod.intern(.{ .aggregate = .{
.ty = array_errors_ty.toIntern(),
.storage = .{ .elems = vals },
} });
const manyptr_errors_ty = slice_errors_ty.slicePtrFieldType(mod).toIntern();
break :v try mod.intern(.{ .slice = .{
.ty = slice_errors_ty.toIntern(),
.ptr = try mod.intern(.{ .ptr = .{
.ty = manyptr_errors_ty,
.addr = .{ .anon_decl = .{
.orig_ty = manyptr_errors_ty,
.val = new_decl_val,
} },
} }),
.len = (try mod.intValue(Type.usize, vals.len)).toIntern(),
} });
} else .none;
const errors_val = try mod.intern(.{ .opt = .{
.ty = opt_slice_errors_ty.toIntern(),
.val = errors_payload_val,
} });
// Construct Type{ .ErrorSet = errors_val }
return Air.internedToRef((try mod.intern(.{ .un = .{
.ty = type_info_ty.toIntern(),
.tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.ErrorSet))).toIntern(),
.val = errors_val,
} })));
},
.ErrorUnion => {
const error_union_field_ty = t: {
const error_union_field_ty_decl_index = (try sema.namespaceLookup(
block,
src,
type_info_ty.getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "ErrorUnion"),
)).?;
try sema.ensureDeclAnalyzed(error_union_field_ty_decl_index);
const error_union_field_ty_decl = mod.declPtr(error_union_field_ty_decl_index);
break :t error_union_field_ty_decl.val.toType();
};
const field_values = .{
// error_set: type,
ty.errorUnionSet(mod).toIntern(),
// payload: type,
ty.errorUnionPayload(mod).toIntern(),
};
return Air.internedToRef((try mod.intern(.{ .un = .{
.ty = type_info_ty.toIntern(),
.tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.ErrorUnion))).toIntern(),
.val = try mod.intern(.{ .aggregate = .{
.ty = error_union_field_ty.toIntern(),
.storage = .{ .elems = &field_values },
} }),
} })));
},
.Enum => {
const is_exhaustive = Value.makeBool(ip.loadEnumType(ty.toIntern()).tag_mode != .nonexhaustive);
const enum_field_ty = t: {
const enum_field_ty_decl_index = (try sema.namespaceLookup(
block,
src,
type_info_ty.getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "EnumField"),
)).?;
try sema.ensureDeclAnalyzed(enum_field_ty_decl_index);
const enum_field_ty_decl = mod.declPtr(enum_field_ty_decl_index);
break :t enum_field_ty_decl.val.toType();
};
const enum_field_vals = try sema.arena.alloc(InternPool.Index, ip.loadEnumType(ty.toIntern()).names.len);
for (enum_field_vals, 0..) |*field_val, i| {
const enum_type = ip.loadEnumType(ty.toIntern());
const value_val = if (enum_type.values.len > 0)
try mod.intern_pool.getCoercedInts(
mod.gpa,
mod.intern_pool.indexToKey(enum_type.values.get(ip)[i]).int,
.comptime_int_type,
)
else
(try mod.intValue(Type.comptime_int, i)).toIntern();
// TODO: write something like getCoercedInts to avoid needing to dupe
const name = try sema.arena.dupeZ(u8, ip.stringToSlice(enum_type.names.get(ip)[i]));
const name_val = v: {
const new_decl_ty = try mod.arrayType(.{
.len = name.len,
.sentinel = .zero_u8,
.child = .u8_type,
});
const new_decl_val = try mod.intern(.{ .aggregate = .{
.ty = new_decl_ty.toIntern(),
.storage = .{ .bytes = name },
} });
break :v try mod.intern(.{ .slice = .{
.ty = .slice_const_u8_sentinel_0_type,
.ptr = try mod.intern(.{ .ptr = .{
.ty = .manyptr_const_u8_sentinel_0_type,
.addr = .{ .anon_decl = .{
.val = new_decl_val,
.orig_ty = .slice_const_u8_sentinel_0_type,
} },
} }),
.len = (try mod.intValue(Type.usize, name.len)).toIntern(),
} });
};
const enum_field_fields = .{
// name: [:0]const u8,
name_val,
// value: comptime_int,
value_val,
};
field_val.* = try mod.intern(.{ .aggregate = .{
.ty = enum_field_ty.toIntern(),
.storage = .{ .elems = &enum_field_fields },
} });
}
const fields_val = v: {
const fields_array_ty = try mod.arrayType(.{
.len = enum_field_vals.len,
.child = enum_field_ty.toIntern(),
});
const new_decl_val = try mod.intern(.{ .aggregate = .{
.ty = fields_array_ty.toIntern(),
.storage = .{ .elems = enum_field_vals },
} });
const slice_ty = (try sema.ptrType(.{
.child = enum_field_ty.toIntern(),
.flags = .{
.size = .Slice,
.is_const = true,
},
})).toIntern();
const manyptr_ty = Type.fromInterned(slice_ty).slicePtrFieldType(mod).toIntern();
break :v try mod.intern(.{ .slice = .{
.ty = slice_ty,
.ptr = try mod.intern(.{ .ptr = .{
.ty = manyptr_ty,
.addr = .{ .anon_decl = .{
.val = new_decl_val,
.orig_ty = manyptr_ty,
} },
} }),
.len = (try mod.intValue(Type.usize, enum_field_vals.len)).toIntern(),
} });
};
const decls_val = try sema.typeInfoDecls(block, src, type_info_ty, ip.loadEnumType(ty.toIntern()).namespace);
const type_enum_ty = t: {
const type_enum_ty_decl_index = (try sema.namespaceLookup(
block,
src,
type_info_ty.getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "Enum"),
)).?;
try sema.ensureDeclAnalyzed(type_enum_ty_decl_index);
const type_enum_ty_decl = mod.declPtr(type_enum_ty_decl_index);
break :t type_enum_ty_decl.val.toType();
};
const field_values = .{
// tag_type: type,
ip.loadEnumType(ty.toIntern()).tag_ty,
// fields: []const EnumField,
fields_val,
// decls: []const Declaration,
decls_val,
// is_exhaustive: bool,
is_exhaustive.toIntern(),
};
return Air.internedToRef((try mod.intern(.{ .un = .{
.ty = type_info_ty.toIntern(),
.tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Enum))).toIntern(),
.val = try mod.intern(.{ .aggregate = .{
.ty = type_enum_ty.toIntern(),
.storage = .{ .elems = &field_values },
} }),
} })));
},
.Union => {
const type_union_ty = t: {
const type_union_ty_decl_index = (try sema.namespaceLookup(
block,
src,
type_info_ty.getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "Union"),
)).?;
try sema.ensureDeclAnalyzed(type_union_ty_decl_index);
const type_union_ty_decl = mod.declPtr(type_union_ty_decl_index);
break :t type_union_ty_decl.val.toType();
};
const union_field_ty = t: {
const union_field_ty_decl_index = (try sema.namespaceLookup(
block,
src,
type_info_ty.getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "UnionField"),
)).?;
try sema.ensureDeclAnalyzed(union_field_ty_decl_index);
const union_field_ty_decl = mod.declPtr(union_field_ty_decl_index);
break :t union_field_ty_decl.val.toType();
};
try sema.resolveTypeLayout(ty); // Getting alignment requires type layout
const union_obj = mod.typeToUnion(ty).?;
const tag_type = union_obj.loadTagType(ip);
const layout = union_obj.getLayout(ip);
const union_field_vals = try gpa.alloc(InternPool.Index, tag_type.names.len);
defer gpa.free(union_field_vals);
for (union_field_vals, 0..) |*field_val, i| {
// TODO: write something like getCoercedInts to avoid needing to dupe
const name = try sema.arena.dupeZ(u8, ip.stringToSlice(tag_type.names.get(ip)[i]));
const name_val = v: {
const new_decl_ty = try mod.arrayType(.{
.len = name.len,
.sentinel = .zero_u8,
.child = .u8_type,
});
const new_decl_val = try mod.intern(.{ .aggregate = .{
.ty = new_decl_ty.toIntern(),
.storage = .{ .bytes = name },
} });
break :v try mod.intern(.{ .slice = .{
.ty = .slice_const_u8_sentinel_0_type,
.ptr = try mod.intern(.{ .ptr = .{
.ty = .manyptr_const_u8_sentinel_0_type,
.addr = .{ .anon_decl = .{
.val = new_decl_val,
.orig_ty = .slice_const_u8_sentinel_0_type,
} },
} }),
.len = (try mod.intValue(Type.usize, name.len)).toIntern(),
} });
};
const alignment = switch (layout) {
.auto, .@"extern" => try sema.unionFieldAlignment(union_obj, @intCast(i)),
.@"packed" => .none,
};
const field_ty = union_obj.field_types.get(ip)[i];
const union_field_fields = .{
// name: [:0]const u8,
name_val,
// type: type,
field_ty,
// alignment: comptime_int,
(try mod.intValue(Type.comptime_int, alignment.toByteUnits() orelse 0)).toIntern(),
};
field_val.* = try mod.intern(.{ .aggregate = .{
.ty = union_field_ty.toIntern(),
.storage = .{ .elems = &union_field_fields },
} });
}
const fields_val = v: {
const array_fields_ty = try mod.arrayType(.{
.len = union_field_vals.len,
.child = union_field_ty.toIntern(),
});
const new_decl_val = try mod.intern(.{ .aggregate = .{
.ty = array_fields_ty.toIntern(),
.storage = .{ .elems = union_field_vals },
} });
const slice_ty = (try sema.ptrType(.{
.child = union_field_ty.toIntern(),
.flags = .{
.size = .Slice,
.is_const = true,
},
})).toIntern();
const manyptr_ty = Type.fromInterned(slice_ty).slicePtrFieldType(mod).toIntern();
break :v try mod.intern(.{ .slice = .{
.ty = slice_ty,
.ptr = try mod.intern(.{ .ptr = .{
.ty = manyptr_ty,
.addr = .{ .anon_decl = .{
.orig_ty = manyptr_ty,
.val = new_decl_val,
} },
} }),
.len = (try mod.intValue(Type.usize, union_field_vals.len)).toIntern(),
} });
};
const decls_val = try sema.typeInfoDecls(block, src, type_info_ty, ty.getNamespaceIndex(mod));
const enum_tag_ty_val = try mod.intern(.{ .opt = .{
.ty = (try mod.optionalType(.type_type)).toIntern(),
.val = if (ty.unionTagType(mod)) |tag_ty| tag_ty.toIntern() else .none,
} });
const container_layout_ty = t: {
const decl_index = (try sema.namespaceLookup(
block,
src,
(try sema.getBuiltinType("Type")).getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "ContainerLayout"),
)).?;
try sema.ensureDeclAnalyzed(decl_index);
const decl = mod.declPtr(decl_index);
break :t decl.val.toType();
};
const field_values = .{
// layout: ContainerLayout,
(try mod.enumValueFieldIndex(container_layout_ty, @intFromEnum(layout))).toIntern(),
// tag_type: ?type,
enum_tag_ty_val,
// fields: []const UnionField,
fields_val,
// decls: []const Declaration,
decls_val,
};
return Air.internedToRef((try mod.intern(.{ .un = .{
.ty = type_info_ty.toIntern(),
.tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Union))).toIntern(),
.val = try mod.intern(.{ .aggregate = .{
.ty = type_union_ty.toIntern(),
.storage = .{ .elems = &field_values },
} }),
} })));
},
.Struct => {
const type_struct_ty = t: {
const type_struct_ty_decl_index = (try sema.namespaceLookup(
block,
src,
type_info_ty.getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "Struct"),
)).?;
try sema.ensureDeclAnalyzed(type_struct_ty_decl_index);
const type_struct_ty_decl = mod.declPtr(type_struct_ty_decl_index);
break :t type_struct_ty_decl.val.toType();
};
const struct_field_ty = t: {
const struct_field_ty_decl_index = (try sema.namespaceLookup(
block,
src,
type_info_ty.getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "StructField"),
)).?;
try sema.ensureDeclAnalyzed(struct_field_ty_decl_index);
const struct_field_ty_decl = mod.declPtr(struct_field_ty_decl_index);
break :t struct_field_ty_decl.val.toType();
};
try sema.resolveTypeLayout(ty); // Getting alignment requires type layout
var struct_field_vals: []InternPool.Index = &.{};
defer gpa.free(struct_field_vals);
fv: {
const struct_type = switch (ip.indexToKey(ty.toIntern())) {
.anon_struct_type => |tuple| {
struct_field_vals = try gpa.alloc(InternPool.Index, tuple.types.len);
for (struct_field_vals, 0..) |*struct_field_val, i| {
const anon_struct_type = ip.indexToKey(ty.toIntern()).anon_struct_type;
const field_ty = anon_struct_type.types.get(ip)[i];
const field_val = anon_struct_type.values.get(ip)[i];
const name_val = v: {
// TODO: write something like getCoercedInts to avoid needing to dupe
const bytes = if (tuple.names.len != 0)
// https://github.com/ziglang/zig/issues/15709
try sema.arena.dupeZ(u8, ip.stringToSlice(ip.indexToKey(ty.toIntern()).anon_struct_type.names.get(ip)[i]))
else
try std.fmt.allocPrintZ(sema.arena, "{d}", .{i});
const new_decl_ty = try mod.arrayType(.{
.len = bytes.len,
.sentinel = .zero_u8,
.child = .u8_type,
});
const new_decl_val = try mod.intern(.{ .aggregate = .{
.ty = new_decl_ty.toIntern(),
.storage = .{ .bytes = bytes },
} });
break :v try mod.intern(.{ .slice = .{
.ty = .slice_const_u8_sentinel_0_type,
.ptr = try mod.intern(.{ .ptr = .{
.ty = .manyptr_const_u8_sentinel_0_type,
.addr = .{ .anon_decl = .{
.val = new_decl_val,
.orig_ty = .slice_const_u8_sentinel_0_type,
} },
} }),
.len = (try mod.intValue(Type.usize, bytes.len)).toIntern(),
} });
};
try sema.resolveTypeLayout(Type.fromInterned(field_ty));
const is_comptime = field_val != .none;
const opt_default_val = if (is_comptime) Value.fromInterned(field_val) else null;
const default_val_ptr = try sema.optRefValue(opt_default_val);
const struct_field_fields = .{
// name: [:0]const u8,
name_val,
// type: type,
field_ty,
// default_value: ?*const anyopaque,
default_val_ptr.toIntern(),
// is_comptime: bool,
Value.makeBool(is_comptime).toIntern(),
// alignment: comptime_int,
(try mod.intValue(Type.comptime_int, Type.fromInterned(field_ty).abiAlignment(mod).toByteUnits() orelse 0)).toIntern(),
};
struct_field_val.* = try mod.intern(.{ .aggregate = .{
.ty = struct_field_ty.toIntern(),
.storage = .{ .elems = &struct_field_fields },
} });
}
break :fv;
},
.struct_type => ip.loadStructType(ty.toIntern()),
else => unreachable,
};
struct_field_vals = try gpa.alloc(InternPool.Index, struct_type.field_types.len);
try sema.resolveStructFieldInits(ty);
for (struct_field_vals, 0..) |*field_val, i| {
// TODO: write something like getCoercedInts to avoid needing to dupe
const name = if (struct_type.fieldName(ip, i).unwrap()) |name_nts|
try sema.arena.dupeZ(u8, ip.stringToSlice(name_nts))
else
try std.fmt.allocPrintZ(sema.arena, "{d}", .{i});
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
const field_init = struct_type.fieldInit(ip, i);
const field_is_comptime = struct_type.fieldIsComptime(ip, i);
const name_val = v: {
const new_decl_ty = try mod.arrayType(.{
.len = name.len,
.sentinel = .zero_u8,
.child = .u8_type,
});
const new_decl_val = try mod.intern(.{ .aggregate = .{
.ty = new_decl_ty.toIntern(),
.storage = .{ .bytes = name },
} });
break :v try mod.intern(.{ .slice = .{
.ty = .slice_const_u8_sentinel_0_type,
.ptr = try mod.intern(.{ .ptr = .{
.ty = .manyptr_const_u8_sentinel_0_type,
.addr = .{ .anon_decl = .{
.val = new_decl_val,
.orig_ty = .slice_const_u8_sentinel_0_type,
} },
} }),
.len = (try mod.intValue(Type.usize, name.len)).toIntern(),
} });
};
const opt_default_val = if (field_init == .none) null else Value.fromInterned(field_init);
const default_val_ptr = try sema.optRefValue(opt_default_val);
const alignment = switch (struct_type.layout) {
.@"packed" => .none,
else => try sema.structFieldAlignment(
struct_type.fieldAlign(ip, i),
field_ty,
struct_type.layout,
),
};
const struct_field_fields = .{
// name: [:0]const u8,
name_val,
// type: type,
field_ty.toIntern(),
// default_value: ?*const anyopaque,
default_val_ptr.toIntern(),
// is_comptime: bool,
Value.makeBool(field_is_comptime).toIntern(),
// alignment: comptime_int,
(try mod.intValue(Type.comptime_int, alignment.toByteUnits() orelse 0)).toIntern(),
};
field_val.* = try mod.intern(.{ .aggregate = .{
.ty = struct_field_ty.toIntern(),
.storage = .{ .elems = &struct_field_fields },
} });
}
}
const fields_val = v: {
const array_fields_ty = try mod.arrayType(.{
.len = struct_field_vals.len,
.child = struct_field_ty.toIntern(),
});
const new_decl_val = try mod.intern(.{ .aggregate = .{
.ty = array_fields_ty.toIntern(),
.storage = .{ .elems = struct_field_vals },
} });
const slice_ty = (try sema.ptrType(.{
.child = struct_field_ty.toIntern(),
.flags = .{
.size = .Slice,
.is_const = true,
},
})).toIntern();
const manyptr_ty = Type.fromInterned(slice_ty).slicePtrFieldType(mod).toIntern();
break :v try mod.intern(.{ .slice = .{
.ty = slice_ty,
.ptr = try mod.intern(.{ .ptr = .{
.ty = manyptr_ty,
.addr = .{ .anon_decl = .{
.orig_ty = manyptr_ty,
.val = new_decl_val,
} },
} }),
.len = (try mod.intValue(Type.usize, struct_field_vals.len)).toIntern(),
} });
};
const decls_val = try sema.typeInfoDecls(block, src, type_info_ty, ty.getNamespaceIndex(mod));
const backing_integer_val = try mod.intern(.{ .opt = .{
.ty = (try mod.optionalType(.type_type)).toIntern(),
.val = if (mod.typeToPackedStruct(ty)) |packed_struct| val: {
assert(Type.fromInterned(packed_struct.backingIntType(ip).*).isInt(mod));
break :val packed_struct.backingIntType(ip).*;
} else .none,
} });
const container_layout_ty = t: {
const decl_index = (try sema.namespaceLookup(
block,
src,
(try sema.getBuiltinType("Type")).getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "ContainerLayout"),
)).?;
try sema.ensureDeclAnalyzed(decl_index);
const decl = mod.declPtr(decl_index);
break :t decl.val.toType();
};
const layout = ty.containerLayout(mod);
const field_values = [_]InternPool.Index{
// layout: ContainerLayout,
(try mod.enumValueFieldIndex(container_layout_ty, @intFromEnum(layout))).toIntern(),
// backing_integer: ?type,
backing_integer_val,
// fields: []const StructField,
fields_val,
// decls: []const Declaration,
decls_val,
// is_tuple: bool,
Value.makeBool(ty.isTuple(mod)).toIntern(),
};
return Air.internedToRef((try mod.intern(.{ .un = .{
.ty = type_info_ty.toIntern(),
.tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Struct))).toIntern(),
.val = try mod.intern(.{ .aggregate = .{
.ty = type_struct_ty.toIntern(),
.storage = .{ .elems = &field_values },
} }),
} })));
},
.Opaque => {
const type_opaque_ty = t: {
const type_opaque_ty_decl_index = (try sema.namespaceLookup(
block,
src,
type_info_ty.getNamespaceIndex(mod),
try ip.getOrPutString(gpa, "Opaque"),
)).?;
try sema.ensureDeclAnalyzed(type_opaque_ty_decl_index);
const type_opaque_ty_decl = mod.declPtr(type_opaque_ty_decl_index);
break :t type_opaque_ty_decl.val.toType();
};
try sema.resolveTypeFields(ty);
const decls_val = try sema.typeInfoDecls(block, src, type_info_ty, ty.getNamespaceIndex(mod));
const field_values = .{
// decls: []const Declaration,
decls_val,
};
return Air.internedToRef((try mod.intern(.{ .un = .{
.ty = type_info_ty.toIntern(),
.tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Opaque))).toIntern(),
.val = try mod.intern(.{ .aggregate = .{
.ty = type_opaque_ty.toIntern(),
.storage = .{ .elems = &field_values },
} }),
} })));
},
.Frame => return sema.failWithUseOfAsync(block, src),
.AnyFrame => return sema.failWithUseOfAsync(block, src),
}
}
fn typeInfoDecls(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
type_info_ty: Type,
opt_namespace: InternPool.OptionalNamespaceIndex,
) CompileError!InternPool.Index {
const mod = sema.mod;
const gpa = sema.gpa;
const declaration_ty = t: {
const declaration_ty_decl_index = (try sema.namespaceLookup(
block,
src,
type_info_ty.getNamespaceIndex(mod),
try mod.intern_pool.getOrPutString(gpa, "Declaration"),
)).?;
try sema.ensureDeclAnalyzed(declaration_ty_decl_index);
const declaration_ty_decl = mod.declPtr(declaration_ty_decl_index);
break :t declaration_ty_decl.val.toType();
};
try sema.queueFullTypeResolution(declaration_ty);
var decl_vals = std.ArrayList(InternPool.Index).init(gpa);
defer decl_vals.deinit();
var seen_namespaces = std.AutoHashMap(*Namespace, void).init(gpa);
defer seen_namespaces.deinit();
try sema.typeInfoNamespaceDecls(block, opt_namespace, declaration_ty, &decl_vals, &seen_namespaces);
const array_decl_ty = try mod.arrayType(.{
.len = decl_vals.items.len,
.child = declaration_ty.toIntern(),
});
const new_decl_val = try mod.intern(.{ .aggregate = .{
.ty = array_decl_ty.toIntern(),
.storage = .{ .elems = decl_vals.items },
} });
const slice_ty = (try sema.ptrType(.{
.child = declaration_ty.toIntern(),
.flags = .{
.size = .Slice,
.is_const = true,
},
})).toIntern();
const manyptr_ty = Type.fromInterned(slice_ty).slicePtrFieldType(mod).toIntern();
return try mod.intern(.{ .slice = .{
.ty = slice_ty,
.ptr = try mod.intern(.{ .ptr = .{
.ty = manyptr_ty,
.addr = .{ .anon_decl = .{
.orig_ty = manyptr_ty,
.val = new_decl_val,
} },
} }),
.len = (try mod.intValue(Type.usize, decl_vals.items.len)).toIntern(),
} });
}
fn typeInfoNamespaceDecls(
sema: *Sema,
block: *Block,
opt_namespace_index: InternPool.OptionalNamespaceIndex,
declaration_ty: Type,
decl_vals: *std.ArrayList(InternPool.Index),
seen_namespaces: *std.AutoHashMap(*Namespace, void),
) !void {
const mod = sema.mod;
const ip = &mod.intern_pool;
const namespace_index = opt_namespace_index.unwrap() orelse return;
const namespace = mod.namespacePtr(namespace_index);
const gop = try seen_namespaces.getOrPut(namespace);
if (gop.found_existing) return;
const decls = namespace.decls.keys();
for (decls) |decl_index| {
const decl = mod.declPtr(decl_index);
if (!decl.is_pub) continue;
if (decl.kind == .@"usingnamespace") {
if (decl.analysis == .in_progress) continue;
try mod.ensureDeclAnalyzed(decl_index);
try sema.typeInfoNamespaceDecls(block, decl.val.toType().getNamespaceIndex(mod), declaration_ty, decl_vals, seen_namespaces);
continue;
}
if (decl.kind != .named) continue;
const name_val = v: {
// TODO: write something like getCoercedInts to avoid needing to dupe
const name = try sema.arena.dupeZ(u8, ip.stringToSlice(decl.name));
const new_decl_ty = try mod.arrayType(.{
.len = name.len,
.sentinel = .zero_u8,
.child = .u8_type,
});
const new_decl_val = try mod.intern(.{ .aggregate = .{
.ty = new_decl_ty.toIntern(),
.storage = .{ .bytes = name },
} });
break :v try mod.intern(.{ .slice = .{
.ty = .slice_const_u8_sentinel_0_type,
.ptr = try mod.intern(.{ .ptr = .{
.ty = .manyptr_const_u8_sentinel_0_type,
.addr = .{ .anon_decl = .{
.orig_ty = .slice_const_u8_sentinel_0_type,
.val = new_decl_val,
} },
} }),
.len = (try mod.intValue(Type.usize, name.len)).toIntern(),
} });
};
const fields = .{
//name: [:0]const u8,
name_val,
};
try decl_vals.append(try mod.intern(.{ .aggregate = .{
.ty = declaration_ty.toIntern(),
.storage = .{ .elems = &fields },
} }));
}
}
fn zirTypeof(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
_ = block;
const zir_datas = sema.code.instructions.items(.data);
const inst_data = zir_datas[@intFromEnum(inst)].un_node;
const operand = try sema.resolveInst(inst_data.operand);
const operand_ty = sema.typeOf(operand);
return Air.internedToRef(operand_ty.toIntern());
}
fn zirTypeofBuiltin(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const pl_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Block, pl_node.payload_index);
const body = sema.code.bodySlice(extra.end, extra.data.body_len);
var child_block: Block = .{
.parent = block,
.sema = sema,
.src_decl = block.src_decl,
.namespace = block.namespace,
.instructions = .{},
.inlining = block.inlining,
.is_comptime = false,
.is_typeof = true,
.want_safety = false,
.error_return_trace_index = block.error_return_trace_index,
};
defer child_block.instructions.deinit(sema.gpa);
const operand = try sema.resolveInlineBody(&child_block, body, inst);
const operand_ty = sema.typeOf(operand);
if (operand_ty.isGenericPoison()) return error.GenericPoison;
return Air.internedToRef(operand_ty.toIntern());
}
fn zirTypeofLog2IntType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const operand = try sema.resolveInst(inst_data.operand);
const operand_ty = sema.typeOf(operand);
const res_ty = try sema.log2IntType(block, operand_ty, src);
return Air.internedToRef(res_ty.toIntern());
}
fn log2IntType(sema: *Sema, block: *Block, operand: Type, src: LazySrcLoc) CompileError!Type {
const mod = sema.mod;
switch (operand.zigTypeTag(mod)) {
.ComptimeInt => return Type.comptime_int,
.Int => {
const bits = operand.bitSize(mod);
const count = if (bits == 0)
0
else blk: {
var count: u16 = 0;
var s = bits - 1;
while (s != 0) : (s >>= 1) {
count += 1;
}
break :blk count;
};
return mod.intType(.unsigned, count);
},
.Vector => {
const elem_ty = operand.elemType2(mod);
const log2_elem_ty = try sema.log2IntType(block, elem_ty, src);
return mod.vectorType(.{
.len = operand.vectorLen(mod),
.child = log2_elem_ty.toIntern(),
});
},
else => {},
}
return sema.fail(
block,
src,
"bit shifting operation expected integer type, found '{}'",
.{operand.fmt(mod)},
);
}
fn zirTypeofPeer(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
inst: Zir.Inst.Index,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const extra = sema.code.extraData(Zir.Inst.TypeOfPeer, extended.operand);
const src = LazySrcLoc.nodeOffset(extra.data.src_node);
const body = sema.code.bodySlice(extra.data.body_index, extra.data.body_len);
var child_block: Block = .{
.parent = block,
.sema = sema,
.src_decl = block.src_decl,
.namespace = block.namespace,
.instructions = .{},
.inlining = block.inlining,
.is_comptime = false,
.is_typeof = true,
.runtime_cond = block.runtime_cond,
.runtime_loop = block.runtime_loop,
.runtime_index = block.runtime_index,
};
defer child_block.instructions.deinit(sema.gpa);
// Ignore the result, we only care about the instructions in `args`.
_ = try sema.analyzeInlineBody(&child_block, body, inst);
const args = sema.code.refSlice(extra.end, extended.small);
const inst_list = try sema.gpa.alloc(Air.Inst.Ref, args.len);
defer sema.gpa.free(inst_list);
for (args, 0..) |arg_ref, i| {
inst_list[i] = try sema.resolveInst(arg_ref);
}
const result_type = try sema.resolvePeerTypes(block, src, inst_list, .{ .typeof_builtin_call_node_offset = extra.data.src_node });
return Air.internedToRef(result_type.toIntern());
}
fn zirBoolNot(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_un_op = inst_data.src_node };
const uncasted_operand = try sema.resolveInst(inst_data.operand);
const operand = try sema.coerce(block, Type.bool, uncasted_operand, operand_src);
if (try sema.resolveValue(operand)) |val| {
return if (val.isUndef(mod))
mod.undefRef(Type.bool)
else if (val.toBool()) .bool_false else .bool_true;
}
try sema.requireRuntimeBlock(block, src, null);
return block.addTyOp(.not, Type.bool, operand);
}
fn zirBoolBr(
sema: *Sema,
parent_block: *Block,
inst: Zir.Inst.Index,
is_bool_or: bool,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const gpa = sema.gpa;
const datas = sema.code.instructions.items(.data);
const inst_data = datas[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.BoolBr, inst_data.payload_index);
const uncoerced_lhs = try sema.resolveInst(extra.data.lhs);
const body = sema.code.bodySlice(extra.end, extra.data.body_len);
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const lhs = try sema.coerce(parent_block, Type.bool, uncoerced_lhs, lhs_src);
if (try sema.resolveDefinedValue(parent_block, lhs_src, lhs)) |lhs_val| {
if (is_bool_or and lhs_val.toBool()) {
return .bool_true;
} else if (!is_bool_or and !lhs_val.toBool()) {
return .bool_false;
}
// comptime-known left-hand side. No need for a block here; the result
// is simply the rhs expression. Here we rely on there only being 1
// break instruction (`break_inline`).
const rhs_result = try sema.resolveInlineBody(parent_block, body, inst);
if (sema.typeOf(rhs_result).isNoReturn(mod)) {
return rhs_result;
}
return sema.coerce(parent_block, Type.bool, rhs_result, rhs_src);
}
const block_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
try sema.air_instructions.append(gpa, .{
.tag = .block,
.data = .{ .ty_pl = .{
.ty = .bool_type,
.payload = undefined,
} },
});
var child_block = parent_block.makeSubBlock();
child_block.runtime_loop = null;
child_block.runtime_cond = mod.declPtr(child_block.src_decl).toSrcLoc(lhs_src, mod);
child_block.runtime_index.increment();
defer child_block.instructions.deinit(gpa);
var then_block = child_block.makeSubBlock();
defer then_block.instructions.deinit(gpa);
var else_block = child_block.makeSubBlock();
defer else_block.instructions.deinit(gpa);
const lhs_block = if (is_bool_or) &then_block else &else_block;
const rhs_block = if (is_bool_or) &else_block else &then_block;
const lhs_result: Air.Inst.Ref = if (is_bool_or) .bool_true else .bool_false;
_ = try lhs_block.addBr(block_inst, lhs_result);
const rhs_result = try sema.resolveInlineBody(rhs_block, body, inst);
const rhs_noret = sema.typeOf(rhs_result).isNoReturn(mod);
const coerced_rhs_result = if (!rhs_noret) rhs: {
const coerced_result = try sema.coerce(rhs_block, Type.bool, rhs_result, rhs_src);
_ = try rhs_block.addBr(block_inst, coerced_result);
break :rhs coerced_result;
} else rhs_result;
const result = sema.finishCondBr(parent_block, &child_block, &then_block, &else_block, lhs, block_inst);
if (!rhs_noret) {
if (try sema.resolveDefinedValue(rhs_block, rhs_src, coerced_rhs_result)) |rhs_val| {
if (is_bool_or and rhs_val.toBool()) {
return .bool_true;
} else if (!is_bool_or and !rhs_val.toBool()) {
return .bool_false;
}
}
}
return result;
}
fn finishCondBr(
sema: *Sema,
parent_block: *Block,
child_block: *Block,
then_block: *Block,
else_block: *Block,
cond: Air.Inst.Ref,
block_inst: Air.Inst.Index,
) !Air.Inst.Ref {
const gpa = sema.gpa;
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.CondBr).Struct.fields.len +
then_block.instructions.items.len + else_block.instructions.items.len +
@typeInfo(Air.Block).Struct.fields.len + child_block.instructions.items.len + 1);
const cond_br_payload = sema.addExtraAssumeCapacity(Air.CondBr{
.then_body_len = @intCast(then_block.instructions.items.len),
.else_body_len = @intCast(else_block.instructions.items.len),
});
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(then_block.instructions.items));
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(else_block.instructions.items));
_ = try child_block.addInst(.{ .tag = .cond_br, .data = .{ .pl_op = .{
.operand = cond,
.payload = cond_br_payload,
} } });
sema.air_instructions.items(.data)[@intFromEnum(block_inst)].ty_pl.payload = sema.addExtraAssumeCapacity(
Air.Block{ .body_len = @intCast(child_block.instructions.items.len) },
);
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(child_block.instructions.items));
try parent_block.instructions.append(gpa, block_inst);
return block_inst.toRef();
}
fn checkNullableType(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) !void {
const mod = sema.mod;
switch (ty.zigTypeTag(mod)) {
.Optional, .Null, .Undefined => return,
.Pointer => if (ty.isPtrLikeOptional(mod)) return,
else => {},
}
return sema.failWithExpectedOptionalType(block, src, ty);
}
fn zirIsNonNull(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const operand = try sema.resolveInst(inst_data.operand);
try sema.checkNullableType(block, src, sema.typeOf(operand));
return sema.analyzeIsNull(block, src, operand, true);
}
fn zirIsNonNullPtr(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const ptr = try sema.resolveInst(inst_data.operand);
try sema.checkNullableType(block, src, sema.typeOf(ptr).elemType2(mod));
if ((try sema.resolveValue(ptr)) == null) {
return block.addUnOp(.is_non_null_ptr, ptr);
}
const loaded = try sema.analyzeLoad(block, src, ptr, src);
return sema.analyzeIsNull(block, src, loaded, true);
}
fn checkErrorType(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) !void {
const mod = sema.mod;
switch (ty.zigTypeTag(mod)) {
.ErrorSet, .ErrorUnion, .Undefined => return,
else => return sema.fail(block, src, "expected error union type, found '{}'", .{
ty.fmt(mod),
}),
}
}
fn zirIsNonErr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const operand = try sema.resolveInst(inst_data.operand);
try sema.checkErrorType(block, src, sema.typeOf(operand));
return sema.analyzeIsNonErr(block, src, operand);
}
fn zirIsNonErrPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const ptr = try sema.resolveInst(inst_data.operand);
try sema.checkErrorType(block, src, sema.typeOf(ptr).elemType2(mod));
const loaded = try sema.analyzeLoad(block, src, ptr, src);
return sema.analyzeIsNonErr(block, src, loaded);
}
fn zirRetIsNonErr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const operand = try sema.resolveInst(inst_data.operand);
return sema.analyzeIsNonErr(block, src, operand);
}
fn zirCondbr(
sema: *Sema,
parent_block: *Block,
inst: Zir.Inst.Index,
) CompileError!void {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const cond_src: LazySrcLoc = .{ .node_offset_if_cond = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.CondBr, inst_data.payload_index);
const then_body = sema.code.bodySlice(extra.end, extra.data.then_body_len);
const else_body = sema.code.bodySlice(extra.end + then_body.len, extra.data.else_body_len);
const uncasted_cond = try sema.resolveInst(extra.data.condition);
const cond = try sema.coerce(parent_block, Type.bool, uncasted_cond, cond_src);
if (try sema.resolveDefinedValue(parent_block, cond_src, cond)) |cond_val| {
const body = if (cond_val.toBool()) then_body else else_body;
try sema.maybeErrorUnwrapCondbr(parent_block, body, extra.data.condition, cond_src);
// We use `analyzeBodyInner` since we want to propagate any comptime control flow to the caller.
return sema.analyzeBodyInner(parent_block, body);
}
const gpa = sema.gpa;
// We'll re-use the sub block to save on memory bandwidth, and yank out the
// instructions array in between using it for the then block and else block.
var sub_block = parent_block.makeSubBlock();
sub_block.runtime_loop = null;
sub_block.runtime_cond = mod.declPtr(parent_block.src_decl).toSrcLoc(cond_src, mod);
sub_block.runtime_index.increment();
sub_block.need_debug_scope = null; // this body is emitted regardless
defer sub_block.instructions.deinit(gpa);
try sema.analyzeBodyRuntimeBreak(&sub_block, then_body);
const true_instructions = try sub_block.instructions.toOwnedSlice(gpa);
defer gpa.free(true_instructions);
const err_cond = blk: {
const index = extra.data.condition.toIndex() orelse break :blk null;
if (sema.code.instructions.items(.tag)[@intFromEnum(index)] != .is_non_err) break :blk null;
const err_inst_data = sema.code.instructions.items(.data)[@intFromEnum(index)].un_node;
const err_operand = try sema.resolveInst(err_inst_data.operand);
const operand_ty = sema.typeOf(err_operand);
assert(operand_ty.zigTypeTag(mod) == .ErrorUnion);
const result_ty = operand_ty.errorUnionSet(mod);
break :blk try sub_block.addTyOp(.unwrap_errunion_err, result_ty, err_operand);
};
if (err_cond != null and try sema.maybeErrorUnwrap(&sub_block, else_body, err_cond.?, cond_src, false)) {
// nothing to do
} else {
try sema.analyzeBodyRuntimeBreak(&sub_block, else_body);
}
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.CondBr).Struct.fields.len +
true_instructions.len + sub_block.instructions.items.len);
_ = try parent_block.addInst(.{
.tag = .cond_br,
.data = .{ .pl_op = .{
.operand = cond,
.payload = sema.addExtraAssumeCapacity(Air.CondBr{
.then_body_len = @intCast(true_instructions.len),
.else_body_len = @intCast(sub_block.instructions.items.len),
}),
} },
});
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(true_instructions));
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(sub_block.instructions.items));
}
fn zirTry(sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Try, inst_data.payload_index);
const body = sema.code.bodySlice(extra.end, extra.data.body_len);
const err_union = try sema.resolveInst(extra.data.operand);
const err_union_ty = sema.typeOf(err_union);
const mod = sema.mod;
if (err_union_ty.zigTypeTag(mod) != .ErrorUnion) {
return sema.fail(parent_block, operand_src, "expected error union type, found '{}'", .{
err_union_ty.fmt(mod),
});
}
const is_non_err = try sema.analyzeIsNonErrComptimeOnly(parent_block, operand_src, err_union);
if (is_non_err != .none) {
const is_non_err_val = (try sema.resolveDefinedValue(parent_block, operand_src, is_non_err)).?;
if (is_non_err_val.toBool()) {
return sema.analyzeErrUnionPayload(parent_block, src, err_union_ty, err_union, operand_src, false);
}
// We can analyze the body directly in the parent block because we know there are
// no breaks from the body possible, and that the body is noreturn.
try sema.analyzeBodyInner(parent_block, body);
return .unreachable_value;
}
var sub_block = parent_block.makeSubBlock();
defer sub_block.instructions.deinit(sema.gpa);
// This body is guaranteed to end with noreturn and has no breaks.
try sema.analyzeBodyInner(&sub_block, body);
try sema.air_extra.ensureUnusedCapacity(sema.gpa, @typeInfo(Air.Try).Struct.fields.len +
sub_block.instructions.items.len);
const try_inst = try parent_block.addInst(.{
.tag = .@"try",
.data = .{ .pl_op = .{
.operand = err_union,
.payload = sema.addExtraAssumeCapacity(Air.Try{
.body_len = @intCast(sub_block.instructions.items.len),
}),
} },
});
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(sub_block.instructions.items));
return try_inst;
}
fn zirTryPtr(sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Try, inst_data.payload_index);
const body = sema.code.bodySlice(extra.end, extra.data.body_len);
const operand = try sema.resolveInst(extra.data.operand);
const err_union = try sema.analyzeLoad(parent_block, src, operand, operand_src);
const err_union_ty = sema.typeOf(err_union);
const mod = sema.mod;
if (err_union_ty.zigTypeTag(mod) != .ErrorUnion) {
return sema.fail(parent_block, operand_src, "expected error union type, found '{}'", .{
err_union_ty.fmt(mod),
});
}
const is_non_err = try sema.analyzeIsNonErrComptimeOnly(parent_block, operand_src, err_union);
if (is_non_err != .none) {
const is_non_err_val = (try sema.resolveDefinedValue(parent_block, operand_src, is_non_err)).?;
if (is_non_err_val.toBool()) {
return sema.analyzeErrUnionPayloadPtr(parent_block, src, operand, false, false);
}
// We can analyze the body directly in the parent block because we know there are
// no breaks from the body possible, and that the body is noreturn.
try sema.analyzeBodyInner(parent_block, body);
return .unreachable_value;
}
var sub_block = parent_block.makeSubBlock();
defer sub_block.instructions.deinit(sema.gpa);
// This body is guaranteed to end with noreturn and has no breaks.
try sema.analyzeBodyInner(&sub_block, body);
const operand_ty = sema.typeOf(operand);
const ptr_info = operand_ty.ptrInfo(mod);
const res_ty = try sema.ptrType(.{
.child = err_union_ty.errorUnionPayload(mod).toIntern(),
.flags = .{
.is_const = ptr_info.flags.is_const,
.is_volatile = ptr_info.flags.is_volatile,
.is_allowzero = ptr_info.flags.is_allowzero,
.address_space = ptr_info.flags.address_space,
},
});
const res_ty_ref = Air.internedToRef(res_ty.toIntern());
try sema.air_extra.ensureUnusedCapacity(sema.gpa, @typeInfo(Air.TryPtr).Struct.fields.len +
sub_block.instructions.items.len);
const try_inst = try parent_block.addInst(.{
.tag = .try_ptr,
.data = .{ .ty_pl = .{
.ty = res_ty_ref,
.payload = sema.addExtraAssumeCapacity(Air.TryPtr{
.ptr = operand,
.body_len = @intCast(sub_block.instructions.items.len),
}),
} },
});
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(sub_block.instructions.items));
return try_inst;
}
fn ensurePostHoc(sema: *Sema, block: *Block, dest_block: Zir.Inst.Index) !*LabeledBlock {
const gop = sema.inst_map.getOrPutAssumeCapacity(dest_block);
if (gop.found_existing) existing: {
// This may be a *result* from an earlier iteration of an inline loop.
// In this case, there will not be a post-hoc block entry, and we can
// continue with the logic below.
const new_block_inst = gop.value_ptr.*.toIndex() orelse break :existing;
return sema.post_hoc_blocks.get(new_block_inst) orelse break :existing;
}
try sema.post_hoc_blocks.ensureUnusedCapacity(sema.gpa, 1);
const new_block_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
gop.value_ptr.* = new_block_inst.toRef();
try sema.air_instructions.append(sema.gpa, .{
.tag = .block,
.data = undefined,
});
const labeled_block = try sema.gpa.create(LabeledBlock);
labeled_block.* = .{
.label = .{
.zir_block = dest_block,
.merges = .{
.src_locs = .{},
.results = .{},
.br_list = .{},
.block_inst = new_block_inst,
},
},
.block = .{
.parent = block,
.sema = sema,
.src_decl = block.src_decl,
.namespace = block.namespace,
.instructions = .{},
.label = &labeled_block.label,
.inlining = block.inlining,
.is_comptime = block.is_comptime,
},
};
sema.post_hoc_blocks.putAssumeCapacityNoClobber(new_block_inst, labeled_block);
return labeled_block;
}
/// A `break` statement is inside a runtime condition, but trying to
/// break from an inline loop. In such case we must convert it to
/// a runtime break.
fn addRuntimeBreak(sema: *Sema, child_block: *Block, block_inst: Zir.Inst.Index, break_operand: Zir.Inst.Ref) !void {
const labeled_block = try sema.ensurePostHoc(child_block, block_inst);
const operand = try sema.resolveInst(break_operand);
const br_ref = try child_block.addBr(labeled_block.label.merges.block_inst, operand);
try labeled_block.label.merges.results.append(sema.gpa, operand);
try labeled_block.label.merges.br_list.append(sema.gpa, br_ref.toIndex().?);
try labeled_block.label.merges.src_locs.append(sema.gpa, null);
labeled_block.block.runtime_index.increment();
if (labeled_block.block.runtime_cond == null and labeled_block.block.runtime_loop == null) {
labeled_block.block.runtime_cond = child_block.runtime_cond orelse child_block.runtime_loop;
labeled_block.block.runtime_loop = child_block.runtime_loop;
}
}
fn zirUnreachable(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].@"unreachable";
const src = inst_data.src();
if (block.is_comptime) {
return sema.fail(block, src, "reached unreachable code", .{});
}
// TODO Add compile error for @optimizeFor occurring too late in a scope.
block.addUnreachable(src, true) catch |err| switch (err) {
error.AnalysisFail => {
const msg = sema.err orelse return err;
if (!mem.eql(u8, msg.msg, "runtime safety check not allowed in naked function")) return err;
try sema.errNote(block, src, msg, "the end of a naked function is implicitly unreachable", .{});
return err;
},
else => |e| return e,
};
}
fn zirRetErrValue(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
) CompileError!void {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].str_tok;
const err_name = try mod.intern_pool.getOrPutString(sema.gpa, inst_data.get(sema.code));
_ = try mod.getErrorValue(err_name);
const src = inst_data.src();
// Return the error code from the function.
const error_set_type = try mod.singleErrorSetType(err_name);
const result_inst = Air.internedToRef((try mod.intern(.{ .err = .{
.ty = error_set_type.toIntern(),
.name = err_name,
} })));
return sema.analyzeRet(block, result_inst, src, src);
}
fn zirRetImplicit(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
) CompileError!void {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_tok;
const r_brace_src = inst_data.src();
if (block.inlining == null and sema.func_is_naked) {
assert(!block.is_comptime);
if (block.wantSafety()) {
// Calling a safety function from a naked function would not be legal.
_ = try block.addNoOp(.trap);
} else {
try block.addUnreachable(r_brace_src, false);
}
return;
}
const operand = try sema.resolveInst(inst_data.operand);
const ret_ty_src: LazySrcLoc = .{ .node_offset_fn_type_ret_ty = 0 };
const base_tag = sema.fn_ret_ty.baseZigTypeTag(mod);
if (base_tag == .NoReturn) {
const msg = msg: {
const msg = try sema.errMsg(block, ret_ty_src, "function declared '{}' implicitly returns", .{
sema.fn_ret_ty.fmt(mod),
});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, r_brace_src, msg, "control flow reaches end of body here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
} else if (base_tag != .Void) {
const msg = msg: {
const msg = try sema.errMsg(block, ret_ty_src, "function with non-void return type '{}' implicitly returns", .{
sema.fn_ret_ty.fmt(mod),
});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, r_brace_src, msg, "control flow reaches end of body here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
return sema.analyzeRet(block, operand, r_brace_src, r_brace_src);
}
fn zirRetNode(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const operand = try sema.resolveInst(inst_data.operand);
const src = inst_data.src();
return sema.analyzeRet(block, operand, src, .{ .node_offset_return_operand = inst_data.src_node });
}
fn zirRetLoad(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const ret_ptr = try sema.resolveInst(inst_data.operand);
if (block.is_comptime or block.inlining != null or sema.func_is_naked) {
const operand = try sema.analyzeLoad(block, src, ret_ptr, src);
return sema.analyzeRet(block, operand, src, .{ .node_offset_return_operand = inst_data.src_node });
}
if (sema.wantErrorReturnTracing(sema.fn_ret_ty)) {
const is_non_err = try sema.analyzePtrIsNonErr(block, src, ret_ptr);
return sema.retWithErrTracing(block, src, is_non_err, .ret_load, ret_ptr);
}
_ = try block.addUnOp(.ret_load, ret_ptr);
}
fn retWithErrTracing(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
is_non_err: Air.Inst.Ref,
ret_tag: Air.Inst.Tag,
operand: Air.Inst.Ref,
) CompileError!void {
const mod = sema.mod;
const need_check = switch (is_non_err) {
.bool_true => {
_ = try block.addUnOp(ret_tag, operand);
return;
},
.bool_false => false,
else => true,
};
const gpa = sema.gpa;
const stack_trace_ty = try sema.getBuiltinType("StackTrace");
try sema.resolveTypeFields(stack_trace_ty);
const ptr_stack_trace_ty = try mod.singleMutPtrType(stack_trace_ty);
const err_return_trace = try block.addTy(.err_return_trace, ptr_stack_trace_ty);
const return_err_fn = try sema.getBuiltin("returnError");
const args: [1]Air.Inst.Ref = .{err_return_trace};
if (!need_check) {
try sema.callBuiltin(block, src, return_err_fn, .never_inline, &args, .@"error return");
_ = try block.addUnOp(ret_tag, operand);
return;
}
var then_block = block.makeSubBlock();
defer then_block.instructions.deinit(gpa);
_ = try then_block.addUnOp(ret_tag, operand);
var else_block = block.makeSubBlock();
defer else_block.instructions.deinit(gpa);
try sema.callBuiltin(&else_block, src, return_err_fn, .never_inline, &args, .@"error return");
_ = try else_block.addUnOp(ret_tag, operand);
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.CondBr).Struct.fields.len +
then_block.instructions.items.len + else_block.instructions.items.len +
@typeInfo(Air.Block).Struct.fields.len + 1);
const cond_br_payload = sema.addExtraAssumeCapacity(Air.CondBr{
.then_body_len = @intCast(then_block.instructions.items.len),
.else_body_len = @intCast(else_block.instructions.items.len),
});
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(then_block.instructions.items));
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(else_block.instructions.items));
_ = try block.addInst(.{ .tag = .cond_br, .data = .{ .pl_op = .{
.operand = is_non_err,
.payload = cond_br_payload,
} } });
}
fn wantErrorReturnTracing(sema: *Sema, fn_ret_ty: Type) bool {
const mod = sema.mod;
return fn_ret_ty.isError(mod) and mod.comp.config.any_error_tracing;
}
fn zirSaveErrRetIndex(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].save_err_ret_index;
if (!block.ownerModule().error_tracing) return;
// This is only relevant at runtime.
if (block.is_comptime or block.is_typeof) return;
const save_index = inst_data.operand == .none or b: {
const operand = try sema.resolveInst(inst_data.operand);
const operand_ty = sema.typeOf(operand);
break :b operand_ty.isError(mod);
};
if (save_index)
block.error_return_trace_index = try sema.analyzeSaveErrRetIndex(block);
}
fn zirRestoreErrRetIndex(sema: *Sema, start_block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!void {
const extra = sema.code.extraData(Zir.Inst.RestoreErrRetIndex, extended.operand).data;
return sema.restoreErrRetIndex(start_block, extra.src(), extra.block, extra.operand);
}
/// If `operand` is non-error (or is `none`), restores the error return trace to
/// its state at the point `block` was reached (or, if `block` is `none`, the
/// point this function began execution).
fn restoreErrRetIndex(sema: *Sema, start_block: *Block, src: LazySrcLoc, target_block: Zir.Inst.Ref, operand_zir: Zir.Inst.Ref) CompileError!void {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const saved_index = if (target_block.toIndexAllowNone()) |zir_block| b: {
var block = start_block;
while (true) {
if (block.label) |label| {
if (label.zir_block == zir_block) {
const target_trace_index = if (block.parent) |parent_block| tgt: {
break :tgt parent_block.error_return_trace_index;
} else sema.error_return_trace_index_on_fn_entry;
if (start_block.error_return_trace_index != target_trace_index)
break :b target_trace_index;
return; // No need to restore
}
}
block = block.parent.?;
}
} else b: {
if (start_block.error_return_trace_index != sema.error_return_trace_index_on_fn_entry)
break :b sema.error_return_trace_index_on_fn_entry;
return; // No need to restore
};
const operand = try sema.resolveInstAllowNone(operand_zir);
if (start_block.is_comptime or start_block.is_typeof) {
const is_non_error = if (operand != .none) blk: {
const is_non_error_inst = try sema.analyzeIsNonErr(start_block, src, operand);
const cond_val = try sema.resolveDefinedValue(start_block, src, is_non_error_inst);
break :blk cond_val.?.toBool();
} else true; // no operand means pop unconditionally
if (is_non_error) return;
const saved_index_val = try sema.resolveDefinedValue(start_block, src, saved_index);
const saved_index_int = saved_index_val.?.toUnsignedInt(mod);
assert(saved_index_int <= sema.comptime_err_ret_trace.items.len);
sema.comptime_err_ret_trace.items.len = @intCast(saved_index_int);
return;
}
if (!mod.intern_pool.funcAnalysis(sema.owner_func_index).calls_or_awaits_errorable_fn) return;
if (!start_block.ownerModule().error_tracing) return;
assert(saved_index != .none); // The .error_return_trace_index field was dropped somewhere
return sema.popErrorReturnTrace(start_block, src, operand, saved_index);
}
fn addToInferredErrorSet(sema: *Sema, uncasted_operand: Air.Inst.Ref) !void {
const mod = sema.mod;
const ip = &mod.intern_pool;
assert(sema.fn_ret_ty.zigTypeTag(mod) == .ErrorUnion);
const err_set_ty = sema.fn_ret_ty.errorUnionSet(mod).toIntern();
switch (err_set_ty) {
.adhoc_inferred_error_set_type => {
const ies = sema.fn_ret_ty_ies.?;
assert(ies.func == .none);
try sema.addToInferredErrorSetPtr(ies, sema.typeOf(uncasted_operand));
},
else => if (ip.isInferredErrorSetType(err_set_ty)) {
const ies = sema.fn_ret_ty_ies.?;
assert(ies.func == sema.func_index);
try sema.addToInferredErrorSetPtr(ies, sema.typeOf(uncasted_operand));
},
}
}
fn addToInferredErrorSetPtr(sema: *Sema, ies: *InferredErrorSet, op_ty: Type) !void {
const arena = sema.arena;
const mod = sema.mod;
const ip = &mod.intern_pool;
switch (op_ty.zigTypeTag(mod)) {
.ErrorSet => try ies.addErrorSet(op_ty, ip, arena),
.ErrorUnion => try ies.addErrorSet(op_ty.errorUnionSet(mod), ip, arena),
else => {},
}
}
fn analyzeRet(
sema: *Sema,
block: *Block,
uncasted_operand: Air.Inst.Ref,
src: LazySrcLoc,
operand_src: LazySrcLoc,
) CompileError!void {
// Special case for returning an error to an inferred error set; we need to
// add the error tag to the inferred error set of the in-scope function, so
// that the coercion below works correctly.
const mod = sema.mod;
if (sema.fn_ret_ty_ies != null and sema.fn_ret_ty.zigTypeTag(mod) == .ErrorUnion) {
try sema.addToInferredErrorSet(uncasted_operand);
}
const operand = sema.coerceExtra(block, sema.fn_ret_ty, uncasted_operand, operand_src, .{ .is_ret = true }) catch |err| switch (err) {
error.NotCoercible => unreachable,
else => |e| return e,
};
if (block.inlining) |inlining| {
if (block.is_comptime) {
const ret_val = try sema.resolveConstValue(block, operand_src, operand, .{
.needed_comptime_reason = "value being returned at comptime must be comptime-known",
});
inlining.comptime_result = operand;
if (sema.fn_ret_ty.isError(mod) and ret_val.getErrorName(mod) != .none) {
const src_decl = mod.declPtr(block.src_decl);
const src_loc = src_decl.toSrcLoc(src, mod);
try sema.comptime_err_ret_trace.append(src_loc);
}
return error.ComptimeReturn;
}
// We are inlining a function call; rewrite the `ret` as a `break`.
const br_inst = try block.addBr(inlining.merges.block_inst, operand);
try inlining.merges.results.append(sema.gpa, operand);
try inlining.merges.br_list.append(sema.gpa, br_inst.toIndex().?);
try inlining.merges.src_locs.append(sema.gpa, operand_src);
return;
} else if (block.is_comptime) {
return sema.fail(block, src, "function called at runtime cannot return value at comptime", .{});
} else if (sema.func_is_naked) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "cannot return from naked function", .{});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "can only return using assembly", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
try sema.resolveTypeLayout(sema.fn_ret_ty);
try sema.validateRuntimeValue(block, operand_src, operand);
const air_tag: Air.Inst.Tag = if (block.wantSafety()) .ret_safe else .ret;
if (sema.wantErrorReturnTracing(sema.fn_ret_ty)) {
// Avoid adding a frame to the error return trace in case the value is comptime-known
// to be not an error.
const is_non_err = try sema.analyzeIsNonErr(block, operand_src, operand);
return sema.retWithErrTracing(block, src, is_non_err, air_tag, operand);
}
_ = try block.addUnOp(air_tag, operand);
}
fn floatOpAllowed(tag: Zir.Inst.Tag) bool {
// extend this swich as additional operators are implemented
return switch (tag) {
.add, .sub, .mul, .div, .div_exact, .div_trunc, .div_floor, .mod, .rem, .mod_rem => true,
else => false,
};
}
fn zirPtrType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].ptr_type;
const extra = sema.code.extraData(Zir.Inst.PtrType, inst_data.payload_index);
const elem_ty_src: LazySrcLoc = .{ .node_offset_ptr_elem = extra.data.src_node };
const sentinel_src: LazySrcLoc = .{ .node_offset_ptr_sentinel = extra.data.src_node };
const align_src: LazySrcLoc = .{ .node_offset_ptr_align = extra.data.src_node };
const addrspace_src: LazySrcLoc = .{ .node_offset_ptr_addrspace = extra.data.src_node };
const bitoffset_src: LazySrcLoc = .{ .node_offset_ptr_bitoffset = extra.data.src_node };
const hostsize_src: LazySrcLoc = .{ .node_offset_ptr_hostsize = extra.data.src_node };
const elem_ty = blk: {
const air_inst = try sema.resolveInst(extra.data.elem_type);
const ty = sema.analyzeAsType(block, elem_ty_src, air_inst) catch |err| {
if (err == error.AnalysisFail and sema.err != null and sema.typeOf(air_inst).isSinglePointer(mod)) {
try sema.errNote(block, elem_ty_src, sema.err.?, "use '.*' to dereference pointer", .{});
}
return err;
};
if (ty.isGenericPoison()) return error.GenericPoison;
break :blk ty;
};
if (elem_ty.zigTypeTag(mod) == .NoReturn)
return sema.fail(block, elem_ty_src, "pointer to noreturn not allowed", .{});
const target = mod.getTarget();
var extra_i = extra.end;
const sentinel = if (inst_data.flags.has_sentinel) blk: {
const ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_i]);
extra_i += 1;
const coerced = try sema.coerce(block, elem_ty, try sema.resolveInst(ref), sentinel_src);
const val = try sema.resolveConstDefinedValue(block, sentinel_src, coerced, .{
.needed_comptime_reason = "pointer sentinel value must be comptime-known",
});
break :blk val.toIntern();
} else .none;
const abi_align: Alignment = if (inst_data.flags.has_align) blk: {
const ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_i]);
extra_i += 1;
const coerced = try sema.coerce(block, Type.u32, try sema.resolveInst(ref), align_src);
const val = try sema.resolveConstDefinedValue(block, align_src, coerced, .{
.needed_comptime_reason = "pointer alignment must be comptime-known",
});
// Check if this happens to be the lazy alignment of our element type, in
// which case we can make this 0 without resolving it.
switch (mod.intern_pool.indexToKey(val.toIntern())) {
.int => |int| switch (int.storage) {
.lazy_align => |lazy_ty| if (lazy_ty == elem_ty.toIntern()) break :blk .none,
else => {},
},
else => {},
}
const align_bytes = (try val.getUnsignedIntAdvanced(mod, sema)).?;
break :blk try sema.validateAlignAllowZero(block, align_src, align_bytes);
} else .none;
const address_space: std.builtin.AddressSpace = if (inst_data.flags.has_addrspace) blk: {
const ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_i]);
extra_i += 1;
break :blk try sema.resolveAddressSpace(block, addrspace_src, ref, .pointer);
} else if (elem_ty.zigTypeTag(mod) == .Fn and target.cpu.arch == .avr) .flash else .generic;
const bit_offset: u16 = if (inst_data.flags.has_bit_range) blk: {
const ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_i]);
extra_i += 1;
const bit_offset = try sema.resolveInt(block, bitoffset_src, ref, Type.u16, .{
.needed_comptime_reason = "pointer bit-offset must be comptime-known",
});
break :blk @intCast(bit_offset);
} else 0;
const host_size: u16 = if (inst_data.flags.has_bit_range) blk: {
const ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_i]);
extra_i += 1;
const host_size = try sema.resolveInt(block, hostsize_src, ref, Type.u16, .{
.needed_comptime_reason = "pointer host size must be comptime-known",
});
break :blk @intCast(host_size);
} else 0;
if (host_size != 0) {
if (bit_offset >= host_size * 8) {
return sema.fail(block, bitoffset_src, "packed type '{}' at bit offset {} starts {} bits after the end of a {} byte host integer", .{
elem_ty.fmt(mod), bit_offset, bit_offset - host_size * 8, host_size,
});
}
const elem_bit_size = try elem_ty.bitSizeAdvanced(mod, sema);
if (elem_bit_size > host_size * 8 - bit_offset) {
return sema.fail(block, bitoffset_src, "packed type '{}' at bit offset {} ends {} bits after the end of a {} byte host integer", .{
elem_ty.fmt(mod), bit_offset, elem_bit_size - (host_size * 8 - bit_offset), host_size,
});
}
}
if (elem_ty.zigTypeTag(mod) == .Fn) {
if (inst_data.size != .One) {
return sema.fail(block, elem_ty_src, "function pointers must be single pointers", .{});
}
} else if (inst_data.size == .Many and elem_ty.zigTypeTag(mod) == .Opaque) {
return sema.fail(block, elem_ty_src, "unknown-length pointer to opaque not allowed", .{});
} else if (inst_data.size == .C) {
if (!try sema.validateExternType(elem_ty, .other)) {
const msg = msg: {
const msg = try sema.errMsg(block, elem_ty_src, "C pointers cannot point to non-C-ABI-compatible type '{}'", .{elem_ty.fmt(mod)});
errdefer msg.destroy(sema.gpa);
const src_decl = mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsNotExtern(msg, src_decl.toSrcLoc(elem_ty_src, mod), elem_ty, .other);
try sema.addDeclaredHereNote(msg, elem_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
if (elem_ty.zigTypeTag(mod) == .Opaque) {
return sema.fail(block, elem_ty_src, "C pointers cannot point to opaque types", .{});
}
}
const ty = try sema.ptrType(.{
.child = elem_ty.toIntern(),
.sentinel = sentinel,
.flags = .{
.alignment = abi_align,
.address_space = address_space,
.is_const = !inst_data.flags.is_mutable,
.is_allowzero = inst_data.flags.is_allowzero,
.is_volatile = inst_data.flags.is_volatile,
.size = inst_data.size,
},
.packed_offset = .{
.bit_offset = bit_offset,
.host_size = host_size,
},
});
return Air.internedToRef(ty.toIntern());
}
fn zirStructInitEmpty(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const ty_src: LazySrcLoc = .{ .node_offset_init_ty = inst_data.src_node };
const obj_ty = try sema.resolveType(block, ty_src, inst_data.operand);
const mod = sema.mod;
switch (obj_ty.zigTypeTag(mod)) {
.Struct => return sema.structInitEmpty(block, obj_ty, src, src),
.Array, .Vector => return sema.arrayInitEmpty(block, src, obj_ty),
.Void => return Air.internedToRef(Value.void.toIntern()),
.Union => return sema.fail(block, src, "union initializer must initialize one field", .{}),
else => return sema.failWithArrayInitNotSupported(block, src, obj_ty),
}
}
fn zirStructInitEmptyResult(sema: *Sema, block: *Block, inst: Zir.Inst.Index, is_byref: bool) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const ty_operand = sema.resolveType(block, src, inst_data.operand) catch |err| switch (err) {
// Generic poison means this is an untyped anonymous empty struct init
error.GenericPoison => return .empty_struct,
else => |e| return e,
};
const init_ty = if (is_byref) ty: {
const ptr_ty = ty_operand.optEuBaseType(mod);
assert(ptr_ty.zigTypeTag(mod) == .Pointer); // validated by a previous instruction
if (!ptr_ty.isSlice(mod)) {
break :ty ptr_ty.childType(mod);
}
// To make `&.{}` a `[:s]T`, the init should be a `[0:s]T`.
break :ty try mod.arrayType(.{
.len = 0,
.sentinel = if (ptr_ty.sentinel(mod)) |s| s.toIntern() else .none,
.child = ptr_ty.childType(mod).toIntern(),
});
} else ty_operand;
const obj_ty = init_ty.optEuBaseType(mod);
const empty_ref = switch (obj_ty.zigTypeTag(mod)) {
.Struct => try sema.structInitEmpty(block, obj_ty, src, src),
.Array, .Vector => try sema.arrayInitEmpty(block, src, obj_ty),
.Union => return sema.fail(block, src, "union initializer must initialize one field", .{}),
else => return sema.failWithArrayInitNotSupported(block, src, obj_ty),
};
const init_ref = try sema.coerce(block, init_ty, empty_ref, src);
if (is_byref) {
const init_val = (try sema.resolveValue(init_ref)).?;
return anonDeclRef(sema, init_val.toIntern());
} else {
return init_ref;
}
}
fn structInitEmpty(
sema: *Sema,
block: *Block,
struct_ty: Type,
dest_src: LazySrcLoc,
init_src: LazySrcLoc,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const gpa = sema.gpa;
// This logic must be synchronized with that in `zirStructInit`.
try sema.resolveTypeFields(struct_ty);
// The init values to use for the struct instance.
const field_inits = try gpa.alloc(Air.Inst.Ref, struct_ty.structFieldCount(mod));
defer gpa.free(field_inits);
@memset(field_inits, .none);
return sema.finishStructInit(block, init_src, dest_src, field_inits, struct_ty, struct_ty, false);
}
fn arrayInitEmpty(sema: *Sema, block: *Block, src: LazySrcLoc, obj_ty: Type) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const arr_len = obj_ty.arrayLen(mod);
if (arr_len != 0) {
if (obj_ty.zigTypeTag(mod) == .Array) {
return sema.fail(block, src, "expected {d} array elements; found 0", .{arr_len});
} else {
return sema.fail(block, src, "expected {d} vector elements; found 0", .{arr_len});
}
}
return Air.internedToRef((try mod.intern(.{ .aggregate = .{
.ty = obj_ty.toIntern(),
.storage = .{ .elems = &.{} },
} })));
}
fn zirUnionInit(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const field_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const init_src: LazySrcLoc = .{ .node_offset_builtin_call_arg2 = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.UnionInit, inst_data.payload_index).data;
const union_ty = try sema.resolveType(block, ty_src, extra.union_type);
if (union_ty.zigTypeTag(sema.mod) != .Union) {
return sema.fail(block, ty_src, "expected union type, found '{}'", .{union_ty.fmt(sema.mod)});
}
const field_name = try sema.resolveConstStringIntern(block, field_src, extra.field_name, .{
.needed_comptime_reason = "name of field being initialized must be comptime-known",
});
const init = try sema.resolveInst(extra.init);
return sema.unionInit(block, init, init_src, union_ty, ty_src, field_name, field_src);
}
fn unionInit(
sema: *Sema,
block: *Block,
uncasted_init: Air.Inst.Ref,
init_src: LazySrcLoc,
union_ty: Type,
union_ty_src: LazySrcLoc,
field_name: InternPool.NullTerminatedString,
field_src: LazySrcLoc,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
const field_index = try sema.unionFieldIndex(block, union_ty, field_name, field_src);
const field_ty = Type.fromInterned(mod.typeToUnion(union_ty).?.field_types.get(ip)[field_index]);
const init = try sema.coerce(block, field_ty, uncasted_init, init_src);
if (try sema.resolveValue(init)) |init_val| {
const tag_ty = union_ty.unionTagTypeHypothetical(mod);
const tag_val = try mod.enumValueFieldIndex(tag_ty, field_index);
return Air.internedToRef((try mod.intern(.{ .un = .{
.ty = union_ty.toIntern(),
.tag = tag_val.toIntern(),
.val = init_val.toIntern(),
} })));
}
try sema.requireRuntimeBlock(block, init_src, null);
_ = union_ty_src;
try sema.queueFullTypeResolution(union_ty);
return block.addUnionInit(union_ty, field_index, init);
}
fn zirStructInit(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
is_ref: bool,
) CompileError!Air.Inst.Ref {
const gpa = sema.gpa;
const zir_datas = sema.code.instructions.items(.data);
const inst_data = zir_datas[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.StructInit, inst_data.payload_index);
const src = inst_data.src();
const mod = sema.mod;
const ip = &mod.intern_pool;
const first_item = sema.code.extraData(Zir.Inst.StructInit.Item, extra.end).data;
const first_field_type_data = zir_datas[@intFromEnum(first_item.field_type)].pl_node;
const first_field_type_extra = sema.code.extraData(Zir.Inst.FieldType, first_field_type_data.payload_index).data;
const result_ty = sema.resolveType(block, src, first_field_type_extra.container_type) catch |err| switch (err) {
error.GenericPoison => {
// The type wasn't actually known, so treat this as an anon struct init.
return sema.structInitAnon(block, src, .typed_init, extra.data, extra.end, is_ref);
},
else => |e| return e,
};
const resolved_ty = result_ty.optEuBaseType(mod);
try sema.resolveTypeLayout(resolved_ty);
if (resolved_ty.zigTypeTag(mod) == .Struct) {
// This logic must be synchronized with that in `zirStructInitEmpty`.
// Maps field index to field_type index of where it was already initialized.
// For making sure all fields are accounted for and no fields are duplicated.
const found_fields = try gpa.alloc(Zir.Inst.Index, resolved_ty.structFieldCount(mod));
defer gpa.free(found_fields);
// The init values to use for the struct instance.
const field_inits = try gpa.alloc(Air.Inst.Ref, resolved_ty.structFieldCount(mod));
defer gpa.free(field_inits);
@memset(field_inits, .none);
var field_i: u32 = 0;
var extra_index = extra.end;
const is_packed = resolved_ty.containerLayout(mod) == .@"packed";
while (field_i < extra.data.fields_len) : (field_i += 1) {
const item = sema.code.extraData(Zir.Inst.StructInit.Item, extra_index);
extra_index = item.end;
const field_type_data = zir_datas[@intFromEnum(item.data.field_type)].pl_node;
const field_src: LazySrcLoc = .{ .node_offset_initializer = field_type_data.src_node };
const field_type_extra = sema.code.extraData(Zir.Inst.FieldType, field_type_data.payload_index).data;
const field_name = try ip.getOrPutString(gpa, sema.code.nullTerminatedString(field_type_extra.name_start));
const field_index = if (resolved_ty.isTuple(mod))
try sema.tupleFieldIndex(block, resolved_ty, field_name, field_src)
else
try sema.structFieldIndex(block, resolved_ty, field_name, field_src);
assert(field_inits[field_index] == .none);
found_fields[field_index] = item.data.field_type;
const uncoerced_init = try sema.resolveInst(item.data.init);
const field_ty = resolved_ty.structFieldType(field_index, mod);
field_inits[field_index] = try sema.coerce(block, field_ty, uncoerced_init, field_src);
if (!is_packed) {
try sema.resolveStructFieldInits(resolved_ty);
if (try resolved_ty.structFieldValueComptime(mod, field_index)) |default_value| {
const init_val = (try sema.resolveValue(field_inits[field_index])) orelse {
return sema.failWithNeededComptime(block, field_src, .{
.needed_comptime_reason = "value stored in comptime field must be comptime-known",
});
};
if (!init_val.eql(default_value, resolved_ty.structFieldType(field_index, mod), mod)) {
return sema.failWithInvalidComptimeFieldStore(block, field_src, resolved_ty, field_index);
}
}
}
}
return sema.finishStructInit(block, src, src, field_inits, resolved_ty, result_ty, is_ref);
} else if (resolved_ty.zigTypeTag(mod) == .Union) {
if (extra.data.fields_len != 1) {
return sema.fail(block, src, "union initialization expects exactly one field", .{});
}
const item = sema.code.extraData(Zir.Inst.StructInit.Item, extra.end);
const field_type_data = zir_datas[@intFromEnum(item.data.field_type)].pl_node;
const field_src: LazySrcLoc = .{ .node_offset_initializer = field_type_data.src_node };
const field_type_extra = sema.code.extraData(Zir.Inst.FieldType, field_type_data.payload_index).data;
const field_name = try ip.getOrPutString(gpa, sema.code.nullTerminatedString(field_type_extra.name_start));
const field_index = try sema.unionFieldIndex(block, resolved_ty, field_name, field_src);
const tag_ty = resolved_ty.unionTagTypeHypothetical(mod);
const tag_val = try mod.enumValueFieldIndex(tag_ty, field_index);
const field_ty = Type.fromInterned(mod.typeToUnion(resolved_ty).?.field_types.get(ip)[field_index]);
if (field_ty.zigTypeTag(mod) == .NoReturn) {
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "cannot initialize 'noreturn' field of union", .{});
errdefer msg.destroy(sema.gpa);
try sema.addFieldErrNote(resolved_ty, field_index, msg, "field '{}' declared here", .{
field_name.fmt(ip),
});
try sema.addDeclaredHereNote(msg, resolved_ty);
break :msg msg;
});
}
const uncoerced_init_inst = try sema.resolveInst(item.data.init);
const init_inst = try sema.coerce(block, field_ty, uncoerced_init_inst, field_src);
if (try sema.resolveValue(init_inst)) |val| {
const struct_val = Value.fromInterned((try mod.intern(.{ .un = .{
.ty = resolved_ty.toIntern(),
.tag = tag_val.toIntern(),
.val = val.toIntern(),
} })));
const final_val_inst = try sema.coerce(block, result_ty, Air.internedToRef(struct_val.toIntern()), src);
const final_val = (try sema.resolveValue(final_val_inst)).?;
return sema.addConstantMaybeRef(final_val.toIntern(), is_ref);
}
if (try sema.typeRequiresComptime(resolved_ty)) {
return sema.failWithNeededComptime(block, field_src, .{
.needed_comptime_reason = "initializer of comptime only union must be comptime-known",
});
}
try sema.validateRuntimeValue(block, field_src, init_inst);
if (is_ref) {
const target = mod.getTarget();
const alloc_ty = try sema.ptrType(.{
.child = result_ty.toIntern(),
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
});
const alloc = try block.addTy(.alloc, alloc_ty);
const base_ptr = try sema.optEuBasePtrInit(block, alloc, src);
const field_ptr = try sema.unionFieldPtr(block, field_src, base_ptr, field_name, field_src, resolved_ty, true);
try sema.storePtr(block, src, field_ptr, init_inst);
const new_tag = Air.internedToRef(tag_val.toIntern());
_ = try block.addBinOp(.set_union_tag, base_ptr, new_tag);
return sema.makePtrConst(block, alloc);
}
try sema.requireRuntimeBlock(block, src, null);
try sema.queueFullTypeResolution(resolved_ty);
const union_val = try block.addUnionInit(resolved_ty, field_index, init_inst);
return sema.coerce(block, result_ty, union_val, src);
}
unreachable;
}
fn finishStructInit(
sema: *Sema,
block: *Block,
init_src: LazySrcLoc,
dest_src: LazySrcLoc,
field_inits: []Air.Inst.Ref,
struct_ty: Type,
result_ty: Type,
is_ref: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
var root_msg: ?*Module.ErrorMsg = null;
errdefer if (root_msg) |msg| msg.destroy(sema.gpa);
switch (ip.indexToKey(struct_ty.toIntern())) {
.anon_struct_type => |anon_struct| {
// We can't get the slices, as the coercion may invalidate them.
for (0..anon_struct.types.len) |i| {
if (field_inits[i] != .none) {
// Coerce the init value to the field type.
const field_ty = Type.fromInterned(anon_struct.types.get(ip)[i]);
field_inits[i] = sema.coerce(block, field_ty, field_inits[i], .unneeded) catch |err| switch (err) {
error.NeededSourceLocation => {
const decl = mod.declPtr(block.src_decl);
const field_src = mod.initSrc(init_src.node_offset.x, decl, i);
_ = try sema.coerce(block, field_ty, field_inits[i], field_src);
unreachable;
},
else => |e| return e,
};
continue;
}
const default_val = anon_struct.values.get(ip)[i];
if (default_val == .none) {
if (anon_struct.names.len == 0) {
const template = "missing tuple field with index {d}";
if (root_msg) |msg| {
try sema.errNote(block, init_src, msg, template, .{i});
} else {
root_msg = try sema.errMsg(block, init_src, template, .{i});
}
} else {
const field_name = anon_struct.names.get(ip)[i];
const template = "missing struct field: {}";
const args = .{field_name.fmt(ip)};
if (root_msg) |msg| {
try sema.errNote(block, init_src, msg, template, args);
} else {
root_msg = try sema.errMsg(block, init_src, template, args);
}
}
} else {
field_inits[i] = Air.internedToRef(default_val);
}
}
},
.struct_type => {
const struct_type = ip.loadStructType(struct_ty.toIntern());
for (0..struct_type.field_types.len) |i| {
if (field_inits[i] != .none) {
// Coerce the init value to the field type.
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
field_inits[i] = sema.coerce(block, field_ty, field_inits[i], init_src) catch |err| switch (err) {
error.NeededSourceLocation => {
const decl = mod.declPtr(block.src_decl);
const field_src = mod.initSrc(init_src.node_offset.x, decl, i);
_ = try sema.coerce(block, field_ty, field_inits[i], field_src);
unreachable;
},
else => |e| return e,
};
continue;
}
try sema.resolveStructFieldInits(struct_ty);
const field_init = struct_type.fieldInit(ip, i);
if (field_init == .none) {
if (!struct_type.isTuple(ip)) {
const field_name = struct_type.field_names.get(ip)[i];
const template = "missing struct field: {}";
const args = .{field_name.fmt(ip)};
if (root_msg) |msg| {
try sema.errNote(block, init_src, msg, template, args);
} else {
root_msg = try sema.errMsg(block, init_src, template, args);
}
} else {
const template = "missing tuple field with index {d}";
if (root_msg) |msg| {
try sema.errNote(block, init_src, msg, template, .{i});
} else {
root_msg = try sema.errMsg(block, init_src, template, .{i});
}
}
} else {
field_inits[i] = Air.internedToRef(field_init);
}
}
},
else => unreachable,
}
if (root_msg) |msg| {
if (mod.typeToStruct(struct_ty)) |struct_type| {
const decl = mod.declPtr(struct_type.decl.unwrap().?);
const fqn = try decl.fullyQualifiedName(mod);
try mod.errNoteNonLazy(
decl.srcLoc(mod),
msg,
"struct '{}' declared here",
.{fqn.fmt(ip)},
);
}
root_msg = null;
return sema.failWithOwnedErrorMsg(block, msg);
}
// Find which field forces the expression to be runtime, if any.
const opt_runtime_index = for (field_inits, 0..) |field_init, i| {
if (!(try sema.isComptimeKnown(field_init))) {
break i;
}
} else null;
const runtime_index = opt_runtime_index orelse {
const elems = try sema.arena.alloc(InternPool.Index, field_inits.len);
for (elems, field_inits) |*elem, field_init| {
elem.* = (sema.resolveValue(field_init) catch unreachable).?.toIntern();
}
const struct_val = try mod.intern(.{ .aggregate = .{
.ty = struct_ty.toIntern(),
.storage = .{ .elems = elems },
} });
const final_val_inst = try sema.coerce(block, result_ty, Air.internedToRef(struct_val), init_src);
const final_val = (try sema.resolveValue(final_val_inst)).?;
return sema.addConstantMaybeRef(final_val.toIntern(), is_ref);
};
if (try sema.typeRequiresComptime(struct_ty)) {
const decl = mod.declPtr(block.src_decl);
const field_src = mod.initSrc(init_src.node_offset.x, decl, runtime_index);
return sema.failWithNeededComptime(block, field_src, .{
.needed_comptime_reason = "initializer of comptime only struct must be comptime-known",
});
}
for (field_inits) |field_init| {
try sema.validateRuntimeValue(block, dest_src, field_init);
}
if (is_ref) {
try sema.resolveStructLayout(struct_ty);
const target = sema.mod.getTarget();
const alloc_ty = try sema.ptrType(.{
.child = result_ty.toIntern(),
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
});
const alloc = try block.addTy(.alloc, alloc_ty);
const base_ptr = try sema.optEuBasePtrInit(block, alloc, init_src);
for (field_inits, 0..) |field_init, i_usize| {
const i: u32 = @intCast(i_usize);
const field_src = dest_src;
const field_ptr = try sema.structFieldPtrByIndex(block, dest_src, base_ptr, i, field_src, struct_ty, true);
try sema.storePtr(block, dest_src, field_ptr, field_init);
}
return sema.makePtrConst(block, alloc);
}
sema.requireRuntimeBlock(block, .unneeded, null) catch |err| switch (err) {
error.NeededSourceLocation => {
const decl = mod.declPtr(block.src_decl);
const field_src = mod.initSrc(dest_src.node_offset.x, decl, runtime_index);
try sema.requireRuntimeBlock(block, dest_src, field_src);
unreachable;
},
else => |e| return e,
};
try sema.resolveStructFieldInits(struct_ty);
try sema.queueFullTypeResolution(struct_ty);
const struct_val = try block.addAggregateInit(struct_ty, field_inits);
return sema.coerce(block, result_ty, struct_val, init_src);
}
fn zirStructInitAnon(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.StructInitAnon, inst_data.payload_index);
return sema.structInitAnon(block, src, .anon_init, extra.data, extra.end, false);
}
fn structInitAnon(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
/// It is possible for a typed struct_init to be downgraded to an anonymous init due to a
/// generic poison type. In this case, we need to know to interpret the extra data differently.
comptime kind: enum { anon_init, typed_init },
extra_data: switch (kind) {
.anon_init => Zir.Inst.StructInitAnon,
.typed_init => Zir.Inst.StructInit,
},
extra_end: usize,
is_ref: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const zir_datas = sema.code.instructions.items(.data);
const types = try sema.arena.alloc(InternPool.Index, extra_data.fields_len);
const values = try sema.arena.alloc(InternPool.Index, types.len);
const names = try sema.arena.alloc(InternPool.NullTerminatedString, types.len);
// Find which field forces the expression to be runtime, if any.
const opt_runtime_index = rs: {
var runtime_index: ?usize = null;
var extra_index = extra_end;
for (types, values, names, 0..) |*field_ty, *field_val, *field_name, i_usize| {
const item = switch (kind) {
.anon_init => sema.code.extraData(Zir.Inst.StructInitAnon.Item, extra_index),
.typed_init => sema.code.extraData(Zir.Inst.StructInit.Item, extra_index),
};
extra_index = item.end;
const name = switch (kind) {
.anon_init => sema.code.nullTerminatedString(item.data.field_name),
.typed_init => name: {
// `item.data.field_type` references a `field_type` instruction
const field_type_data = zir_datas[@intFromEnum(item.data.field_type)].pl_node;
const field_type_extra = sema.code.extraData(Zir.Inst.FieldType, field_type_data.payload_index);
break :name sema.code.nullTerminatedString(field_type_extra.data.name_start);
},
};
const name_ip = try mod.intern_pool.getOrPutString(gpa, name);
field_name.* = name_ip;
const init = try sema.resolveInst(item.data.init);
field_ty.* = sema.typeOf(init).toIntern();
if (Type.fromInterned(field_ty.*).zigTypeTag(mod) == .Opaque) {
const msg = msg: {
const decl = mod.declPtr(block.src_decl);
const field_src = mod.initSrc(src.node_offset.x, decl, @intCast(i_usize));
const msg = try sema.errMsg(block, field_src, "opaque types have unknown size and therefore cannot be directly embedded in structs", .{});
errdefer msg.destroy(sema.gpa);
try sema.addDeclaredHereNote(msg, Type.fromInterned(field_ty.*));
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
if (try sema.resolveValue(init)) |init_val| {
field_val.* = init_val.toIntern();
} else {
field_val.* = .none;
runtime_index = @intCast(i_usize);
}
}
break :rs runtime_index;
};
const tuple_ty = try ip.getAnonStructType(gpa, .{
.names = names,
.types = types,
.values = values,
});
const runtime_index = opt_runtime_index orelse {
const tuple_val = try mod.intern(.{ .aggregate = .{
.ty = tuple_ty,
.storage = .{ .elems = values },
} });
return sema.addConstantMaybeRef(tuple_val, is_ref);
};
sema.requireRuntimeBlock(block, .unneeded, null) catch |err| switch (err) {
error.NeededSourceLocation => {
const decl = mod.declPtr(block.src_decl);
const field_src = mod.initSrc(src.node_offset.x, decl, runtime_index);
try sema.requireRuntimeBlock(block, src, field_src);
unreachable;
},
else => |e| return e,
};
if (is_ref) {
const target = mod.getTarget();
const alloc_ty = try sema.ptrType(.{
.child = tuple_ty,
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
});
const alloc = try block.addTy(.alloc, alloc_ty);
var extra_index = extra_end;
for (types, 0..) |field_ty, i_usize| {
const i: u32 = @intCast(i_usize);
const item = switch (kind) {
.anon_init => sema.code.extraData(Zir.Inst.StructInitAnon.Item, extra_index),
.typed_init => sema.code.extraData(Zir.Inst.StructInit.Item, extra_index),
};
extra_index = item.end;
const field_ptr_ty = try sema.ptrType(.{
.child = field_ty,
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
});
if (values[i] == .none) {
const init = try sema.resolveInst(item.data.init);
const field_ptr = try block.addStructFieldPtr(alloc, i, field_ptr_ty);
_ = try block.addBinOp(.store, field_ptr, init);
}
}
return sema.makePtrConst(block, alloc);
}
const element_refs = try sema.arena.alloc(Air.Inst.Ref, types.len);
var extra_index = extra_end;
for (types, 0..) |_, i| {
const item = switch (kind) {
.anon_init => sema.code.extraData(Zir.Inst.StructInitAnon.Item, extra_index),
.typed_init => sema.code.extraData(Zir.Inst.StructInit.Item, extra_index),
};
extra_index = item.end;
element_refs[i] = try sema.resolveInst(item.data.init);
}
return block.addAggregateInit(Type.fromInterned(tuple_ty), element_refs);
}
fn zirArrayInit(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
is_ref: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const gpa = sema.gpa;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.MultiOp, inst_data.payload_index);
const args = sema.code.refSlice(extra.end, extra.data.operands_len);
assert(args.len >= 2); // array_ty + at least one element
const result_ty = sema.resolveType(block, src, args[0]) catch |err| switch (err) {
error.GenericPoison => {
// The type wasn't actually known, so treat this as an anon array init.
return sema.arrayInitAnon(block, src, args[1..], is_ref);
},
else => |e| return e,
};
const array_ty = result_ty.optEuBaseType(mod);
const is_tuple = array_ty.zigTypeTag(mod) == .Struct;
const sentinel_val = array_ty.sentinel(mod);
var root_msg: ?*Module.ErrorMsg = null;
errdefer if (root_msg) |msg| msg.destroy(sema.gpa);
const final_len = try sema.usizeCast(block, src, array_ty.arrayLenIncludingSentinel(mod));
const resolved_args = try gpa.alloc(Air.Inst.Ref, final_len);
defer gpa.free(resolved_args);
for (resolved_args, 0..) |*dest, i| {
// Less inits than needed.
if (i + 2 > args.len) if (is_tuple) {
const default_val = array_ty.structFieldDefaultValue(i, mod).toIntern();
if (default_val == .unreachable_value) {
const template = "missing tuple field with index {d}";
if (root_msg) |msg| {
try sema.errNote(block, src, msg, template, .{i});
} else {
root_msg = try sema.errMsg(block, src, template, .{i});
}
} else {
dest.* = Air.internedToRef(default_val);
}
continue;
} else {
dest.* = Air.internedToRef(sentinel_val.?.toIntern());
break;
};
const arg = args[i + 1];
const resolved_arg = try sema.resolveInst(arg);
const elem_ty = if (is_tuple)
array_ty.structFieldType(i, mod)
else
array_ty.elemType2(mod);
dest.* = sema.coerce(block, elem_ty, resolved_arg, .unneeded) catch |err| switch (err) {
error.NeededSourceLocation => {
const decl = mod.declPtr(block.src_decl);
const elem_src = mod.initSrc(src.node_offset.x, decl, i);
_ = try sema.coerce(block, elem_ty, resolved_arg, elem_src);
unreachable;
},
else => return err,
};
if (is_tuple) {
if (array_ty.structFieldIsComptime(i, mod))
try sema.resolveStructFieldInits(array_ty);
if (try array_ty.structFieldValueComptime(mod, i)) |field_val| {
const init_val = try sema.resolveValue(dest.*) orelse {
const decl = mod.declPtr(block.src_decl);
const elem_src = mod.initSrc(src.node_offset.x, decl, i);
return sema.failWithNeededComptime(block, elem_src, .{
.needed_comptime_reason = "value stored in comptime field must be comptime-known",
});
};
if (!field_val.eql(init_val, elem_ty, mod)) {
const decl = mod.declPtr(block.src_decl);
const elem_src = mod.initSrc(src.node_offset.x, decl, i);
return sema.failWithInvalidComptimeFieldStore(block, elem_src, array_ty, i);
}
}
}
}
if (root_msg) |msg| {
try sema.addDeclaredHereNote(msg, array_ty);
root_msg = null;
return sema.failWithOwnedErrorMsg(block, msg);
}
const opt_runtime_index: ?u32 = for (resolved_args, 0..) |arg, i| {
const comptime_known = try sema.isComptimeKnown(arg);
if (!comptime_known) break @intCast(i);
} else null;
const runtime_index = opt_runtime_index orelse {
const elem_vals = try sema.arena.alloc(InternPool.Index, resolved_args.len);
for (elem_vals, resolved_args) |*val, arg| {
// We checked that all args are comptime above.
val.* = (sema.resolveValue(arg) catch unreachable).?.toIntern();
}
const arr_val = try mod.intern(.{ .aggregate = .{
.ty = array_ty.toIntern(),
.storage = .{ .elems = elem_vals },
} });
const result_ref = try sema.coerce(block, result_ty, Air.internedToRef(arr_val), src);
const result_val = (try sema.resolveValue(result_ref)).?;
return sema.addConstantMaybeRef(result_val.toIntern(), is_ref);
};
sema.requireRuntimeBlock(block, .unneeded, null) catch |err| switch (err) {
error.NeededSourceLocation => {
const decl = mod.declPtr(block.src_decl);
const elem_src = mod.initSrc(src.node_offset.x, decl, runtime_index);
try sema.requireRuntimeBlock(block, src, elem_src);
unreachable;
},
else => return err,
};
try sema.queueFullTypeResolution(array_ty);
if (is_ref) {
const target = mod.getTarget();
const alloc_ty = try sema.ptrType(.{
.child = result_ty.toIntern(),
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
});
const alloc = try block.addTy(.alloc, alloc_ty);
const base_ptr = try sema.optEuBasePtrInit(block, alloc, src);
if (is_tuple) {
for (resolved_args, 0..) |arg, i| {
const elem_ptr_ty = try sema.ptrType(.{
.child = array_ty.structFieldType(i, mod).toIntern(),
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
});
const elem_ptr_ty_ref = Air.internedToRef(elem_ptr_ty.toIntern());
const index = try mod.intRef(Type.usize, i);
const elem_ptr = try block.addPtrElemPtrTypeRef(base_ptr, index, elem_ptr_ty_ref);
_ = try block.addBinOp(.store, elem_ptr, arg);
}
return sema.makePtrConst(block, alloc);
}
const elem_ptr_ty = try sema.ptrType(.{
.child = array_ty.elemType2(mod).toIntern(),
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
});
const elem_ptr_ty_ref = Air.internedToRef(elem_ptr_ty.toIntern());
for (resolved_args, 0..) |arg, i| {
const index = try mod.intRef(Type.usize, i);
const elem_ptr = try block.addPtrElemPtrTypeRef(base_ptr, index, elem_ptr_ty_ref);
_ = try block.addBinOp(.store, elem_ptr, arg);
}
return sema.makePtrConst(block, alloc);
}
const arr_ref = try block.addAggregateInit(array_ty, resolved_args);
return sema.coerce(block, result_ty, arr_ref, src);
}
fn zirArrayInitAnon(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.MultiOp, inst_data.payload_index);
const operands = sema.code.refSlice(extra.end, extra.data.operands_len);
return sema.arrayInitAnon(block, src, operands, false);
}
fn arrayInitAnon(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
operands: []const Zir.Inst.Ref,
is_ref: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const types = try sema.arena.alloc(InternPool.Index, operands.len);
const values = try sema.arena.alloc(InternPool.Index, operands.len);
const opt_runtime_src = rs: {
var runtime_src: ?LazySrcLoc = null;
for (operands, 0..) |operand, i| {
const operand_src = src; // TODO better source location
const elem = try sema.resolveInst(operand);
types[i] = sema.typeOf(elem).toIntern();
if (Type.fromInterned(types[i]).zigTypeTag(mod) == .Opaque) {
const msg = msg: {
const msg = try sema.errMsg(block, operand_src, "opaque types have unknown size and therefore cannot be directly embedded in structs", .{});
errdefer msg.destroy(gpa);
try sema.addDeclaredHereNote(msg, Type.fromInterned(types[i]));
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
if (try sema.resolveValue(elem)) |val| {
values[i] = val.toIntern();
} else {
values[i] = .none;
runtime_src = operand_src;
}
}
break :rs runtime_src;
};
const tuple_ty = try ip.getAnonStructType(gpa, .{
.types = types,
.values = values,
.names = &.{},
});
const runtime_src = opt_runtime_src orelse {
const tuple_val = try mod.intern(.{ .aggregate = .{
.ty = tuple_ty,
.storage = .{ .elems = values },
} });
return sema.addConstantMaybeRef(tuple_val, is_ref);
};
try sema.requireRuntimeBlock(block, src, runtime_src);
if (is_ref) {
const target = sema.mod.getTarget();
const alloc_ty = try sema.ptrType(.{
.child = tuple_ty,
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
});
const alloc = try block.addTy(.alloc, alloc_ty);
for (operands, 0..) |operand, i_usize| {
const i: u32 = @intCast(i_usize);
const field_ptr_ty = try sema.ptrType(.{
.child = types[i],
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
});
if (values[i] == .none) {
const field_ptr = try block.addStructFieldPtr(alloc, i, field_ptr_ty);
_ = try block.addBinOp(.store, field_ptr, try sema.resolveInst(operand));
}
}
return sema.makePtrConst(block, alloc);
}
const element_refs = try sema.arena.alloc(Air.Inst.Ref, operands.len);
for (operands, 0..) |operand, i| {
element_refs[i] = try sema.resolveInst(operand);
}
return block.addAggregateInit(Type.fromInterned(tuple_ty), element_refs);
}
fn addConstantMaybeRef(sema: *Sema, val: InternPool.Index, is_ref: bool) !Air.Inst.Ref {
return if (is_ref) anonDeclRef(sema, val) else Air.internedToRef(val);
}
fn zirFieldTypeRef(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.FieldTypeRef, inst_data.payload_index).data;
const ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const field_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const aggregate_ty = try sema.resolveType(block, ty_src, extra.container_type);
const field_name = try sema.resolveConstStringIntern(block, field_src, extra.field_name, .{
.needed_comptime_reason = "field name must be comptime-known",
});
return sema.fieldType(block, aggregate_ty, field_name, field_src, ty_src);
}
fn zirStructInitFieldType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.FieldType, inst_data.payload_index).data;
const ty_src = inst_data.src();
const field_name_src: LazySrcLoc = .{ .node_offset_field_name_init = inst_data.src_node };
const wrapped_aggregate_ty = sema.resolveType(block, ty_src, extra.container_type) catch |err| switch (err) {
// Since this is a ZIR instruction that returns a type, encountering
// generic poison should not result in a failed compilation, but the
// generic poison type. This prevents unnecessary failures when
// constructing types at compile-time.
error.GenericPoison => return .generic_poison_type,
else => |e| return e,
};
const aggregate_ty = wrapped_aggregate_ty.optEuBaseType(mod);
const zir_field_name = sema.code.nullTerminatedString(extra.name_start);
const field_name = try ip.getOrPutString(sema.gpa, zir_field_name);
return sema.fieldType(block, aggregate_ty, field_name, field_name_src, ty_src);
}
fn fieldType(
sema: *Sema,
block: *Block,
aggregate_ty: Type,
field_name: InternPool.NullTerminatedString,
field_src: LazySrcLoc,
ty_src: LazySrcLoc,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
var cur_ty = aggregate_ty;
while (true) {
try sema.resolveTypeFields(cur_ty);
switch (cur_ty.zigTypeTag(mod)) {
.Struct => switch (ip.indexToKey(cur_ty.toIntern())) {
.anon_struct_type => |anon_struct| {
const field_index = if (anon_struct.names.len == 0)
try sema.tupleFieldIndex(block, cur_ty, field_name, field_src)
else
try sema.anonStructFieldIndex(block, cur_ty, field_name, field_src);
return Air.internedToRef(anon_struct.types.get(ip)[field_index]);
},
.struct_type => {
const struct_type = ip.loadStructType(cur_ty.toIntern());
const field_index = struct_type.nameIndex(ip, field_name) orelse
return sema.failWithBadStructFieldAccess(block, struct_type, field_src, field_name);
const field_ty = struct_type.field_types.get(ip)[field_index];
return Air.internedToRef(field_ty);
},
else => unreachable,
},
.Union => {
const union_obj = mod.typeToUnion(cur_ty).?;
const field_index = union_obj.loadTagType(ip).nameIndex(ip, field_name) orelse
return sema.failWithBadUnionFieldAccess(block, union_obj, field_src, field_name);
const field_ty = union_obj.field_types.get(ip)[field_index];
return Air.internedToRef(field_ty);
},
.Optional => {
// Struct/array init through optional requires the child type to not be a pointer.
// If the child of .optional is a pointer it'll error on the next loop.
cur_ty = Type.fromInterned(ip.indexToKey(cur_ty.toIntern()).opt_type);
continue;
},
.ErrorUnion => {
cur_ty = cur_ty.errorUnionPayload(mod);
continue;
},
else => {},
}
return sema.fail(block, ty_src, "expected struct or union; found '{}'", .{
cur_ty.fmt(sema.mod),
});
}
}
fn zirErrorReturnTrace(sema: *Sema, block: *Block) CompileError!Air.Inst.Ref {
return sema.getErrorReturnTrace(block);
}
fn getErrorReturnTrace(sema: *Sema, block: *Block) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
const stack_trace_ty = try sema.getBuiltinType("StackTrace");
try sema.resolveTypeFields(stack_trace_ty);
const ptr_stack_trace_ty = try mod.singleMutPtrType(stack_trace_ty);
const opt_ptr_stack_trace_ty = try mod.optionalType(ptr_stack_trace_ty.toIntern());
if (sema.owner_func_index != .none and
ip.funcAnalysis(sema.owner_func_index).calls_or_awaits_errorable_fn and
block.ownerModule().error_tracing)
{
return block.addTy(.err_return_trace, opt_ptr_stack_trace_ty);
}
return Air.internedToRef((try mod.intern(.{ .opt = .{
.ty = opt_ptr_stack_trace_ty.toIntern(),
.val = .none,
} })));
}
fn zirFrame(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
) CompileError!Air.Inst.Ref {
const src = LazySrcLoc.nodeOffset(@bitCast(extended.operand));
return sema.failWithUseOfAsync(block, src);
}
fn zirAlignOf(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const ty = try sema.resolveType(block, operand_src, inst_data.operand);
if (ty.isNoReturn(mod)) {
return sema.fail(block, operand_src, "no align available for type '{}'", .{ty.fmt(sema.mod)});
}
const val = try ty.lazyAbiAlignment(mod);
if (val.isLazyAlign(mod)) {
try sema.queueFullTypeResolution(ty);
}
return Air.internedToRef(val.toIntern());
}
fn zirIntFromBool(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const operand = try sema.resolveInst(inst_data.operand);
const operand_ty = sema.typeOf(operand);
const is_vector = operand_ty.zigTypeTag(mod) == .Vector;
const operand_scalar_ty = operand_ty.scalarType(mod);
if (operand_scalar_ty.toIntern() != .bool_type) {
return sema.fail(block, src, "expected 'bool', found '{}'", .{operand_scalar_ty.zigTypeTag(mod)});
}
if (try sema.resolveValue(operand)) |val| {
if (!is_vector) {
if (val.isUndef(mod)) return mod.undefRef(Type.u1);
if (val.toBool()) return Air.internedToRef((try mod.intValue(Type.u1, 1)).toIntern());
return Air.internedToRef((try mod.intValue(Type.u1, 0)).toIntern());
}
const len = operand_ty.vectorLen(mod);
const dest_ty = try mod.vectorType(.{ .child = .u1_type, .len = len });
if (val.isUndef(mod)) return mod.undefRef(dest_ty);
const new_elems = try sema.arena.alloc(InternPool.Index, len);
for (new_elems, 0..) |*new_elem, i| {
const old_elem = try val.elemValue(mod, i);
const new_val = if (old_elem.isUndef(mod))
try mod.undefValue(Type.u1)
else if (old_elem.toBool())
try mod.intValue(Type.u1, 1)
else
try mod.intValue(Type.u1, 0);
new_elem.* = new_val.toIntern();
}
return Air.internedToRef(try mod.intern(.{ .aggregate = .{
.ty = dest_ty.toIntern(),
.storage = .{ .elems = new_elems },
} }));
}
if (!is_vector) {
return block.addUnOp(.int_from_bool, operand);
}
const len = operand_ty.vectorLen(mod);
const dest_ty = try mod.vectorType(.{ .child = .u1_type, .len = len });
const new_elems = try sema.arena.alloc(Air.Inst.Ref, len);
for (new_elems, 0..) |*new_elem, i| {
const idx_ref = try mod.intRef(Type.usize, i);
const old_elem = try block.addBinOp(.array_elem_val, operand, idx_ref);
new_elem.* = try block.addUnOp(.int_from_bool, old_elem);
}
return block.addAggregateInit(dest_ty, new_elems);
}
fn zirErrorName(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const uncoerced_operand = try sema.resolveInst(inst_data.operand);
const operand = try sema.coerce(block, Type.anyerror, uncoerced_operand, operand_src);
if (try sema.resolveDefinedValue(block, operand_src, operand)) |val| {
const err_name = sema.mod.intern_pool.indexToKey(val.toIntern()).err.name;
return sema.addStrLit(sema.mod.intern_pool.stringToSlice(err_name));
}
// Similar to zirTagName, we have special AIR instruction for the error name in case an optimimzation pass
// might be able to resolve the result at compile time.
return block.addUnOp(.error_name, operand);
}
fn zirAbs(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const operand = try sema.resolveInst(inst_data.operand);
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const operand_ty = sema.typeOf(operand);
const scalar_ty = operand_ty.scalarType(mod);
const result_ty = switch (scalar_ty.zigTypeTag(mod)) {
.ComptimeFloat, .Float, .ComptimeInt => operand_ty,
.Int => if (scalar_ty.isSignedInt(mod)) try operand_ty.toUnsigned(mod) else return operand,
else => return sema.fail(
block,
operand_src,
"expected integer, float, or vector of either integers or floats, found '{}'",
.{operand_ty.fmt(mod)},
),
};
return (try sema.maybeConstantUnaryMath(operand, result_ty, Value.abs)) orelse {
try sema.requireRuntimeBlock(block, operand_src, null);
return block.addTyOp(.abs, result_ty, operand);
};
}
fn maybeConstantUnaryMath(
sema: *Sema,
operand: Air.Inst.Ref,
result_ty: Type,
comptime eval: fn (Value, Type, Allocator, *Module) Allocator.Error!Value,
) CompileError!?Air.Inst.Ref {
const mod = sema.mod;
switch (result_ty.zigTypeTag(mod)) {
.Vector => if (try sema.resolveValue(operand)) |val| {
const scalar_ty = result_ty.scalarType(mod);
const vec_len = result_ty.vectorLen(mod);
if (val.isUndef(mod))
return try mod.undefRef(result_ty);
const elems = try sema.arena.alloc(InternPool.Index, vec_len);
for (elems, 0..) |*elem, i| {
const elem_val = try val.elemValue(sema.mod, i);
elem.* = (try eval(elem_val, scalar_ty, sema.arena, sema.mod)).toIntern();
}
return Air.internedToRef((try mod.intern(.{ .aggregate = .{
.ty = result_ty.toIntern(),
.storage = .{ .elems = elems },
} })));
},
else => if (try sema.resolveValue(operand)) |operand_val| {
if (operand_val.isUndef(mod))
return try mod.undefRef(result_ty);
const result_val = try eval(operand_val, result_ty, sema.arena, sema.mod);
return Air.internedToRef(result_val.toIntern());
},
}
return null;
}
fn zirUnaryMath(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
air_tag: Air.Inst.Tag,
comptime eval: fn (Value, Type, Allocator, *Module) Allocator.Error!Value,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const operand = try sema.resolveInst(inst_data.operand);
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const operand_ty = sema.typeOf(operand);
const scalar_ty = operand_ty.scalarType(mod);
switch (scalar_ty.zigTypeTag(mod)) {
.ComptimeFloat, .Float => {},
else => return sema.fail(
block,
operand_src,
"expected vector of floats or float type, found '{}'",
.{operand_ty.fmt(sema.mod)},
),
}
return (try sema.maybeConstantUnaryMath(operand, operand_ty, eval)) orelse {
try sema.requireRuntimeBlock(block, operand_src, null);
return block.addUnOp(air_tag, operand);
};
}
fn zirTagName(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const src = inst_data.src();
const operand = try sema.resolveInst(inst_data.operand);
const operand_ty = sema.typeOf(operand);
const mod = sema.mod;
const ip = &mod.intern_pool;
try sema.resolveTypeLayout(operand_ty);
const enum_ty = switch (operand_ty.zigTypeTag(mod)) {
.EnumLiteral => {
const val = try sema.resolveConstDefinedValue(block, .unneeded, operand, undefined);
const tag_name = ip.indexToKey(val.toIntern()).enum_literal;
return sema.addStrLit(ip.stringToSlice(tag_name));
},
.Enum => operand_ty,
.Union => operand_ty.unionTagType(mod) orelse
return sema.fail(block, src, "union '{}' is untagged", .{operand_ty.fmt(sema.mod)}),
else => return sema.fail(block, operand_src, "expected enum or union; found '{}'", .{
operand_ty.fmt(mod),
}),
};
if (enum_ty.enumFieldCount(mod) == 0) {
// TODO I don't think this is the correct way to handle this but
// it prevents a crash.
// https://github.com/ziglang/zig/issues/15909
return sema.fail(block, operand_src, "cannot get @tagName of empty enum '{}'", .{
enum_ty.fmt(mod),
});
}
const enum_decl_index = enum_ty.getOwnerDecl(mod);
const casted_operand = try sema.coerce(block, enum_ty, operand, operand_src);
if (try sema.resolveDefinedValue(block, operand_src, casted_operand)) |val| {
const field_index = enum_ty.enumTagFieldIndex(val, mod) orelse {
const enum_decl = mod.declPtr(enum_decl_index);
const msg = msg: {
const msg = try sema.errMsg(block, src, "no field with value '{}' in enum '{}'", .{
val.fmtValue(sema.mod), enum_decl.name.fmt(ip),
});
errdefer msg.destroy(sema.gpa);
try mod.errNoteNonLazy(enum_decl.srcLoc(mod), msg, "declared here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
};
// TODO: write something like getCoercedInts to avoid needing to dupe
const field_name = enum_ty.enumFieldName(field_index, mod);
return sema.addStrLit(ip.stringToSlice(field_name));
}
try sema.requireRuntimeBlock(block, src, operand_src);
if (block.wantSafety() and sema.mod.backendSupportsFeature(.is_named_enum_value)) {
const ok = try block.addUnOp(.is_named_enum_value, casted_operand);
try sema.addSafetyCheck(block, src, ok, .invalid_enum_value);
}
// In case the value is runtime-known, we have an AIR instruction for this instead
// of trying to lower it in Sema because an optimization pass may result in the operand
// being comptime-known, which would let us elide the `tag_name` AIR instruction.
return block.addUnOp(.tag_name, casted_operand);
}
fn zirReify(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
inst: Zir.Inst.Index,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const name_strategy: Zir.Inst.NameStrategy = @enumFromInt(extended.small);
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
const src = LazySrcLoc.nodeOffset(extra.node);
const type_info_ty = try sema.getBuiltinType("Type");
const uncasted_operand = try sema.resolveInst(extra.operand);
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const type_info = try sema.coerce(block, type_info_ty, uncasted_operand, operand_src);
const val = try sema.resolveConstDefinedValue(block, operand_src, type_info, .{
.needed_comptime_reason = "operand to @Type must be comptime-known",
});
const union_val = ip.indexToKey(val.toIntern()).un;
if (try sema.anyUndef(block, operand_src, Value.fromInterned(union_val.val))) {
return sema.failWithUseOfUndef(block, operand_src);
}
const tag_index = type_info_ty.unionTagFieldIndex(Value.fromInterned(union_val.tag), mod).?;
switch (@as(std.builtin.TypeId, @enumFromInt(tag_index))) {
.Type => return .type_type,
.Void => return .void_type,
.Bool => return .bool_type,
.NoReturn => return .noreturn_type,
.ComptimeFloat => return .comptime_float_type,
.ComptimeInt => return .comptime_int_type,
.Undefined => return .undefined_type,
.Null => return .null_type,
.AnyFrame => return sema.failWithUseOfAsync(block, src),
.EnumLiteral => return .enum_literal_type,
.Int => {
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
const signedness_val = try Value.fromInterned(union_val.val).fieldValue(
mod,
struct_type.nameIndex(ip, try ip.getOrPutString(gpa, "signedness")).?,
);
const bits_val = try Value.fromInterned(union_val.val).fieldValue(
mod,
struct_type.nameIndex(ip, try ip.getOrPutString(gpa, "bits")).?,
);
const signedness = mod.toEnum(std.builtin.Signedness, signedness_val);
const bits: u16 = @intCast(try bits_val.toUnsignedIntAdvanced(sema));
const ty = try mod.intType(signedness, bits);
return Air.internedToRef(ty.toIntern());
},
.Vector => {
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
const len_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "len"),
).?);
const child_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "child"),
).?);
const len: u32 = @intCast(try len_val.toUnsignedIntAdvanced(sema));
const child_ty = child_val.toType();
try sema.checkVectorElemType(block, src, child_ty);
const ty = try mod.vectorType(.{
.len = len,
.child = child_ty.toIntern(),
});
return Air.internedToRef(ty.toIntern());
},
.Float => {
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
const bits_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "bits"),
).?);
const bits: u16 = @intCast(try bits_val.toUnsignedIntAdvanced(sema));
const ty = switch (bits) {
16 => Type.f16,
32 => Type.f32,
64 => Type.f64,
80 => Type.f80,
128 => Type.f128,
else => return sema.fail(block, src, "{}-bit float unsupported", .{bits}),
};
return Air.internedToRef(ty.toIntern());
},
.Pointer => {
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
const size_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "size"),
).?);
const is_const_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "is_const"),
).?);
const is_volatile_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "is_volatile"),
).?);
const alignment_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "alignment"),
).?);
const address_space_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "address_space"),
).?);
const child_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "child"),
).?);
const is_allowzero_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "is_allowzero"),
).?);
const sentinel_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "sentinel"),
).?);
if (!try sema.intFitsInType(alignment_val, Type.u32, null)) {
return sema.fail(block, src, "alignment must fit in 'u32'", .{});
}
const alignment_val_int = (try alignment_val.getUnsignedIntAdvanced(mod, sema)).?;
if (alignment_val_int > 0 and !math.isPowerOfTwo(alignment_val_int)) {
return sema.fail(block, src, "alignment value '{d}' is not a power of two or zero", .{alignment_val_int});
}
const abi_align = Alignment.fromByteUnits(alignment_val_int);
const elem_ty = child_val.toType();
if (abi_align != .none) {
try sema.resolveTypeLayout(elem_ty);
}
const ptr_size = mod.toEnum(std.builtin.Type.Pointer.Size, size_val);
const actual_sentinel: InternPool.Index = s: {
if (!sentinel_val.isNull(mod)) {
if (ptr_size == .One or ptr_size == .C) {
return sema.fail(block, src, "sentinels are only allowed on slices and unknown-length pointers", .{});
}
const sentinel_ptr_val = sentinel_val.optionalValue(mod).?;
const ptr_ty = try mod.singleMutPtrType(elem_ty);
const sent_val = (try sema.pointerDeref(block, src, sentinel_ptr_val, ptr_ty)).?;
break :s sent_val.toIntern();
}
break :s .none;
};
if (elem_ty.zigTypeTag(mod) == .NoReturn) {
return sema.fail(block, src, "pointer to noreturn not allowed", .{});
} else if (elem_ty.zigTypeTag(mod) == .Fn) {
if (ptr_size != .One) {
return sema.fail(block, src, "function pointers must be single pointers", .{});
}
} else if (ptr_size == .Many and elem_ty.zigTypeTag(mod) == .Opaque) {
return sema.fail(block, src, "unknown-length pointer to opaque not allowed", .{});
} else if (ptr_size == .C) {
if (!try sema.validateExternType(elem_ty, .other)) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "C pointers cannot point to non-C-ABI-compatible type '{}'", .{elem_ty.fmt(mod)});
errdefer msg.destroy(gpa);
const src_decl = mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsNotExtern(msg, src_decl.toSrcLoc(src, mod), elem_ty, .other);
try sema.addDeclaredHereNote(msg, elem_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
if (elem_ty.zigTypeTag(mod) == .Opaque) {
return sema.fail(block, src, "C pointers cannot point to opaque types", .{});
}
}
const ty = try sema.ptrType(.{
.child = elem_ty.toIntern(),
.sentinel = actual_sentinel,
.flags = .{
.size = ptr_size,
.is_const = is_const_val.toBool(),
.is_volatile = is_volatile_val.toBool(),
.alignment = abi_align,
.address_space = mod.toEnum(std.builtin.AddressSpace, address_space_val),
.is_allowzero = is_allowzero_val.toBool(),
},
});
return Air.internedToRef(ty.toIntern());
},
.Array => {
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
const len_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "len"),
).?);
const child_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "child"),
).?);
const sentinel_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "sentinel"),
).?);
const len = try len_val.toUnsignedIntAdvanced(sema);
const child_ty = child_val.toType();
const sentinel = if (sentinel_val.optionalValue(mod)) |p| blk: {
const ptr_ty = try mod.singleMutPtrType(child_ty);
break :blk (try sema.pointerDeref(block, src, p, ptr_ty)).?;
} else null;
const ty = try mod.arrayType(.{
.len = len,
.sentinel = if (sentinel) |s| s.toIntern() else .none,
.child = child_ty.toIntern(),
});
return Air.internedToRef(ty.toIntern());
},
.Optional => {
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
const child_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "child"),
).?);
const child_ty = child_val.toType();
const ty = try mod.optionalType(child_ty.toIntern());
return Air.internedToRef(ty.toIntern());
},
.ErrorUnion => {
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
const error_set_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "error_set"),
).?);
const payload_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "payload"),
).?);
const error_set_ty = error_set_val.toType();
const payload_ty = payload_val.toType();
if (error_set_ty.zigTypeTag(mod) != .ErrorSet) {
return sema.fail(block, src, "Type.ErrorUnion.error_set must be an error set type", .{});
}
const ty = try mod.errorUnionType(error_set_ty, payload_ty);
return Air.internedToRef(ty.toIntern());
},
.ErrorSet => {
const payload_val = Value.fromInterned(union_val.val).optionalValue(mod) orelse
return Air.internedToRef(Type.anyerror.toIntern());
const names_val = try sema.derefSliceAsArray(block, src, payload_val, .{
.needed_comptime_reason = "error set contents must be comptime-known",
});
const len = try sema.usizeCast(block, src, names_val.typeOf(mod).arrayLen(mod));
var names: InferredErrorSet.NameMap = .{};
try names.ensureUnusedCapacity(sema.arena, len);
for (0..len) |i| {
const elem_val = try names_val.elemValue(mod, i);
const elem_struct_type = ip.loadStructType(ip.typeOf(elem_val.toIntern()));
const name_val = try elem_val.fieldValue(mod, elem_struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "name"),
).?);
const name = try sema.sliceToIpString(block, src, name_val, .{
.needed_comptime_reason = "error set contents must be comptime-known",
});
_ = try mod.getErrorValue(name);
const gop = names.getOrPutAssumeCapacity(name);
if (gop.found_existing) {
return sema.fail(block, src, "duplicate error '{}'", .{
name.fmt(ip),
});
}
}
const ty = try mod.errorSetFromUnsortedNames(names.keys());
return Air.internedToRef(ty.toIntern());
},
.Struct => {
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
const layout_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "layout"),
).?);
const backing_integer_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "backing_integer"),
).?);
const fields_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "fields"),
).?);
const decls_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "decls"),
).?);
const is_tuple_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "is_tuple"),
).?);
const layout = mod.toEnum(std.builtin.Type.ContainerLayout, layout_val);
// Decls
if (try decls_val.sliceLen(sema) > 0) {
return sema.fail(block, src, "reified structs must have no decls", .{});
}
if (layout != .@"packed" and !backing_integer_val.isNull(mod)) {
return sema.fail(block, src, "non-packed struct does not support backing integer type", .{});
}
const fields_arr = try sema.derefSliceAsArray(block, operand_src, fields_val, .{
.needed_comptime_reason = "struct fields must be comptime-known",
});
return try sema.reifyStruct(block, inst, src, layout, backing_integer_val, fields_arr, name_strategy, is_tuple_val.toBool());
},
.Enum => {
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
const tag_type_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "tag_type"),
).?);
const fields_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "fields"),
).?);
const decls_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "decls"),
).?);
const is_exhaustive_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "is_exhaustive"),
).?);
if (try decls_val.sliceLen(sema) > 0) {
return sema.fail(block, src, "reified enums must have no decls", .{});
}
const fields_arr = try sema.derefSliceAsArray(block, operand_src, fields_val, .{
.needed_comptime_reason = "enum fields must be comptime-known",
});
return sema.reifyEnum(block, inst, src, tag_type_val.toType(), is_exhaustive_val.toBool(), fields_arr, name_strategy);
},
.Opaque => {
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
const decls_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "decls"),
).?);
// Decls
if (try decls_val.sliceLen(sema) > 0) {
return sema.fail(block, src, "reified opaque must have no decls", .{});
}
const wip_ty = switch (try ip.getOpaqueType(gpa, .{
.has_namespace = false,
.key = .{ .reified = .{
.zir_index = try ip.trackZir(gpa, block.getFileScope(mod), inst),
} },
})) {
.existing => |ty| return Air.internedToRef(ty),
.wip => |wip| wip,
};
errdefer wip_ty.cancel(ip);
const new_decl_index = try sema.createAnonymousDeclTypeNamed(
block,
src,
Value.fromInterned(wip_ty.index),
name_strategy,
"opaque",
inst,
);
mod.declPtr(new_decl_index).owns_tv = true;
errdefer mod.abortAnonDecl(new_decl_index);
try mod.finalizeAnonDecl(new_decl_index);
return Air.internedToRef(wip_ty.finish(ip, new_decl_index, .none));
},
.Union => {
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
const layout_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "layout"),
).?);
const tag_type_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "tag_type"),
).?);
const fields_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "fields"),
).?);
const decls_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "decls"),
).?);
if (try decls_val.sliceLen(sema) > 0) {
return sema.fail(block, src, "reified unions must have no decls", .{});
}
const layout = mod.toEnum(std.builtin.Type.ContainerLayout, layout_val);
const fields_arr = try sema.derefSliceAsArray(block, operand_src, fields_val, .{
.needed_comptime_reason = "union fields must be comptime-known",
});
return sema.reifyUnion(block, inst, src, layout, tag_type_val, fields_arr, name_strategy);
},
.Fn => {
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
const calling_convention_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "calling_convention"),
).?);
const is_generic_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "is_generic"),
).?);
const is_var_args_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "is_var_args"),
).?);
const return_type_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "return_type"),
).?);
const params_slice_val = try Value.fromInterned(union_val.val).fieldValue(mod, struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "params"),
).?);
const is_generic = is_generic_val.toBool();
if (is_generic) {
return sema.fail(block, src, "Type.Fn.is_generic must be false for @Type", .{});
}
const is_var_args = is_var_args_val.toBool();
const cc = mod.toEnum(std.builtin.CallingConvention, calling_convention_val);
if (is_var_args) {
try sema.checkCallConvSupportsVarArgs(block, src, cc);
}
const return_type = return_type_val.optionalValue(mod) orelse
return sema.fail(block, src, "Type.Fn.return_type must be non-null for @Type", .{});
const params_val = try sema.derefSliceAsArray(block, operand_src, params_slice_val, .{
.needed_comptime_reason = "function parameters must be comptime-known",
});
const args_len = try sema.usizeCast(block, src, params_val.typeOf(mod).arrayLen(mod));
const param_types = try sema.arena.alloc(InternPool.Index, args_len);
var noalias_bits: u32 = 0;
for (param_types, 0..) |*param_type, i| {
const elem_val = try params_val.elemValue(mod, i);
const elem_struct_type = ip.loadStructType(ip.typeOf(elem_val.toIntern()));
const param_is_generic_val = try elem_val.fieldValue(mod, elem_struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "is_generic"),
).?);
const param_is_noalias_val = try elem_val.fieldValue(mod, elem_struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "is_noalias"),
).?);
const opt_param_type_val = try elem_val.fieldValue(mod, elem_struct_type.nameIndex(
ip,
try ip.getOrPutString(gpa, "type"),
).?);
if (param_is_generic_val.toBool()) {
return sema.fail(block, src, "Type.Fn.Param.is_generic must be false for @Type", .{});
}
const param_type_val = opt_param_type_val.optionalValue(mod) orelse
return sema.fail(block, src, "Type.Fn.Param.type must be non-null for @Type", .{});
param_type.* = param_type_val.toIntern();
if (param_is_noalias_val.toBool()) {
if (!Type.fromInterned(param_type.*).isPtrAtRuntime(mod)) {
return sema.fail(block, src, "non-pointer parameter declared noalias", .{});
}
noalias_bits |= @as(u32, 1) << (std.math.cast(u5, i) orelse
return sema.fail(block, src, "this compiler implementation only supports 'noalias' on the first 32 parameters", .{}));
}
}
const ty = try mod.funcType(.{
.param_types = param_types,
.noalias_bits = noalias_bits,
.return_type = return_type.toIntern(),
.cc = cc,
.is_var_args = is_var_args,
});
return Air.internedToRef(ty.toIntern());
},
.Frame => return sema.failWithUseOfAsync(block, src),
}
}
fn reifyEnum(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
src: LazySrcLoc,
tag_ty: Type,
is_exhaustive: bool,
fields_val: Value,
name_strategy: Zir.Inst.NameStrategy,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
// This logic must stay in sync with the structure of `std.builtin.Type.Enum` - search for `fieldValue`.
const fields_len: u32 = @intCast(fields_val.typeOf(mod).arrayLen(mod));
// The validation work here is non-trivial, and it's possible the type already exists.
// So in this first pass, let's just construct a hash to optimize for this case. If the
// inputs turn out to be invalid, we can cancel the WIP type later.
// For deduplication purposes, we must create a hash including all details of this type.
// TODO: use a longer hash!
var hasher = std.hash.Wyhash.init(0);
std.hash.autoHash(&hasher, tag_ty.toIntern());
std.hash.autoHash(&hasher, is_exhaustive);
std.hash.autoHash(&hasher, fields_len);
for (0..fields_len) |field_idx| {
const field_info = try fields_val.elemValue(mod, field_idx);
const field_name_val = try field_info.fieldValue(mod, 0);
const field_value_val = try sema.resolveLazyValue(try field_info.fieldValue(mod, 1));
const field_name = try sema.sliceToIpString(block, src, field_name_val, .{
.needed_comptime_reason = "enum field name must be comptime-known",
});
std.hash.autoHash(&hasher, .{
field_name,
field_value_val.toIntern(),
});
}
const wip_ty = switch (try ip.getEnumType(gpa, .{
.has_namespace = false,
.has_values = true,
.tag_mode = if (is_exhaustive) .explicit else .nonexhaustive,
.fields_len = fields_len,
.key = .{ .reified = .{
.zir_index = try ip.trackZir(gpa, block.getFileScope(mod), inst),
.type_hash = hasher.final(),
} },
})) {
.wip => |wip| wip,
.existing => |ty| return Air.internedToRef(ty),
};
errdefer wip_ty.cancel(ip);
if (tag_ty.zigTypeTag(mod) != .Int) {
return sema.fail(block, src, "Type.Enum.tag_type must be an integer type", .{});
}
const new_decl_index = try sema.createAnonymousDeclTypeNamed(
block,
src,
Value.fromInterned(wip_ty.index),
name_strategy,
"enum",
inst,
);
mod.declPtr(new_decl_index).owns_tv = true;
errdefer mod.abortAnonDecl(new_decl_index);
wip_ty.prepare(ip, new_decl_index, .none);
wip_ty.setTagTy(ip, tag_ty.toIntern());
for (0..fields_len) |field_idx| {
const field_info = try fields_val.elemValue(mod, field_idx);
const field_name_val = try field_info.fieldValue(mod, 0);
const field_value_val = try sema.resolveLazyValue(try field_info.fieldValue(mod, 1));
// Don't pass a reason; first loop acts as an assertion that this is valid.
const field_name = try sema.sliceToIpString(block, src, field_name_val, undefined);
if (!try sema.intFitsInType(field_value_val, tag_ty, null)) {
// TODO: better source location
return sema.fail(block, src, "field '{}' with enumeration value '{}' is too large for backing int type '{}'", .{
field_name.fmt(ip),
field_value_val.fmtValue(mod),
tag_ty.fmt(mod),
});
}
const coerced_field_val = try mod.getCoerced(field_value_val, tag_ty);
if (wip_ty.nextField(ip, field_name, coerced_field_val.toIntern())) |conflict| {
return sema.failWithOwnedErrorMsg(block, switch (conflict.kind) {
.name => msg: {
const msg = try sema.errMsg(block, src, "duplicate enum field '{}'", .{field_name.fmt(ip)});
errdefer msg.destroy(gpa);
_ = conflict.prev_field_idx; // TODO: this note is incorrect
try sema.errNote(block, src, msg, "other field here", .{});
break :msg msg;
},
.value => msg: {
const msg = try sema.errMsg(block, src, "enum tag value {} already taken", .{field_value_val.fmtValue(mod)});
errdefer msg.destroy(gpa);
_ = conflict.prev_field_idx; // TODO: this note is incorrect
try sema.errNote(block, src, msg, "other enum tag value here", .{});
break :msg msg;
},
});
}
}
if (!is_exhaustive and fields_len > 1 and std.math.log2_int(u64, fields_len) == tag_ty.bitSize(mod)) {
return sema.fail(block, src, "non-exhaustive enum specified every value", .{});
}
try mod.finalizeAnonDecl(new_decl_index);
return Air.internedToRef(wip_ty.index);
}
fn reifyUnion(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
src: LazySrcLoc,
layout: std.builtin.Type.ContainerLayout,
opt_tag_type_val: Value,
fields_val: Value,
name_strategy: Zir.Inst.NameStrategy,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
// This logic must stay in sync with the structure of `std.builtin.Type.Union` - search for `fieldValue`.
const fields_len: u32 = @intCast(fields_val.typeOf(mod).arrayLen(mod));
// The validation work here is non-trivial, and it's possible the type already exists.
// So in this first pass, let's just construct a hash to optimize for this case. If the
// inputs turn out to be invalid, we can cancel the WIP type later.
// For deduplication purposes, we must create a hash including all details of this type.
// TODO: use a longer hash!
var hasher = std.hash.Wyhash.init(0);
std.hash.autoHash(&hasher, layout);
std.hash.autoHash(&hasher, opt_tag_type_val.toIntern());
std.hash.autoHash(&hasher, fields_len);
var any_aligns = false;
for (0..fields_len) |field_idx| {
const field_info = try fields_val.elemValue(mod, field_idx);
const field_name_val = try field_info.fieldValue(mod, 0);
const field_type_val = try field_info.fieldValue(mod, 1);
const field_align_val = try sema.resolveLazyValue(try field_info.fieldValue(mod, 2));
const field_name = try sema.sliceToIpString(block, src, field_name_val, .{
.needed_comptime_reason = "union field name must be comptime-known",
});
std.hash.autoHash(&hasher, .{
field_name,
field_type_val.toIntern(),
field_align_val.toIntern(),
});
if (field_align_val.toUnsignedInt(mod) != 0) {
any_aligns = true;
}
}
const wip_ty = switch (try ip.getUnionType(gpa, .{
.flags = .{
.layout = layout,
.status = .none,
.runtime_tag = if (opt_tag_type_val.optionalValue(mod) != null)
.tagged
else if (layout != .auto)
.none
else switch (block.wantSafety()) {
true => .safety,
false => .none,
},
.any_aligned_fields = any_aligns,
.requires_comptime = .unknown,
.assumed_runtime_bits = false,
.assumed_pointer_aligned = false,
.alignment = .none,
},
.has_namespace = false,
.fields_len = fields_len,
.enum_tag_ty = .none, // set later because not yet validated
.field_types = &.{}, // set later
.field_aligns = &.{}, // set later
.key = .{ .reified = .{
.zir_index = try ip.trackZir(gpa, block.getFileScope(mod), inst),
.type_hash = hasher.final(),
} },
})) {
.wip => |wip| wip,
.existing => |ty| return Air.internedToRef(ty),
};
errdefer wip_ty.cancel(ip);
const new_decl_index = try sema.createAnonymousDeclTypeNamed(
block,
src,
Value.fromInterned(wip_ty.index),
name_strategy,
"union",
inst,
);
mod.declPtr(new_decl_index).owns_tv = true;
errdefer mod.abortAnonDecl(new_decl_index);
const field_types = try sema.arena.alloc(InternPool.Index, fields_len);
const field_aligns = if (any_aligns) try sema.arena.alloc(InternPool.Alignment, fields_len) else undefined;
const enum_tag_ty, const has_explicit_tag = if (opt_tag_type_val.optionalValue(mod)) |tag_type_val| tag_ty: {
switch (ip.indexToKey(tag_type_val.toIntern())) {
.enum_type => {},
else => return sema.fail(block, src, "Type.Union.tag_type must be an enum type", .{}),
}
const enum_tag_ty = tag_type_val.toType();
// We simply track which fields of the tag type have been seen.
const tag_ty_fields_len = enum_tag_ty.enumFieldCount(mod);
var seen_tags = try std.DynamicBitSetUnmanaged.initEmpty(sema.arena, tag_ty_fields_len);
for (field_types, 0..) |*field_ty, field_idx| {
const field_info = try fields_val.elemValue(mod, field_idx);
const field_name_val = try field_info.fieldValue(mod, 0);
const field_type_val = try field_info.fieldValue(mod, 1);
// Don't pass a reason; first loop acts as an assertion that this is valid.
const field_name = try sema.sliceToIpString(block, src, field_name_val, undefined);
const enum_index = enum_tag_ty.enumFieldIndex(field_name, mod) orelse {
// TODO: better source location
return sema.fail(block, src, "no field named '{}' in enum '{}'", .{
field_name.fmt(ip), enum_tag_ty.fmt(mod),
});
};
if (seen_tags.isSet(enum_index)) {
// TODO: better source location
return sema.fail(block, src, "duplicate union field {}", .{field_name.fmt(ip)});
}
seen_tags.set(enum_index);
field_ty.* = field_type_val.toIntern();
if (any_aligns) {
const byte_align = try (try field_info.fieldValue(mod, 2)).toUnsignedIntAdvanced(sema);
if (byte_align > 0 and !math.isPowerOfTwo(byte_align)) {
// TODO: better source location
return sema.fail(block, src, "alignment value '{d}' is not a power of two or zero", .{byte_align});
}
field_aligns[field_idx] = Alignment.fromByteUnits(byte_align);
}
}
if (tag_ty_fields_len > fields_len) return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "enum fields missing in union", .{});
errdefer msg.destroy(gpa);
var it = seen_tags.iterator(.{ .kind = .unset });
while (it.next()) |enum_index| {
const field_name = enum_tag_ty.enumFieldName(enum_index, mod);
try sema.addFieldErrNote(enum_tag_ty, enum_index, msg, "field '{}' missing, declared here", .{
field_name.fmt(ip),
});
}
try sema.addDeclaredHereNote(msg, enum_tag_ty);
break :msg msg;
});
break :tag_ty .{ enum_tag_ty.toIntern(), true };
} else tag_ty: {
// We must track field names and set up the tag type ourselves.
var field_names: std.AutoArrayHashMapUnmanaged(InternPool.NullTerminatedString, void) = .{};
try field_names.ensureTotalCapacity(sema.arena, fields_len);
for (field_types, 0..) |*field_ty, field_idx| {
const field_info = try fields_val.elemValue(mod, field_idx);
const field_name_val = try field_info.fieldValue(mod, 0);
const field_type_val = try field_info.fieldValue(mod, 1);
// Don't pass a reason; first loop acts as an assertion that this is valid.
const field_name = try sema.sliceToIpString(block, src, field_name_val, undefined);
const gop = field_names.getOrPutAssumeCapacity(field_name);
if (gop.found_existing) {
// TODO: better source location
return sema.fail(block, src, "duplicate union field {}", .{field_name.fmt(ip)});
}
field_ty.* = field_type_val.toIntern();
if (any_aligns) {
const byte_align = try (try field_info.fieldValue(mod, 2)).toUnsignedIntAdvanced(sema);
if (byte_align > 0 and !math.isPowerOfTwo(byte_align)) {
// TODO: better source location
return sema.fail(block, src, "alignment value '{d}' is not a power of two or zero", .{byte_align});
}
field_aligns[field_idx] = Alignment.fromByteUnits(byte_align);
}
}
const enum_tag_ty = try sema.generateUnionTagTypeSimple(block, field_names.keys(), mod.declPtr(new_decl_index));
break :tag_ty .{ enum_tag_ty, false };
};
errdefer if (!has_explicit_tag) ip.remove(enum_tag_ty); // remove generated tag type on error
for (field_types) |field_ty_ip| {
const field_ty = Type.fromInterned(field_ty_ip);
if (field_ty.zigTypeTag(mod) == .Opaque) {
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "opaque types have unknown size and therefore cannot be directly embedded in unions", .{});
errdefer msg.destroy(gpa);
try sema.addDeclaredHereNote(msg, field_ty);
break :msg msg;
});
}
if (layout == .@"extern" and !try sema.validateExternType(field_ty, .union_field)) {
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "extern unions cannot contain fields of type '{}'", .{field_ty.fmt(mod)});
errdefer msg.destroy(gpa);
const src_decl = mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsNotExtern(msg, src_decl.toSrcLoc(src, mod), field_ty, .union_field);
try sema.addDeclaredHereNote(msg, field_ty);
break :msg msg;
});
} else if (layout == .@"packed" and !try sema.validatePackedType(field_ty)) {
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "packed unions cannot contain fields of type '{}'", .{field_ty.fmt(mod)});
errdefer msg.destroy(gpa);
const src_decl = mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsNotPacked(msg, src_decl.toSrcLoc(src, mod), field_ty);
try sema.addDeclaredHereNote(msg, field_ty);
break :msg msg;
});
}
}
const loaded_union = ip.loadUnionType(wip_ty.index);
loaded_union.setFieldTypes(ip, field_types);
if (any_aligns) {
loaded_union.setFieldAligns(ip, field_aligns);
}
loaded_union.tagTypePtr(ip).* = enum_tag_ty;
loaded_union.flagsPtr(ip).status = .have_field_types;
try mod.finalizeAnonDecl(new_decl_index);
return Air.internedToRef(wip_ty.finish(ip, new_decl_index, .none));
}
fn reifyStruct(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
src: LazySrcLoc,
layout: std.builtin.Type.ContainerLayout,
opt_backing_int_val: Value,
fields_val: Value,
name_strategy: Zir.Inst.NameStrategy,
is_tuple: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
// This logic must stay in sync with the structure of `std.builtin.Type.Struct` - search for `fieldValue`.
const fields_len: u32 = @intCast(fields_val.typeOf(mod).arrayLen(mod));
// The validation work here is non-trivial, and it's possible the type already exists.
// So in this first pass, let's just construct a hash to optimize for this case. If the
// inputs turn out to be invalid, we can cancel the WIP type later.
// For deduplication purposes, we must create a hash including all details of this type.
// TODO: use a longer hash!
var hasher = std.hash.Wyhash.init(0);
std.hash.autoHash(&hasher, layout);
std.hash.autoHash(&hasher, opt_backing_int_val.toIntern());
std.hash.autoHash(&hasher, is_tuple);
std.hash.autoHash(&hasher, fields_len);
var any_comptime_fields = false;
var any_default_inits = false;
var any_aligned_fields = false;
for (0..fields_len) |field_idx| {
const field_info = try fields_val.elemValue(mod, field_idx);
const field_name_val = try field_info.fieldValue(mod, 0);
const field_type_val = try field_info.fieldValue(mod, 1);
const field_default_value_val = try field_info.fieldValue(mod, 2);
const field_is_comptime_val = try field_info.fieldValue(mod, 3);
const field_alignment_val = try sema.resolveLazyValue(try field_info.fieldValue(mod, 4));
const field_name = try sema.sliceToIpString(block, src, field_name_val, .{
.needed_comptime_reason = "struct field name must be comptime-known",
});
const field_is_comptime = field_is_comptime_val.toBool();
const field_default_value: InternPool.Index = if (field_default_value_val.optionalValue(mod)) |ptr_val| d: {
const ptr_ty = try mod.singleConstPtrType(field_type_val.toType());
// We need to do this deref here, so we won't check for this error case later on.
const val = try sema.pointerDeref(block, src, ptr_val, ptr_ty) orelse return sema.failWithNeededComptime(
block,
src,
.{ .needed_comptime_reason = "struct field default value must be comptime-known" },
);
// Resolve the value so that lazy values do not create distinct types.
break :d (try sema.resolveLazyValue(val)).toIntern();
} else .none;
std.hash.autoHash(&hasher, .{
field_name,
field_type_val.toIntern(),
field_default_value,
field_is_comptime,
field_alignment_val.toIntern(),
});
if (field_is_comptime) any_comptime_fields = true;
if (field_default_value != .none) any_default_inits = true;
switch (try field_alignment_val.orderAgainstZeroAdvanced(mod, sema)) {
.eq => {},
.gt => any_aligned_fields = true,
.lt => unreachable,
}
}
const wip_ty = switch (try ip.getStructType(gpa, .{
.layout = layout,
.fields_len = fields_len,
.known_non_opv = false,
.requires_comptime = .unknown,
.is_tuple = is_tuple,
.any_comptime_fields = any_comptime_fields,
.any_default_inits = any_default_inits,
.any_aligned_fields = any_aligned_fields,
.inits_resolved = true,
.has_namespace = false,
.key = .{ .reified = .{
.zir_index = try ip.trackZir(gpa, block.getFileScope(mod), inst),
.type_hash = hasher.final(),
} },
})) {
.wip => |wip| wip,
.existing => |ty| return Air.internedToRef(ty),
};
errdefer wip_ty.cancel(ip);
if (is_tuple) switch (layout) {
.@"extern" => return sema.fail(block, src, "extern tuples are not supported", .{}),
.@"packed" => return sema.fail(block, src, "packed tuples are not supported", .{}),
.auto => {},
};
const new_decl_index = try sema.createAnonymousDeclTypeNamed(
block,
src,
Value.fromInterned(wip_ty.index),
name_strategy,
"struct",
inst,
);
mod.declPtr(new_decl_index).owns_tv = true;
errdefer mod.abortAnonDecl(new_decl_index);
const struct_type = ip.loadStructType(wip_ty.index);
for (0..fields_len) |field_idx| {
const field_info = try fields_val.elemValue(mod, field_idx);
const field_name_val = try field_info.fieldValue(mod, 0);
const field_type_val = try field_info.fieldValue(mod, 1);
const field_default_value_val = try field_info.fieldValue(mod, 2);
const field_is_comptime_val = try field_info.fieldValue(mod, 3);
const field_alignment_val = try field_info.fieldValue(mod, 4);
const field_ty = field_type_val.toType();
// Don't pass a reason; first loop acts as an assertion that this is valid.
const field_name = try sema.sliceToIpString(block, src, field_name_val, undefined);
if (is_tuple) {
const field_name_index = field_name.toUnsigned(ip) orelse return sema.fail(
block,
src,
"tuple cannot have non-numeric field '{}'",
.{field_name.fmt(ip)},
);
if (field_name_index != field_idx) {
return sema.fail(
block,
src,
"tuple field name '{}' does not match field index {}",
.{ field_name_index, field_idx },
);
}
} else if (struct_type.addFieldName(ip, field_name)) |prev_index| {
_ = prev_index; // TODO: better source location
return sema.fail(block, src, "duplicate struct field name {}", .{field_name.fmt(ip)});
}
if (any_aligned_fields) {
if (!try sema.intFitsInType(field_alignment_val, Type.u32, null)) {
return sema.fail(block, src, "alignment must fit in 'u32'", .{});
}
const byte_align = try field_alignment_val.toUnsignedIntAdvanced(sema);
if (byte_align == 0) {
if (layout != .@"packed") {
struct_type.field_aligns.get(ip)[field_idx] = .none;
}
} else {
if (layout == .@"packed") return sema.fail(block, src, "alignment in a packed struct field must be set to 0", .{});
if (!math.isPowerOfTwo(byte_align)) return sema.fail(block, src, "alignment value '{d}' is not a power of two or zero", .{byte_align});
struct_type.field_aligns.get(ip)[field_idx] = Alignment.fromNonzeroByteUnits(byte_align);
}
}
const field_is_comptime = field_is_comptime_val.toBool();
if (field_is_comptime) {
assert(any_comptime_fields);
switch (layout) {
.@"extern" => return sema.fail(block, src, "extern struct fields cannot be marked comptime", .{}),
.@"packed" => return sema.fail(block, src, "packed struct fields cannot be marked comptime", .{}),
.auto => struct_type.setFieldComptime(ip, field_idx),
}
}
const field_default: InternPool.Index = d: {
if (!any_default_inits) break :d .none;
const ptr_val = field_default_value_val.optionalValue(mod) orelse break :d .none;
const ptr_ty = try mod.singleConstPtrType(field_ty);
// Asserted comptime-dereferencable above.
const val = (try sema.pointerDeref(block, src, ptr_val, ptr_ty)).?;
// We already resolved this for deduplication, so we may as well do it now.
break :d (try sema.resolveLazyValue(val)).toIntern();
};
if (field_is_comptime and field_default == .none) {
return sema.fail(block, src, "comptime field without default initialization value", .{});
}
struct_type.field_types.get(ip)[field_idx] = field_type_val.toIntern();
if (field_default != .none) {
struct_type.field_inits.get(ip)[field_idx] = field_default;
}
if (field_ty.zigTypeTag(mod) == .Opaque) {
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "opaque types have unknown size and therefore cannot be directly embedded in structs", .{});
errdefer msg.destroy(gpa);
try sema.addDeclaredHereNote(msg, field_ty);
break :msg msg;
});
}
if (field_ty.zigTypeTag(mod) == .NoReturn) {
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "struct fields cannot be 'noreturn'", .{});
errdefer msg.destroy(gpa);
try sema.addDeclaredHereNote(msg, field_ty);
break :msg msg;
});
}
if (layout == .@"extern" and !try sema.validateExternType(field_ty, .struct_field)) {
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "extern structs cannot contain fields of type '{}'", .{field_ty.fmt(sema.mod)});
errdefer msg.destroy(gpa);
const src_decl = sema.mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsNotExtern(msg, src_decl.toSrcLoc(src, mod), field_ty, .struct_field);
try sema.addDeclaredHereNote(msg, field_ty);
break :msg msg;
});
} else if (layout == .@"packed" and !try sema.validatePackedType(field_ty)) {
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "packed structs cannot contain fields of type '{}'", .{field_ty.fmt(sema.mod)});
errdefer msg.destroy(gpa);
const src_decl = sema.mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsNotPacked(msg, src_decl.toSrcLoc(src, mod), field_ty);
try sema.addDeclaredHereNote(msg, field_ty);
break :msg msg;
});
}
}
if (layout == .@"packed") {
var fields_bit_sum: u64 = 0;
for (0..struct_type.field_types.len) |field_idx| {
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[field_idx]);
sema.resolveTypeLayout(field_ty) catch |err| switch (err) {
error.AnalysisFail => {
const msg = sema.err orelse return err;
try sema.errNote(block, src, msg, "while checking a field of this struct", .{});
return err;
},
else => return err,
};
fields_bit_sum += field_ty.bitSize(mod);
}
if (opt_backing_int_val.optionalValue(mod)) |backing_int_val| {
const backing_int_ty = backing_int_val.toType();
try sema.checkBackingIntType(block, src, backing_int_ty, fields_bit_sum);
struct_type.backingIntType(ip).* = backing_int_ty.toIntern();
} else {
const backing_int_ty = try mod.intType(.unsigned, @intCast(fields_bit_sum));
struct_type.backingIntType(ip).* = backing_int_ty.toIntern();
}
}
try mod.finalizeAnonDecl(new_decl_index);
return Air.internedToRef(wip_ty.finish(ip, new_decl_index, .none));
}
fn resolveVaListRef(sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref) CompileError!Air.Inst.Ref {
const va_list_ty = try sema.getBuiltinType("VaList");
const va_list_ptr = try sema.mod.singleMutPtrType(va_list_ty);
const inst = try sema.resolveInst(zir_ref);
return sema.coerce(block, va_list_ptr, inst, src);
}
fn zirCVaArg(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data;
const src = LazySrcLoc.nodeOffset(extra.node);
const va_list_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = extra.node };
const va_list_ref = try sema.resolveVaListRef(block, va_list_src, extra.lhs);
const arg_ty = try sema.resolveType(block, ty_src, extra.rhs);
if (!try sema.validateExternType(arg_ty, .param_ty)) {
const msg = msg: {
const msg = try sema.errMsg(block, ty_src, "cannot get '{}' from variadic argument", .{arg_ty.fmt(sema.mod)});
errdefer msg.destroy(sema.gpa);
const src_decl = sema.mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsNotExtern(msg, src_decl.toSrcLoc(ty_src, mod), arg_ty, .param_ty);
try sema.addDeclaredHereNote(msg, arg_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
try sema.requireRuntimeBlock(block, src, null);
return block.addTyOp(.c_va_arg, arg_ty, va_list_ref);
}
fn zirCVaCopy(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
const src = LazySrcLoc.nodeOffset(extra.node);
const va_list_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const va_list_ref = try sema.resolveVaListRef(block, va_list_src, extra.operand);
const va_list_ty = try sema.getBuiltinType("VaList");
try sema.requireRuntimeBlock(block, src, null);
return block.addTyOp(.c_va_copy, va_list_ty, va_list_ref);
}
fn zirCVaEnd(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
const src = LazySrcLoc.nodeOffset(extra.node);
const va_list_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const va_list_ref = try sema.resolveVaListRef(block, va_list_src, extra.operand);
try sema.requireRuntimeBlock(block, src, null);
return block.addUnOp(.c_va_end, va_list_ref);
}
fn zirCVaStart(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
const src = LazySrcLoc.nodeOffset(@bitCast(extended.operand));
const va_list_ty = try sema.getBuiltinType("VaList");
try sema.requireRuntimeBlock(block, src, null);
return block.addInst(.{
.tag = .c_va_start,
.data = .{ .ty = va_list_ty },
});
}
fn zirTypeName(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const ty = try sema.resolveType(block, ty_src, inst_data.operand);
var bytes = std.ArrayList(u8).init(sema.arena);
try ty.print(bytes.writer(), mod);
return addStrLitNoAlias(sema, bytes.items);
}
fn zirFrameType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
return sema.failWithUseOfAsync(block, src);
}
fn zirFrameSize(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
return sema.failWithUseOfAsync(block, src);
}
fn zirIntFromFloat(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@intFromFloat");
const operand = try sema.resolveInst(extra.rhs);
const operand_ty = sema.typeOf(operand);
try sema.checkVectorizableBinaryOperands(block, operand_src, dest_ty, operand_ty, src, operand_src);
const is_vector = dest_ty.zigTypeTag(mod) == .Vector;
const dest_scalar_ty = dest_ty.scalarType(mod);
const operand_scalar_ty = operand_ty.scalarType(mod);
_ = try sema.checkIntType(block, src, dest_scalar_ty);
try sema.checkFloatType(block, operand_src, operand_scalar_ty);
if (try sema.resolveValue(operand)) |operand_val| {
const result_val = try sema.intFromFloat(block, operand_src, operand_val, operand_ty, dest_ty, .truncate);
return Air.internedToRef(result_val.toIntern());
} else if (dest_scalar_ty.zigTypeTag(mod) == .ComptimeInt) {
return sema.failWithNeededComptime(block, operand_src, .{
.needed_comptime_reason = "value being casted to 'comptime_int' must be comptime-known",
});
}
try sema.requireRuntimeBlock(block, inst_data.src(), operand_src);
if (dest_scalar_ty.intInfo(mod).bits == 0) {
if (!is_vector) {
if (block.wantSafety()) {
const ok = try block.addBinOp(if (block.float_mode == .optimized) .cmp_eq_optimized else .cmp_eq, operand, Air.internedToRef((try mod.floatValue(operand_ty, 0.0)).toIntern()));
try sema.addSafetyCheck(block, src, ok, .integer_part_out_of_bounds);
}
return Air.internedToRef((try mod.intValue(dest_ty, 0)).toIntern());
}
if (block.wantSafety()) {
const len = dest_ty.vectorLen(mod);
for (0..len) |i| {
const idx_ref = try mod.intRef(Type.usize, i);
const elem_ref = try block.addBinOp(.array_elem_val, operand, idx_ref);
const ok = try block.addBinOp(if (block.float_mode == .optimized) .cmp_eq_optimized else .cmp_eq, elem_ref, Air.internedToRef((try mod.floatValue(operand_scalar_ty, 0.0)).toIntern()));
try sema.addSafetyCheck(block, src, ok, .integer_part_out_of_bounds);
}
}
return Air.internedToRef(try mod.intern(.{ .aggregate = .{
.ty = dest_ty.toIntern(),
.storage = .{ .repeated_elem = (try mod.intValue(dest_scalar_ty, 0)).toIntern() },
} }));
}
if (!is_vector) {
const result = try block.addTyOp(if (block.float_mode == .optimized) .int_from_float_optimized else .int_from_float, dest_ty, operand);
if (block.wantSafety()) {
const back = try block.addTyOp(.float_from_int, operand_ty, result);
const diff = try block.addBinOp(.sub, operand, back);
const ok_pos = try block.addBinOp(if (block.float_mode == .optimized) .cmp_lt_optimized else .cmp_lt, diff, Air.internedToRef((try mod.floatValue(operand_ty, 1.0)).toIntern()));
const ok_neg = try block.addBinOp(if (block.float_mode == .optimized) .cmp_gt_optimized else .cmp_gt, diff, Air.internedToRef((try mod.floatValue(operand_ty, -1.0)).toIntern()));
const ok = try block.addBinOp(.bool_and, ok_pos, ok_neg);
try sema.addSafetyCheck(block, src, ok, .integer_part_out_of_bounds);
}
return result;
}
const len = dest_ty.vectorLen(mod);
const new_elems = try sema.arena.alloc(Air.Inst.Ref, len);
for (new_elems, 0..) |*new_elem, i| {
const idx_ref = try mod.intRef(Type.usize, i);
const old_elem = try block.addBinOp(.array_elem_val, operand, idx_ref);
const result = try block.addTyOp(if (block.float_mode == .optimized) .int_from_float_optimized else .int_from_float, dest_scalar_ty, old_elem);
if (block.wantSafety()) {
const back = try block.addTyOp(.float_from_int, operand_scalar_ty, result);
const diff = try block.addBinOp(.sub, old_elem, back);
const ok_pos = try block.addBinOp(if (block.float_mode == .optimized) .cmp_lt_optimized else .cmp_lt, diff, Air.internedToRef((try mod.floatValue(operand_scalar_ty, 1.0)).toIntern()));
const ok_neg = try block.addBinOp(if (block.float_mode == .optimized) .cmp_gt_optimized else .cmp_gt, diff, Air.internedToRef((try mod.floatValue(operand_scalar_ty, -1.0)).toIntern()));
const ok = try block.addBinOp(.bool_and, ok_pos, ok_neg);
try sema.addSafetyCheck(block, src, ok, .integer_part_out_of_bounds);
}
new_elem.* = result;
}
return block.addAggregateInit(dest_ty, new_elems);
}
fn zirFloatFromInt(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@floatFromInt");
const operand = try sema.resolveInst(extra.rhs);
const operand_ty = sema.typeOf(operand);
try sema.checkVectorizableBinaryOperands(block, operand_src, dest_ty, operand_ty, src, operand_src);
const is_vector = dest_ty.zigTypeTag(mod) == .Vector;
const dest_scalar_ty = dest_ty.scalarType(mod);
const operand_scalar_ty = operand_ty.scalarType(mod);
try sema.checkFloatType(block, src, dest_scalar_ty);
_ = try sema.checkIntType(block, operand_src, operand_scalar_ty);
if (try sema.resolveValue(operand)) |operand_val| {
const result_val = try operand_val.floatFromIntAdvanced(sema.arena, operand_ty, dest_ty, mod, sema);
return Air.internedToRef(result_val.toIntern());
} else if (dest_scalar_ty.zigTypeTag(mod) == .ComptimeFloat) {
return sema.failWithNeededComptime(block, operand_src, .{
.needed_comptime_reason = "value being casted to 'comptime_float' must be comptime-known",
});
}
try sema.requireRuntimeBlock(block, src, operand_src);
if (!is_vector) {
return block.addTyOp(.float_from_int, dest_ty, operand);
}
const len = operand_ty.vectorLen(mod);
const new_elems = try sema.arena.alloc(Air.Inst.Ref, len);
for (new_elems, 0..) |*new_elem, i| {
const idx_ref = try mod.intRef(Type.usize, i);
const old_elem = try block.addBinOp(.array_elem_val, operand, idx_ref);
new_elem.* = try block.addTyOp(.float_from_int, dest_scalar_ty, old_elem);
}
return block.addAggregateInit(dest_ty, new_elems);
}
fn zirPtrFromInt(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const operand_res = try sema.resolveInst(extra.rhs);
const uncoerced_operand_ty = sema.typeOf(operand_res);
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu, "@ptrFromInt");
try sema.checkVectorizableBinaryOperands(block, operand_src, dest_ty, uncoerced_operand_ty, src, operand_src);
const is_vector = dest_ty.zigTypeTag(mod) == .Vector;
const operand_ty = if (is_vector) operand_ty: {
const len = dest_ty.vectorLen(mod);
break :operand_ty try mod.vectorType(.{ .child = .usize_type, .len = len });
} else Type.usize;
const operand_coerced = try sema.coerce(block, operand_ty, operand_res, operand_src);
const ptr_ty = dest_ty.scalarType(mod);
try sema.checkPtrType(block, src, ptr_ty, true);
const elem_ty = ptr_ty.elemType2(mod);
const ptr_align = try ptr_ty.ptrAlignmentAdvanced(mod, sema);
if (ptr_ty.isSlice(mod)) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "integer cannot be converted to slice type '{}'", .{ptr_ty.fmt(sema.mod)});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "slice length cannot be inferred from address", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
if (try sema.resolveDefinedValue(block, operand_src, operand_coerced)) |val| {
if (!is_vector) {
const ptr_val = try sema.ptrFromIntVal(block, operand_src, val, ptr_ty, ptr_align);
return Air.internedToRef(ptr_val.toIntern());
}
const len = dest_ty.vectorLen(mod);
const new_elems = try sema.arena.alloc(InternPool.Index, len);
for (new_elems, 0..) |*new_elem, i| {
const elem = try val.elemValue(mod, i);
const ptr_val = try sema.ptrFromIntVal(block, operand_src, elem, ptr_ty, ptr_align);
new_elem.* = ptr_val.toIntern();
}
return Air.internedToRef(try mod.intern(.{ .aggregate = .{
.ty = dest_ty.toIntern(),
.storage = .{ .elems = new_elems },
} }));
}
try sema.requireRuntimeBlock(block, src, operand_src);
if (!is_vector) {
if (block.wantSafety() and (try sema.typeHasRuntimeBits(elem_ty) or elem_ty.zigTypeTag(mod) == .Fn)) {
if (!ptr_ty.isAllowzeroPtr(mod)) {
const is_non_zero = try block.addBinOp(.cmp_neq, operand_coerced, .zero_usize);
try sema.addSafetyCheck(block, src, is_non_zero, .cast_to_null);
}
if (ptr_align.compare(.gt, .@"1")) {
const align_bytes_minus_1 = ptr_align.toByteUnits().? - 1;
const align_minus_1 = Air.internedToRef((try mod.intValue(Type.usize, align_bytes_minus_1)).toIntern());
const remainder = try block.addBinOp(.bit_and, operand_coerced, align_minus_1);
const is_aligned = try block.addBinOp(.cmp_eq, remainder, .zero_usize);
try sema.addSafetyCheck(block, src, is_aligned, .incorrect_alignment);
}
}
return block.addBitCast(dest_ty, operand_coerced);
}
const len = dest_ty.vectorLen(mod);
if (block.wantSafety() and (try sema.typeHasRuntimeBits(elem_ty) or elem_ty.zigTypeTag(mod) == .Fn)) {
for (0..len) |i| {
const idx_ref = try mod.intRef(Type.usize, i);
const elem_coerced = try block.addBinOp(.array_elem_val, operand_coerced, idx_ref);
if (!ptr_ty.isAllowzeroPtr(mod)) {
const is_non_zero = try block.addBinOp(.cmp_neq, elem_coerced, .zero_usize);
try sema.addSafetyCheck(block, src, is_non_zero, .cast_to_null);
}
if (ptr_align.compare(.gt, .@"1")) {
const align_bytes_minus_1 = ptr_align.toByteUnits().? - 1;
const align_minus_1 = Air.internedToRef((try mod.intValue(Type.usize, align_bytes_minus_1)).toIntern());
const remainder = try block.addBinOp(.bit_and, elem_coerced, align_minus_1);
const is_aligned = try block.addBinOp(.cmp_eq, remainder, .zero_usize);
try sema.addSafetyCheck(block, src, is_aligned, .incorrect_alignment);
}
}
}
const new_elems = try sema.arena.alloc(Air.Inst.Ref, len);
for (new_elems, 0..) |*new_elem, i| {
const idx_ref = try mod.intRef(Type.usize, i);
const old_elem = try block.addBinOp(.array_elem_val, operand_coerced, idx_ref);
new_elem.* = try block.addBitCast(ptr_ty, old_elem);
}
return block.addAggregateInit(dest_ty, new_elems);
}
fn ptrFromIntVal(
sema: *Sema,
block: *Block,
operand_src: LazySrcLoc,
operand_val: Value,
ptr_ty: Type,
ptr_align: Alignment,
) !Value {
const mod = sema.mod;
const addr = try operand_val.toUnsignedIntAdvanced(sema);
if (!ptr_ty.isAllowzeroPtr(mod) and addr == 0)
return sema.fail(block, operand_src, "pointer type '{}' does not allow address zero", .{ptr_ty.fmt(sema.mod)});
if (addr != 0 and ptr_align != .none and !ptr_align.check(addr))
return sema.fail(block, operand_src, "pointer type '{}' requires aligned address", .{ptr_ty.fmt(sema.mod)});
return switch (ptr_ty.zigTypeTag(mod)) {
.Optional => Value.fromInterned((try mod.intern(.{ .opt = .{
.ty = ptr_ty.toIntern(),
.val = if (addr == 0) .none else (try mod.ptrIntValue(ptr_ty.childType(mod), addr)).toIntern(),
} }))),
.Pointer => try mod.ptrIntValue(ptr_ty, addr),
else => unreachable,
};
}
fn zirErrorCast(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data;
const src = LazySrcLoc.nodeOffset(extra.node);
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const base_dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_opt, "@errorCast");
const operand = try sema.resolveInst(extra.rhs);
const base_operand_ty = sema.typeOf(operand);
const dest_tag = base_dest_ty.zigTypeTag(mod);
const operand_tag = base_operand_ty.zigTypeTag(mod);
if (dest_tag != .ErrorSet and dest_tag != .ErrorUnion) {
return sema.fail(block, src, "expected error set or error union type, found '{s}'", .{@tagName(dest_tag)});
}
if (operand_tag != .ErrorSet and operand_tag != .ErrorUnion) {
return sema.fail(block, src, "expected error set or error union type, found '{s}'", .{@tagName(operand_tag)});
}
if (dest_tag == .ErrorSet and operand_tag == .ErrorUnion) {
return sema.fail(block, src, "cannot cast an error union type to error set", .{});
}
if (dest_tag == .ErrorUnion and operand_tag == .ErrorUnion and
base_dest_ty.errorUnionPayload(mod).toIntern() != base_operand_ty.errorUnionPayload(mod).toIntern())
{
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "payload types of error unions must match", .{});
errdefer msg.destroy(sema.gpa);
const dest_ty = base_dest_ty.errorUnionPayload(mod);
const operand_ty = base_operand_ty.errorUnionPayload(mod);
try sema.errNote(block, src, msg, "destination payload is '{}'", .{dest_ty.fmt(mod)});
try sema.errNote(block, src, msg, "operand payload is '{}'", .{operand_ty.fmt(mod)});
try addDeclaredHereNote(sema, msg, dest_ty);
try addDeclaredHereNote(sema, msg, operand_ty);
break :msg msg;
});
}
const dest_ty = if (dest_tag == .ErrorUnion) base_dest_ty.errorUnionSet(mod) else base_dest_ty;
const operand_ty = if (operand_tag == .ErrorUnion) base_operand_ty.errorUnionSet(mod) else base_operand_ty;
// operand must be defined since it can be an invalid error value
const maybe_operand_val = try sema.resolveDefinedValue(block, operand_src, operand);
const disjoint = disjoint: {
// Try avoiding resolving inferred error sets if we can
if (!dest_ty.isAnyError(mod) and dest_ty.errorSetIsEmpty(mod)) break :disjoint true;
if (!operand_ty.isAnyError(mod) and operand_ty.errorSetIsEmpty(mod)) break :disjoint true;
if (dest_ty.isAnyError(mod)) break :disjoint false;
if (operand_ty.isAnyError(mod)) break :disjoint false;
const dest_err_names = dest_ty.errorSetNames(mod);
for (0..dest_err_names.len) |dest_err_index| {
if (Type.errorSetHasFieldIp(ip, operand_ty.toIntern(), dest_err_names.get(ip)[dest_err_index]))
break :disjoint false;
}
if (!ip.isInferredErrorSetType(dest_ty.toIntern()) and
!ip.isInferredErrorSetType(operand_ty.toIntern()))
{
break :disjoint true;
}
_ = try sema.resolveInferredErrorSetTy(block, src, dest_ty.toIntern());
_ = try sema.resolveInferredErrorSetTy(block, operand_src, operand_ty.toIntern());
for (0..dest_err_names.len) |dest_err_index| {
if (Type.errorSetHasFieldIp(ip, operand_ty.toIntern(), dest_err_names.get(ip)[dest_err_index]))
break :disjoint false;
}
break :disjoint true;
};
if (disjoint and dest_tag != .ErrorUnion) {
return sema.fail(block, src, "error sets '{}' and '{}' have no common errors", .{
operand_ty.fmt(sema.mod), dest_ty.fmt(sema.mod),
});
}
if (maybe_operand_val) |val| {
if (!dest_ty.isAnyError(mod)) check: {
const operand_val = mod.intern_pool.indexToKey(val.toIntern());
var error_name: InternPool.NullTerminatedString = undefined;
if (operand_tag == .ErrorUnion) {
if (operand_val.error_union.val != .err_name) break :check;
error_name = operand_val.error_union.val.err_name;
} else {
error_name = operand_val.err.name;
}
if (!Type.errorSetHasFieldIp(ip, dest_ty.toIntern(), error_name)) {
return sema.fail(block, src, "'error.{}' not a member of error set '{}'", .{
error_name.fmt(ip), dest_ty.fmt(sema.mod),
});
}
}
return Air.internedToRef((try mod.getCoerced(val, base_dest_ty)).toIntern());
}
try sema.requireRuntimeBlock(block, src, operand_src);
const err_int_ty = try mod.errorIntType();
if (block.wantSafety() and !dest_ty.isAnyError(mod) and
dest_ty.toIntern() != .adhoc_inferred_error_set_type and
sema.mod.backendSupportsFeature(.error_set_has_value))
{
if (dest_tag == .ErrorUnion) {
const err_code = try sema.analyzeErrUnionCode(block, operand_src, operand);
const err_int = try block.addBitCast(err_int_ty, err_code);
const zero_err = try mod.intRef(try mod.errorIntType(), 0);
const is_zero = try block.addBinOp(.cmp_eq, err_int, zero_err);
if (disjoint) {
// Error must be zero.
try sema.addSafetyCheck(block, src, is_zero, .invalid_error_code);
} else {
// Error must be in destination set or zero.
const has_value = try block.addTyOp(.error_set_has_value, dest_ty, err_code);
const ok = try block.addBinOp(.bool_or, has_value, is_zero);
try sema.addSafetyCheck(block, src, ok, .invalid_error_code);
}
} else {
const err_int_inst = try block.addBitCast(err_int_ty, operand);
const ok = try block.addTyOp(.error_set_has_value, dest_ty, err_int_inst);
try sema.addSafetyCheck(block, src, ok, .invalid_error_code);
}
}
return block.addBitCast(base_dest_ty, operand);
}
fn zirPtrCastFull(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
const FlagsInt = @typeInfo(Zir.Inst.FullPtrCastFlags).Struct.backing_integer.?;
const flags: Zir.Inst.FullPtrCastFlags = @bitCast(@as(FlagsInt, @truncate(extended.small)));
const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data;
const src = LazySrcLoc.nodeOffset(extra.node);
const operand_src: LazySrcLoc = .{ .node_offset_ptrcast_operand = extra.node };
const operand = try sema.resolveInst(extra.rhs);
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu, flags.needResultTypeBuiltinName());
return sema.ptrCastFull(
block,
flags,
src,
operand,
operand_src,
dest_ty,
flags.needResultTypeBuiltinName(),
);
}
fn zirPtrCast(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu, "@ptrCast");
const operand = try sema.resolveInst(extra.rhs);
return sema.ptrCastFull(
block,
.{ .ptr_cast = true },
src,
operand,
operand_src,
dest_ty,
"@ptrCast",
);
}
fn ptrCastFull(
sema: *Sema,
block: *Block,
flags: Zir.Inst.FullPtrCastFlags,
src: LazySrcLoc,
operand: Air.Inst.Ref,
operand_src: LazySrcLoc,
dest_ty: Type,
operation: []const u8,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const operand_ty = sema.typeOf(operand);
try sema.checkPtrType(block, src, dest_ty, true);
try sema.checkPtrOperand(block, operand_src, operand_ty);
const src_info = operand_ty.ptrInfo(mod);
const dest_info = dest_ty.ptrInfo(mod);
try sema.resolveTypeLayout(Type.fromInterned(src_info.child));
try sema.resolveTypeLayout(Type.fromInterned(dest_info.child));
const src_slice_like = src_info.flags.size == .Slice or
(src_info.flags.size == .One and Type.fromInterned(src_info.child).zigTypeTag(mod) == .Array);
const dest_slice_like = dest_info.flags.size == .Slice or
(dest_info.flags.size == .One and Type.fromInterned(dest_info.child).zigTypeTag(mod) == .Array);
if (dest_info.flags.size == .Slice and !src_slice_like) {
return sema.fail(block, src, "illegal pointer cast to slice", .{});
}
if (dest_info.flags.size == .Slice) {
const src_elem_size = switch (src_info.flags.size) {
.Slice => Type.fromInterned(src_info.child).abiSize(mod),
// pointer to array
.One => Type.fromInterned(src_info.child).childType(mod).abiSize(mod),
else => unreachable,
};
const dest_elem_size = Type.fromInterned(dest_info.child).abiSize(mod);
if (src_elem_size != dest_elem_size) {
return sema.fail(block, src, "TODO: implement {s} between slices changing the length", .{operation});
}
}
// The checking logic in this function must stay in sync with Sema.coerceInMemoryAllowedPtrs
if (!flags.ptr_cast) {
check_size: {
if (src_info.flags.size == dest_info.flags.size) break :check_size;
if (src_slice_like and dest_slice_like) break :check_size;
if (src_info.flags.size == .C) break :check_size;
if (dest_info.flags.size == .C) break :check_size;
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "cannot implicitly convert {s} pointer to {s} pointer", .{
pointerSizeString(src_info.flags.size),
pointerSizeString(dest_info.flags.size),
});
errdefer msg.destroy(sema.gpa);
if (dest_info.flags.size == .Many and
(src_info.flags.size == .Slice or
(src_info.flags.size == .One and Type.fromInterned(src_info.child).zigTypeTag(mod) == .Array)))
{
try sema.errNote(block, src, msg, "use 'ptr' field to convert slice to many pointer", .{});
} else {
try sema.errNote(block, src, msg, "use @ptrCast to change pointer size", .{});
}
break :msg msg;
});
}
check_child: {
const src_child = if (dest_info.flags.size == .Slice and src_info.flags.size == .One) blk: {
// *[n]T -> []T
break :blk Type.fromInterned(src_info.child).childType(mod);
} else Type.fromInterned(src_info.child);
const dest_child = Type.fromInterned(dest_info.child);
const imc_res = try sema.coerceInMemoryAllowed(
block,
dest_child,
src_child,
!dest_info.flags.is_const,
mod.getTarget(),
src,
operand_src,
);
if (imc_res == .ok) break :check_child;
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "pointer element type '{}' cannot coerce into element type '{}'", .{
src_child.fmt(mod),
dest_child.fmt(mod),
});
errdefer msg.destroy(sema.gpa);
try imc_res.report(sema, block, src, msg);
try sema.errNote(block, src, msg, "use @ptrCast to cast pointer element type", .{});
break :msg msg;
});
}
check_sent: {
if (dest_info.sentinel == .none) break :check_sent;
if (src_info.flags.size == .C) break :check_sent;
if (src_info.sentinel != .none) {
const coerced_sent = try mod.intern_pool.getCoerced(sema.gpa, src_info.sentinel, dest_info.child);
if (dest_info.sentinel == coerced_sent) break :check_sent;
}
if (src_slice_like and src_info.flags.size == .One and dest_info.flags.size == .Slice) {
// [*]nT -> []T
const arr_ty = Type.fromInterned(src_info.child);
if (arr_ty.sentinel(mod)) |src_sentinel| {
const coerced_sent = try mod.intern_pool.getCoerced(sema.gpa, src_sentinel.toIntern(), dest_info.child);
if (dest_info.sentinel == coerced_sent) break :check_sent;
}
}
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = if (src_info.sentinel == .none) blk: {
break :blk try sema.errMsg(block, src, "destination pointer requires '{}' sentinel", .{
Value.fromInterned(dest_info.sentinel).fmtValue(mod),
});
} else blk: {
break :blk try sema.errMsg(block, src, "pointer sentinel '{}' cannot coerce into pointer sentinel '{}'", .{
Value.fromInterned(src_info.sentinel).fmtValue(mod),
Value.fromInterned(dest_info.sentinel).fmtValue(mod),
});
};
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "use @ptrCast to cast pointer sentinel", .{});
break :msg msg;
});
}
if (src_info.packed_offset.host_size != dest_info.packed_offset.host_size) {
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "pointer host size '{}' cannot coerce into pointer host size '{}'", .{
src_info.packed_offset.host_size,
dest_info.packed_offset.host_size,
});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "use @ptrCast to cast pointer host size", .{});
break :msg msg;
});
}
if (src_info.packed_offset.bit_offset != dest_info.packed_offset.bit_offset) {
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "pointer bit offset '{}' cannot coerce into pointer bit offset '{}'", .{
src_info.packed_offset.bit_offset,
dest_info.packed_offset.bit_offset,
});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "use @ptrCast to cast pointer bit offset", .{});
break :msg msg;
});
}
check_allowzero: {
const src_allows_zero = operand_ty.ptrAllowsZero(mod);
const dest_allows_zero = dest_ty.ptrAllowsZero(mod);
if (!src_allows_zero) break :check_allowzero;
if (dest_allows_zero) break :check_allowzero;
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "'{}' could have null values which are illegal in type '{}'", .{
operand_ty.fmt(mod),
dest_ty.fmt(mod),
});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "use @ptrCast to assert the pointer is not null", .{});
break :msg msg;
});
}
// TODO: vector index?
}
const src_align = if (src_info.flags.alignment != .none)
src_info.flags.alignment
else
Type.fromInterned(src_info.child).abiAlignment(mod);
const dest_align = if (dest_info.flags.alignment != .none)
dest_info.flags.alignment
else
Type.fromInterned(dest_info.child).abiAlignment(mod);
if (!flags.align_cast) {
if (dest_align.compare(.gt, src_align)) {
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "{s} increases pointer alignment", .{operation});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, operand_src, msg, "'{}' has alignment '{d}'", .{
operand_ty.fmt(mod), src_align.toByteUnits() orelse 0,
});
try sema.errNote(block, src, msg, "'{}' has alignment '{d}'", .{
dest_ty.fmt(mod), dest_align.toByteUnits() orelse 0,
});
try sema.errNote(block, src, msg, "use @alignCast to assert pointer alignment", .{});
break :msg msg;
});
}
}
if (!flags.addrspace_cast) {
if (src_info.flags.address_space != dest_info.flags.address_space) {
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "{s} changes pointer address space", .{operation});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, operand_src, msg, "'{}' has address space '{s}'", .{
operand_ty.fmt(mod), @tagName(src_info.flags.address_space),
});
try sema.errNote(block, src, msg, "'{}' has address space '{s}'", .{
dest_ty.fmt(mod), @tagName(dest_info.flags.address_space),
});
try sema.errNote(block, src, msg, "use @addrSpaceCast to cast pointer address space", .{});
break :msg msg;
});
}
} else {
// Some address space casts are always disallowed
if (!target_util.addrSpaceCastIsValid(mod.getTarget(), src_info.flags.address_space, dest_info.flags.address_space)) {
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "invalid address space cast", .{});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, operand_src, msg, "address space '{s}' is not compatible with address space '{s}'", .{
@tagName(src_info.flags.address_space),
@tagName(dest_info.flags.address_space),
});
break :msg msg;
});
}
}
if (!flags.const_cast) {
if (src_info.flags.is_const and !dest_info.flags.is_const) {
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "{s} discards const qualifier", .{operation});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "use @constCast to discard const qualifier", .{});
break :msg msg;
});
}
}
if (!flags.volatile_cast) {
if (src_info.flags.is_volatile and !dest_info.flags.is_volatile) {
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "{s} discards volatile qualifier", .{operation});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "use @volatileCast to discard volatile qualifier", .{});
break :msg msg;
});
}
}
const ptr = if (src_info.flags.size == .Slice and dest_info.flags.size != .Slice) ptr: {
if (operand_ty.zigTypeTag(mod) == .Optional) {
break :ptr try sema.analyzeOptionalSlicePtr(block, operand_src, operand, operand_ty);
} else {
break :ptr try sema.analyzeSlicePtr(block, operand_src, operand, operand_ty);
}
} else operand;
const dest_ptr_ty = if (dest_info.flags.size == .Slice and src_info.flags.size != .Slice) blk: {
// Only convert to a many-pointer at first
var info = dest_info;
info.flags.size = .Many;
const ty = try sema.ptrType(info);
if (dest_ty.zigTypeTag(mod) == .Optional) {
break :blk try mod.optionalType(ty.toIntern());
} else {
break :blk ty;
}
} else dest_ty;
// Cannot do @addrSpaceCast at comptime
if (!flags.addrspace_cast) {
if (try sema.resolveValue(ptr)) |ptr_val| {
if (!dest_ty.ptrAllowsZero(mod) and ptr_val.isUndef(mod)) {
return sema.failWithUseOfUndef(block, operand_src);
}
if (!dest_ty.ptrAllowsZero(mod) and ptr_val.isNull(mod)) {
return sema.fail(block, operand_src, "null pointer casted to type '{}'", .{dest_ty.fmt(mod)});
}
if (dest_align.compare(.gt, src_align)) {
if (try ptr_val.getUnsignedIntAdvanced(mod, null)) |addr| {
if (!dest_align.check(addr)) {
return sema.fail(block, operand_src, "pointer address 0x{X} is not aligned to {d} bytes", .{
addr,
dest_align.toByteUnits().?,
});
}
}
}
if (dest_info.flags.size == .Slice and src_info.flags.size != .Slice) {
if (ptr_val.isUndef(mod)) return mod.undefRef(dest_ty);
const arr_len = try mod.intValue(Type.usize, Type.fromInterned(src_info.child).arrayLen(mod));
return Air.internedToRef((try mod.intern(.{ .slice = .{
.ty = dest_ty.toIntern(),
.ptr = try mod.intern(.{ .ptr = .{
.ty = dest_ty.slicePtrFieldType(mod).toIntern(),
.addr = mod.intern_pool.indexToKey(ptr_val.toIntern()).ptr.addr,
} }),
.len = arr_len.toIntern(),
} })));
} else {
assert(dest_ptr_ty.eql(dest_ty, mod));
return Air.internedToRef((try mod.getCoerced(ptr_val, dest_ty)).toIntern());
}
}
}
try sema.requireRuntimeBlock(block, src, null);
try sema.validateRuntimeValue(block, operand_src, ptr);
if (block.wantSafety() and operand_ty.ptrAllowsZero(mod) and !dest_ty.ptrAllowsZero(mod) and
(try sema.typeHasRuntimeBits(Type.fromInterned(dest_info.child)) or Type.fromInterned(dest_info.child).zigTypeTag(mod) == .Fn))
{
const ptr_int = try block.addUnOp(.int_from_ptr, ptr);
const is_non_zero = try block.addBinOp(.cmp_neq, ptr_int, .zero_usize);
const ok = if (src_info.flags.size == .Slice and dest_info.flags.size == .Slice) ok: {
const len = try sema.analyzeSliceLen(block, operand_src, ptr);
const len_zero = try block.addBinOp(.cmp_eq, len, .zero_usize);
break :ok try block.addBinOp(.bool_or, len_zero, is_non_zero);
} else is_non_zero;
try sema.addSafetyCheck(block, src, ok, .cast_to_null);
}
if (block.wantSafety() and
dest_align.compare(.gt, src_align) and
try sema.typeHasRuntimeBits(Type.fromInterned(dest_info.child)))
{
const align_bytes_minus_1 = dest_align.toByteUnits().? - 1;
const align_minus_1 = Air.internedToRef((try mod.intValue(Type.usize, align_bytes_minus_1)).toIntern());
const ptr_int = try block.addUnOp(.int_from_ptr, ptr);
const remainder = try block.addBinOp(.bit_and, ptr_int, align_minus_1);
const is_aligned = try block.addBinOp(.cmp_eq, remainder, .zero_usize);
const ok = if (src_info.flags.size == .Slice and dest_info.flags.size == .Slice) ok: {
const len = try sema.analyzeSliceLen(block, operand_src, ptr);
const len_zero = try block.addBinOp(.cmp_eq, len, .zero_usize);
break :ok try block.addBinOp(.bool_or, len_zero, is_aligned);
} else is_aligned;
try sema.addSafetyCheck(block, src, ok, .incorrect_alignment);
}
// If we're going from an array pointer to a slice, this will only be the pointer part!
const result_ptr = if (flags.addrspace_cast) ptr: {
// We can't change address spaces with a bitcast, so this requires two instructions
var intermediate_info = src_info;
intermediate_info.flags.address_space = dest_info.flags.address_space;
const intermediate_ptr_ty = try sema.ptrType(intermediate_info);
const intermediate_ty = if (dest_ptr_ty.zigTypeTag(mod) == .Optional) blk: {
break :blk try mod.optionalType(intermediate_ptr_ty.toIntern());
} else intermediate_ptr_ty;
const intermediate = try block.addInst(.{
.tag = .addrspace_cast,
.data = .{ .ty_op = .{
.ty = Air.internedToRef(intermediate_ty.toIntern()),
.operand = ptr,
} },
});
if (intermediate_ty.eql(dest_ptr_ty, mod)) {
// We only changed the address space, so no need for a bitcast
break :ptr intermediate;
}
break :ptr try block.addBitCast(dest_ptr_ty, intermediate);
} else ptr: {
break :ptr try block.addBitCast(dest_ptr_ty, ptr);
};
if (dest_info.flags.size == .Slice and src_info.flags.size != .Slice) {
// We have to construct a slice using the operand's child's array length
// Note that we know from the check at the start of the function that operand_ty is slice-like
const arr_len = Air.internedToRef((try mod.intValue(Type.usize, Type.fromInterned(src_info.child).arrayLen(mod))).toIntern());
return block.addInst(.{
.tag = .slice,
.data = .{ .ty_pl = .{
.ty = Air.internedToRef(dest_ty.toIntern()),
.payload = try sema.addExtra(Air.Bin{
.lhs = result_ptr,
.rhs = arr_len,
}),
} },
});
} else {
assert(dest_ptr_ty.eql(dest_ty, mod));
try sema.checkKnownAllocPtr(block, operand, result_ptr);
return result_ptr;
}
}
fn zirPtrCastNoDest(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const FlagsInt = @typeInfo(Zir.Inst.FullPtrCastFlags).Struct.backing_integer.?;
const flags: Zir.Inst.FullPtrCastFlags = @bitCast(@as(FlagsInt, @truncate(extended.small)));
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
const src = LazySrcLoc.nodeOffset(extra.node);
const operand_src: LazySrcLoc = .{ .node_offset_ptrcast_operand = extra.node };
const operand = try sema.resolveInst(extra.operand);
const operand_ty = sema.typeOf(operand);
try sema.checkPtrOperand(block, operand_src, operand_ty);
var ptr_info = operand_ty.ptrInfo(mod);
if (flags.const_cast) ptr_info.flags.is_const = false;
if (flags.volatile_cast) ptr_info.flags.is_volatile = false;
const dest_ty = blk: {
const dest_ty = try sema.ptrType(ptr_info);
if (operand_ty.zigTypeTag(mod) == .Optional) {
break :blk try mod.optionalType(dest_ty.toIntern());
}
break :blk dest_ty;
};
if (try sema.resolveValue(operand)) |operand_val| {
return Air.internedToRef((try mod.getCoerced(operand_val, dest_ty)).toIntern());
}
try sema.requireRuntimeBlock(block, src, null);
const new_ptr = try block.addBitCast(dest_ty, operand);
try sema.checkKnownAllocPtr(block, operand, new_ptr);
return new_ptr;
}
fn zirTruncate(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@truncate");
const dest_scalar_ty = try sema.checkIntOrVectorAllowComptime(block, dest_ty, src);
const operand = try sema.resolveInst(extra.rhs);
const operand_ty = sema.typeOf(operand);
const operand_scalar_ty = try sema.checkIntOrVectorAllowComptime(block, operand_ty, operand_src);
const operand_is_vector = operand_ty.zigTypeTag(mod) == .Vector;
const dest_is_vector = dest_ty.zigTypeTag(mod) == .Vector;
if (operand_is_vector != dest_is_vector) {
return sema.fail(block, operand_src, "expected type '{}', found '{}'", .{ dest_ty.fmt(mod), operand_ty.fmt(mod) });
}
if (dest_scalar_ty.zigTypeTag(mod) == .ComptimeInt) {
return sema.coerce(block, dest_ty, operand, operand_src);
}
const dest_info = dest_scalar_ty.intInfo(mod);
if (try sema.typeHasOnePossibleValue(dest_ty)) |val| {
return Air.internedToRef(val.toIntern());
}
if (operand_scalar_ty.zigTypeTag(mod) != .ComptimeInt) {
const operand_info = operand_ty.intInfo(mod);
if (try sema.typeHasOnePossibleValue(operand_ty)) |val| {
return Air.internedToRef(val.toIntern());
}
if (operand_info.signedness != dest_info.signedness) {
return sema.fail(block, operand_src, "expected {s} integer type, found '{}'", .{
@tagName(dest_info.signedness), operand_ty.fmt(mod),
});
}
if (operand_info.bits < dest_info.bits) {
const msg = msg: {
const msg = try sema.errMsg(
block,
src,
"destination type '{}' has more bits than source type '{}'",
.{ dest_ty.fmt(mod), operand_ty.fmt(mod) },
);
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "destination type has {d} bits", .{
dest_info.bits,
});
try sema.errNote(block, operand_src, msg, "operand type has {d} bits", .{
operand_info.bits,
});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
}
if (try sema.resolveValueIntable(operand)) |val| {
if (val.isUndef(mod)) return mod.undefRef(dest_ty);
if (!dest_is_vector) {
return Air.internedToRef((try mod.getCoerced(
try val.intTrunc(operand_ty, sema.arena, dest_info.signedness, dest_info.bits, mod),
dest_ty,
)).toIntern());
}
const elems = try sema.arena.alloc(InternPool.Index, operand_ty.vectorLen(mod));
for (elems, 0..) |*elem, i| {
const elem_val = try val.elemValue(mod, i);
const uncoerced_elem = try elem_val.intTrunc(operand_scalar_ty, sema.arena, dest_info.signedness, dest_info.bits, mod);
elem.* = (try mod.getCoerced(uncoerced_elem, dest_scalar_ty)).toIntern();
}
return Air.internedToRef((try mod.intern(.{ .aggregate = .{
.ty = dest_ty.toIntern(),
.storage = .{ .elems = elems },
} })));
}
try sema.requireRuntimeBlock(block, src, operand_src);
return block.addTyOp(.trunc, dest_ty, operand);
}
fn zirBitCount(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
air_tag: Air.Inst.Tag,
comptime comptimeOp: fn (val: Value, ty: Type, mod: *Module) u64,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const operand = try sema.resolveInst(inst_data.operand);
const operand_ty = sema.typeOf(operand);
_ = try sema.checkIntOrVector(block, operand, operand_src);
const bits = operand_ty.intInfo(mod).bits;
if (try sema.typeHasOnePossibleValue(operand_ty)) |val| {
return Air.internedToRef(val.toIntern());
}
const result_scalar_ty = try mod.smallestUnsignedInt(bits);
switch (operand_ty.zigTypeTag(mod)) {
.Vector => {
const vec_len = operand_ty.vectorLen(mod);
const result_ty = try mod.vectorType(.{
.len = vec_len,
.child = result_scalar_ty.toIntern(),
});
if (try sema.resolveValue(operand)) |val| {
if (val.isUndef(mod)) return mod.undefRef(result_ty);
const elems = try sema.arena.alloc(InternPool.Index, vec_len);
const scalar_ty = operand_ty.scalarType(mod);
for (elems, 0..) |*elem, i| {
const elem_val = try val.elemValue(mod, i);
const count = comptimeOp(elem_val, scalar_ty, mod);
elem.* = (try mod.intValue(result_scalar_ty, count)).toIntern();
}
return Air.internedToRef((try mod.intern(.{ .aggregate = .{
.ty = result_ty.toIntern(),
.storage = .{ .elems = elems },
} })));
} else {
try sema.requireRuntimeBlock(block, src, operand_src);
return block.addTyOp(air_tag, result_ty, operand);
}
},
.Int => {
if (try sema.resolveValueResolveLazy(operand)) |val| {
if (val.isUndef(mod)) return mod.undefRef(result_scalar_ty);
return mod.intRef(result_scalar_ty, comptimeOp(val, operand_ty, mod));
} else {
try sema.requireRuntimeBlock(block, src, operand_src);
return block.addTyOp(air_tag, result_scalar_ty, operand);
}
},
else => unreachable,
}
}
fn zirByteSwap(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const operand = try sema.resolveInst(inst_data.operand);
const operand_ty = sema.typeOf(operand);
const scalar_ty = try sema.checkIntOrVector(block, operand, operand_src);
const bits = scalar_ty.intInfo(mod).bits;
if (bits % 8 != 0) {
return sema.fail(
block,
operand_src,
"@byteSwap requires the number of bits to be evenly divisible by 8, but {} has {} bits",
.{ scalar_ty.fmt(mod), bits },
);
}
if (try sema.typeHasOnePossibleValue(operand_ty)) |val| {
return Air.internedToRef(val.toIntern());
}
switch (operand_ty.zigTypeTag(mod)) {
.Int => {
const runtime_src = if (try sema.resolveValue(operand)) |val| {
if (val.isUndef(mod)) return mod.undefRef(operand_ty);
const result_val = try val.byteSwap(operand_ty, mod, sema.arena);
return Air.internedToRef(result_val.toIntern());
} else operand_src;
try sema.requireRuntimeBlock(block, src, runtime_src);
return block.addTyOp(.byte_swap, operand_ty, operand);
},
.Vector => {
const runtime_src = if (try sema.resolveValue(operand)) |val| {
if (val.isUndef(mod))
return mod.undefRef(operand_ty);
const vec_len = operand_ty.vectorLen(mod);
const elems = try sema.arena.alloc(InternPool.Index, vec_len);
for (elems, 0..) |*elem, i| {
const elem_val = try val.elemValue(mod, i);
elem.* = (try elem_val.byteSwap(scalar_ty, mod, sema.arena)).toIntern();
}
return Air.internedToRef((try mod.intern(.{ .aggregate = .{
.ty = operand_ty.toIntern(),
.storage = .{ .elems = elems },
} })));
} else operand_src;
try sema.requireRuntimeBlock(block, src, runtime_src);
return block.addTyOp(.byte_swap, operand_ty, operand);
},
else => unreachable,
}
}
fn zirBitReverse(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const operand = try sema.resolveInst(inst_data.operand);
const operand_ty = sema.typeOf(operand);
const scalar_ty = try sema.checkIntOrVector(block, operand, operand_src);
if (try sema.typeHasOnePossibleValue(operand_ty)) |val| {
return Air.internedToRef(val.toIntern());
}
const mod = sema.mod;
switch (operand_ty.zigTypeTag(mod)) {
.Int => {
const runtime_src = if (try sema.resolveValue(operand)) |val| {
if (val.isUndef(mod)) return mod.undefRef(operand_ty);
const result_val = try val.bitReverse(operand_ty, mod, sema.arena);
return Air.internedToRef(result_val.toIntern());
} else operand_src;
try sema.requireRuntimeBlock(block, src, runtime_src);
return block.addTyOp(.bit_reverse, operand_ty, operand);
},
.Vector => {
const runtime_src = if (try sema.resolveValue(operand)) |val| {
if (val.isUndef(mod))
return mod.undefRef(operand_ty);
const vec_len = operand_ty.vectorLen(mod);
const elems = try sema.arena.alloc(InternPool.Index, vec_len);
for (elems, 0..) |*elem, i| {
const elem_val = try val.elemValue(mod, i);
elem.* = (try elem_val.bitReverse(scalar_ty, mod, sema.arena)).toIntern();
}
return Air.internedToRef((try mod.intern(.{ .aggregate = .{
.ty = operand_ty.toIntern(),
.storage = .{ .elems = elems },
} })));
} else operand_src;
try sema.requireRuntimeBlock(block, src, runtime_src);
return block.addTyOp(.bit_reverse, operand_ty, operand);
},
else => unreachable,
}
}
fn zirBitOffsetOf(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const offset = try sema.bitOffsetOf(block, inst);
return sema.mod.intRef(Type.comptime_int, offset);
}
fn zirOffsetOf(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const offset = try sema.bitOffsetOf(block, inst);
// TODO reminder to make this a compile error for packed structs
return sema.mod.intRef(Type.comptime_int, offset / 8);
}
fn bitOffsetOf(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!u64 {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const ty = try sema.resolveType(block, lhs_src, extra.lhs);
const field_name = try sema.resolveConstStringIntern(block, rhs_src, extra.rhs, .{
.needed_comptime_reason = "name of field must be comptime-known",
});
const mod = sema.mod;
const ip = &mod.intern_pool;
try sema.resolveTypeLayout(ty);
switch (ty.zigTypeTag(mod)) {
.Struct => {},
else => return sema.fail(block, lhs_src, "expected struct type, found '{}'", .{ty.fmt(mod)}),
}
const field_index = if (ty.isTuple(mod)) blk: {
if (ip.stringEqlSlice(field_name, "len")) {
return sema.fail(block, src, "no offset available for 'len' field of tuple", .{});
}
break :blk try sema.tupleFieldIndex(block, ty, field_name, rhs_src);
} else try sema.structFieldIndex(block, ty, field_name, rhs_src);
if (ty.structFieldIsComptime(field_index, mod)) {
return sema.fail(block, src, "no offset available for comptime field", .{});
}
switch (ty.containerLayout(mod)) {
.@"packed" => {
var bit_sum: u64 = 0;
const struct_type = ip.loadStructType(ty.toIntern());
for (0..struct_type.field_types.len) |i| {
if (i == field_index) {
return bit_sum;
}
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
bit_sum += field_ty.bitSize(mod);
} else unreachable;
},
else => return ty.structFieldOffset(field_index, mod) * 8,
}
}
fn checkNamespaceType(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) CompileError!void {
const mod = sema.mod;
switch (ty.zigTypeTag(mod)) {
.Struct, .Enum, .Union, .Opaque => return,
else => return sema.fail(block, src, "expected struct, enum, union, or opaque; found '{}'", .{ty.fmt(mod)}),
}
}
/// Returns `true` if the type was a comptime_int.
fn checkIntType(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) CompileError!bool {
const mod = sema.mod;
switch (try ty.zigTypeTagOrPoison(mod)) {
.ComptimeInt => return true,
.Int => return false,
else => return sema.fail(block, src, "expected integer type, found '{}'", .{ty.fmt(mod)}),
}
}
fn checkInvalidPtrArithmetic(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
ty: Type,
) CompileError!void {
const mod = sema.mod;
switch (try ty.zigTypeTagOrPoison(mod)) {
.Pointer => switch (ty.ptrSize(mod)) {
.One, .Slice => return,
.Many, .C => return sema.fail(
block,
src,
"invalid pointer arithmetic operator",
.{},
),
},
else => return,
}
}
fn checkArithmeticOp(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
scalar_tag: std.builtin.TypeId,
lhs_zig_ty_tag: std.builtin.TypeId,
rhs_zig_ty_tag: std.builtin.TypeId,
zir_tag: Zir.Inst.Tag,
) CompileError!void {
const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt;
const is_float = scalar_tag == .Float or scalar_tag == .ComptimeFloat;
if (!is_int and !(is_float and floatOpAllowed(zir_tag))) {
return sema.fail(block, src, "invalid operands to binary expression: '{s}' and '{s}'", .{
@tagName(lhs_zig_ty_tag), @tagName(rhs_zig_ty_tag),
});
}
}
fn checkPtrOperand(
sema: *Sema,
block: *Block,
ty_src: LazySrcLoc,
ty: Type,
) CompileError!void {
const mod = sema.mod;
switch (ty.zigTypeTag(mod)) {
.Pointer => return,
.Fn => {
const msg = msg: {
const msg = try sema.errMsg(
block,
ty_src,
"expected pointer, found '{}'",
.{ty.fmt(mod)},
);
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, ty_src, msg, "use '&' to obtain a function pointer", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
},
.Optional => if (ty.childType(mod).zigTypeTag(mod) == .Pointer) return,
else => {},
}
return sema.fail(block, ty_src, "expected pointer type, found '{}'", .{ty.fmt(mod)});
}
fn checkPtrType(
sema: *Sema,
block: *Block,
ty_src: LazySrcLoc,
ty: Type,
allow_slice: bool,
) CompileError!void {
const mod = sema.mod;
switch (ty.zigTypeTag(mod)) {
.Pointer => if (allow_slice or !ty.isSlice(mod)) return,
.Fn => {
const msg = msg: {
const msg = try sema.errMsg(
block,
ty_src,
"expected pointer type, found '{}'",
.{ty.fmt(mod)},
);
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, ty_src, msg, "use '*const ' to make a function pointer type", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
},
.Optional => if (ty.childType(mod).zigTypeTag(mod) == .Pointer) return,
else => {},
}
return sema.fail(block, ty_src, "expected pointer type, found '{}'", .{ty.fmt(mod)});
}
fn checkVectorElemType(
sema: *Sema,
block: *Block,
ty_src: LazySrcLoc,
ty: Type,
) CompileError!void {
const mod = sema.mod;
switch (ty.zigTypeTag(mod)) {
.Int, .Float, .Bool => return,
.Optional, .Pointer => if (ty.isPtrAtRuntime(mod)) return,
else => {},
}
return sema.fail(block, ty_src, "expected integer, float, bool, or pointer for the vector element type; found '{}'", .{ty.fmt(mod)});
}
fn checkFloatType(
sema: *Sema,
block: *Block,
ty_src: LazySrcLoc,
ty: Type,
) CompileError!void {
const mod = sema.mod;
switch (ty.zigTypeTag(mod)) {
.ComptimeInt, .ComptimeFloat, .Float => {},
else => return sema.fail(block, ty_src, "expected float type, found '{}'", .{ty.fmt(mod)}),
}
}
fn checkNumericType(
sema: *Sema,
block: *Block,
ty_src: LazySrcLoc,
ty: Type,
) CompileError!void {
const mod = sema.mod;
switch (ty.zigTypeTag(mod)) {
.ComptimeFloat, .Float, .ComptimeInt, .Int => {},
.Vector => switch (ty.childType(mod).zigTypeTag(mod)) {
.ComptimeFloat, .Float, .ComptimeInt, .Int => {},
else => |t| return sema.fail(block, ty_src, "expected number, found '{}'", .{t}),
},
else => return sema.fail(block, ty_src, "expected number, found '{}'", .{ty.fmt(mod)}),
}
}
/// Returns the casted pointer.
fn checkAtomicPtrOperand(
sema: *Sema,
block: *Block,
elem_ty: Type,
elem_ty_src: LazySrcLoc,
ptr: Air.Inst.Ref,
ptr_src: LazySrcLoc,
ptr_const: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
var diag: Module.AtomicPtrAlignmentDiagnostics = .{};
const alignment = mod.atomicPtrAlignment(elem_ty, &diag) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.FloatTooBig => return sema.fail(
block,
elem_ty_src,
"expected {d}-bit float type or smaller; found {d}-bit float type",
.{ diag.max_bits, diag.bits },
),
error.IntTooBig => return sema.fail(
block,
elem_ty_src,
"expected {d}-bit integer type or smaller; found {d}-bit integer type",
.{ diag.max_bits, diag.bits },
),
error.BadType => return sema.fail(
block,
elem_ty_src,
"expected bool, integer, float, enum, or pointer type; found '{}'",
.{elem_ty.fmt(mod)},
),
};
var wanted_ptr_data: InternPool.Key.PtrType = .{
.child = elem_ty.toIntern(),
.flags = .{
.alignment = alignment,
.is_const = ptr_const,
},
};
const ptr_ty = sema.typeOf(ptr);
const ptr_data = switch (try ptr_ty.zigTypeTagOrPoison(mod)) {
.Pointer => ptr_ty.ptrInfo(mod),
else => {
const wanted_ptr_ty = try sema.ptrType(wanted_ptr_data);
_ = try sema.coerce(block, wanted_ptr_ty, ptr, ptr_src);
unreachable;
},
};
wanted_ptr_data.flags.address_space = ptr_data.flags.address_space;
wanted_ptr_data.flags.is_allowzero = ptr_data.flags.is_allowzero;
wanted_ptr_data.flags.is_volatile = ptr_data.flags.is_volatile;
const wanted_ptr_ty = try sema.ptrType(wanted_ptr_data);
const casted_ptr = try sema.coerce(block, wanted_ptr_ty, ptr, ptr_src);
return casted_ptr;
}
fn checkPtrIsNotComptimeMutable(
sema: *Sema,
block: *Block,
ptr_val: Value,
ptr_src: LazySrcLoc,
operand_src: LazySrcLoc,
) CompileError!void {
_ = operand_src;
if (sema.isComptimeMutablePtr(ptr_val)) {
return sema.fail(block, ptr_src, "cannot store runtime value in compile time variable", .{});
}
}
fn checkComptimeVarStore(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
alloc_index: ComptimeAllocIndex,
) CompileError!void {
const runtime_index = sema.getComptimeAlloc(alloc_index).runtime_index;
if (@intFromEnum(runtime_index) < @intFromEnum(block.runtime_index)) {
if (block.runtime_cond) |cond_src| {
const msg = msg: {
const msg = try sema.errMsg(block, src, "store to comptime variable depends on runtime condition", .{});
errdefer msg.destroy(sema.gpa);
try sema.mod.errNoteNonLazy(cond_src, msg, "runtime condition here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
if (block.runtime_loop) |loop_src| {
const msg = msg: {
const msg = try sema.errMsg(block, src, "cannot store to comptime variable in non-inline loop", .{});
errdefer msg.destroy(sema.gpa);
try sema.mod.errNoteNonLazy(loop_src, msg, "non-inline loop here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
unreachable;
}
}
fn checkIntOrVector(
sema: *Sema,
block: *Block,
operand: Air.Inst.Ref,
operand_src: LazySrcLoc,
) CompileError!Type {
const mod = sema.mod;
const operand_ty = sema.typeOf(operand);
switch (try operand_ty.zigTypeTagOrPoison(mod)) {
.Int => return operand_ty,
.Vector => {
const elem_ty = operand_ty.childType(mod);
switch (try elem_ty.zigTypeTagOrPoison(mod)) {
.Int => return elem_ty,
else => return sema.fail(block, operand_src, "expected vector of integers; found vector of '{}'", .{
elem_ty.fmt(mod),
}),
}
},
else => return sema.fail(block, operand_src, "expected integer or vector, found '{}'", .{
operand_ty.fmt(mod),
}),
}
}
fn checkIntOrVectorAllowComptime(
sema: *Sema,
block: *Block,
operand_ty: Type,
operand_src: LazySrcLoc,
) CompileError!Type {
const mod = sema.mod;
switch (try operand_ty.zigTypeTagOrPoison(mod)) {
.Int, .ComptimeInt => return operand_ty,
.Vector => {
const elem_ty = operand_ty.childType(mod);
switch (try elem_ty.zigTypeTagOrPoison(mod)) {
.Int, .ComptimeInt => return elem_ty,
else => return sema.fail(block, operand_src, "expected vector of integers; found vector of '{}'", .{
elem_ty.fmt(mod),
}),
}
},
else => return sema.fail(block, operand_src, "expected integer or vector, found '{}'", .{
operand_ty.fmt(mod),
}),
}
}
const SimdBinOp = struct {
len: ?usize,
/// Coerced to `result_ty`.
lhs: Air.Inst.Ref,
/// Coerced to `result_ty`.
rhs: Air.Inst.Ref,
lhs_val: ?Value,
rhs_val: ?Value,
/// Only different than `scalar_ty` when it is a vector operation.
result_ty: Type,
scalar_ty: Type,
};
fn checkSimdBinOp(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
uncasted_lhs: Air.Inst.Ref,
uncasted_rhs: Air.Inst.Ref,
lhs_src: LazySrcLoc,
rhs_src: LazySrcLoc,
) CompileError!SimdBinOp {
const mod = sema.mod;
const lhs_ty = sema.typeOf(uncasted_lhs);
const rhs_ty = sema.typeOf(uncasted_rhs);
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
const vec_len: ?usize = if (lhs_ty.zigTypeTag(mod) == .Vector) lhs_ty.vectorLen(mod) else null;
const result_ty = try sema.resolvePeerTypes(block, src, &.{ uncasted_lhs, uncasted_rhs }, .{
.override = &[_]?LazySrcLoc{ lhs_src, rhs_src },
});
const lhs = try sema.coerce(block, result_ty, uncasted_lhs, lhs_src);
const rhs = try sema.coerce(block, result_ty, uncasted_rhs, rhs_src);
return SimdBinOp{
.len = vec_len,
.lhs = lhs,
.rhs = rhs,
.lhs_val = try sema.resolveValue(lhs),
.rhs_val = try sema.resolveValue(rhs),
.result_ty = result_ty,
.scalar_ty = result_ty.scalarType(mod),
};
}
fn checkVectorizableBinaryOperands(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
lhs_ty: Type,
rhs_ty: Type,
lhs_src: LazySrcLoc,
rhs_src: LazySrcLoc,
) CompileError!void {
const mod = sema.mod;
const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison(mod);
const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison(mod);
if (lhs_zig_ty_tag != .Vector and rhs_zig_ty_tag != .Vector) return;
const lhs_is_vector = switch (lhs_zig_ty_tag) {
.Vector, .Array => true,
else => false,
};
const rhs_is_vector = switch (rhs_zig_ty_tag) {
.Vector, .Array => true,
else => false,
};
if (lhs_is_vector and rhs_is_vector) {
const lhs_len = lhs_ty.arrayLen(mod);
const rhs_len = rhs_ty.arrayLen(mod);
if (lhs_len != rhs_len) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "vector length mismatch", .{});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, lhs_src, msg, "length {d} here", .{lhs_len});
try sema.errNote(block, rhs_src, msg, "length {d} here", .{rhs_len});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
} else {
const msg = msg: {
const msg = try sema.errMsg(block, src, "mixed scalar and vector operands: '{}' and '{}'", .{
lhs_ty.fmt(mod), rhs_ty.fmt(mod),
});
errdefer msg.destroy(sema.gpa);
if (lhs_is_vector) {
try sema.errNote(block, lhs_src, msg, "vector here", .{});
try sema.errNote(block, rhs_src, msg, "scalar here", .{});
} else {
try sema.errNote(block, lhs_src, msg, "scalar here", .{});
try sema.errNote(block, rhs_src, msg, "vector here", .{});
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
}
fn maybeOptionsSrc(sema: *Sema, block: *Block, base_src: LazySrcLoc, wanted: []const u8) LazySrcLoc {
if (base_src == .unneeded) return .unneeded;
const mod = sema.mod;
return mod.optionsSrc(mod.declPtr(block.src_decl), base_src, wanted);
}
fn resolveExportOptions(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
zir_ref: Zir.Inst.Ref,
) CompileError!Module.Export.Options {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const export_options_ty = try sema.getBuiltinType("ExportOptions");
const air_ref = try sema.resolveInst(zir_ref);
const options = try sema.coerce(block, export_options_ty, air_ref, src);
const name_src = sema.maybeOptionsSrc(block, src, "name");
const linkage_src = sema.maybeOptionsSrc(block, src, "linkage");
const section_src = sema.maybeOptionsSrc(block, src, "section");
const visibility_src = sema.maybeOptionsSrc(block, src, "visibility");
const name_operand = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "name"), name_src);
const name = try sema.toConstString(block, name_src, name_operand, .{
.needed_comptime_reason = "name of exported value must be comptime-known",
});
const linkage_operand = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "linkage"), linkage_src);
const linkage_val = try sema.resolveConstDefinedValue(block, linkage_src, linkage_operand, .{
.needed_comptime_reason = "linkage of exported value must be comptime-known",
});
const linkage = mod.toEnum(std.builtin.GlobalLinkage, linkage_val);
const section_operand = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "section"), section_src);
const section_opt_val = try sema.resolveConstDefinedValue(block, section_src, section_operand, .{
.needed_comptime_reason = "linksection of exported value must be comptime-known",
});
const section = if (section_opt_val.optionalValue(mod)) |section_val|
try sema.toConstString(block, section_src, Air.internedToRef(section_val.toIntern()), .{
.needed_comptime_reason = "linksection of exported value must be comptime-known",
})
else
null;
const visibility_operand = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "visibility"), visibility_src);
const visibility_val = try sema.resolveConstDefinedValue(block, visibility_src, visibility_operand, .{
.needed_comptime_reason = "visibility of exported value must be comptime-known",
});
const visibility = mod.toEnum(std.builtin.SymbolVisibility, visibility_val);
if (name.len < 1) {
return sema.fail(block, name_src, "exported symbol name cannot be empty", .{});
}
if (visibility != .default and linkage == .internal) {
return sema.fail(block, visibility_src, "symbol '{s}' exported with internal linkage has non-default visibility {s}", .{
name, @tagName(visibility),
});
}
return .{
.name = try ip.getOrPutString(gpa, name),
.linkage = linkage,
.section = try ip.getOrPutStringOpt(gpa, section),
.visibility = visibility,
};
}
fn resolveBuiltinEnum(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
zir_ref: Zir.Inst.Ref,
comptime name: []const u8,
reason: NeededComptimeReason,
) CompileError!@field(std.builtin, name) {
const mod = sema.mod;
const ty = try sema.getBuiltinType(name);
const air_ref = try sema.resolveInst(zir_ref);
const coerced = try sema.coerce(block, ty, air_ref, src);
const val = try sema.resolveConstDefinedValue(block, src, coerced, reason);
return mod.toEnum(@field(std.builtin, name), val);
}
fn resolveAtomicOrder(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
zir_ref: Zir.Inst.Ref,
reason: NeededComptimeReason,
) CompileError!std.builtin.AtomicOrder {
return sema.resolveBuiltinEnum(block, src, zir_ref, "AtomicOrder", reason);
}
fn resolveAtomicRmwOp(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
zir_ref: Zir.Inst.Ref,
) CompileError!std.builtin.AtomicRmwOp {
return sema.resolveBuiltinEnum(block, src, zir_ref, "AtomicRmwOp", .{
.needed_comptime_reason = "@atomicRmW operation must be comptime-known",
});
}
fn zirCmpxchg(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const extra = sema.code.extraData(Zir.Inst.Cmpxchg, extended.operand).data;
const air_tag: Air.Inst.Tag = switch (extended.small) {
0 => .cmpxchg_weak,
1 => .cmpxchg_strong,
else => unreachable,
};
const src = LazySrcLoc.nodeOffset(extra.node);
// zig fmt: off
const elem_ty_src : LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const ptr_src : LazySrcLoc = .{ .node_offset_builtin_call_arg1 = extra.node };
const expected_src : LazySrcLoc = .{ .node_offset_builtin_call_arg2 = extra.node };
const new_value_src : LazySrcLoc = .{ .node_offset_builtin_call_arg3 = extra.node };
const success_order_src: LazySrcLoc = .{ .node_offset_builtin_call_arg4 = extra.node };
const failure_order_src: LazySrcLoc = .{ .node_offset_builtin_call_arg5 = extra.node };
// zig fmt: on
const expected_value = try sema.resolveInst(extra.expected_value);
const elem_ty = sema.typeOf(expected_value);
if (elem_ty.zigTypeTag(mod) == .Float) {
return sema.fail(
block,
elem_ty_src,
"expected bool, integer, enum, or pointer type; found '{}'",
.{elem_ty.fmt(mod)},
);
}
const uncasted_ptr = try sema.resolveInst(extra.ptr);
const ptr = try sema.checkAtomicPtrOperand(block, elem_ty, elem_ty_src, uncasted_ptr, ptr_src, false);
const new_value = try sema.coerce(block, elem_ty, try sema.resolveInst(extra.new_value), new_value_src);
const success_order = try sema.resolveAtomicOrder(block, success_order_src, extra.success_order, .{
.needed_comptime_reason = "atomic order of cmpxchg success must be comptime-known",
});
const failure_order = try sema.resolveAtomicOrder(block, failure_order_src, extra.failure_order, .{
.needed_comptime_reason = "atomic order of cmpxchg failure must be comptime-known",
});
if (@intFromEnum(success_order) < @intFromEnum(std.builtin.AtomicOrder.monotonic)) {
return sema.fail(block, success_order_src, "success atomic ordering must be monotonic or stricter", .{});
}
if (@intFromEnum(failure_order) < @intFromEnum(std.builtin.AtomicOrder.monotonic)) {
return sema.fail(block, failure_order_src, "failure atomic ordering must be monotonic or stricter", .{});
}
if (@intFromEnum(failure_order) > @intFromEnum(success_order)) {
return sema.fail(block, failure_order_src, "failure atomic ordering must be no stricter than success", .{});
}
if (failure_order == .release or failure_order == .acq_rel) {
return sema.fail(block, failure_order_src, "failure atomic ordering must not be release or acq_rel", .{});
}
const result_ty = try mod.optionalType(elem_ty.toIntern());
// special case zero bit types
if ((try sema.typeHasOnePossibleValue(elem_ty)) != null) {
return Air.internedToRef((try mod.intern(.{ .opt = .{
.ty = result_ty.toIntern(),
.val = .none,
} })));
}
const runtime_src = if (try sema.resolveDefinedValue(block, ptr_src, ptr)) |ptr_val| rs: {
if (try sema.resolveValue(expected_value)) |expected_val| {
if (try sema.resolveValue(new_value)) |new_val| {
if (expected_val.isUndef(mod) or new_val.isUndef(mod)) {
// TODO: this should probably cause the memory stored at the pointer
// to become undef as well
return mod.undefRef(result_ty);
}
const ptr_ty = sema.typeOf(ptr);
const stored_val = (try sema.pointerDeref(block, ptr_src, ptr_val, ptr_ty)) orelse break :rs ptr_src;
const result_val = try mod.intern(.{ .opt = .{
.ty = result_ty.toIntern(),
.val = if (stored_val.eql(expected_val, elem_ty, mod)) blk: {
try sema.storePtr(block, src, ptr, new_value);
break :blk .none;
} else stored_val.toIntern(),
} });
return Air.internedToRef(result_val);
} else break :rs new_value_src;
} else break :rs expected_src;
} else ptr_src;
const flags: u32 = @as(u32, @intFromEnum(success_order)) |
(@as(u32, @intFromEnum(failure_order)) << 3);
try sema.requireRuntimeBlock(block, src, runtime_src);
return block.addInst(.{
.tag = air_tag,
.data = .{ .ty_pl = .{
.ty = Air.internedToRef(result_ty.toIntern()),
.payload = try sema.addExtra(Air.Cmpxchg{
.ptr = ptr,
.expected_value = expected_value,
.new_value = new_value,
.flags = flags,
}),
} },
});
}
fn zirSplat(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const src = inst_data.src();
const scalar_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@splat");
if (!dest_ty.isVector(mod)) return sema.fail(block, src, "expected vector type, found '{}'", .{dest_ty.fmt(mod)});
const operand = try sema.resolveInst(extra.rhs);
const scalar_ty = dest_ty.childType(mod);
const scalar = try sema.coerce(block, scalar_ty, operand, scalar_src);
if (try sema.resolveValue(scalar)) |scalar_val| {
if (scalar_val.isUndef(mod)) return mod.undefRef(dest_ty);
return Air.internedToRef((try sema.splat(dest_ty, scalar_val)).toIntern());
}
try sema.requireRuntimeBlock(block, inst_data.src(), scalar_src);
return block.addTyOp(.splat, dest_ty, scalar);
}
fn zirReduce(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const op_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const operation = try sema.resolveBuiltinEnum(block, op_src, extra.lhs, "ReduceOp", .{
.needed_comptime_reason = "@reduce operation must be comptime-known",
});
const operand = try sema.resolveInst(extra.rhs);
const operand_ty = sema.typeOf(operand);
const mod = sema.mod;
if (operand_ty.zigTypeTag(mod) != .Vector) {
return sema.fail(block, operand_src, "expected vector, found '{}'", .{operand_ty.fmt(mod)});
}
const scalar_ty = operand_ty.childType(mod);
// Type-check depending on operation.
switch (operation) {
.And, .Or, .Xor => switch (scalar_ty.zigTypeTag(mod)) {
.Int, .Bool => {},
else => return sema.fail(block, operand_src, "@reduce operation '{s}' requires integer or boolean operand; found '{}'", .{
@tagName(operation), operand_ty.fmt(mod),
}),
},
.Min, .Max, .Add, .Mul => switch (scalar_ty.zigTypeTag(mod)) {
.Int, .Float => {},
else => return sema.fail(block, operand_src, "@reduce operation '{s}' requires integer or float operand; found '{}'", .{
@tagName(operation), operand_ty.fmt(mod),
}),
},
}
const vec_len = operand_ty.vectorLen(mod);
if (vec_len == 0) {
// TODO re-evaluate if we should introduce a "neutral value" for some operations,
// e.g. zero for add and one for mul.
return sema.fail(block, operand_src, "@reduce operation requires a vector with nonzero length", .{});
}
if (try sema.resolveValue(operand)) |operand_val| {
if (operand_val.isUndef(mod)) return mod.undefRef(scalar_ty);
var accum: Value = try operand_val.elemValue(mod, 0);
var i: u32 = 1;
while (i < vec_len) : (i += 1) {
const elem_val = try operand_val.elemValue(mod, i);
switch (operation) {
.And => accum = try accum.bitwiseAnd(elem_val, scalar_ty, sema.arena, mod),
.Or => accum = try accum.bitwiseOr(elem_val, scalar_ty, sema.arena, mod),
.Xor => accum = try accum.bitwiseXor(elem_val, scalar_ty, sema.arena, mod),
.Min => accum = accum.numberMin(elem_val, mod),
.Max => accum = accum.numberMax(elem_val, mod),
.Add => accum = try sema.numberAddWrapScalar(accum, elem_val, scalar_ty),
.Mul => accum = try accum.numberMulWrap(elem_val, scalar_ty, sema.arena, mod),
}
}
return Air.internedToRef(accum.toIntern());
}
try sema.requireRuntimeBlock(block, inst_data.src(), operand_src);
return block.addInst(.{
.tag = if (block.float_mode == .optimized) .reduce_optimized else .reduce,
.data = .{ .reduce = .{
.operand = operand,
.operation = operation,
} },
});
}
fn zirShuffle(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Shuffle, inst_data.payload_index).data;
const elem_ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const mask_src: LazySrcLoc = .{ .node_offset_builtin_call_arg3 = inst_data.src_node };
const elem_ty = try sema.resolveType(block, elem_ty_src, extra.elem_type);
try sema.checkVectorElemType(block, elem_ty_src, elem_ty);
const a = try sema.resolveInst(extra.a);
const b = try sema.resolveInst(extra.b);
var mask = try sema.resolveInst(extra.mask);
var mask_ty = sema.typeOf(mask);
const mask_len = switch (sema.typeOf(mask).zigTypeTag(mod)) {
.Array, .Vector => sema.typeOf(mask).arrayLen(mod),
else => return sema.fail(block, mask_src, "expected vector or array, found '{}'", .{sema.typeOf(mask).fmt(sema.mod)}),
};
mask_ty = try mod.vectorType(.{
.len = @intCast(mask_len),
.child = .i32_type,
});
mask = try sema.coerce(block, mask_ty, mask, mask_src);
const mask_val = try sema.resolveConstValue(block, mask_src, mask, .{
.needed_comptime_reason = "shuffle mask must be comptime-known",
});
return sema.analyzeShuffle(block, inst_data.src_node, elem_ty, a, b, mask_val, @intCast(mask_len));
}
fn analyzeShuffle(
sema: *Sema,
block: *Block,
src_node: i32,
elem_ty: Type,
a_arg: Air.Inst.Ref,
b_arg: Air.Inst.Ref,
mask: Value,
mask_len: u32,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const a_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = src_node };
const b_src: LazySrcLoc = .{ .node_offset_builtin_call_arg2 = src_node };
const mask_src: LazySrcLoc = .{ .node_offset_builtin_call_arg3 = src_node };
var a = a_arg;
var b = b_arg;
const res_ty = try mod.vectorType(.{
.len = mask_len,
.child = elem_ty.toIntern(),
});
const maybe_a_len = switch (sema.typeOf(a).zigTypeTag(mod)) {
.Array, .Vector => sema.typeOf(a).arrayLen(mod),
.Undefined => null,
else => return sema.fail(block, a_src, "expected vector or array with element type '{}', found '{}'", .{
elem_ty.fmt(sema.mod),
sema.typeOf(a).fmt(sema.mod),
}),
};
const maybe_b_len = switch (sema.typeOf(b).zigTypeTag(mod)) {
.Array, .Vector => sema.typeOf(b).arrayLen(mod),
.Undefined => null,
else => return sema.fail(block, b_src, "expected vector or array with element type '{}', found '{}'", .{
elem_ty.fmt(sema.mod),
sema.typeOf(b).fmt(sema.mod),
}),
};
if (maybe_a_len == null and maybe_b_len == null) {
return mod.undefRef(res_ty);
}
const a_len: u32 = @intCast(maybe_a_len orelse maybe_b_len.?);
const b_len: u32 = @intCast(maybe_b_len orelse a_len);
const a_ty = try mod.vectorType(.{
.len = a_len,
.child = elem_ty.toIntern(),
});
const b_ty = try mod.vectorType(.{
.len = b_len,
.child = elem_ty.toIntern(),
});
if (maybe_a_len == null) a = try mod.undefRef(a_ty) else a = try sema.coerce(block, a_ty, a, a_src);
if (maybe_b_len == null) b = try mod.undefRef(b_ty) else b = try sema.coerce(block, b_ty, b, b_src);
const operand_info = [2]std.meta.Tuple(&.{ u64, LazySrcLoc, Type }){
.{ a_len, a_src, a_ty },
.{ b_len, b_src, b_ty },
};
for (0..@intCast(mask_len)) |i| {
const elem = try mask.elemValue(sema.mod, i);
if (elem.isUndef(mod)) continue;
const elem_resolved = try sema.resolveLazyValue(elem);
const int = elem_resolved.toSignedInt(mod);
var unsigned: u32 = undefined;
var chosen: u32 = undefined;
if (int >= 0) {
unsigned = @intCast(int);
chosen = 0;
} else {
unsigned = @intCast(~int);
chosen = 1;
}
if (unsigned >= operand_info[chosen][0]) {
const msg = msg: {
const msg = try sema.errMsg(block, mask_src, "mask index '{d}' has out-of-bounds selection", .{i});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, operand_info[chosen][1], msg, "selected index '{d}' out of bounds of '{}'", .{
unsigned,
operand_info[chosen][2].fmt(sema.mod),
});
if (chosen == 0) {
try sema.errNote(block, b_src, msg, "selections from the second vector are specified with negative numbers", .{});
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
}
if (try sema.resolveValue(a)) |a_val| {
if (try sema.resolveValue(b)) |b_val| {
const values = try sema.arena.alloc(InternPool.Index, mask_len);
for (values, 0..) |*value, i| {
const mask_elem_val = try mask.elemValue(sema.mod, i);
if (mask_elem_val.isUndef(mod)) {
value.* = try mod.intern(.{ .undef = elem_ty.toIntern() });
continue;
}
const int = mask_elem_val.toSignedInt(mod);
const unsigned: u32 = @intCast(if (int >= 0) int else ~int);
values[i] = (try (if (int >= 0) a_val else b_val).elemValue(mod, unsigned)).toIntern();
}
return Air.internedToRef((try mod.intern(.{ .aggregate = .{
.ty = res_ty.toIntern(),
.storage = .{ .elems = values },
} })));
}
}
// All static analysis passed, and not comptime.
// For runtime codegen, vectors a and b must be the same length. Here we
// recursively @shuffle the smaller vector to append undefined elements
// to it up to the length of the longer vector. This recursion terminates
// in 1 call because these calls to analyzeShuffle guarantee a_len == b_len.
if (a_len != b_len) {
const min_len = @min(a_len, b_len);
const max_src = if (a_len > b_len) a_src else b_src;
const max_len = try sema.usizeCast(block, max_src, @max(a_len, b_len));
const expand_mask_values = try sema.arena.alloc(InternPool.Index, max_len);
for (@intCast(0)..@intCast(min_len)) |i| {
expand_mask_values[i] = (try mod.intValue(Type.comptime_int, i)).toIntern();
}
for (@intCast(min_len)..@intCast(max_len)) |i| {
expand_mask_values[i] = (try mod.intValue(Type.comptime_int, -1)).toIntern();
}
const expand_mask = try mod.intern(.{ .aggregate = .{
.ty = (try mod.vectorType(.{ .len = @intCast(max_len), .child = .comptime_int_type })).toIntern(),
.storage = .{ .elems = expand_mask_values },
} });
if (a_len < b_len) {
const undef = try mod.undefRef(a_ty);
a = try sema.analyzeShuffle(block, src_node, elem_ty, a, undef, Value.fromInterned(expand_mask), @intCast(max_len));
} else {
const undef = try mod.undefRef(b_ty);
b = try sema.analyzeShuffle(block, src_node, elem_ty, b, undef, Value.fromInterned(expand_mask), @intCast(max_len));
}
}
return block.addInst(.{
.tag = .shuffle,
.data = .{ .ty_pl = .{
.ty = Air.internedToRef(res_ty.toIntern()),
.payload = try block.sema.addExtra(Air.Shuffle{
.a = a,
.b = b,
.mask = mask.toIntern(),
.mask_len = mask_len,
}),
} },
});
}
fn zirSelect(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const extra = sema.code.extraData(Zir.Inst.Select, extended.operand).data;
const src = LazySrcLoc.nodeOffset(extra.node);
const elem_ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const pred_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = extra.node };
const a_src: LazySrcLoc = .{ .node_offset_builtin_call_arg2 = extra.node };
const b_src: LazySrcLoc = .{ .node_offset_builtin_call_arg3 = extra.node };
const elem_ty = try sema.resolveType(block, elem_ty_src, extra.elem_type);
try sema.checkVectorElemType(block, elem_ty_src, elem_ty);
const pred_uncoerced = try sema.resolveInst(extra.pred);
const pred_ty = sema.typeOf(pred_uncoerced);
const vec_len_u64 = switch (try pred_ty.zigTypeTagOrPoison(mod)) {
.Vector, .Array => pred_ty.arrayLen(mod),
else => return sema.fail(block, pred_src, "expected vector or array, found '{}'", .{pred_ty.fmt(mod)}),
};
const vec_len: u32 = @intCast(try sema.usizeCast(block, pred_src, vec_len_u64));
const bool_vec_ty = try mod.vectorType(.{
.len = vec_len,
.child = .bool_type,
});
const pred = try sema.coerce(block, bool_vec_ty, pred_uncoerced, pred_src);
const vec_ty = try mod.vectorType(.{
.len = vec_len,
.child = elem_ty.toIntern(),
});
const a = try sema.coerce(block, vec_ty, try sema.resolveInst(extra.a), a_src);
const b = try sema.coerce(block, vec_ty, try sema.resolveInst(extra.b), b_src);
const maybe_pred = try sema.resolveValue(pred);
const maybe_a = try sema.resolveValue(a);
const maybe_b = try sema.resolveValue(b);
const runtime_src = if (maybe_pred) |pred_val| rs: {
if (pred_val.isUndef(mod)) return mod.undefRef(vec_ty);
if (maybe_a) |a_val| {
if (a_val.isUndef(mod)) return mod.undefRef(vec_ty);
if (maybe_b) |b_val| {
if (b_val.isUndef(mod)) return mod.undefRef(vec_ty);
const elems = try sema.gpa.alloc(InternPool.Index, vec_len);
defer sema.gpa.free(elems);
for (elems, 0..) |*elem, i| {
const pred_elem_val = try pred_val.elemValue(mod, i);
const should_choose_a = pred_elem_val.toBool();
elem.* = (try (if (should_choose_a) a_val else b_val).elemValue(mod, i)).toIntern();
}
return Air.internedToRef((try mod.intern(.{ .aggregate = .{
.ty = vec_ty.toIntern(),
.storage = .{ .elems = elems },
} })));
} else {
break :rs b_src;
}
} else {
if (maybe_b) |b_val| {
if (b_val.isUndef(mod)) return mod.undefRef(vec_ty);
}
break :rs a_src;
}
} else rs: {
if (maybe_a) |a_val| {
if (a_val.isUndef(mod)) return mod.undefRef(vec_ty);
}
if (maybe_b) |b_val| {
if (b_val.isUndef(mod)) return mod.undefRef(vec_ty);
}
break :rs pred_src;
};
try sema.requireRuntimeBlock(block, src, runtime_src);
return block.addInst(.{
.tag = .select,
.data = .{ .pl_op = .{
.operand = pred,
.payload = try block.sema.addExtra(Air.Bin{
.lhs = a,
.rhs = b,
}),
} },
});
}
fn zirAtomicLoad(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.AtomicLoad, inst_data.payload_index).data;
// zig fmt: off
const elem_ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const ptr_src : LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const order_src : LazySrcLoc = .{ .node_offset_builtin_call_arg2 = inst_data.src_node };
// zig fmt: on
const elem_ty = try sema.resolveType(block, elem_ty_src, extra.elem_type);
const uncasted_ptr = try sema.resolveInst(extra.ptr);
const ptr = try sema.checkAtomicPtrOperand(block, elem_ty, elem_ty_src, uncasted_ptr, ptr_src, true);
const order = try sema.resolveAtomicOrder(block, order_src, extra.ordering, .{
.needed_comptime_reason = "atomic order of @atomicLoad must be comptime-known",
});
switch (order) {
.release, .acq_rel => {
return sema.fail(
block,
order_src,
"@atomicLoad atomic ordering must not be release or acq_rel",
.{},
);
},
else => {},
}
if (try sema.typeHasOnePossibleValue(elem_ty)) |val| {
return Air.internedToRef(val.toIntern());
}
if (try sema.resolveDefinedValue(block, ptr_src, ptr)) |ptr_val| {
if (try sema.pointerDeref(block, ptr_src, ptr_val, sema.typeOf(ptr))) |elem_val| {
return Air.internedToRef(elem_val.toIntern());
}
}
try sema.requireRuntimeBlock(block, inst_data.src(), ptr_src);
return block.addInst(.{
.tag = .atomic_load,
.data = .{ .atomic_load = .{
.ptr = ptr,
.order = order,
} },
});
}
fn zirAtomicRmw(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.AtomicRmw, inst_data.payload_index).data;
const src = inst_data.src();
// zig fmt: off
const elem_ty_src : LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const ptr_src : LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const op_src : LazySrcLoc = .{ .node_offset_builtin_call_arg2 = inst_data.src_node };
const operand_src : LazySrcLoc = .{ .node_offset_builtin_call_arg3 = inst_data.src_node };
const order_src : LazySrcLoc = .{ .node_offset_builtin_call_arg4 = inst_data.src_node };
// zig fmt: on
const operand = try sema.resolveInst(extra.operand);
const elem_ty = sema.typeOf(operand);
const uncasted_ptr = try sema.resolveInst(extra.ptr);
const ptr = try sema.checkAtomicPtrOperand(block, elem_ty, elem_ty_src, uncasted_ptr, ptr_src, false);
const op = try sema.resolveAtomicRmwOp(block, op_src, extra.operation);
switch (elem_ty.zigTypeTag(mod)) {
.Enum => if (op != .Xchg) {
return sema.fail(block, op_src, "@atomicRmw with enum only allowed with .Xchg", .{});
},
.Bool => if (op != .Xchg) {
return sema.fail(block, op_src, "@atomicRmw with bool only allowed with .Xchg", .{});
},
.Float => switch (op) {
.Xchg, .Add, .Sub, .Max, .Min => {},
else => return sema.fail(block, op_src, "@atomicRmw with float only allowed with .Xchg, .Add, .Sub, .Max, and .Min", .{}),
},
else => {},
}
const order = try sema.resolveAtomicOrder(block, order_src, extra.ordering, .{
.needed_comptime_reason = "atomic order of @atomicRmW must be comptime-known",
});
if (order == .unordered) {
return sema.fail(block, order_src, "@atomicRmw atomic ordering must not be unordered", .{});
}
// special case zero bit types
if (try sema.typeHasOnePossibleValue(elem_ty)) |val| {
return Air.internedToRef(val.toIntern());
}
const runtime_src = if (try sema.resolveDefinedValue(block, ptr_src, ptr)) |ptr_val| rs: {
const maybe_operand_val = try sema.resolveValue(operand);
const operand_val = maybe_operand_val orelse {
try sema.checkPtrIsNotComptimeMutable(block, ptr_val, ptr_src, operand_src);
break :rs operand_src;
};
if (sema.isComptimeMutablePtr(ptr_val)) {
const ptr_ty = sema.typeOf(ptr);
const stored_val = (try sema.pointerDeref(block, ptr_src, ptr_val, ptr_ty)) orelse break :rs ptr_src;
const new_val = switch (op) {
// zig fmt: off
.Xchg => operand_val,
.Add => try sema.numberAddWrapScalar(stored_val, operand_val, elem_ty),
.Sub => try sema.numberSubWrapScalar(stored_val, operand_val, elem_ty),
.And => try stored_val.bitwiseAnd (operand_val, elem_ty, sema.arena, mod),
.Nand => try stored_val.bitwiseNand (operand_val, elem_ty, sema.arena, mod),
.Or => try stored_val.bitwiseOr (operand_val, elem_ty, sema.arena, mod),
.Xor => try stored_val.bitwiseXor (operand_val, elem_ty, sema.arena, mod),
.Max => stored_val.numberMax (operand_val, mod),
.Min => stored_val.numberMin (operand_val, mod),
// zig fmt: on
};
try sema.storePtrVal(block, src, ptr_val, new_val, elem_ty);
return Air.internedToRef(stored_val.toIntern());
} else break :rs ptr_src;
} else ptr_src;
const flags: u32 = @as(u32, @intFromEnum(order)) | (@as(u32, @intFromEnum(op)) << 3);
try sema.requireRuntimeBlock(block, src, runtime_src);
return block.addInst(.{
.tag = .atomic_rmw,
.data = .{ .pl_op = .{
.operand = ptr,
.payload = try sema.addExtra(Air.AtomicRmw{
.operand = operand,
.flags = flags,
}),
} },
});
}
fn zirAtomicStore(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.AtomicStore, inst_data.payload_index).data;
const src = inst_data.src();
// zig fmt: off
const elem_ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const ptr_src : LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const operand_src : LazySrcLoc = .{ .node_offset_builtin_call_arg2 = inst_data.src_node };
const order_src : LazySrcLoc = .{ .node_offset_builtin_call_arg3 = inst_data.src_node };
// zig fmt: on
const operand = try sema.resolveInst(extra.operand);
const elem_ty = sema.typeOf(operand);
const uncasted_ptr = try sema.resolveInst(extra.ptr);
const ptr = try sema.checkAtomicPtrOperand(block, elem_ty, elem_ty_src, uncasted_ptr, ptr_src, false);
const order = try sema.resolveAtomicOrder(block, order_src, extra.ordering, .{
.needed_comptime_reason = "atomic order of @atomicStore must be comptime-known",
});
const air_tag: Air.Inst.Tag = switch (order) {
.acquire, .acq_rel => {
return sema.fail(
block,
order_src,
"@atomicStore atomic ordering must not be acquire or acq_rel",
.{},
);
},
.unordered => .atomic_store_unordered,
.monotonic => .atomic_store_monotonic,
.release => .atomic_store_release,
.seq_cst => .atomic_store_seq_cst,
};
return sema.storePtr2(block, src, ptr, ptr_src, operand, operand_src, air_tag);
}
fn zirMulAdd(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.MulAdd, inst_data.payload_index).data;
const src = inst_data.src();
const mulend1_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const mulend2_src: LazySrcLoc = .{ .node_offset_builtin_call_arg2 = inst_data.src_node };
const addend_src: LazySrcLoc = .{ .node_offset_builtin_call_arg3 = inst_data.src_node };
const addend = try sema.resolveInst(extra.addend);
const ty = sema.typeOf(addend);
const mulend1 = try sema.coerce(block, ty, try sema.resolveInst(extra.mulend1), mulend1_src);
const mulend2 = try sema.coerce(block, ty, try sema.resolveInst(extra.mulend2), mulend2_src);
const maybe_mulend1 = try sema.resolveValue(mulend1);
const maybe_mulend2 = try sema.resolveValue(mulend2);
const maybe_addend = try sema.resolveValue(addend);
const mod = sema.mod;
switch (ty.scalarType(mod).zigTypeTag(mod)) {
.ComptimeFloat, .Float => {},
else => return sema.fail(block, src, "expected vector of floats or float type, found '{}'", .{ty.fmt(sema.mod)}),
}
const runtime_src = if (maybe_mulend1) |mulend1_val| rs: {
if (maybe_mulend2) |mulend2_val| {
if (mulend2_val.isUndef(mod)) return mod.undefRef(ty);
if (maybe_addend) |addend_val| {
if (addend_val.isUndef(mod)) return mod.undefRef(ty);
const result_val = try Value.mulAdd(ty, mulend1_val, mulend2_val, addend_val, sema.arena, sema.mod);
return Air.internedToRef(result_val.toIntern());
} else {
break :rs addend_src;
}
} else {
if (maybe_addend) |addend_val| {
if (addend_val.isUndef(mod)) return mod.undefRef(ty);
}
break :rs mulend2_src;
}
} else rs: {
if (maybe_mulend2) |mulend2_val| {
if (mulend2_val.isUndef(mod)) return mod.undefRef(ty);
}
if (maybe_addend) |addend_val| {
if (addend_val.isUndef(mod)) return mod.undefRef(ty);
}
break :rs mulend1_src;
};
try sema.requireRuntimeBlock(block, src, runtime_src);
return block.addInst(.{
.tag = .mul_add,
.data = .{ .pl_op = .{
.operand = addend,
.payload = try sema.addExtra(Air.Bin{
.lhs = mulend1,
.rhs = mulend2,
}),
} },
});
}
fn zirBuiltinCall(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const modifier_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const func_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const args_src: LazySrcLoc = .{ .node_offset_builtin_call_arg2 = inst_data.src_node };
const call_src = inst_data.src();
const extra = sema.code.extraData(Zir.Inst.BuiltinCall, inst_data.payload_index).data;
const func = try sema.resolveInst(extra.callee);
const modifier_ty = try sema.getBuiltinType("CallModifier");
const air_ref = try sema.resolveInst(extra.modifier);
const modifier_ref = try sema.coerce(block, modifier_ty, air_ref, modifier_src);
const modifier_val = try sema.resolveConstDefinedValue(block, modifier_src, modifier_ref, .{
.needed_comptime_reason = "call modifier must be comptime-known",
});
var modifier = mod.toEnum(std.builtin.CallModifier, modifier_val);
switch (modifier) {
// These can be upgraded to comptime or nosuspend calls.
.auto, .never_tail, .no_async => {
if (block.is_comptime) {
if (modifier == .never_tail) {
return sema.fail(block, modifier_src, "unable to perform 'never_tail' call at compile-time", .{});
}
modifier = .compile_time;
} else if (extra.flags.is_nosuspend) {
modifier = .no_async;
}
},
// These can be upgraded to comptime. nosuspend bit can be safely ignored.
.always_inline, .compile_time => {
_ = (try sema.resolveDefinedValue(block, func_src, func)) orelse {
return sema.fail(block, func_src, "modifier '{s}' requires a comptime-known function", .{@tagName(modifier)});
};
if (block.is_comptime) {
modifier = .compile_time;
}
},
.always_tail => {
if (block.is_comptime) {
modifier = .compile_time;
}
},
.async_kw => {
if (extra.flags.is_nosuspend) {
return sema.fail(block, modifier_src, "modifier 'async_kw' cannot be used inside nosuspend block", .{});
}
if (block.is_comptime) {
return sema.fail(block, modifier_src, "modifier 'async_kw' cannot be used in combination with comptime function call", .{});
}
},
.never_inline => {
if (block.is_comptime) {
return sema.fail(block, modifier_src, "unable to perform 'never_inline' call at compile-time", .{});
}
},
}
const args = try sema.resolveInst(extra.args);
const args_ty = sema.typeOf(args);
if (!args_ty.isTuple(mod) and args_ty.toIntern() != .empty_struct_type) {
return sema.fail(block, args_src, "expected a tuple, found '{}'", .{args_ty.fmt(sema.mod)});
}
const resolved_args: []Air.Inst.Ref = try sema.arena.alloc(Air.Inst.Ref, args_ty.structFieldCount(mod));
for (resolved_args, 0..) |*resolved, i| {
resolved.* = try sema.tupleFieldValByIndex(block, args_src, args, @intCast(i), args_ty);
}
const callee_ty = sema.typeOf(func);
const func_ty = try sema.checkCallArgumentCount(block, func, func_src, callee_ty, resolved_args.len, false);
const ensure_result_used = extra.flags.ensure_result_used;
return sema.analyzeCall(
block,
func,
func_ty,
func_src,
call_src,
modifier,
ensure_result_used,
.{ .call_builtin = .{
.call_node_offset = inst_data.src_node,
.args = resolved_args,
} },
null,
.@"@call",
);
}
fn zirFieldParentPtr(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
const extra = sema.code.extraData(Zir.Inst.FieldParentPtr, extended.operand).data;
const FlagsInt = @typeInfo(Zir.Inst.FullPtrCastFlags).Struct.backing_integer.?;
const flags: Zir.Inst.FullPtrCastFlags = @bitCast(@as(FlagsInt, @truncate(extended.small)));
assert(!flags.ptr_cast);
const inst_src = extra.src();
const field_name_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.src_node };
const field_ptr_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = extra.src_node };
const parent_ptr_ty = try sema.resolveDestType(block, inst_src, extra.parent_ptr_type, .remove_eu, "@fieldParentPtr");
try sema.checkPtrType(block, inst_src, parent_ptr_ty, true);
const parent_ptr_info = parent_ptr_ty.ptrInfo(mod);
if (parent_ptr_info.flags.size != .One) {
return sema.fail(block, inst_src, "expected single pointer type, found '{}'", .{parent_ptr_ty.fmt(sema.mod)});
}
const parent_ty = Type.fromInterned(parent_ptr_info.child);
switch (parent_ty.zigTypeTag(mod)) {
.Struct, .Union => {},
else => return sema.fail(block, inst_src, "expected pointer to struct or union type, found '{}'", .{parent_ptr_ty.fmt(sema.mod)}),
}
try sema.resolveTypeLayout(parent_ty);
const field_name = try sema.resolveConstStringIntern(block, field_name_src, extra.field_name, .{
.needed_comptime_reason = "field name must be comptime-known",
});
const field_index = switch (parent_ty.zigTypeTag(mod)) {
.Struct => blk: {
if (parent_ty.isTuple(mod)) {
if (ip.stringEqlSlice(field_name, "len")) {
return sema.fail(block, inst_src, "cannot get @fieldParentPtr of 'len' field of tuple", .{});
}
break :blk try sema.tupleFieldIndex(block, parent_ty, field_name, field_name_src);
} else {
break :blk try sema.structFieldIndex(block, parent_ty, field_name, field_name_src);
}
},
.Union => try sema.unionFieldIndex(block, parent_ty, field_name, field_name_src),
else => unreachable,
};
if (parent_ty.zigTypeTag(mod) == .Struct and parent_ty.structFieldIsComptime(field_index, mod)) {
return sema.fail(block, field_name_src, "cannot get @fieldParentPtr of a comptime field", .{});
}
const field_ptr = try sema.resolveInst(extra.field_ptr);
const field_ptr_ty = sema.typeOf(field_ptr);
try sema.checkPtrOperand(block, field_ptr_src, field_ptr_ty);
const field_ptr_info = field_ptr_ty.ptrInfo(mod);
var actual_parent_ptr_info: InternPool.Key.PtrType = .{
.child = parent_ty.toIntern(),
.flags = .{
.alignment = try parent_ptr_ty.ptrAlignmentAdvanced(mod, sema),
.is_const = field_ptr_info.flags.is_const,
.is_volatile = field_ptr_info.flags.is_volatile,
.is_allowzero = field_ptr_info.flags.is_allowzero,
.address_space = field_ptr_info.flags.address_space,
},
.packed_offset = parent_ptr_info.packed_offset,
};
const field_ty = parent_ty.structFieldType(field_index, mod);
var actual_field_ptr_info: InternPool.Key.PtrType = .{
.child = field_ty.toIntern(),
.flags = .{
.alignment = try field_ptr_ty.ptrAlignmentAdvanced(mod, sema),
.is_const = field_ptr_info.flags.is_const,
.is_volatile = field_ptr_info.flags.is_volatile,
.is_allowzero = field_ptr_info.flags.is_allowzero,
.address_space = field_ptr_info.flags.address_space,
},
.packed_offset = field_ptr_info.packed_offset,
};
switch (parent_ty.containerLayout(mod)) {
.auto => {
actual_parent_ptr_info.flags.alignment = actual_field_ptr_info.flags.alignment.minStrict(
if (mod.typeToStruct(parent_ty)) |struct_obj| try sema.structFieldAlignment(
struct_obj.fieldAlign(ip, field_index),
field_ty,
struct_obj.layout,
) else if (mod.typeToUnion(parent_ty)) |union_obj|
try sema.unionFieldAlignment(union_obj, field_index)
else
actual_field_ptr_info.flags.alignment,
);
actual_parent_ptr_info.packed_offset = .{ .bit_offset = 0, .host_size = 0 };
actual_field_ptr_info.packed_offset = .{ .bit_offset = 0, .host_size = 0 };
},
.@"extern" => {
const field_offset = parent_ty.structFieldOffset(field_index, mod);
actual_parent_ptr_info.flags.alignment = actual_field_ptr_info.flags.alignment.minStrict(if (field_offset > 0)
Alignment.fromLog2Units(@ctz(field_offset))
else
actual_field_ptr_info.flags.alignment);
actual_parent_ptr_info.packed_offset = .{ .bit_offset = 0, .host_size = 0 };
actual_field_ptr_info.packed_offset = .{ .bit_offset = 0, .host_size = 0 };
},
.@"packed" => {
const byte_offset = std.math.divExact(u32, @abs(@as(i32, actual_parent_ptr_info.packed_offset.bit_offset) +
(if (mod.typeToStruct(parent_ty)) |struct_obj| mod.structPackedFieldBitOffset(struct_obj, field_index) else 0) -
actual_field_ptr_info.packed_offset.bit_offset), 8) catch
return sema.fail(block, inst_src, "pointer bit-offset mismatch", .{});
actual_parent_ptr_info.flags.alignment = actual_field_ptr_info.flags.alignment.minStrict(if (byte_offset > 0)
Alignment.fromLog2Units(@ctz(byte_offset))
else
actual_field_ptr_info.flags.alignment);
},
}
const actual_field_ptr_ty = try sema.ptrType(actual_field_ptr_info);
const casted_field_ptr = try sema.coerce(block, actual_field_ptr_ty, field_ptr, field_ptr_src);
const actual_parent_ptr_ty = try sema.ptrType(actual_parent_ptr_info);
const result = if (try sema.resolveDefinedValue(block, field_ptr_src, casted_field_ptr)) |field_ptr_val| result: {
const field = switch (ip.indexToKey(field_ptr_val.toIntern())) {
.ptr => |ptr| switch (ptr.addr) {
.field => |field| field,
else => null,
},
else => null,
} orelse return sema.fail(block, field_ptr_src, "pointer value not based on parent struct", .{});
if (field.index != field_index) {
return sema.fail(block, inst_src, "field '{}' has index '{d}' but pointer value is index '{d}' of struct '{}'", .{
field_name.fmt(ip), field_index, field.index, parent_ty.fmt(sema.mod),
});
}
break :result try sema.coerce(block, actual_parent_ptr_ty, Air.internedToRef(field.base), inst_src);
} else result: {
try sema.requireRuntimeBlock(block, inst_src, field_ptr_src);
try sema.queueFullTypeResolution(parent_ty);
break :result try block.addInst(.{
.tag = .field_parent_ptr,
.data = .{ .ty_pl = .{
.ty = Air.internedToRef(actual_parent_ptr_ty.toIntern()),
.payload = try block.sema.addExtra(Air.FieldParentPtr{
.field_ptr = casted_field_ptr,
.field_index = @intCast(field_index),
}),
} },
});
};
return sema.ptrCastFull(block, flags, inst_src, result, inst_src, parent_ptr_ty, "@fieldParentPtr");
}
fn zirMinMax(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
comptime air_tag: Air.Inst.Tag,
) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const src = inst_data.src();
const lhs_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const rhs_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const lhs = try sema.resolveInst(extra.lhs);
const rhs = try sema.resolveInst(extra.rhs);
try sema.checkNumericType(block, lhs_src, sema.typeOf(lhs));
try sema.checkNumericType(block, rhs_src, sema.typeOf(rhs));
return sema.analyzeMinMax(block, src, air_tag, &.{ lhs, rhs }, &.{ lhs_src, rhs_src });
}
fn zirMinMaxMulti(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
comptime air_tag: Air.Inst.Tag,
) CompileError!Air.Inst.Ref {
const extra = sema.code.extraData(Zir.Inst.NodeMultiOp, extended.operand);
const src_node = extra.data.src_node;
const src = LazySrcLoc.nodeOffset(src_node);
const operands = sema.code.refSlice(extra.end, extended.small);
const air_refs = try sema.arena.alloc(Air.Inst.Ref, operands.len);
const operand_srcs = try sema.arena.alloc(LazySrcLoc, operands.len);
for (operands, air_refs, operand_srcs, 0..) |zir_ref, *air_ref, *op_src, i| {
op_src.* = switch (i) {
0 => .{ .node_offset_builtin_call_arg0 = src_node },
1 => .{ .node_offset_builtin_call_arg1 = src_node },
2 => .{ .node_offset_builtin_call_arg2 = src_node },
3 => .{ .node_offset_builtin_call_arg3 = src_node },
4 => .{ .node_offset_builtin_call_arg4 = src_node },
5 => .{ .node_offset_builtin_call_arg5 = src_node },
else => src, // TODO: better source location
};
air_ref.* = try sema.resolveInst(zir_ref);
try sema.checkNumericType(block, op_src.*, sema.typeOf(air_ref.*));
}
return sema.analyzeMinMax(block, src, air_tag, air_refs, operand_srcs);
}
fn analyzeMinMax(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
comptime air_tag: Air.Inst.Tag,
operands: []const Air.Inst.Ref,
operand_srcs: []const LazySrcLoc,
) CompileError!Air.Inst.Ref {
assert(operands.len == operand_srcs.len);
assert(operands.len > 0);
const mod = sema.mod;
if (operands.len == 1) return operands[0];
const opFunc = switch (air_tag) {
.min => Value.numberMin,
.max => Value.numberMax,
else => @compileError("unreachable"),
};
// The set of runtime-known operands. Set up in the loop below.
var runtime_known = try std.DynamicBitSet.initFull(sema.arena, operands.len);
// The current minmax value - initially this will always be comptime-known, then we'll add
// runtime values into the mix later.
var cur_minmax: ?Air.Inst.Ref = null;
var cur_minmax_src: LazySrcLoc = undefined; // defined if cur_minmax not null
// The current known scalar bounds of the value.
var bounds_status: enum {
unknown, // We've only seen undef comptime_ints so far, so do not know the bounds.
defined, // We've seen only integers, so the bounds are defined.
non_integral, // There are floats in the mix, so the bounds aren't defined.
} = .unknown;
var cur_min_scalar: Value = undefined;
var cur_max_scalar: Value = undefined;
// First, find all comptime-known arguments, and get their min/max
for (operands, operand_srcs, 0..) |operand, operand_src, operand_idx| {
// Resolve the value now to avoid redundant calls to `checkSimdBinOp` - we'll have to call
// it in the runtime path anyway since the result type may have been refined
const unresolved_uncoerced_val = try sema.resolveValue(operand) orelse continue;
const uncoerced_val = try sema.resolveLazyValue(unresolved_uncoerced_val);
runtime_known.unset(operand_idx);
switch (bounds_status) {
.unknown, .defined => refine_bounds: {
const ty = sema.typeOf(operand);
if (!ty.scalarType(mod).isInt(mod) and !ty.scalarType(mod).eql(Type.comptime_int, mod)) {
bounds_status = .non_integral;
break :refine_bounds;
}
const scalar_bounds: ?[2]Value = bounds: {
if (!ty.isVector(mod)) break :bounds try uncoerced_val.intValueBounds(mod);
var cur_bounds: [2]Value = try Value.intValueBounds(try uncoerced_val.elemValue(mod, 0), mod) orelse break :bounds null;
const len = try sema.usizeCast(block, src, ty.vectorLen(mod));
for (1..len) |i| {
const elem = try uncoerced_val.elemValue(mod, i);
const elem_bounds = try elem.intValueBounds(mod) orelse break :bounds null;
cur_bounds = .{
Value.numberMin(elem_bounds[0], cur_bounds[0], mod),
Value.numberMax(elem_bounds[1], cur_bounds[1], mod),
};
}
break :bounds cur_bounds;
};
if (scalar_bounds) |bounds| {
if (bounds_status == .unknown) {
cur_min_scalar = bounds[0];
cur_max_scalar = bounds[1];
bounds_status = .defined;
} else {
cur_min_scalar = opFunc(cur_min_scalar, bounds[0], mod);
cur_max_scalar = opFunc(cur_max_scalar, bounds[1], mod);
}
}
},
.non_integral => {},
}
const cur = cur_minmax orelse {
cur_minmax = operand;
cur_minmax_src = operand_src;
continue;
};
const simd_op = try sema.checkSimdBinOp(block, src, cur, operand, cur_minmax_src, operand_src);
const cur_val = try sema.resolveLazyValue(simd_op.lhs_val.?); // cur_minmax is comptime-known
const operand_val = try sema.resolveLazyValue(simd_op.rhs_val.?); // we checked the operand was resolvable above
const vec_len = simd_op.len orelse {
const result_val = opFunc(cur_val, operand_val, mod);
cur_minmax = Air.internedToRef(result_val.toIntern());
continue;
};
const elems = try sema.arena.alloc(InternPool.Index, vec_len);
for (elems, 0..) |*elem, i| {
const lhs_elem_val = try cur_val.elemValue(mod, i);
const rhs_elem_val = try operand_val.elemValue(mod, i);
const uncoerced_elem = opFunc(lhs_elem_val, rhs_elem_val, mod);
elem.* = (try mod.getCoerced(uncoerced_elem, simd_op.scalar_ty)).toIntern();
}
cur_minmax = Air.internedToRef((try mod.intern(.{ .aggregate = .{
.ty = simd_op.result_ty.toIntern(),
.storage = .{ .elems = elems },
} })));
}
const opt_runtime_idx = runtime_known.findFirstSet();
if (cur_minmax) |ct_minmax_ref| refine: {
// Refine the comptime-known result type based on the bounds. This isn't strictly necessary
// in the runtime case, since we'll refine the type again later, but keeping things as small
// as possible will allow us to emit more optimal AIR (if all the runtime operands have
// smaller types than the non-refined comptime type).
const val = (try sema.resolveValue(ct_minmax_ref)).?;
const orig_ty = sema.typeOf(ct_minmax_ref);
if (opt_runtime_idx == null and orig_ty.scalarType(mod).eql(Type.comptime_int, mod)) {
// If all arguments were `comptime_int`, and there are no runtime args, we'll preserve that type
break :refine;
}
// We can't refine float types
if (orig_ty.scalarType(mod).isAnyFloat()) break :refine;
assert(bounds_status == .defined); // there was a non-comptime-int integral comptime-known arg
const refined_scalar_ty = try mod.intFittingRange(cur_min_scalar, cur_max_scalar);
const refined_ty = if (orig_ty.isVector(mod)) try mod.vectorType(.{
.len = orig_ty.vectorLen(mod),
.child = refined_scalar_ty.toIntern(),
}) else refined_scalar_ty;
// Apply the refined type to the current value
if (std.debug.runtime_safety) {
assert(try sema.intFitsInType(val, refined_ty, null));
}
cur_minmax = try sema.coerceInMemory(val, refined_ty);
}
const runtime_idx = opt_runtime_idx orelse return cur_minmax.?;
const runtime_src = operand_srcs[runtime_idx];
try sema.requireRuntimeBlock(block, src, runtime_src);
// Now, iterate over runtime operands, emitting a min/max instruction for each. We'll refine the
// type again at the end, based on the comptime-known bound.
// If the comptime-known part is undef we can avoid emitting actual instructions later
const known_undef = if (cur_minmax) |operand| blk: {
const val = (try sema.resolveValue(operand)).?;
break :blk val.isUndef(mod);
} else false;
if (cur_minmax == null) {
// No comptime operands - use the first operand as the starting value
assert(bounds_status == .unknown);
assert(runtime_idx == 0);
cur_minmax = operands[0];
cur_minmax_src = runtime_src;
runtime_known.unset(0); // don't look at this operand in the loop below
const scalar_ty = sema.typeOf(cur_minmax.?).scalarType(mod);
if (scalar_ty.isInt(mod)) {
cur_min_scalar = try scalar_ty.minInt(mod, scalar_ty);
cur_max_scalar = try scalar_ty.maxInt(mod, scalar_ty);
bounds_status = .defined;
} else {
bounds_status = .non_integral;
}
}
var it = runtime_known.iterator(.{});
while (it.next()) |idx| {
const lhs = cur_minmax.?;
const lhs_src = cur_minmax_src;
const rhs = operands[idx];
const rhs_src = operand_srcs[idx];
const simd_op = try sema.checkSimdBinOp(block, src, lhs, rhs, lhs_src, rhs_src);
if (known_undef) {
cur_minmax = try mod.undefRef(simd_op.result_ty);
} else {
cur_minmax = try block.addBinOp(air_tag, simd_op.lhs, simd_op.rhs);
}
// Compute the bounds of this type
switch (bounds_status) {
.unknown, .defined => refine_bounds: {
const scalar_ty = sema.typeOf(rhs).scalarType(mod);
if (scalar_ty.isAnyFloat()) {
bounds_status = .non_integral;
break :refine_bounds;
}
const scalar_min = try scalar_ty.minInt(mod, scalar_ty);
const scalar_max = try scalar_ty.maxInt(mod, scalar_ty);
if (bounds_status == .unknown) {
cur_min_scalar = scalar_min;
cur_max_scalar = scalar_max;
bounds_status = .defined;
} else {
cur_min_scalar = opFunc(cur_min_scalar, scalar_min, mod);
cur_max_scalar = opFunc(cur_max_scalar, scalar_max, mod);
}
},
.non_integral => {},
}
}
// Finally, refine the type based on the known bounds.
const unrefined_ty = sema.typeOf(cur_minmax.?);
if (unrefined_ty.scalarType(mod).isAnyFloat()) {
// We can't refine floats, so we're done.
return cur_minmax.?;
}
assert(bounds_status == .defined); // there were integral runtime operands
const refined_scalar_ty = try mod.intFittingRange(cur_min_scalar, cur_max_scalar);
const refined_ty = if (unrefined_ty.isVector(mod)) try mod.vectorType(.{
.len = unrefined_ty.vectorLen(mod),
.child = refined_scalar_ty.toIntern(),
}) else refined_scalar_ty;
if (!refined_ty.eql(unrefined_ty, mod)) {
// We've reduced the type - cast the result down
return block.addTyOp(.intcast, refined_ty, cur_minmax.?);
}
return cur_minmax.?;
}
fn upgradeToArrayPtr(sema: *Sema, block: *Block, ptr: Air.Inst.Ref, len: u64) !Air.Inst.Ref {
const mod = sema.mod;
const ptr_ty = sema.typeOf(ptr);
const info = ptr_ty.ptrInfo(mod);
if (info.flags.size == .One) {
// Already an array pointer.
return ptr;
}
const new_ty = try sema.ptrType(.{
.child = (try mod.arrayType(.{
.len = len,
.sentinel = info.sentinel,
.child = info.child,
})).toIntern(),
.flags = .{
.alignment = info.flags.alignment,
.is_const = info.flags.is_const,
.is_volatile = info.flags.is_volatile,
.is_allowzero = info.flags.is_allowzero,
.address_space = info.flags.address_space,
},
});
const non_slice_ptr = if (info.flags.size == .Slice)
try block.addTyOp(.slice_ptr, ptr_ty.slicePtrFieldType(mod), ptr)
else
ptr;
return block.addBitCast(new_ty, non_slice_ptr);
}
fn zirMemcpy(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const src = inst_data.src();
const dest_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const src_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const dest_ptr = try sema.resolveInst(extra.lhs);
const src_ptr = try sema.resolveInst(extra.rhs);
const dest_ty = sema.typeOf(dest_ptr);
const src_ty = sema.typeOf(src_ptr);
const dest_len = try indexablePtrLenOrNone(sema, block, dest_src, dest_ptr);
const src_len = try indexablePtrLenOrNone(sema, block, src_src, src_ptr);
const target = sema.mod.getTarget();
const mod = sema.mod;
if (dest_ty.isConstPtr(mod)) {
return sema.fail(block, dest_src, "cannot memcpy to constant pointer", .{});
}
if (dest_len == .none and src_len == .none) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "unknown @memcpy length", .{});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, dest_src, msg, "destination type '{}' provides no length", .{
dest_ty.fmt(sema.mod),
});
try sema.errNote(block, src_src, msg, "source type '{}' provides no length", .{
src_ty.fmt(sema.mod),
});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
var len_val: ?Value = null;
if (dest_len != .none and src_len != .none) check: {
// If we can check at compile-time, no need for runtime safety.
if (try sema.resolveDefinedValue(block, dest_src, dest_len)) |dest_len_val| {
len_val = dest_len_val;
if (try sema.resolveDefinedValue(block, src_src, src_len)) |src_len_val| {
if (!(try sema.valuesEqual(dest_len_val, src_len_val, Type.usize))) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "non-matching @memcpy lengths", .{});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, dest_src, msg, "length {} here", .{
dest_len_val.fmtValue(sema.mod),
});
try sema.errNote(block, src_src, msg, "length {} here", .{
src_len_val.fmtValue(sema.mod),
});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
break :check;
}
} else if (try sema.resolveDefinedValue(block, src_src, src_len)) |src_len_val| {
len_val = src_len_val;
}
if (block.wantSafety()) {
const ok = try block.addBinOp(.cmp_eq, dest_len, src_len);
try sema.addSafetyCheck(block, src, ok, .memcpy_len_mismatch);
}
} else if (dest_len != .none) {
if (try sema.resolveDefinedValue(block, dest_src, dest_len)) |dest_len_val| {
len_val = dest_len_val;
}
} else if (src_len != .none) {
if (try sema.resolveDefinedValue(block, src_src, src_len)) |src_len_val| {
len_val = src_len_val;
}
}
const runtime_src = if (try sema.resolveDefinedValue(block, dest_src, dest_ptr)) |dest_ptr_val| rs: {
if (!sema.isComptimeMutablePtr(dest_ptr_val)) break :rs dest_src;
if (try sema.resolveDefinedValue(block, src_src, src_ptr)) |_| {
const len_u64 = (try len_val.?.getUnsignedIntAdvanced(mod, sema)).?;
const len = try sema.usizeCast(block, dest_src, len_u64);
for (0..len) |i| {
const elem_index = try mod.intRef(Type.usize, i);
const dest_elem_ptr = try sema.elemPtrOneLayerOnly(
block,
src,
dest_ptr,
elem_index,
src,
true, // init
false, // oob_safety
);
const src_elem_ptr = try sema.elemPtrOneLayerOnly(
block,
src,
src_ptr,
elem_index,
src,
false, // init
false, // oob_safety
);
const uncoerced_elem = try sema.analyzeLoad(block, src, src_elem_ptr, src_src);
try sema.storePtr2(
block,
src,
dest_elem_ptr,
dest_src,
uncoerced_elem,
src_src,
.store,
);
}
return;
} else break :rs src_src;
} else dest_src;
// If in-memory coercion is not allowed, explode this memcpy call into a
// for loop that copies element-wise.
// Likewise if this is an iterable rather than a pointer, do the same
// lowering. The AIR instruction requires pointers with element types of
// equal ABI size.
if (dest_ty.zigTypeTag(mod) != .Pointer or src_ty.zigTypeTag(mod) != .Pointer) {
return sema.fail(block, src, "TODO: lower @memcpy to a for loop because the source or destination iterable is a tuple", .{});
}
const dest_elem_ty = dest_ty.elemType2(mod);
const src_elem_ty = src_ty.elemType2(mod);
if (.ok != try sema.coerceInMemoryAllowed(block, dest_elem_ty, src_elem_ty, true, target, dest_src, src_src)) {
return sema.fail(block, src, "TODO: lower @memcpy to a for loop because the element types have different ABI sizes", .{});
}
// If the length is comptime-known, then upgrade src and destination types
// into pointer-to-array. At this point we know they are both pointers
// already.
var new_dest_ptr = dest_ptr;
var new_src_ptr = src_ptr;
if (len_val) |val| {
const len = try val.toUnsignedIntAdvanced(sema);
if (len == 0) {
// This AIR instruction guarantees length > 0 if it is comptime-known.
return;
}
new_dest_ptr = try upgradeToArrayPtr(sema, block, dest_ptr, len);
new_src_ptr = try upgradeToArrayPtr(sema, block, src_ptr, len);
}
if (dest_len != .none) {
// Change the src from slice to a many pointer, to avoid multiple ptr
// slice extractions in AIR instructions.
const new_src_ptr_ty = sema.typeOf(new_src_ptr);
if (new_src_ptr_ty.isSlice(mod)) {
new_src_ptr = try sema.analyzeSlicePtr(block, src_src, new_src_ptr, new_src_ptr_ty);
}
} else if (dest_len == .none and len_val == null) {
// Change the dest to a slice, since its type must have the length.
const dest_ptr_ptr = try sema.analyzeRef(block, dest_src, new_dest_ptr);
new_dest_ptr = try sema.analyzeSlice(block, dest_src, dest_ptr_ptr, .zero, src_len, .none, .unneeded, dest_src, dest_src, dest_src, false);
const new_src_ptr_ty = sema.typeOf(new_src_ptr);
if (new_src_ptr_ty.isSlice(mod)) {
new_src_ptr = try sema.analyzeSlicePtr(block, src_src, new_src_ptr, new_src_ptr_ty);
}
}
try sema.requireRuntimeBlock(block, src, runtime_src);
// Aliasing safety check.
if (block.wantSafety()) {
const len = if (len_val) |v|
Air.internedToRef(v.toIntern())
else if (dest_len != .none)
dest_len
else
src_len;
// Extract raw pointer from dest slice. The AIR instructions could support them, but
// it would cause redundant machine code instructions.
const new_dest_ptr_ty = sema.typeOf(new_dest_ptr);
const raw_dest_ptr = if (new_dest_ptr_ty.isSlice(mod))
try sema.analyzeSlicePtr(block, dest_src, new_dest_ptr, new_dest_ptr_ty)
else if (new_dest_ptr_ty.ptrSize(mod) == .One) ptr: {
var dest_manyptr_ty_key = mod.intern_pool.indexToKey(new_dest_ptr_ty.toIntern()).ptr_type;
assert(dest_manyptr_ty_key.flags.size == .One);
dest_manyptr_ty_key.child = dest_elem_ty.toIntern();
dest_manyptr_ty_key.flags.size = .Many;
break :ptr try sema.coerceCompatiblePtrs(block, try sema.ptrType(dest_manyptr_ty_key), new_dest_ptr, dest_src);
} else new_dest_ptr;
const new_src_ptr_ty = sema.typeOf(new_src_ptr);
const raw_src_ptr = if (new_src_ptr_ty.isSlice(mod))
try sema.analyzeSlicePtr(block, src_src, new_src_ptr, new_src_ptr_ty)
else if (new_src_ptr_ty.ptrSize(mod) == .One) ptr: {
var src_manyptr_ty_key = mod.intern_pool.indexToKey(new_src_ptr_ty.toIntern()).ptr_type;
assert(src_manyptr_ty_key.flags.size == .One);
src_manyptr_ty_key.child = src_elem_ty.toIntern();
src_manyptr_ty_key.flags.size = .Many;
break :ptr try sema.coerceCompatiblePtrs(block, try sema.ptrType(src_manyptr_ty_key), new_src_ptr, src_src);
} else new_src_ptr;
// ok1: dest >= src + len
// ok2: src >= dest + len
const src_plus_len = try sema.analyzePtrArithmetic(block, src, raw_src_ptr, len, .ptr_add, src_src, src);
const dest_plus_len = try sema.analyzePtrArithmetic(block, src, raw_dest_ptr, len, .ptr_add, dest_src, src);
const ok1 = try block.addBinOp(.cmp_gte, raw_dest_ptr, src_plus_len);
const ok2 = try block.addBinOp(.cmp_gte, new_src_ptr, dest_plus_len);
const ok = try block.addBinOp(.bool_or, ok1, ok2);
try sema.addSafetyCheck(block, src, ok, .memcpy_alias);
}
_ = try block.addInst(.{
.tag = .memcpy,
.data = .{ .bin_op = .{
.lhs = new_dest_ptr,
.rhs = new_src_ptr,
} },
});
}
fn zirMemset(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const src = inst_data.src();
const dest_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const value_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const dest_ptr = try sema.resolveInst(extra.lhs);
const uncoerced_elem = try sema.resolveInst(extra.rhs);
const dest_ptr_ty = sema.typeOf(dest_ptr);
try checkMemOperand(sema, block, dest_src, dest_ptr_ty);
if (dest_ptr_ty.isConstPtr(mod)) {
return sema.fail(block, dest_src, "cannot memset constant pointer", .{});
}
const dest_elem_ty: Type = dest_elem_ty: {
const ptr_info = dest_ptr_ty.ptrInfo(mod);
switch (ptr_info.flags.size) {
.Slice => break :dest_elem_ty Type.fromInterned(ptr_info.child),
.One => {
if (Type.fromInterned(ptr_info.child).zigTypeTag(mod) == .Array) {
break :dest_elem_ty Type.fromInterned(ptr_info.child).childType(mod);
}
},
.Many, .C => {},
}
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, src, "unknown @memset length", .{});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, dest_src, msg, "destination type '{}' provides no length", .{
dest_ptr_ty.fmt(mod),
});
break :msg msg;
});
};
const elem = try sema.coerce(block, dest_elem_ty, uncoerced_elem, value_src);
const runtime_src = rs: {
const ptr_val = try sema.resolveDefinedValue(block, dest_src, dest_ptr) orelse break :rs dest_src;
const len_air_ref = try sema.fieldVal(block, src, dest_ptr, try ip.getOrPutString(gpa, "len"), dest_src);
const len_val = (try sema.resolveDefinedValue(block, dest_src, len_air_ref)) orelse break :rs dest_src;
const len_u64 = (try len_val.getUnsignedIntAdvanced(mod, sema)).?;
const len = try sema.usizeCast(block, dest_src, len_u64);
if (len == 0) {
// This AIR instruction guarantees length > 0 if it is comptime-known.
return;
}
if (!sema.isComptimeMutablePtr(ptr_val)) break :rs dest_src;
const elem_val = try sema.resolveValue(elem) orelse break :rs value_src;
const array_ty = try mod.arrayType(.{
.child = dest_elem_ty.toIntern(),
.len = len_u64,
});
const array_val = Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = array_ty.toIntern(),
.storage = .{ .repeated_elem = elem_val.toIntern() },
} })));
const array_ptr_ty = ty: {
var info = dest_ptr_ty.ptrInfo(mod);
info.flags.size = .One;
info.child = array_ty.toIntern();
break :ty try mod.ptrType(info);
};
const raw_ptr_val = if (dest_ptr_ty.isSlice(mod)) ptr_val.slicePtr(mod) else ptr_val;
const array_ptr_val = try mod.getCoerced(raw_ptr_val, array_ptr_ty);
return sema.storePtrVal(block, src, array_ptr_val, array_val, array_ty);
};
try sema.requireRuntimeBlock(block, src, runtime_src);
_ = try block.addInst(.{
.tag = if (block.wantSafety()) .memset_safe else .memset,
.data = .{ .bin_op = .{
.lhs = dest_ptr,
.rhs = elem,
} },
});
}
fn zirBuiltinAsyncCall(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
const src = LazySrcLoc.nodeOffset(extra.node);
return sema.failWithUseOfAsync(block, src);
}
fn zirResume(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
return sema.failWithUseOfAsync(block, src);
}
fn zirAwait(
sema: *Sema,
block: *Block,
inst: Zir.Inst.Index,
) CompileError!Air.Inst.Ref {
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
const src = inst_data.src();
return sema.failWithUseOfAsync(block, src);
}
fn zirAwaitNosuspend(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
) CompileError!Air.Inst.Ref {
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
const src = LazySrcLoc.nodeOffset(extra.node);
return sema.failWithUseOfAsync(block, src);
}
fn zirVarExtended(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const extra = sema.code.extraData(Zir.Inst.ExtendedVar, extended.operand);
const ty_src: LazySrcLoc = .{ .node_offset_var_decl_ty = 0 };
const init_src: LazySrcLoc = .{ .node_offset_var_decl_init = 0 };
const small: Zir.Inst.ExtendedVar.Small = @bitCast(extended.small);
var extra_index: usize = extra.end;
const lib_name = if (small.has_lib_name) lib_name: {
const lib_name_index: Zir.NullTerminatedString = @enumFromInt(sema.code.extra[extra_index]);
const lib_name = sema.code.nullTerminatedString(lib_name_index);
extra_index += 1;
try sema.handleExternLibName(block, ty_src, lib_name);
break :lib_name lib_name;
} else null;
// ZIR supports encoding this information but it is not used; the information
// is encoded via the Decl entry.
assert(!small.has_align);
const uncasted_init: Air.Inst.Ref = if (small.has_init) blk: {
const init_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
extra_index += 1;
break :blk try sema.resolveInst(init_ref);
} else .none;
const have_ty = extra.data.var_type != .none;
const var_ty = if (have_ty)
try sema.resolveType(block, ty_src, extra.data.var_type)
else
sema.typeOf(uncasted_init);
const init_val = if (uncasted_init != .none) blk: {
const init = if (have_ty)
try sema.coerce(block, var_ty, uncasted_init, init_src)
else
uncasted_init;
break :blk ((try sema.resolveValue(init)) orelse {
return sema.failWithNeededComptime(block, init_src, .{
.needed_comptime_reason = "container level variable initializers must be comptime-known",
});
}).toIntern();
} else .none;
try sema.validateVarType(block, ty_src, var_ty, small.is_extern);
return Air.internedToRef((try mod.intern(.{ .variable = .{
.ty = var_ty.toIntern(),
.init = init_val,
.decl = sema.owner_decl_index,
.lib_name = try mod.intern_pool.getOrPutStringOpt(sema.gpa, lib_name),
.is_extern = small.is_extern,
.is_const = small.is_const,
.is_threadlocal = small.is_threadlocal,
.is_weak_linkage = false,
} })));
}
fn zirFuncFancy(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const mod = sema.mod;
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
const extra = sema.code.extraData(Zir.Inst.FuncFancy, inst_data.payload_index);
const target = mod.getTarget();
const align_src: LazySrcLoc = .{ .node_offset_fn_type_align = inst_data.src_node };
const addrspace_src: LazySrcLoc = .{ .node_offset_fn_type_addrspace = inst_data.src_node };
const section_src: LazySrcLoc = .{ .node_offset_fn_type_section = inst_data.src_node };
const cc_src: LazySrcLoc = .{ .node_offset_fn_type_cc = inst_data.src_node };
const ret_src: LazySrcLoc = .{ .node_offset_fn_type_ret_ty = inst_data.src_node };
const has_body = extra.data.body_len != 0;
var extra_index: usize = extra.end;
const lib_name: ?[]const u8 = if (extra.data.bits.has_lib_name) blk: {
const lib_name_index: Zir.NullTerminatedString = @enumFromInt(sema.code.extra[extra_index]);
const lib_name = sema.code.nullTerminatedString(lib_name_index);
extra_index += 1;
break :blk lib_name;
} else null;
if (has_body and
(extra.data.bits.has_align_body or extra.data.bits.has_align_ref) and
!target_util.supportsFunctionAlignment(target))
{
return sema.fail(block, align_src, "target does not support function alignment", .{});
}
const @"align": ?Alignment = if (extra.data.bits.has_align_body) blk: {
const body_len = sema.code.extra[extra_index];
extra_index += 1;
const body = sema.code.bodySlice(extra_index, body_len);
extra_index += body.len;
const val = try sema.resolveGenericBody(block, align_src, body, inst, Type.u29, .{
.needed_comptime_reason = "alignment must be comptime-known",
});
if (val.isGenericPoison()) {
break :blk null;
}
const alignment = try sema.validateAlignAllowZero(block, align_src, try val.toUnsignedIntAdvanced(sema));
const default = target_util.defaultFunctionAlignment(target);
break :blk if (alignment == default) .none else alignment;
} else if (extra.data.bits.has_align_ref) blk: {
const align_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
extra_index += 1;
const uncoerced_align = sema.resolveInst(align_ref) catch |err| switch (err) {
error.GenericPoison => break :blk null,
else => |e| return e,
};
const coerced_align = sema.coerce(block, Type.u29, uncoerced_align, align_src) catch |err| switch (err) {
error.GenericPoison => break :blk null,
else => |e| return e,
};
const align_val = sema.resolveConstDefinedValue(block, align_src, coerced_align, .{
.needed_comptime_reason = "alignment must be comptime-known",
}) catch |err| switch (err) {
error.GenericPoison => break :blk null,
else => |e| return e,
};
const alignment = try sema.validateAlignAllowZero(block, align_src, try align_val.toUnsignedIntAdvanced(sema));
const default = target_util.defaultFunctionAlignment(target);
break :blk if (alignment == default) .none else alignment;
} else .none;
const @"addrspace": ?std.builtin.AddressSpace = if (extra.data.bits.has_addrspace_body) blk: {
const body_len = sema.code.extra[extra_index];
extra_index += 1;
const body = sema.code.bodySlice(extra_index, body_len);
extra_index += body.len;
const addrspace_ty = Type.fromInterned(.address_space_type);
const val = try sema.resolveGenericBody(block, addrspace_src, body, inst, addrspace_ty, .{
.needed_comptime_reason = "addrspace must be comptime-known",
});
if (val.isGenericPoison()) {
break :blk null;
}
break :blk mod.toEnum(std.builtin.AddressSpace, val);
} else if (extra.data.bits.has_addrspace_ref) blk: {
const addrspace_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
extra_index += 1;
const addrspace_ty = Type.fromInterned(.address_space_type);
const uncoerced_addrspace = sema.resolveInst(addrspace_ref) catch |err| switch (err) {
error.GenericPoison => break :blk null,
else => |e| return e,
};
const coerced_addrspace = sema.coerce(block, addrspace_ty, uncoerced_addrspace, addrspace_src) catch |err| switch (err) {
error.GenericPoison => break :blk null,
else => |e| return e,
};
const addrspace_val = sema.resolveConstDefinedValue(block, addrspace_src, coerced_addrspace, .{
.needed_comptime_reason = "addrspace must be comptime-known",
}) catch |err| switch (err) {
error.GenericPoison => break :blk null,
else => |e| return e,
};
break :blk mod.toEnum(std.builtin.AddressSpace, addrspace_val);
} else target_util.defaultAddressSpace(target, .function);
const section: Section = if (extra.data.bits.has_section_body) blk: {
const body_len = sema.code.extra[extra_index];
extra_index += 1;
const body = sema.code.bodySlice(extra_index, body_len);
extra_index += body.len;
const ty = Type.slice_const_u8;
const val = try sema.resolveGenericBody(block, section_src, body, inst, ty, .{
.needed_comptime_reason = "linksection must be comptime-known",
});
if (val.isGenericPoison()) {
break :blk .generic;
}
break :blk .{ .explicit = try sema.sliceToIpString(block, section_src, val, .{
.needed_comptime_reason = "linksection must be comptime-known",
}) };
} else if (extra.data.bits.has_section_ref) blk: {
const section_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
extra_index += 1;
const section_name = sema.resolveConstStringIntern(block, section_src, section_ref, .{
.needed_comptime_reason = "linksection must be comptime-known",
}) catch |err| switch (err) {
error.GenericPoison => {
break :blk .generic;
},
else => |e| return e,
};
break :blk .{ .explicit = section_name };
} else .default;
const cc: ?std.builtin.CallingConvention = if (extra.data.bits.has_cc_body) blk: {
const body_len = sema.code.extra[extra_index];
extra_index += 1;
const body = sema.code.bodySlice(extra_index, body_len);
extra_index += body.len;
const cc_ty = try sema.getBuiltinType("CallingConvention");
const val = try sema.resolveGenericBody(block, cc_src, body, inst, cc_ty, .{
.needed_comptime_reason = "calling convention must be comptime-known",
});
if (val.isGenericPoison()) {
break :blk null;
}
break :blk mod.toEnum(std.builtin.CallingConvention, val);
} else if (extra.data.bits.has_cc_ref) blk: {
const cc_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
extra_index += 1;
const cc_ty = Type.fromInterned(.calling_convention_type);
const uncoerced_cc = sema.resolveInst(cc_ref) catch |err| switch (err) {
error.GenericPoison => break :blk null,
else => |e| return e,
};
const coerced_cc = sema.coerce(block, cc_ty, uncoerced_cc, cc_src) catch |err| switch (err) {
error.GenericPoison => break :blk null,
else => |e| return e,
};
const cc_val = sema.resolveConstDefinedValue(block, cc_src, coerced_cc, .{
.needed_comptime_reason = "calling convention must be comptime-known",
}) catch |err| switch (err) {
error.GenericPoison => break :blk null,
else => |e| return e,
};
break :blk mod.toEnum(std.builtin.CallingConvention, cc_val);
} else if (sema.owner_decl.is_exported and has_body)
.C
else
.Unspecified;
const ret_ty: Type = if (extra.data.bits.has_ret_ty_body) blk: {
const body_len = sema.code.extra[extra_index];
extra_index += 1;
const body = sema.code.bodySlice(extra_index, body_len);
extra_index += body.len;
const val = try sema.resolveGenericBody(block, ret_src, body, inst, Type.type, .{
.needed_comptime_reason = "return type must be comptime-known",
});
const ty = val.toType();
break :blk ty;
} else if (extra.data.bits.has_ret_ty_ref) blk: {
const ret_ty_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
extra_index += 1;
const ret_ty_val = sema.resolveInstConst(block, ret_src, ret_ty_ref, .{
.needed_comptime_reason = "return type must be comptime-known",
}) catch |err| switch (err) {
error.GenericPoison => {
break :blk Type.generic_poison;
},
else => |e| return e,
};
break :blk ret_ty_val.toType();
} else Type.void;
const noalias_bits: u32 = if (extra.data.bits.has_any_noalias) blk: {
const x = sema.code.extra[extra_index];
extra_index += 1;
break :blk x;
} else 0;
var src_locs: Zir.Inst.Func.SrcLocs = undefined;
if (has_body) {
extra_index += extra.data.body_len;
src_locs = sema.code.extraData(Zir.Inst.Func.SrcLocs, extra_index).data;
}
const is_var_args = extra.data.bits.is_var_args;
const is_inferred_error = extra.data.bits.is_inferred_error;
const is_extern = extra.data.bits.is_extern;
const is_noinline = extra.data.bits.is_noinline;
return sema.funcCommon(
block,
inst_data.src_node,
inst,
@"align",
@"addrspace",
section,
cc,
ret_ty,
is_var_args,
is_inferred_error,
is_extern,
has_body,
src_locs,
lib_name,
noalias_bits,
is_noinline,
);
}
fn zirCUndef(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
) CompileError!Air.Inst.Ref {
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
const src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const name = try sema.resolveConstString(block, src, extra.operand, .{
.needed_comptime_reason = "name of macro being undefined must be comptime-known",
});
try block.c_import_buf.?.writer().print("#undef {s}\n", .{name});
return .void_value;
}
fn zirCInclude(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
) CompileError!Air.Inst.Ref {
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
const src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const name = try sema.resolveConstString(block, src, extra.operand, .{
.needed_comptime_reason = "path being included must be comptime-known",
});
try block.c_import_buf.?.writer().print("#include <{s}>\n", .{name});
return .void_value;
}
fn zirCDefine(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data;
const name_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const val_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = extra.node };
const name = try sema.resolveConstString(block, name_src, extra.lhs, .{
.needed_comptime_reason = "name of macro being undefined must be comptime-known",
});
const rhs = try sema.resolveInst(extra.rhs);
if (sema.typeOf(rhs).zigTypeTag(mod) != .Void) {
const value = try sema.resolveConstString(block, val_src, extra.rhs, .{
.needed_comptime_reason = "value of macro being undefined must be comptime-known",
});
try block.c_import_buf.?.writer().print("#define {s} {s}\n", .{ name, value });
} else {
try block.c_import_buf.?.writer().print("#define {s}\n", .{name});
}
return .void_value;
}
fn zirWasmMemorySize(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
) CompileError!Air.Inst.Ref {
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
const index_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const builtin_src = LazySrcLoc.nodeOffset(extra.node);
const target = sema.mod.getTarget();
if (!target.isWasm()) {
return sema.fail(block, builtin_src, "builtin @wasmMemorySize is available when targeting WebAssembly; targeted CPU architecture is {s}", .{@tagName(target.cpu.arch)});
}
const index: u32 = @intCast(try sema.resolveInt(block, index_src, extra.operand, Type.u32, .{
.needed_comptime_reason = "wasm memory size index must be comptime-known",
}));
try sema.requireRuntimeBlock(block, builtin_src, null);
return block.addInst(.{
.tag = .wasm_memory_size,
.data = .{ .pl_op = .{
.operand = .none,
.payload = index,
} },
});
}
fn zirWasmMemoryGrow(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
) CompileError!Air.Inst.Ref {
const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data;
const builtin_src = LazySrcLoc.nodeOffset(extra.node);
const index_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const delta_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = extra.node };
const target = sema.mod.getTarget();
if (!target.isWasm()) {
return sema.fail(block, builtin_src, "builtin @wasmMemoryGrow is available when targeting WebAssembly; targeted CPU architecture is {s}", .{@tagName(target.cpu.arch)});
}
const index: u32 = @intCast(try sema.resolveInt(block, index_src, extra.lhs, Type.u32, .{
.needed_comptime_reason = "wasm memory size index must be comptime-known",
}));
const delta = try sema.coerce(block, Type.u32, try sema.resolveInst(extra.rhs), delta_src);
try sema.requireRuntimeBlock(block, builtin_src, null);
return block.addInst(.{
.tag = .wasm_memory_grow,
.data = .{ .pl_op = .{
.operand = delta,
.payload = index,
} },
});
}
fn resolvePrefetchOptions(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
zir_ref: Zir.Inst.Ref,
) CompileError!std.builtin.PrefetchOptions {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const options_ty = try sema.getBuiltinType("PrefetchOptions");
const options = try sema.coerce(block, options_ty, try sema.resolveInst(zir_ref), src);
const rw_src = sema.maybeOptionsSrc(block, src, "rw");
const locality_src = sema.maybeOptionsSrc(block, src, "locality");
const cache_src = sema.maybeOptionsSrc(block, src, "cache");
const rw = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "rw"), rw_src);
const rw_val = try sema.resolveConstDefinedValue(block, rw_src, rw, .{
.needed_comptime_reason = "prefetch read/write must be comptime-known",
});
const locality = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "locality"), locality_src);
const locality_val = try sema.resolveConstDefinedValue(block, locality_src, locality, .{
.needed_comptime_reason = "prefetch locality must be comptime-known",
});
const cache = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "cache"), cache_src);
const cache_val = try sema.resolveConstDefinedValue(block, cache_src, cache, .{
.needed_comptime_reason = "prefetch cache must be comptime-known",
});
return std.builtin.PrefetchOptions{
.rw = mod.toEnum(std.builtin.PrefetchOptions.Rw, rw_val),
.locality = @intCast(try locality_val.toUnsignedIntAdvanced(sema)),
.cache = mod.toEnum(std.builtin.PrefetchOptions.Cache, cache_val),
};
}
fn zirPrefetch(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
) CompileError!Air.Inst.Ref {
const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data;
const ptr_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const opts_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = extra.node };
const ptr = try sema.resolveInst(extra.lhs);
try sema.checkPtrOperand(block, ptr_src, sema.typeOf(ptr));
const options = sema.resolvePrefetchOptions(block, .unneeded, extra.rhs) catch |err| switch (err) {
error.NeededSourceLocation => {
_ = try sema.resolvePrefetchOptions(block, opts_src, extra.rhs);
unreachable;
},
else => |e| return e,
};
if (!block.is_comptime) {
_ = try block.addInst(.{
.tag = .prefetch,
.data = .{ .prefetch = .{
.ptr = ptr,
.rw = options.rw,
.locality = options.locality,
.cache = options.cache,
} },
});
}
return .void_value;
}
fn resolveExternOptions(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
zir_ref: Zir.Inst.Ref,
) CompileError!struct {
name: InternPool.NullTerminatedString,
library_name: InternPool.OptionalNullTerminatedString = .none,
linkage: std.builtin.GlobalLinkage = .strong,
is_thread_local: bool = false,
} {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const options_inst = try sema.resolveInst(zir_ref);
const extern_options_ty = try sema.getBuiltinType("ExternOptions");
const options = try sema.coerce(block, extern_options_ty, options_inst, src);
const name_src = sema.maybeOptionsSrc(block, src, "name");
const library_src = sema.maybeOptionsSrc(block, src, "library");
const linkage_src = sema.maybeOptionsSrc(block, src, "linkage");
const thread_local_src = sema.maybeOptionsSrc(block, src, "thread_local");
const name_ref = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "name"), name_src);
const name = try sema.toConstString(block, name_src, name_ref, .{
.needed_comptime_reason = "name of the extern symbol must be comptime-known",
});
const library_name_inst = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "library_name"), library_src);
const library_name_val = try sema.resolveConstDefinedValue(block, library_src, library_name_inst, .{
.needed_comptime_reason = "library in which extern symbol is must be comptime-known",
});
const linkage_ref = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "linkage"), linkage_src);
const linkage_val = try sema.resolveConstDefinedValue(block, linkage_src, linkage_ref, .{
.needed_comptime_reason = "linkage of the extern symbol must be comptime-known",
});
const linkage = mod.toEnum(std.builtin.GlobalLinkage, linkage_val);
const is_thread_local = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "is_thread_local"), thread_local_src);
const is_thread_local_val = try sema.resolveConstDefinedValue(block, thread_local_src, is_thread_local, .{
.needed_comptime_reason = "threadlocality of the extern symbol must be comptime-known",
});
const library_name = if (library_name_val.optionalValue(mod)) |library_name_payload| library_name: {
const library_name = try sema.toConstString(block, library_src, Air.internedToRef(library_name_payload.toIntern()), .{
.needed_comptime_reason = "library in which extern symbol is must be comptime-known",
});
if (library_name.len == 0) {
return sema.fail(block, library_src, "library name cannot be empty", .{});
}
try sema.handleExternLibName(block, library_src, library_name);
break :library_name library_name;
} else null;
if (name.len == 0) {
return sema.fail(block, name_src, "extern symbol name cannot be empty", .{});
}
if (linkage != .weak and linkage != .strong) {
return sema.fail(block, linkage_src, "extern symbol must use strong or weak linkage", .{});
}
return .{
.name = try ip.getOrPutString(gpa, name),
.library_name = try ip.getOrPutStringOpt(gpa, library_name),
.linkage = linkage,
.is_thread_local = is_thread_local_val.toBool(),
};
}
fn zirBuiltinExtern(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data;
const ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const options_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = extra.node };
var ty = try sema.resolveType(block, ty_src, extra.lhs);
if (!ty.isPtrAtRuntime(mod)) {
return sema.fail(block, ty_src, "expected (optional) pointer", .{});
}
if (!try sema.validateExternType(ty, .other)) {
const msg = msg: {
const msg = try sema.errMsg(block, ty_src, "extern symbol cannot have type '{}'", .{ty.fmt(mod)});
errdefer msg.destroy(sema.gpa);
const src_decl = sema.mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsNotExtern(msg, src_decl.toSrcLoc(ty_src, mod), ty, .other);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
const options = sema.resolveExternOptions(block, .unneeded, extra.rhs) catch |err| switch (err) {
error.NeededSourceLocation => {
_ = try sema.resolveExternOptions(block, options_src, extra.rhs);
unreachable;
},
else => |e| return e,
};
if (options.linkage == .weak and !ty.ptrAllowsZero(mod)) {
ty = try mod.optionalType(ty.toIntern());
}
const ptr_info = ty.ptrInfo(mod);
const new_decl_index = try mod.allocateNewDecl(sema.owner_decl.src_namespace, sema.owner_decl.src_node);
errdefer mod.destroyDecl(new_decl_index);
const new_decl = mod.declPtr(new_decl_index);
try mod.initNewAnonDecl(
new_decl_index,
sema.owner_decl.src_line,
Value.fromInterned(
if (Type.fromInterned(ptr_info.child).zigTypeTag(mod) == .Fn)
try ip.getExternFunc(sema.gpa, .{
.ty = ptr_info.child,
.decl = new_decl_index,
.lib_name = options.library_name,
})
else
try mod.intern(.{ .variable = .{
.ty = ptr_info.child,
.init = .none,
.decl = new_decl_index,
.lib_name = options.library_name,
.is_extern = true,
.is_const = ptr_info.flags.is_const,
.is_threadlocal = options.is_thread_local,
.is_weak_linkage = options.linkage == .weak,
} }),
),
options.name,
);
new_decl.owns_tv = true;
// Note that this will queue the anon decl for codegen, so that the backend can
// correctly handle the extern, including duplicate detection.
try mod.finalizeAnonDecl(new_decl_index);
return Air.internedToRef((try mod.getCoerced(Value.fromInterned((try mod.intern(.{ .ptr = .{
.ty = switch (ip.indexToKey(ty.toIntern())) {
.ptr_type => ty.toIntern(),
.opt_type => |child_type| child_type,
else => unreachable,
},
.addr = .{ .decl = new_decl_index },
} }))), ty)).toIntern());
}
fn zirWorkItem(
sema: *Sema,
block: *Block,
extended: Zir.Inst.Extended.InstData,
zir_tag: Zir.Inst.Extended,
) CompileError!Air.Inst.Ref {
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
const dimension_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node };
const builtin_src = LazySrcLoc.nodeOffset(extra.node);
const target = sema.mod.getTarget();
switch (target.cpu.arch) {
// TODO: Allow for other GPU targets.
.amdgcn => {},
else => {
return sema.fail(block, builtin_src, "builtin only available on GPU targets; targeted architecture is {s}", .{@tagName(target.cpu.arch)});
},
}
const dimension: u32 = @intCast(try sema.resolveInt(block, dimension_src, extra.operand, Type.u32, .{
.needed_comptime_reason = "dimension must be comptime-known",
}));
try sema.requireRuntimeBlock(block, builtin_src, null);
return block.addInst(.{
.tag = switch (zir_tag) {
.work_item_id => .work_item_id,
.work_group_size => .work_group_size,
.work_group_id => .work_group_id,
else => unreachable,
},
.data = .{ .pl_op = .{
.operand = .none,
.payload = dimension,
} },
});
}
fn zirInComptime(
sema: *Sema,
block: *Block,
) CompileError!Air.Inst.Ref {
_ = sema;
return if (block.is_comptime) .bool_true else .bool_false;
}
fn requireRuntimeBlock(sema: *Sema, block: *Block, src: LazySrcLoc, runtime_src: ?LazySrcLoc) !void {
if (block.is_comptime) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "unable to evaluate comptime expression", .{});
errdefer msg.destroy(sema.gpa);
if (runtime_src) |some| {
try sema.errNote(block, some, msg, "operation is runtime due to this operand", .{});
}
if (block.comptime_reason) |some| {
try some.explain(sema, msg);
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
}
/// Emit a compile error if type cannot be used for a runtime variable.
fn validateVarType(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
var_ty: Type,
is_extern: bool,
) CompileError!void {
const mod = sema.mod;
if (is_extern) {
if (!try sema.validateExternType(var_ty, .other)) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "extern variable cannot have type '{}'", .{var_ty.fmt(mod)});
errdefer msg.destroy(sema.gpa);
const src_decl = mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsNotExtern(msg, src_decl.toSrcLoc(src, mod), var_ty, .other);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
} else {
if (var_ty.zigTypeTag(mod) == .Opaque) {
return sema.fail(
block,
src,
"non-extern variable with opaque type '{}'",
.{var_ty.fmt(mod)},
);
}
}
if (!try sema.typeRequiresComptime(var_ty)) return;
const msg = msg: {
const msg = try sema.errMsg(block, src, "variable of type '{}' must be const or comptime", .{var_ty.fmt(mod)});
errdefer msg.destroy(sema.gpa);
const src_decl = mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsComptime(msg, src_decl.toSrcLoc(src, mod), var_ty);
if (var_ty.zigTypeTag(mod) == .ComptimeInt or var_ty.zigTypeTag(mod) == .ComptimeFloat) {
try sema.errNote(block, src, msg, "to modify this variable at runtime, it must be given an explicit fixed-size number type", .{});
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
const TypeSet = std.AutoHashMapUnmanaged(InternPool.Index, void);
fn explainWhyTypeIsComptime(
sema: *Sema,
msg: *Module.ErrorMsg,
src_loc: Module.SrcLoc,
ty: Type,
) CompileError!void {
var type_set = TypeSet{};
defer type_set.deinit(sema.gpa);
try sema.resolveTypeFully(ty);
return sema.explainWhyTypeIsComptimeInner(msg, src_loc, ty, &type_set);
}
fn explainWhyTypeIsComptimeInner(
sema: *Sema,
msg: *Module.ErrorMsg,
src_loc: Module.SrcLoc,
ty: Type,
type_set: *TypeSet,
) CompileError!void {
const mod = sema.mod;
const ip = &mod.intern_pool;
switch (ty.zigTypeTag(mod)) {
.Bool,
.Int,
.Float,
.ErrorSet,
.Enum,
.Frame,
.AnyFrame,
.Void,
=> return,
.Fn => {
try mod.errNoteNonLazy(src_loc, msg, "use '*const {}' for a function pointer type", .{
ty.fmt(sema.mod),
});
},
.Type => {
try mod.errNoteNonLazy(src_loc, msg, "types are not available at runtime", .{});
},
.ComptimeFloat,
.ComptimeInt,
.EnumLiteral,
.NoReturn,
.Undefined,
.Null,
=> return,
.Opaque => {
try mod.errNoteNonLazy(src_loc, msg, "opaque type '{}' has undefined size", .{ty.fmt(sema.mod)});
},
.Array, .Vector => {
try sema.explainWhyTypeIsComptimeInner(msg, src_loc, ty.childType(mod), type_set);
},
.Pointer => {
const elem_ty = ty.elemType2(mod);
if (elem_ty.zigTypeTag(mod) == .Fn) {
const fn_info = mod.typeToFunc(elem_ty).?;
if (fn_info.is_generic) {
try mod.errNoteNonLazy(src_loc, msg, "function is generic", .{});
}
switch (fn_info.cc) {
.Inline => try mod.errNoteNonLazy(src_loc, msg, "function has inline calling convention", .{}),
else => {},
}
if (Type.fromInterned(fn_info.return_type).comptimeOnly(mod)) {
try mod.errNoteNonLazy(src_loc, msg, "function has a comptime-only return type", .{});
}
return;
}
try sema.explainWhyTypeIsComptimeInner(msg, src_loc, ty.childType(mod), type_set);
},
.Optional => {
try sema.explainWhyTypeIsComptimeInner(msg, src_loc, ty.optionalChild(mod), type_set);
},
.ErrorUnion => {
try sema.explainWhyTypeIsComptimeInner(msg, src_loc, ty.errorUnionPayload(mod), type_set);
},
.Struct => {
if ((try type_set.getOrPut(sema.gpa, ty.toIntern())).found_existing) return;
if (mod.typeToStruct(ty)) |struct_type| {
for (0..struct_type.field_types.len) |i| {
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
const field_src_loc = mod.fieldSrcLoc(struct_type.decl.unwrap().?, .{
.index = i,
.range = .type,
});
if (try sema.typeRequiresComptime(field_ty)) {
try mod.errNoteNonLazy(field_src_loc, msg, "struct requires comptime because of this field", .{});
try sema.explainWhyTypeIsComptimeInner(msg, field_src_loc, field_ty, type_set);
}
}
}
// TODO tuples
},
.Union => {
if ((try type_set.getOrPut(sema.gpa, ty.toIntern())).found_existing) return;
if (mod.typeToUnion(ty)) |union_obj| {
for (0..union_obj.field_types.len) |i| {
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[i]);
const field_src_loc = mod.fieldSrcLoc(union_obj.decl, .{
.index = i,
.range = .type,
});
if (try sema.typeRequiresComptime(field_ty)) {
try mod.errNoteNonLazy(field_src_loc, msg, "union requires comptime because of this field", .{});
try sema.explainWhyTypeIsComptimeInner(msg, field_src_loc, field_ty, type_set);
}
}
}
},
}
}
const ExternPosition = enum {
ret_ty,
param_ty,
union_field,
struct_field,
element,
other,
};
/// Returns true if `ty` is allowed in extern types.
/// Does *NOT* require `ty` to be resolved in any way.
/// Calls `resolveTypeLayout` for packed containers.
fn validateExternType(
sema: *Sema,
ty: Type,
position: ExternPosition,
) !bool {
const mod = sema.mod;
switch (ty.zigTypeTag(mod)) {
.Type,
.ComptimeFloat,
.ComptimeInt,
.EnumLiteral,
.Undefined,
.Null,
.ErrorUnion,
.ErrorSet,
.Frame,
=> return false,
.Void => return position == .union_field or position == .ret_ty or position == .struct_field or position == .element,
.NoReturn => return position == .ret_ty,
.Opaque,
.Bool,
.Float,
.AnyFrame,
=> return true,
.Pointer => {
if (ty.childType(mod).zigTypeTag(mod) == .Fn) {
return ty.isConstPtr(mod) and try sema.validateExternType(ty.childType(mod), .other);
}
return !(ty.isSlice(mod) or try sema.typeRequiresComptime(ty));
},
.Int => switch (ty.intInfo(mod).bits) {
0, 8, 16, 32, 64, 128 => return true,
else => return false,
},
.Fn => {
if (position != .other) return false;
const target = sema.mod.getTarget();
// For now we want to authorize PTX kernel to use zig objects, even if we end up exposing the ABI.
// The goal is to experiment with more integrated CPU/GPU code.
if (ty.fnCallingConvention(mod) == .Kernel and (target.cpu.arch == .nvptx or target.cpu.arch == .nvptx64)) {
return true;
}
return !target_util.fnCallConvAllowsZigTypes(target, ty.fnCallingConvention(mod));
},
.Enum => {
return sema.validateExternType(ty.intTagType(mod), position);
},
.Struct, .Union => switch (ty.containerLayout(mod)) {
.@"extern" => return true,
.@"packed" => {
const bit_size = try ty.bitSizeAdvanced(mod, sema);
switch (bit_size) {
0, 8, 16, 32, 64, 128 => return true,
else => return false,
}
},
.auto => return !(try sema.typeHasRuntimeBits(ty)),
},
.Array => {
if (position == .ret_ty or position == .param_ty) return false;
return sema.validateExternType(ty.elemType2(mod), .element);
},
.Vector => return sema.validateExternType(ty.elemType2(mod), .element),
.Optional => return ty.isPtrLikeOptional(mod),
}
}
fn explainWhyTypeIsNotExtern(
sema: *Sema,
msg: *Module.ErrorMsg,
src_loc: Module.SrcLoc,
ty: Type,
position: ExternPosition,
) CompileError!void {
const mod = sema.mod;
switch (ty.zigTypeTag(mod)) {
.Opaque,
.Bool,
.Float,
.AnyFrame,
=> return,
.Type,
.ComptimeFloat,
.ComptimeInt,
.EnumLiteral,
.Undefined,
.Null,
.ErrorUnion,
.ErrorSet,
.Frame,
=> return,
.Pointer => {
if (ty.isSlice(mod)) {
try mod.errNoteNonLazy(src_loc, msg, "slices have no guaranteed in-memory representation", .{});
} else {
const pointee_ty = ty.childType(mod);
if (!ty.isConstPtr(mod) and pointee_ty.zigTypeTag(mod) == .Fn) {
try mod.errNoteNonLazy(src_loc, msg, "pointer to extern function must be 'const'", .{});
} else if (try sema.typeRequiresComptime(ty)) {
try mod.errNoteNonLazy(src_loc, msg, "pointer to comptime-only type '{}'", .{pointee_ty.fmt(sema.mod)});
try sema.explainWhyTypeIsComptime(msg, src_loc, ty);
}
try sema.explainWhyTypeIsNotExtern(msg, src_loc, pointee_ty, .other);
}
},
.Void => try mod.errNoteNonLazy(src_loc, msg, "'void' is a zero bit type; for C 'void' use 'anyopaque'", .{}),
.NoReturn => try mod.errNoteNonLazy(src_loc, msg, "'noreturn' is only allowed as a return type", .{}),
.Int => if (!std.math.isPowerOfTwo(ty.intInfo(mod).bits)) {
try mod.errNoteNonLazy(src_loc, msg, "only integers with 0 or power of two bits are extern compatible", .{});
} else {
try mod.errNoteNonLazy(src_loc, msg, "only integers with 0, 8, 16, 32, 64 and 128 bits are extern compatible", .{});
},
.Fn => {
if (position != .other) {
try mod.errNoteNonLazy(src_loc, msg, "type has no guaranteed in-memory representation", .{});
try mod.errNoteNonLazy(src_loc, msg, "use '*const ' to make a function pointer type", .{});
return;
}
switch (ty.fnCallingConvention(mod)) {
.Unspecified => try mod.errNoteNonLazy(src_loc, msg, "extern function must specify calling convention", .{}),
.Async => try mod.errNoteNonLazy(src_loc, msg, "async function cannot be extern", .{}),
.Inline => try mod.errNoteNonLazy(src_loc, msg, "inline function cannot be extern", .{}),
else => return,
}
},
.Enum => {
const tag_ty = ty.intTagType(mod);
try mod.errNoteNonLazy(src_loc, msg, "enum tag type '{}' is not extern compatible", .{tag_ty.fmt(sema.mod)});
try sema.explainWhyTypeIsNotExtern(msg, src_loc, tag_ty, position);
},
.Struct => try mod.errNoteNonLazy(src_loc, msg, "only extern structs and ABI sized packed structs are extern compatible", .{}),
.Union => try mod.errNoteNonLazy(src_loc, msg, "only extern unions and ABI sized packed unions are extern compatible", .{}),
.Array => {
if (position == .ret_ty) {
return mod.errNoteNonLazy(src_loc, msg, "arrays are not allowed as a return type", .{});
} else if (position == .param_ty) {
return mod.errNoteNonLazy(src_loc, msg, "arrays are not allowed as a parameter type", .{});
}
try sema.explainWhyTypeIsNotExtern(msg, src_loc, ty.elemType2(mod), .element);
},
.Vector => try sema.explainWhyTypeIsNotExtern(msg, src_loc, ty.elemType2(mod), .element),
.Optional => try mod.errNoteNonLazy(src_loc, msg, "only pointer like optionals are extern compatible", .{}),
}
}
/// Returns true if `ty` is allowed in packed types.
/// Does not require `ty` to be resolved in any way, but may resolve whether it is comptime-only.
fn validatePackedType(sema: *Sema, ty: Type) !bool {
const mod = sema.mod;
switch (ty.zigTypeTag(mod)) {
.Type,
.ComptimeFloat,
.ComptimeInt,
.EnumLiteral,
.Undefined,
.Null,
.ErrorUnion,
.ErrorSet,
.Frame,
.NoReturn,
.Opaque,
.AnyFrame,
.Fn,
.Array,
=> return false,
.Optional => return ty.isPtrLikeOptional(mod),
.Void,
.Bool,
.Float,
.Int,
.Vector,
.Enum,
=> return true,
.Pointer => return !ty.isSlice(mod) and !try sema.typeRequiresComptime(ty),
.Struct, .Union => return ty.containerLayout(mod) == .@"packed",
}
}
fn explainWhyTypeIsNotPacked(
sema: *Sema,
msg: *Module.ErrorMsg,
src_loc: Module.SrcLoc,
ty: Type,
) CompileError!void {
const mod = sema.mod;
switch (ty.zigTypeTag(mod)) {
.Void,
.Bool,
.Float,
.Int,
.Vector,
.Enum,
=> return,
.Type,
.ComptimeFloat,
.ComptimeInt,
.EnumLiteral,
.Undefined,
.Null,
.Frame,
.NoReturn,
.Opaque,
.ErrorUnion,
.ErrorSet,
.AnyFrame,
.Optional,
.Array,
=> try mod.errNoteNonLazy(src_loc, msg, "type has no guaranteed in-memory representation", .{}),
.Pointer => if (ty.isSlice(mod)) {
try mod.errNoteNonLazy(src_loc, msg, "slices have no guaranteed in-memory representation", .{});
} else {
try mod.errNoteNonLazy(src_loc, msg, "comptime-only pointer has no guaranteed in-memory representation", .{});
try sema.explainWhyTypeIsComptime(msg, src_loc, ty);
},
.Fn => {
try mod.errNoteNonLazy(src_loc, msg, "type has no guaranteed in-memory representation", .{});
try mod.errNoteNonLazy(src_loc, msg, "use '*const ' to make a function pointer type", .{});
},
.Struct => try mod.errNoteNonLazy(src_loc, msg, "only packed structs layout are allowed in packed types", .{}),
.Union => try mod.errNoteNonLazy(src_loc, msg, "only packed unions layout are allowed in packed types", .{}),
}
}
fn prepareSimplePanic(sema: *Sema, block: *Block) !void {
const mod = sema.mod;
if (mod.panic_func_index == .none) {
const decl_index = (try sema.getBuiltinDecl(block, "panic"));
// decl_index may be an alias; we must find the decl that actually
// owns the function.
try sema.ensureDeclAnalyzed(decl_index);
const fn_val = try mod.declPtr(decl_index).valueOrFail();
try sema.declareDependency(.{ .decl_val = decl_index });
assert(fn_val.typeOf(mod).zigTypeTag(mod) == .Fn);
assert(try sema.fnHasRuntimeBits(fn_val.typeOf(mod)));
try mod.ensureFuncBodyAnalysisQueued(fn_val.toIntern());
mod.panic_func_index = fn_val.toIntern();
}
if (mod.null_stack_trace == .none) {
const stack_trace_ty = try sema.getBuiltinType("StackTrace");
try sema.resolveTypeFields(stack_trace_ty);
const target = mod.getTarget();
const ptr_stack_trace_ty = try sema.ptrType(.{
.child = stack_trace_ty.toIntern(),
.flags = .{
.address_space = target_util.defaultAddressSpace(target, .global_constant),
},
});
const opt_ptr_stack_trace_ty = try mod.optionalType(ptr_stack_trace_ty.toIntern());
mod.null_stack_trace = try mod.intern(.{ .opt = .{
.ty = opt_ptr_stack_trace_ty.toIntern(),
.val = .none,
} });
}
}
/// Backends depend on panic decls being available when lowering safety-checked
/// instructions. This function ensures the panic function will be available to
/// be called during that time.
fn preparePanicId(sema: *Sema, block: *Block, panic_id: Module.PanicId) !InternPool.DeclIndex {
const mod = sema.mod;
const gpa = sema.gpa;
if (mod.panic_messages[@intFromEnum(panic_id)].unwrap()) |x| return x;
try sema.prepareSimplePanic(block);
const panic_messages_ty = try sema.getBuiltinType("panic_messages");
const msg_decl_index = (sema.namespaceLookup(
block,
.unneeded,
panic_messages_ty.getNamespaceIndex(mod),
try mod.intern_pool.getOrPutString(gpa, @tagName(panic_id)),
) catch |err| switch (err) {
error.AnalysisFail, error.NeededSourceLocation => @panic("std.builtin.panic_messages is corrupt"),
error.GenericPoison, error.ComptimeReturn, error.ComptimeBreak => unreachable,
error.OutOfMemory => |e| return e,
}).?;
try sema.ensureDeclAnalyzed(msg_decl_index);
mod.panic_messages[@intFromEnum(panic_id)] = msg_decl_index.toOptional();
return msg_decl_index;
}
fn addSafetyCheck(
sema: *Sema,
parent_block: *Block,
src: LazySrcLoc,
ok: Air.Inst.Ref,
panic_id: Module.PanicId,
) !void {
const gpa = sema.gpa;
assert(!parent_block.is_comptime);
var fail_block: Block = .{
.parent = parent_block,
.sema = sema,
.src_decl = parent_block.src_decl,
.namespace = parent_block.namespace,
.instructions = .{},
.inlining = parent_block.inlining,
.is_comptime = false,
};
defer fail_block.instructions.deinit(gpa);
try sema.safetyPanic(&fail_block, src, panic_id);
try sema.addSafetyCheckExtra(parent_block, ok, &fail_block);
}
fn addSafetyCheckExtra(
sema: *Sema,
parent_block: *Block,
ok: Air.Inst.Ref,
fail_block: *Block,
) !void {
const gpa = sema.gpa;
try parent_block.instructions.ensureUnusedCapacity(gpa, 1);
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).Struct.fields.len +
1 + // The main block only needs space for the cond_br.
@typeInfo(Air.CondBr).Struct.fields.len +
1 + // The ok branch of the cond_br only needs space for the br.
fail_block.instructions.items.len);
try sema.air_instructions.ensureUnusedCapacity(gpa, 3);
const block_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
const cond_br_inst: Air.Inst.Index = @enumFromInt(@intFromEnum(block_inst) + 1);
const br_inst: Air.Inst.Index = @enumFromInt(@intFromEnum(cond_br_inst) + 1);
sema.air_instructions.appendAssumeCapacity(.{
.tag = .block,
.data = .{ .ty_pl = .{
.ty = .void_type,
.payload = sema.addExtraAssumeCapacity(Air.Block{
.body_len = 1,
}),
} },
});
sema.air_extra.appendAssumeCapacity(@intFromEnum(cond_br_inst));
sema.air_instructions.appendAssumeCapacity(.{
.tag = .cond_br,
.data = .{ .pl_op = .{
.operand = ok,
.payload = sema.addExtraAssumeCapacity(Air.CondBr{
.then_body_len = 1,
.else_body_len = @intCast(fail_block.instructions.items.len),
}),
} },
});
sema.air_extra.appendAssumeCapacity(@intFromEnum(br_inst));
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(fail_block.instructions.items));
sema.air_instructions.appendAssumeCapacity(.{
.tag = .br,
.data = .{ .br = .{
.block_inst = block_inst,
.operand = .void_value,
} },
});
parent_block.instructions.appendAssumeCapacity(block_inst);
}
fn panicWithMsg(sema: *Sema, block: *Block, src: LazySrcLoc, msg_inst: Air.Inst.Ref, operation: CallOperation) !void {
const mod = sema.mod;
if (!mod.backendSupportsFeature(.panic_fn)) {
_ = try block.addNoOp(.trap);
return;
}
try sema.prepareSimplePanic(block);
const panic_func = mod.funcInfo(mod.panic_func_index);
const panic_fn = try sema.analyzeDeclVal(block, src, panic_func.owner_decl);
const null_stack_trace = Air.internedToRef(mod.null_stack_trace);
const opt_usize_ty = try mod.optionalType(.usize_type);
const null_ret_addr = Air.internedToRef((try mod.intern(.{ .opt = .{
.ty = opt_usize_ty.toIntern(),
.val = .none,
} })));
try sema.callBuiltin(block, src, panic_fn, .auto, &.{ msg_inst, null_stack_trace, null_ret_addr }, operation);
}
fn panicUnwrapError(
sema: *Sema,
parent_block: *Block,
src: LazySrcLoc,
operand: Air.Inst.Ref,
unwrap_err_tag: Air.Inst.Tag,
is_non_err_tag: Air.Inst.Tag,
) !void {
assert(!parent_block.is_comptime);
const ok = try parent_block.addUnOp(is_non_err_tag, operand);
if (!sema.mod.comp.formatted_panics) {
return sema.addSafetyCheck(parent_block, src, ok, .unwrap_error);
}
const gpa = sema.gpa;
var fail_block: Block = .{
.parent = parent_block,
.sema = sema,
.src_decl = parent_block.src_decl,
.namespace = parent_block.namespace,
.instructions = .{},
.inlining = parent_block.inlining,
.is_comptime = false,
};
defer fail_block.instructions.deinit(gpa);
{
if (!sema.mod.backendSupportsFeature(.panic_unwrap_error)) {
_ = try fail_block.addNoOp(.trap);
} else {
const panic_fn = try sema.getBuiltin("panicUnwrapError");
const err = try fail_block.addTyOp(unwrap_err_tag, Type.anyerror, operand);
const err_return_trace = try sema.getErrorReturnTrace(&fail_block);
const args: [2]Air.Inst.Ref = .{ err_return_trace, err };
try sema.callBuiltin(&fail_block, src, panic_fn, .auto, &args, .@"safety check");
}
}
try sema.addSafetyCheckExtra(parent_block, ok, &fail_block);
}
fn panicIndexOutOfBounds(
sema: *Sema,
parent_block: *Block,
src: LazySrcLoc,
index: Air.Inst.Ref,
len: Air.Inst.Ref,
cmp_op: Air.Inst.Tag,
) !void {
assert(!parent_block.is_comptime);
const ok = try parent_block.addBinOp(cmp_op, index, len);
if (!sema.mod.comp.formatted_panics) {
return sema.addSafetyCheck(parent_block, src, ok, .index_out_of_bounds);
}
try sema.safetyCheckFormatted(parent_block, src, ok, "panicOutOfBounds", &.{ index, len });
}
fn panicInactiveUnionField(
sema: *Sema,
parent_block: *Block,
src: LazySrcLoc,
active_tag: Air.Inst.Ref,
wanted_tag: Air.Inst.Ref,
) !void {
assert(!parent_block.is_comptime);
const ok = try parent_block.addBinOp(.cmp_eq, active_tag, wanted_tag);
if (!sema.mod.comp.formatted_panics) {
return sema.addSafetyCheck(parent_block, src, ok, .inactive_union_field);
}
try sema.safetyCheckFormatted(parent_block, src, ok, "panicInactiveUnionField", &.{ active_tag, wanted_tag });
}
fn panicSentinelMismatch(
sema: *Sema,
parent_block: *Block,
src: LazySrcLoc,
maybe_sentinel: ?Value,
sentinel_ty: Type,
ptr: Air.Inst.Ref,
sentinel_index: Air.Inst.Ref,
) !void {
assert(!parent_block.is_comptime);
const mod = sema.mod;
const expected_sentinel_val = maybe_sentinel orelse return;
const expected_sentinel = Air.internedToRef(expected_sentinel_val.toIntern());
const ptr_ty = sema.typeOf(ptr);
const actual_sentinel = if (ptr_ty.isSlice(mod))
try parent_block.addBinOp(.slice_elem_val, ptr, sentinel_index)
else blk: {
const elem_ptr_ty = try sema.elemPtrType(ptr_ty, null);
const sentinel_ptr = try parent_block.addPtrElemPtr(ptr, sentinel_index, elem_ptr_ty);
break :blk try parent_block.addTyOp(.load, sentinel_ty, sentinel_ptr);
};
const ok = if (sentinel_ty.zigTypeTag(mod) == .Vector) ok: {
const eql =
try parent_block.addCmpVector(expected_sentinel, actual_sentinel, .eq);
break :ok try parent_block.addInst(.{
.tag = .reduce,
.data = .{ .reduce = .{
.operand = eql,
.operation = .And,
} },
});
} else if (sentinel_ty.isSelfComparable(mod, true))
try parent_block.addBinOp(.cmp_eq, expected_sentinel, actual_sentinel)
else {
const panic_fn = try sema.getBuiltin("checkNonScalarSentinel");
const args: [2]Air.Inst.Ref = .{ expected_sentinel, actual_sentinel };
try sema.callBuiltin(parent_block, src, panic_fn, .auto, &args, .@"safety check");
return;
};
if (!sema.mod.comp.formatted_panics) {
return sema.addSafetyCheck(parent_block, src, ok, .sentinel_mismatch);
}
try sema.safetyCheckFormatted(parent_block, src, ok, "panicSentinelMismatch", &.{ expected_sentinel, actual_sentinel });
}
fn safetyCheckFormatted(
sema: *Sema,
parent_block: *Block,
src: LazySrcLoc,
ok: Air.Inst.Ref,
func: []const u8,
args: []const Air.Inst.Ref,
) CompileError!void {
assert(sema.mod.comp.formatted_panics);
const gpa = sema.gpa;
var fail_block: Block = .{
.parent = parent_block,
.sema = sema,
.src_decl = parent_block.src_decl,
.namespace = parent_block.namespace,
.instructions = .{},
.inlining = parent_block.inlining,
.is_comptime = false,
};
defer fail_block.instructions.deinit(gpa);
if (!sema.mod.backendSupportsFeature(.safety_check_formatted)) {
_ = try fail_block.addNoOp(.trap);
} else {
const panic_fn = try sema.getBuiltin(func);
try sema.callBuiltin(&fail_block, src, panic_fn, .auto, args, .@"safety check");
}
try sema.addSafetyCheckExtra(parent_block, ok, &fail_block);
}
fn safetyPanic(sema: *Sema, block: *Block, src: LazySrcLoc, panic_id: Module.PanicId) CompileError!void {
const msg_decl_index = try sema.preparePanicId(block, panic_id);
const msg_inst = try sema.analyzeDeclVal(block, src, msg_decl_index);
try sema.panicWithMsg(block, src, msg_inst, .@"safety check");
}
fn emitBackwardBranch(sema: *Sema, block: *Block, src: LazySrcLoc) !void {
sema.branch_count += 1;
if (sema.branch_count > sema.branch_quota) {
const msg = try sema.errMsg(
block,
src,
"evaluation exceeded {d} backwards branches",
.{sema.branch_quota},
);
try sema.errNote(
block,
src,
msg,
"use @setEvalBranchQuota() to raise the branch limit from {d}",
.{sema.branch_quota},
);
return sema.failWithOwnedErrorMsg(block, msg);
}
}
fn fieldVal(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
object: Air.Inst.Ref,
field_name: InternPool.NullTerminatedString,
field_name_src: LazySrcLoc,
) CompileError!Air.Inst.Ref {
// When editing this function, note that there is corresponding logic to be edited
// in `fieldPtr`. This function takes a value and returns a value.
const mod = sema.mod;
const ip = &mod.intern_pool;
const object_src = src; // TODO better source location
const object_ty = sema.typeOf(object);
// Zig allows dereferencing a single pointer during field lookup. Note that
// we don't actually need to generate the dereference some field lookups, like the
// length of arrays and other comptime operations.
const is_pointer_to = object_ty.isSinglePointer(mod);
const inner_ty = if (is_pointer_to)
object_ty.childType(mod)
else
object_ty;
switch (inner_ty.zigTypeTag(mod)) {
.Array => {
if (ip.stringEqlSlice(field_name, "len")) {
return Air.internedToRef((try mod.intValue(Type.usize, inner_ty.arrayLen(mod))).toIntern());
} else if (ip.stringEqlSlice(field_name, "ptr") and is_pointer_to) {
const ptr_info = object_ty.ptrInfo(mod);
const result_ty = try sema.ptrType(.{
.child = Type.fromInterned(ptr_info.child).childType(mod).toIntern(),
.sentinel = if (inner_ty.sentinel(mod)) |s| s.toIntern() else .none,
.flags = .{
.size = .Many,
.alignment = ptr_info.flags.alignment,
.is_const = ptr_info.flags.is_const,
.is_volatile = ptr_info.flags.is_volatile,
.is_allowzero = ptr_info.flags.is_allowzero,
.address_space = ptr_info.flags.address_space,
.vector_index = ptr_info.flags.vector_index,
},
.packed_offset = ptr_info.packed_offset,
});
return sema.coerce(block, result_ty, object, src);
} else {
return sema.fail(
block,
field_name_src,
"no member named '{}' in '{}'",
.{ field_name.fmt(ip), object_ty.fmt(mod) },
);
}
},
.Pointer => {
const ptr_info = inner_ty.ptrInfo(mod);
if (ptr_info.flags.size == .Slice) {
if (ip.stringEqlSlice(field_name, "ptr")) {
const slice = if (is_pointer_to)
try sema.analyzeLoad(block, src, object, object_src)
else
object;
return sema.analyzeSlicePtr(block, object_src, slice, inner_ty);
} else if (ip.stringEqlSlice(field_name, "len")) {
const slice = if (is_pointer_to)
try sema.analyzeLoad(block, src, object, object_src)
else
object;
return sema.analyzeSliceLen(block, src, slice);
} else {
return sema.fail(
block,
field_name_src,
"no member named '{}' in '{}'",
.{ field_name.fmt(ip), object_ty.fmt(mod) },
);
}
}
},
.Type => {
const dereffed_type = if (is_pointer_to)
try sema.analyzeLoad(block, src, object, object_src)
else
object;
const val = (try sema.resolveDefinedValue(block, object_src, dereffed_type)).?;
const child_type = val.toType();
if (child_type.typeDeclInst(mod)) |type_decl_inst| {
try sema.declareDependency(.{ .namespace_name = .{
.namespace = type_decl_inst,
.name = field_name,
} });
}
switch (try child_type.zigTypeTagOrPoison(mod)) {
.ErrorSet => {
switch (ip.indexToKey(child_type.toIntern())) {
.error_set_type => |error_set_type| blk: {
if (error_set_type.nameIndex(ip, field_name) != null) break :blk;
return sema.fail(block, src, "no error named '{}' in '{}'", .{
field_name.fmt(ip), child_type.fmt(mod),
});
},
.inferred_error_set_type => {
return sema.fail(block, src, "TODO handle inferred error sets here", .{});
},
.simple_type => |t| {
assert(t == .anyerror);
_ = try mod.getErrorValue(field_name);
},
else => unreachable,
}
const error_set_type = if (!child_type.isAnyError(mod))
child_type
else
try mod.singleErrorSetType(field_name);
return Air.internedToRef((try mod.intern(.{ .err = .{
.ty = error_set_type.toIntern(),
.name = field_name,
} })));
},
.Union => {
if (try sema.namespaceLookupVal(block, src, child_type.getNamespaceIndex(mod), field_name)) |inst| {
return inst;
}
try sema.resolveTypeFields(child_type);
if (child_type.unionTagType(mod)) |enum_ty| {
if (enum_ty.enumFieldIndex(field_name, mod)) |field_index_usize| {
const field_index: u32 = @intCast(field_index_usize);
return Air.internedToRef((try mod.enumValueFieldIndex(enum_ty, field_index)).toIntern());
}
}
return sema.failWithBadMemberAccess(block, child_type, field_name_src, field_name);
},
.Enum => {
if (try sema.namespaceLookupVal(block, src, child_type.getNamespaceIndex(mod), field_name)) |inst| {
return inst;
}
const field_index_usize = child_type.enumFieldIndex(field_name, mod) orelse
return sema.failWithBadMemberAccess(block, child_type, field_name_src, field_name);
const field_index: u32 = @intCast(field_index_usize);
const enum_val = try mod.enumValueFieldIndex(child_type, field_index);
return Air.internedToRef(enum_val.toIntern());
},
.Struct, .Opaque => {
if (try sema.namespaceLookupVal(block, src, child_type.getNamespaceIndex(mod), field_name)) |inst| {
return inst;
}
return sema.failWithBadMemberAccess(block, child_type, src, field_name);
},
else => {
const msg = msg: {
const msg = try sema.errMsg(block, src, "type '{}' has no members", .{child_type.fmt(mod)});
errdefer msg.destroy(sema.gpa);
if (child_type.isSlice(mod)) try sema.errNote(block, src, msg, "slice values have 'len' and 'ptr' members", .{});
if (child_type.zigTypeTag(mod) == .Array) try sema.errNote(block, src, msg, "array values have 'len' member", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
},
}
},
.Struct => if (is_pointer_to) {
// Avoid loading the entire struct by fetching a pointer and loading that
const field_ptr = try sema.structFieldPtr(block, src, object, field_name, field_name_src, inner_ty, false);
return sema.analyzeLoad(block, src, field_ptr, object_src);
} else {
return sema.structFieldVal(block, src, object, field_name, field_name_src, inner_ty);
},
.Union => if (is_pointer_to) {
// Avoid loading the entire union by fetching a pointer and loading that
const field_ptr = try sema.unionFieldPtr(block, src, object, field_name, field_name_src, inner_ty, false);
return sema.analyzeLoad(block, src, field_ptr, object_src);
} else {
return sema.unionFieldVal(block, src, object, field_name, field_name_src, inner_ty);
},
else => {},
}
return sema.failWithInvalidFieldAccess(block, src, object_ty, field_name);
}
fn fieldPtr(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
object_ptr: Air.Inst.Ref,
field_name: InternPool.NullTerminatedString,
field_name_src: LazySrcLoc,
initializing: bool,
) CompileError!Air.Inst.Ref {
// When editing this function, note that there is corresponding logic to be edited
// in `fieldVal`. This function takes a pointer and returns a pointer.
const mod = sema.mod;
const ip = &mod.intern_pool;
const object_ptr_src = src; // TODO better source location
const object_ptr_ty = sema.typeOf(object_ptr);
const object_ty = switch (object_ptr_ty.zigTypeTag(mod)) {
.Pointer => object_ptr_ty.childType(mod),
else => return sema.fail(block, object_ptr_src, "expected pointer, found '{}'", .{object_ptr_ty.fmt(mod)}),
};
// Zig allows dereferencing a single pointer during field lookup. Note that
// we don't actually need to generate the dereference some field lookups, like the
// length of arrays and other comptime operations.
const is_pointer_to = object_ty.isSinglePointer(mod);
const inner_ty = if (is_pointer_to)
object_ty.childType(mod)
else
object_ty;
switch (inner_ty.zigTypeTag(mod)) {
.Array => {
if (ip.stringEqlSlice(field_name, "len")) {
const int_val = try mod.intValue(Type.usize, inner_ty.arrayLen(mod));
return anonDeclRef(sema, int_val.toIntern());
} else if (ip.stringEqlSlice(field_name, "ptr") and is_pointer_to) {
const ptr_info = object_ty.ptrInfo(mod);
const new_ptr_ty = try sema.ptrType(.{
.child = Type.fromInterned(ptr_info.child).childType(mod).toIntern(),
.sentinel = if (object_ty.sentinel(mod)) |s| s.toIntern() else .none,
.flags = .{
.size = .Many,
.alignment = ptr_info.flags.alignment,
.is_const = ptr_info.flags.is_const,
.is_volatile = ptr_info.flags.is_volatile,
.is_allowzero = ptr_info.flags.is_allowzero,
.address_space = ptr_info.flags.address_space,
.vector_index = ptr_info.flags.vector_index,
},
.packed_offset = ptr_info.packed_offset,
});
const ptr_ptr_info = object_ptr_ty.ptrInfo(mod);
const result_ty = try sema.ptrType(.{
.child = new_ptr_ty.toIntern(),
.sentinel = if (object_ptr_ty.sentinel(mod)) |s| s.toIntern() else .none,
.flags = .{
.alignment = ptr_ptr_info.flags.alignment,
.is_const = ptr_ptr_info.flags.is_const,
.is_volatile = ptr_ptr_info.flags.is_volatile,
.is_allowzero = ptr_ptr_info.flags.is_allowzero,
.address_space = ptr_ptr_info.flags.address_space,
.vector_index = ptr_ptr_info.flags.vector_index,
},
.packed_offset = ptr_ptr_info.packed_offset,
});
return sema.bitCast(block, result_ty, object_ptr, src, null);
} else {
return sema.fail(
block,
field_name_src,
"no member named '{}' in '{}'",
.{ field_name.fmt(ip), object_ty.fmt(mod) },
);
}
},
.Pointer => if (inner_ty.isSlice(mod)) {
const inner_ptr = if (is_pointer_to)
try sema.analyzeLoad(block, src, object_ptr, object_ptr_src)
else
object_ptr;
const attr_ptr_ty = if (is_pointer_to) object_ty else object_ptr_ty;
if (ip.stringEqlSlice(field_name, "ptr")) {
const slice_ptr_ty = inner_ty.slicePtrFieldType(mod);
const result_ty = try sema.ptrType(.{
.child = slice_ptr_ty.toIntern(),
.flags = .{
.is_const = !attr_ptr_ty.ptrIsMutable(mod),
.is_volatile = attr_ptr_ty.isVolatilePtr(mod),
.address_space = attr_ptr_ty.ptrAddressSpace(mod),
},
});
if (try sema.resolveDefinedValue(block, object_ptr_src, inner_ptr)) |val| {
return Air.internedToRef((try mod.intern(.{ .ptr = .{
.ty = result_ty.toIntern(),
.addr = .{ .field = .{
.base = val.toIntern(),
.index = Value.slice_ptr_index,
} },
} })));
}
try sema.requireRuntimeBlock(block, src, null);
const field_ptr = try block.addTyOp(.ptr_slice_ptr_ptr, result_ty, inner_ptr);
try sema.checkKnownAllocPtr(block, inner_ptr, field_ptr);
return field_ptr;
} else if (ip.stringEqlSlice(field_name, "len")) {
const result_ty = try sema.ptrType(.{
.child = .usize_type,
.flags = .{
.is_const = !attr_ptr_ty.ptrIsMutable(mod),
.is_volatile = attr_ptr_ty.isVolatilePtr(mod),
.address_space = attr_ptr_ty.ptrAddressSpace(mod),
},
});
if (try sema.resolveDefinedValue(block, object_ptr_src, inner_ptr)) |val| {
return Air.internedToRef((try mod.intern(.{ .ptr = .{
.ty = result_ty.toIntern(),
.addr = .{ .field = .{
.base = val.toIntern(),
.index = Value.slice_len_index,
} },
} })));
}
try sema.requireRuntimeBlock(block, src, null);
const field_ptr = try block.addTyOp(.ptr_slice_len_ptr, result_ty, inner_ptr);
try sema.checkKnownAllocPtr(block, inner_ptr, field_ptr);
return field_ptr;
} else {
return sema.fail(
block,
field_name_src,
"no member named '{}' in '{}'",
.{ field_name.fmt(ip), object_ty.fmt(mod) },
);
}
},
.Type => {
_ = try sema.resolveConstDefinedValue(block, .unneeded, object_ptr, undefined);
const result = try sema.analyzeLoad(block, src, object_ptr, object_ptr_src);
const inner = if (is_pointer_to)
try sema.analyzeLoad(block, src, result, object_ptr_src)
else
result;
const val = (sema.resolveDefinedValue(block, src, inner) catch unreachable).?;
const child_type = val.toType();
if (child_type.typeDeclInst(mod)) |type_decl_inst| {
try sema.declareDependency(.{ .namespace_name = .{
.namespace = type_decl_inst,
.name = field_name,
} });
}
switch (child_type.zigTypeTag(mod)) {
.ErrorSet => {
switch (ip.indexToKey(child_type.toIntern())) {
.error_set_type => |error_set_type| blk: {
if (error_set_type.nameIndex(ip, field_name) != null) {
break :blk;
}
return sema.fail(block, src, "no error named '{}' in '{}'", .{
field_name.fmt(ip), child_type.fmt(mod),
});
},
.inferred_error_set_type => {
return sema.fail(block, src, "TODO handle inferred error sets here", .{});
},
.simple_type => |t| {
assert(t == .anyerror);
_ = try mod.getErrorValue(field_name);
},
else => unreachable,
}
const error_set_type = if (!child_type.isAnyError(mod))
child_type
else
try mod.singleErrorSetType(field_name);
return anonDeclRef(sema, try mod.intern(.{ .err = .{
.ty = error_set_type.toIntern(),
.name = field_name,
} }));
},
.Union => {
if (try sema.namespaceLookupRef(block, src, child_type.getNamespaceIndex(mod), field_name)) |inst| {
return inst;
}
try sema.resolveTypeFields(child_type);
if (child_type.unionTagType(mod)) |enum_ty| {
if (enum_ty.enumFieldIndex(field_name, mod)) |field_index| {
const field_index_u32: u32 = @intCast(field_index);
const idx_val = try mod.enumValueFieldIndex(enum_ty, field_index_u32);
return anonDeclRef(sema, idx_val.toIntern());
}
}
return sema.failWithBadMemberAccess(block, child_type, field_name_src, field_name);
},
.Enum => {
if (try sema.namespaceLookupRef(block, src, child_type.getNamespaceIndex(mod), field_name)) |inst| {
return inst;
}
const field_index = child_type.enumFieldIndex(field_name, mod) orelse {
return sema.failWithBadMemberAccess(block, child_type, field_name_src, field_name);
};
const field_index_u32: u32 = @intCast(field_index);
const idx_val = try mod.enumValueFieldIndex(child_type, field_index_u32);
return anonDeclRef(sema, idx_val.toIntern());
},
.Struct, .Opaque => {
if (try sema.namespaceLookupRef(block, src, child_type.getNamespaceIndex(mod), field_name)) |inst| {
return inst;
}
return sema.failWithBadMemberAccess(block, child_type, field_name_src, field_name);
},
else => return sema.fail(block, src, "type '{}' has no members", .{child_type.fmt(mod)}),
}
},
.Struct => {
const inner_ptr = if (is_pointer_to)
try sema.analyzeLoad(block, src, object_ptr, object_ptr_src)
else
object_ptr;
const field_ptr = try sema.structFieldPtr(block, src, inner_ptr, field_name, field_name_src, inner_ty, initializing);
try sema.checkKnownAllocPtr(block, inner_ptr, field_ptr);
return field_ptr;
},
.Union => {
const inner_ptr = if (is_pointer_to)
try sema.analyzeLoad(block, src, object_ptr, object_ptr_src)
else
object_ptr;
const field_ptr = try sema.unionFieldPtr(block, src, inner_ptr, field_name, field_name_src, inner_ty, initializing);
try sema.checkKnownAllocPtr(block, inner_ptr, field_ptr);
return field_ptr;
},
else => {},
}
return sema.failWithInvalidFieldAccess(block, src, object_ty, field_name);
}
const ResolvedFieldCallee = union(enum) {
/// The LHS of the call was an actual field with this value.
direct: Air.Inst.Ref,
/// This is a method call, with the function and first argument given.
method: struct {
func_inst: Air.Inst.Ref,
arg0_inst: Air.Inst.Ref,
},
};
fn fieldCallBind(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
raw_ptr: Air.Inst.Ref,
field_name: InternPool.NullTerminatedString,
field_name_src: LazySrcLoc,
) CompileError!ResolvedFieldCallee {
// When editing this function, note that there is corresponding logic to be edited
// in `fieldVal`. This function takes a pointer and returns a pointer.
const mod = sema.mod;
const ip = &mod.intern_pool;
const raw_ptr_src = src; // TODO better source location
const raw_ptr_ty = sema.typeOf(raw_ptr);
const inner_ty = if (raw_ptr_ty.zigTypeTag(mod) == .Pointer and (raw_ptr_ty.ptrSize(mod) == .One or raw_ptr_ty.ptrSize(mod) == .C))
raw_ptr_ty.childType(mod)
else
return sema.fail(block, raw_ptr_src, "expected single pointer, found '{}'", .{raw_ptr_ty.fmt(mod)});
// Optionally dereference a second pointer to get the concrete type.
const is_double_ptr = inner_ty.zigTypeTag(mod) == .Pointer and inner_ty.ptrSize(mod) == .One;
const concrete_ty = if (is_double_ptr) inner_ty.childType(mod) else inner_ty;
const ptr_ty = if (is_double_ptr) inner_ty else raw_ptr_ty;
const object_ptr = if (is_double_ptr)
try sema.analyzeLoad(block, src, raw_ptr, src)
else
raw_ptr;
find_field: {
switch (concrete_ty.zigTypeTag(mod)) {
.Struct => {
try sema.resolveTypeFields(concrete_ty);
if (mod.typeToStruct(concrete_ty)) |struct_type| {
const field_index = struct_type.nameIndex(ip, field_name) orelse
break :find_field;
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[field_index]);
return sema.finishFieldCallBind(block, src, ptr_ty, field_ty, field_index, object_ptr);
} else if (concrete_ty.isTuple(mod)) {
if (ip.stringEqlSlice(field_name, "len")) {
return .{ .direct = try mod.intRef(Type.usize, concrete_ty.structFieldCount(mod)) };
}
if (field_name.toUnsigned(ip)) |field_index| {
if (field_index >= concrete_ty.structFieldCount(mod)) break :find_field;
return sema.finishFieldCallBind(block, src, ptr_ty, concrete_ty.structFieldType(field_index, mod), field_index, object_ptr);
}
} else {
const max = concrete_ty.structFieldCount(mod);
for (0..max) |i_usize| {
const i: u32 = @intCast(i_usize);
if (field_name == concrete_ty.structFieldName(i, mod).unwrap().?) {
return sema.finishFieldCallBind(block, src, ptr_ty, concrete_ty.structFieldType(i, mod), i, object_ptr);
}
}
}
},
.Union => {
try sema.resolveTypeFields(concrete_ty);
const union_obj = mod.typeToUnion(concrete_ty).?;
_ = union_obj.loadTagType(ip).nameIndex(ip, field_name) orelse break :find_field;
const field_ptr = try unionFieldPtr(sema, block, src, object_ptr, field_name, field_name_src, concrete_ty, false);
return .{ .direct = try sema.analyzeLoad(block, src, field_ptr, src) };
},
.Type => {
const namespace = try sema.analyzeLoad(block, src, object_ptr, src);
return .{ .direct = try sema.fieldVal(block, src, namespace, field_name, field_name_src) };
},
else => {},
}
}
// If we get here, we need to look for a decl in the struct type instead.
const found_decl = found_decl: {
const namespace = concrete_ty.getNamespace(mod) orelse
break :found_decl null;
const decl_idx = (try sema.namespaceLookup(block, src, namespace, field_name)) orelse
break :found_decl null;
try sema.addReferencedBy(block, src, decl_idx);
const decl_val = try sema.analyzeDeclVal(block, src, decl_idx);
const decl_type = sema.typeOf(decl_val);
if (mod.typeToFunc(decl_type)) |func_type| f: {
if (func_type.param_types.len == 0) break :f;
const first_param_type = Type.fromInterned(func_type.param_types.get(ip)[0]);
if (first_param_type.isGenericPoison() or
(first_param_type.zigTypeTag(mod) == .Pointer and
(first_param_type.ptrSize(mod) == .One or
first_param_type.ptrSize(mod) == .C) and
first_param_type.childType(mod).eql(concrete_ty, mod)))
{
// Note that if the param type is generic poison, we know that it must
// specifically be `anytype` since it's the first parameter, meaning we
// can safely assume it can be a pointer.
// TODO: bound fn calls on rvalues should probably
// generate a by-value argument somehow.
return .{ .method = .{
.func_inst = decl_val,
.arg0_inst = object_ptr,
} };
} else if (first_param_type.eql(concrete_ty, mod)) {
const deref = try sema.analyzeLoad(block, src, object_ptr, src);
return .{ .method = .{
.func_inst = decl_val,
.arg0_inst = deref,
} };
} else if (first_param_type.zigTypeTag(mod) == .Optional) {
const child = first_param_type.optionalChild(mod);
if (child.eql(concrete_ty, mod)) {
const deref = try sema.analyzeLoad(block, src, object_ptr, src);
return .{ .method = .{
.func_inst = decl_val,
.arg0_inst = deref,
} };
} else if (child.zigTypeTag(mod) == .Pointer and
child.ptrSize(mod) == .One and
child.childType(mod).eql(concrete_ty, mod))
{
return .{ .method = .{
.func_inst = decl_val,
.arg0_inst = object_ptr,
} };
}
} else if (first_param_type.zigTypeTag(mod) == .ErrorUnion and
first_param_type.errorUnionPayload(mod).eql(concrete_ty, mod))
{
const deref = try sema.analyzeLoad(block, src, object_ptr, src);
return .{ .method = .{
.func_inst = decl_val,
.arg0_inst = deref,
} };
}
}
break :found_decl decl_idx;
};
const msg = msg: {
const msg = try sema.errMsg(block, src, "no field or member function named '{}' in '{}'", .{
field_name.fmt(ip),
concrete_ty.fmt(mod),
});
errdefer msg.destroy(sema.gpa);
try sema.addDeclaredHereNote(msg, concrete_ty);
if (found_decl) |decl_idx| {
const decl = mod.declPtr(decl_idx);
try mod.errNoteNonLazy(decl.srcLoc(mod), msg, "'{}' is not a member function", .{field_name.fmt(ip)});
}
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
fn finishFieldCallBind(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
ptr_ty: Type,
field_ty: Type,
field_index: u32,
object_ptr: Air.Inst.Ref,
) CompileError!ResolvedFieldCallee {
const mod = sema.mod;
const ptr_field_ty = try sema.ptrType(.{
.child = field_ty.toIntern(),
.flags = .{
.is_const = !ptr_ty.ptrIsMutable(mod),
.address_space = ptr_ty.ptrAddressSpace(mod),
},
});
const container_ty = ptr_ty.childType(mod);
if (container_ty.zigTypeTag(mod) == .Struct) {
if (container_ty.structFieldIsComptime(field_index, mod)) {
try sema.resolveStructFieldInits(container_ty);
const default_val = (try container_ty.structFieldValueComptime(mod, field_index)).?;
return .{ .direct = Air.internedToRef(default_val.toIntern()) };
}
}
if (try sema.resolveDefinedValue(block, src, object_ptr)) |struct_ptr_val| {
const pointer = Air.internedToRef((try mod.intern(.{ .ptr = .{
.ty = ptr_field_ty.toIntern(),
.addr = .{ .field = .{
.base = struct_ptr_val.toIntern(),
.index = field_index,
} },
} })));
return .{ .direct = try sema.analyzeLoad(block, src, pointer, src) };
}
try sema.requireRuntimeBlock(block, src, null);
const ptr_inst = try block.addStructFieldPtr(object_ptr, field_index, ptr_field_ty);
return .{ .direct = try sema.analyzeLoad(block, src, ptr_inst, src) };
}
fn namespaceLookup(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
opt_namespace: InternPool.OptionalNamespaceIndex,
decl_name: InternPool.NullTerminatedString,
) CompileError!?InternPool.DeclIndex {
const mod = sema.mod;
const gpa = sema.gpa;
if (try sema.lookupInNamespace(block, src, opt_namespace, decl_name, true)) |decl_index| {
const decl = mod.declPtr(decl_index);
if (!decl.is_pub and decl.getFileScope(mod) != block.getFileScope(mod)) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "'{}' is not marked 'pub'", .{
decl_name.fmt(&mod.intern_pool),
});
errdefer msg.destroy(gpa);
try mod.errNoteNonLazy(decl.srcLoc(mod), msg, "declared here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
return decl_index;
}
return null;
}
fn namespaceLookupRef(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
opt_namespace: InternPool.OptionalNamespaceIndex,
decl_name: InternPool.NullTerminatedString,
) CompileError!?Air.Inst.Ref {
const decl = (try sema.namespaceLookup(block, src, opt_namespace, decl_name)) orelse return null;
try sema.addReferencedBy(block, src, decl);
return try sema.analyzeDeclRef(decl);
}
fn namespaceLookupVal(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
opt_namespace: InternPool.OptionalNamespaceIndex,
decl_name: InternPool.NullTerminatedString,
) CompileError!?Air.Inst.Ref {
const decl = (try sema.namespaceLookup(block, src, opt_namespace, decl_name)) orelse return null;
return try sema.analyzeDeclVal(block, src, decl);
}
fn structFieldPtr(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
struct_ptr: Air.Inst.Ref,
field_name: InternPool.NullTerminatedString,
field_name_src: LazySrcLoc,
struct_ty: Type,
initializing: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
assert(struct_ty.zigTypeTag(mod) == .Struct);
try sema.resolveTypeFields(struct_ty);
try sema.resolveStructLayout(struct_ty);
if (struct_ty.isTuple(mod)) {
if (ip.stringEqlSlice(field_name, "len")) {
const len_inst = try mod.intRef(Type.usize, struct_ty.structFieldCount(mod));
return sema.analyzeRef(block, src, len_inst);
}
const field_index = try sema.tupleFieldIndex(block, struct_ty, field_name, field_name_src);
return sema.tupleFieldPtr(block, src, struct_ptr, field_name_src, field_index, initializing);
} else if (struct_ty.isAnonStruct(mod)) {
const field_index = try sema.anonStructFieldIndex(block, struct_ty, field_name, field_name_src);
return sema.tupleFieldPtr(block, src, struct_ptr, field_name_src, field_index, initializing);
}
const struct_type = mod.typeToStruct(struct_ty).?;
const field_index = struct_type.nameIndex(ip, field_name) orelse
return sema.failWithBadStructFieldAccess(block, struct_type, field_name_src, field_name);
return sema.structFieldPtrByIndex(block, src, struct_ptr, field_index, field_name_src, struct_ty, initializing);
}
fn structFieldPtrByIndex(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
struct_ptr: Air.Inst.Ref,
field_index: u32,
field_src: LazySrcLoc,
struct_ty: Type,
initializing: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
if (struct_ty.isAnonStruct(mod)) {
return sema.tupleFieldPtr(block, src, struct_ptr, field_src, field_index, initializing);
}
const struct_type = mod.typeToStruct(struct_ty).?;
const field_ty = struct_type.field_types.get(ip)[field_index];
const struct_ptr_ty = sema.typeOf(struct_ptr);
const struct_ptr_ty_info = struct_ptr_ty.ptrInfo(mod);
var ptr_ty_data: InternPool.Key.PtrType = .{
.child = field_ty,
.flags = .{
.is_const = struct_ptr_ty_info.flags.is_const,
.is_volatile = struct_ptr_ty_info.flags.is_volatile,
.address_space = struct_ptr_ty_info.flags.address_space,
},
};
const target = mod.getTarget();
const parent_align = if (struct_ptr_ty_info.flags.alignment != .none)
struct_ptr_ty_info.flags.alignment
else
try sema.typeAbiAlignment(Type.fromInterned(struct_ptr_ty_info.child));
if (struct_type.layout == .@"packed") {
comptime assert(Type.packed_struct_layout_version == 2);
var running_bits: u16 = 0;
for (0..struct_type.field_types.len) |i| {
const f_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
if (!(try sema.typeHasRuntimeBits(f_ty))) continue;
if (i == field_index) {
ptr_ty_data.packed_offset.bit_offset = running_bits;
}
running_bits += @intCast(f_ty.bitSize(mod));
}
ptr_ty_data.packed_offset.host_size = (running_bits + 7) / 8;
// If this is a packed struct embedded in another one, we need to offset
// the bits against each other.
if (struct_ptr_ty_info.packed_offset.host_size != 0) {
ptr_ty_data.packed_offset.host_size = struct_ptr_ty_info.packed_offset.host_size;
ptr_ty_data.packed_offset.bit_offset += struct_ptr_ty_info.packed_offset.bit_offset;
}
ptr_ty_data.flags.alignment = parent_align;
// If the field happens to be byte-aligned, simplify the pointer type.
// The pointee type bit size must match its ABI byte size so that loads and stores
// do not interfere with the surrounding packed bits.
// We do not attempt this with big-endian targets yet because of nested
// structs and floats. I need to double-check the desired behavior for big endian
// targets before adding the necessary complications to this code. This will not
// cause miscompilations; it only means the field pointer uses bit masking when it
// might not be strictly necessary.
if (parent_align != .none and ptr_ty_data.packed_offset.bit_offset % 8 == 0 and
target.cpu.arch.endian() == .little)
{
const elem_size_bytes = try sema.typeAbiSize(Type.fromInterned(ptr_ty_data.child));
const elem_size_bits = Type.fromInterned(ptr_ty_data.child).bitSize(mod);
if (elem_size_bytes * 8 == elem_size_bits) {
const byte_offset = ptr_ty_data.packed_offset.bit_offset / 8;
const new_align: Alignment = @enumFromInt(@ctz(byte_offset | parent_align.toByteUnits().?));
assert(new_align != .none);
ptr_ty_data.flags.alignment = new_align;
ptr_ty_data.packed_offset = .{ .host_size = 0, .bit_offset = 0 };
}
}
} else if (struct_type.layout == .@"extern") {
// For extern structs, field alignment might be bigger than type's
// natural alignment. Eg, in `extern struct { x: u32, y: u16 }` the
// second field is aligned as u32.
const field_offset = struct_ty.structFieldOffset(field_index, mod);
ptr_ty_data.flags.alignment = if (parent_align == .none)
.none
else
@enumFromInt(@min(@intFromEnum(parent_align), @ctz(field_offset)));
} else {
// Our alignment is capped at the field alignment.
const field_align = try sema.structFieldAlignment(
struct_type.fieldAlign(ip, field_index),
Type.fromInterned(field_ty),
struct_type.layout,
);
ptr_ty_data.flags.alignment = if (struct_ptr_ty_info.flags.alignment == .none)
field_align
else
field_align.min(parent_align);
}
const ptr_field_ty = try sema.ptrType(ptr_ty_data);
if (struct_type.fieldIsComptime(ip, field_index)) {
try sema.resolveStructFieldInits(struct_ty);
const val = try mod.intern(.{ .ptr = .{
.ty = ptr_field_ty.toIntern(),
.addr = .{ .comptime_field = struct_type.field_inits.get(ip)[field_index] },
} });
return Air.internedToRef(val);
}
if (try sema.resolveDefinedValue(block, src, struct_ptr)) |struct_ptr_val| {
const val = try mod.intern(.{ .ptr = .{
.ty = ptr_field_ty.toIntern(),
.addr = .{ .field = .{
.base = struct_ptr_val.toIntern(),
.index = field_index,
} },
} });
return Air.internedToRef(val);
}
try sema.requireRuntimeBlock(block, src, null);
return block.addStructFieldPtr(struct_ptr, field_index, ptr_field_ty);
}
fn structFieldVal(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
struct_byval: Air.Inst.Ref,
field_name: InternPool.NullTerminatedString,
field_name_src: LazySrcLoc,
struct_ty: Type,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
assert(struct_ty.zigTypeTag(mod) == .Struct);
try sema.resolveTypeFields(struct_ty);
switch (ip.indexToKey(struct_ty.toIntern())) {
.struct_type => {
const struct_type = ip.loadStructType(struct_ty.toIntern());
if (struct_type.isTuple(ip))
return sema.tupleFieldVal(block, src, struct_byval, field_name, field_name_src, struct_ty);
const field_index = struct_type.nameIndex(ip, field_name) orelse
return sema.failWithBadStructFieldAccess(block, struct_type, field_name_src, field_name);
if (struct_type.fieldIsComptime(ip, field_index)) {
try sema.resolveStructFieldInits(struct_ty);
return Air.internedToRef(struct_type.field_inits.get(ip)[field_index]);
}
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[field_index]);
if (try sema.typeHasOnePossibleValue(field_ty)) |field_val|
return Air.internedToRef(field_val.toIntern());
if (try sema.resolveValue(struct_byval)) |struct_val| {
if (struct_val.isUndef(mod)) return mod.undefRef(field_ty);
if ((try sema.typeHasOnePossibleValue(field_ty))) |opv| {
return Air.internedToRef(opv.toIntern());
}
return Air.internedToRef((try struct_val.fieldValue(mod, field_index)).toIntern());
}
try sema.requireRuntimeBlock(block, src, null);
try sema.resolveTypeLayout(field_ty);
return block.addStructFieldVal(struct_byval, field_index, field_ty);
},
.anon_struct_type => |anon_struct| {
if (anon_struct.names.len == 0) {
return sema.tupleFieldVal(block, src, struct_byval, field_name, field_name_src, struct_ty);
} else {
const field_index = try sema.anonStructFieldIndex(block, struct_ty, field_name, field_name_src);
return sema.tupleFieldValByIndex(block, src, struct_byval, field_index, struct_ty);
}
},
else => unreachable,
}
}
fn tupleFieldVal(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
tuple_byval: Air.Inst.Ref,
field_name: InternPool.NullTerminatedString,
field_name_src: LazySrcLoc,
tuple_ty: Type,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
if (mod.intern_pool.stringEqlSlice(field_name, "len")) {
return mod.intRef(Type.usize, tuple_ty.structFieldCount(mod));
}
const field_index = try sema.tupleFieldIndex(block, tuple_ty, field_name, field_name_src);
return sema.tupleFieldValByIndex(block, src, tuple_byval, field_index, tuple_ty);
}
/// Asserts that `field_name` is not "len".
fn tupleFieldIndex(
sema: *Sema,
block: *Block,
tuple_ty: Type,
field_name: InternPool.NullTerminatedString,
field_name_src: LazySrcLoc,
) CompileError!u32 {
const mod = sema.mod;
assert(!mod.intern_pool.stringEqlSlice(field_name, "len"));
if (field_name.toUnsigned(&mod.intern_pool)) |field_index| {
if (field_index < tuple_ty.structFieldCount(mod)) return field_index;
return sema.fail(block, field_name_src, "index '{}' out of bounds of tuple '{}'", .{
field_name.fmt(&mod.intern_pool), tuple_ty.fmt(mod),
});
}
return sema.fail(block, field_name_src, "no field named '{}' in tuple '{}'", .{
field_name.fmt(&mod.intern_pool), tuple_ty.fmt(mod),
});
}
fn tupleFieldValByIndex(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
tuple_byval: Air.Inst.Ref,
field_index: u32,
tuple_ty: Type,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const field_ty = tuple_ty.structFieldType(field_index, mod);
if (tuple_ty.structFieldIsComptime(field_index, mod))
try sema.resolveStructFieldInits(tuple_ty);
if (try tuple_ty.structFieldValueComptime(mod, field_index)) |default_value| {
return Air.internedToRef(default_value.toIntern());
}
if (try sema.resolveValue(tuple_byval)) |tuple_val| {
if ((try sema.typeHasOnePossibleValue(field_ty))) |opv| {
return Air.internedToRef(opv.toIntern());
}
return switch (mod.intern_pool.indexToKey(tuple_val.toIntern())) {
.undef => mod.undefRef(field_ty),
.aggregate => |aggregate| Air.internedToRef(switch (aggregate.storage) {
.bytes => |bytes| try mod.intValue(Type.u8, bytes[0]),
.elems => |elems| Value.fromInterned(elems[field_index]),
.repeated_elem => |elem| Value.fromInterned(elem),
}.toIntern()),
else => unreachable,
};
}
try sema.requireRuntimeBlock(block, src, null);
try sema.resolveTypeLayout(field_ty);
return block.addStructFieldVal(tuple_byval, field_index, field_ty);
}
fn unionFieldPtr(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
union_ptr: Air.Inst.Ref,
field_name: InternPool.NullTerminatedString,
field_name_src: LazySrcLoc,
union_ty: Type,
initializing: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
assert(union_ty.zigTypeTag(mod) == .Union);
const union_ptr_ty = sema.typeOf(union_ptr);
const union_ptr_info = union_ptr_ty.ptrInfo(mod);
try sema.resolveTypeFields(union_ty);
const union_obj = mod.typeToUnion(union_ty).?;
const field_index = try sema.unionFieldIndex(block, union_ty, field_name, field_name_src);
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[field_index]);
const ptr_field_ty = try sema.ptrType(.{
.child = field_ty.toIntern(),
.flags = .{
.is_const = union_ptr_info.flags.is_const,
.is_volatile = union_ptr_info.flags.is_volatile,
.address_space = union_ptr_info.flags.address_space,
.alignment = if (union_obj.getLayout(ip) == .auto) blk: {
const union_align = if (union_ptr_info.flags.alignment != .none)
union_ptr_info.flags.alignment
else
try sema.typeAbiAlignment(union_ty);
const field_align = try sema.unionFieldAlignment(union_obj, field_index);
break :blk union_align.min(field_align);
} else union_ptr_info.flags.alignment,
},
.packed_offset = union_ptr_info.packed_offset,
});
const enum_field_index: u32 = @intCast(Type.fromInterned(union_obj.enum_tag_ty).enumFieldIndex(field_name, mod).?);
if (initializing and field_ty.zigTypeTag(mod) == .NoReturn) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "cannot initialize 'noreturn' field of union", .{});
errdefer msg.destroy(sema.gpa);
try sema.addFieldErrNote(union_ty, field_index, msg, "field '{}' declared here", .{
field_name.fmt(ip),
});
try sema.addDeclaredHereNote(msg, union_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
if (try sema.resolveDefinedValue(block, src, union_ptr)) |union_ptr_val| ct: {
switch (union_obj.getLayout(ip)) {
.auto => if (!initializing) {
const union_val = (try sema.pointerDeref(block, src, union_ptr_val, union_ptr_ty)) orelse
break :ct;
if (union_val.isUndef(mod)) {
return sema.failWithUseOfUndef(block, src);
}
const un = ip.indexToKey(union_val.toIntern()).un;
const field_tag = try mod.enumValueFieldIndex(Type.fromInterned(union_obj.enum_tag_ty), enum_field_index);
const tag_matches = un.tag == field_tag.toIntern();
if (!tag_matches) {
const msg = msg: {
const active_index = Type.fromInterned(union_obj.enum_tag_ty).enumTagFieldIndex(Value.fromInterned(un.tag), mod).?;
const active_field_name = Type.fromInterned(union_obj.enum_tag_ty).enumFieldName(active_index, mod);
const msg = try sema.errMsg(block, src, "access of union field '{}' while field '{}' is active", .{
field_name.fmt(ip),
active_field_name.fmt(ip),
});
errdefer msg.destroy(sema.gpa);
try sema.addDeclaredHereNote(msg, union_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
},
.@"packed", .@"extern" => {},
}
return Air.internedToRef((try mod.intern(.{ .ptr = .{
.ty = ptr_field_ty.toIntern(),
.addr = .{ .field = .{
.base = union_ptr_val.toIntern(),
.index = field_index,
} },
} })));
}
try sema.requireRuntimeBlock(block, src, null);
if (!initializing and union_obj.getLayout(ip) == .auto and block.wantSafety() and
union_ty.unionTagTypeSafety(mod) != null and union_obj.field_types.len > 1)
{
const wanted_tag_val = try mod.enumValueFieldIndex(Type.fromInterned(union_obj.enum_tag_ty), enum_field_index);
const wanted_tag = Air.internedToRef(wanted_tag_val.toIntern());
// TODO would it be better if get_union_tag supported pointers to unions?
const union_val = try block.addTyOp(.load, union_ty, union_ptr);
const active_tag = try block.addTyOp(.get_union_tag, Type.fromInterned(union_obj.enum_tag_ty), union_val);
try sema.panicInactiveUnionField(block, src, active_tag, wanted_tag);
}
if (field_ty.zigTypeTag(mod) == .NoReturn) {
_ = try block.addNoOp(.unreach);
return .unreachable_value;
}
return block.addStructFieldPtr(union_ptr, field_index, ptr_field_ty);
}
fn unionFieldVal(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
union_byval: Air.Inst.Ref,
field_name: InternPool.NullTerminatedString,
field_name_src: LazySrcLoc,
union_ty: Type,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
assert(union_ty.zigTypeTag(mod) == .Union);
try sema.resolveTypeFields(union_ty);
const union_obj = mod.typeToUnion(union_ty).?;
const field_index = try sema.unionFieldIndex(block, union_ty, field_name, field_name_src);
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[field_index]);
const enum_field_index: u32 = @intCast(Type.fromInterned(union_obj.enum_tag_ty).enumFieldIndex(field_name, mod).?);
if (try sema.resolveValue(union_byval)) |union_val| {
if (union_val.isUndef(mod)) return mod.undefRef(field_ty);
const un = ip.indexToKey(union_val.toIntern()).un;
const field_tag = try mod.enumValueFieldIndex(Type.fromInterned(union_obj.enum_tag_ty), enum_field_index);
const tag_matches = un.tag == field_tag.toIntern();
switch (union_obj.getLayout(ip)) {
.auto => {
if (tag_matches) {
return Air.internedToRef(un.val);
} else {
const msg = msg: {
const active_index = Type.fromInterned(union_obj.enum_tag_ty).enumTagFieldIndex(Value.fromInterned(un.tag), mod).?;
const active_field_name = Type.fromInterned(union_obj.enum_tag_ty).enumFieldName(active_index, mod);
const msg = try sema.errMsg(block, src, "access of union field '{}' while field '{}' is active", .{
field_name.fmt(ip), active_field_name.fmt(ip),
});
errdefer msg.destroy(sema.gpa);
try sema.addDeclaredHereNote(msg, union_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
},
.@"packed", .@"extern" => |layout| {
if (tag_matches) {
return Air.internedToRef(un.val);
} else {
const old_ty = if (un.tag == .none)
Type.fromInterned(ip.typeOf(un.val))
else
union_ty.unionFieldType(Value.fromInterned(un.tag), mod).?;
if (try sema.bitCastUnionFieldVal(block, src, Value.fromInterned(un.val), old_ty, field_ty, layout)) |new_val| {
return Air.internedToRef(new_val.toIntern());
}
}
},
}
}
try sema.requireRuntimeBlock(block, src, null);
if (union_obj.getLayout(ip) == .auto and block.wantSafety() and
union_ty.unionTagTypeSafety(mod) != null and union_obj.field_types.len > 1)
{
const wanted_tag_val = try mod.enumValueFieldIndex(Type.fromInterned(union_obj.enum_tag_ty), enum_field_index);
const wanted_tag = Air.internedToRef(wanted_tag_val.toIntern());
const active_tag = try block.addTyOp(.get_union_tag, Type.fromInterned(union_obj.enum_tag_ty), union_byval);
try sema.panicInactiveUnionField(block, src, active_tag, wanted_tag);
}
if (field_ty.zigTypeTag(mod) == .NoReturn) {
_ = try block.addNoOp(.unreach);
return .unreachable_value;
}
try sema.resolveTypeLayout(field_ty);
return block.addStructFieldVal(union_byval, field_index, field_ty);
}
fn elemPtr(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
indexable_ptr: Air.Inst.Ref,
elem_index: Air.Inst.Ref,
elem_index_src: LazySrcLoc,
init: bool,
oob_safety: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const indexable_ptr_src = src; // TODO better source location
const indexable_ptr_ty = sema.typeOf(indexable_ptr);
const indexable_ty = switch (indexable_ptr_ty.zigTypeTag(mod)) {
.Pointer => indexable_ptr_ty.childType(mod),
else => return sema.fail(block, indexable_ptr_src, "expected pointer, found '{}'", .{indexable_ptr_ty.fmt(mod)}),
};
try checkIndexable(sema, block, src, indexable_ty);
const elem_ptr = switch (indexable_ty.zigTypeTag(mod)) {
.Array, .Vector => try sema.elemPtrArray(block, src, indexable_ptr_src, indexable_ptr, elem_index_src, elem_index, init, oob_safety),
.Struct => blk: {
// Tuple field access.
const index_val = try sema.resolveConstDefinedValue(block, elem_index_src, elem_index, .{
.needed_comptime_reason = "tuple field access index must be comptime-known",
});
const index: u32 = @intCast(try index_val.toUnsignedIntAdvanced(sema));
break :blk try sema.tupleFieldPtr(block, src, indexable_ptr, elem_index_src, index, init);
},
else => {
const indexable = try sema.analyzeLoad(block, indexable_ptr_src, indexable_ptr, indexable_ptr_src);
return elemPtrOneLayerOnly(sema, block, src, indexable, elem_index, elem_index_src, init, oob_safety);
},
};
try sema.checkKnownAllocPtr(block, indexable_ptr, elem_ptr);
return elem_ptr;
}
/// Asserts that the type of indexable is pointer.
fn elemPtrOneLayerOnly(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
indexable: Air.Inst.Ref,
elem_index: Air.Inst.Ref,
elem_index_src: LazySrcLoc,
init: bool,
oob_safety: bool,
) CompileError!Air.Inst.Ref {
const indexable_src = src; // TODO better source location
const indexable_ty = sema.typeOf(indexable);
const mod = sema.mod;
try checkIndexable(sema, block, src, indexable_ty);
switch (indexable_ty.ptrSize(mod)) {
.Slice => return sema.elemPtrSlice(block, src, indexable_src, indexable, elem_index_src, elem_index, oob_safety),
.Many, .C => {
const maybe_ptr_val = try sema.resolveDefinedValue(block, indexable_src, indexable);
const maybe_index_val = try sema.resolveDefinedValue(block, elem_index_src, elem_index);
const runtime_src = rs: {
const ptr_val = maybe_ptr_val orelse break :rs indexable_src;
const index_val = maybe_index_val orelse break :rs elem_index_src;
const index: usize = @intCast(try index_val.toUnsignedIntAdvanced(sema));
const result_ty = try sema.elemPtrType(indexable_ty, index);
const elem_ptr = try ptr_val.elemPtr(result_ty, index, mod);
return Air.internedToRef(elem_ptr.toIntern());
};
const result_ty = try sema.elemPtrType(indexable_ty, null);
try sema.requireRuntimeBlock(block, src, runtime_src);
return block.addPtrElemPtr(indexable, elem_index, result_ty);
},
.One => {
const child_ty = indexable_ty.childType(mod);
const elem_ptr = switch (child_ty.zigTypeTag(mod)) {
.Array, .Vector => try sema.elemPtrArray(block, src, indexable_src, indexable, elem_index_src, elem_index, init, oob_safety),
.Struct => blk: {
assert(child_ty.isTuple(mod));
const index_val = try sema.resolveConstDefinedValue(block, elem_index_src, elem_index, .{
.needed_comptime_reason = "tuple field access index must be comptime-known",
});
const index: u32 = @intCast(try index_val.toUnsignedIntAdvanced(sema));
break :blk try sema.tupleFieldPtr(block, indexable_src, indexable, elem_index_src, index, false);
},
else => unreachable, // Guaranteed by checkIndexable
};
try sema.checkKnownAllocPtr(block, indexable, elem_ptr);
return elem_ptr;
},
}
}
fn elemVal(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
indexable: Air.Inst.Ref,
elem_index_uncasted: Air.Inst.Ref,
elem_index_src: LazySrcLoc,
oob_safety: bool,
) CompileError!Air.Inst.Ref {
const indexable_src = src; // TODO better source location
const indexable_ty = sema.typeOf(indexable);
const mod = sema.mod;
try checkIndexable(sema, block, src, indexable_ty);
// TODO in case of a vector of pointers, we need to detect whether the element
// index is a scalar or vector instead of unconditionally casting to usize.
const elem_index = try sema.coerce(block, Type.usize, elem_index_uncasted, elem_index_src);
switch (indexable_ty.zigTypeTag(mod)) {
.Pointer => switch (indexable_ty.ptrSize(mod)) {
.Slice => return sema.elemValSlice(block, src, indexable_src, indexable, elem_index_src, elem_index, oob_safety),
.Many, .C => {
const maybe_indexable_val = try sema.resolveDefinedValue(block, indexable_src, indexable);
const maybe_index_val = try sema.resolveDefinedValue(block, elem_index_src, elem_index);
const runtime_src = rs: {
const indexable_val = maybe_indexable_val orelse break :rs indexable_src;
const index_val = maybe_index_val orelse break :rs elem_index_src;
const index: usize = @intCast(try index_val.toUnsignedIntAdvanced(sema));
const elem_ty = indexable_ty.elemType2(mod);
const many_ptr_ty = try mod.manyConstPtrType(elem_ty);
const many_ptr_val = try mod.getCoerced(indexable_val, many_ptr_ty);
const elem_ptr_ty = try mod.singleConstPtrType(elem_ty);
const elem_ptr_val = try many_ptr_val.elemPtr(elem_ptr_ty, index, mod);
if (try sema.pointerDeref(block, indexable_src, elem_ptr_val, elem_ptr_ty)) |elem_val| {
return Air.internedToRef((try mod.getCoerced(elem_val, elem_ty)).toIntern());
}
break :rs indexable_src;
};
try sema.requireRuntimeBlock(block, src, runtime_src);
return block.addBinOp(.ptr_elem_val, indexable, elem_index);
},
.One => {
arr_sent: {
const inner_ty = indexable_ty.childType(mod);
if (inner_ty.zigTypeTag(mod) != .Array) break :arr_sent;
const sentinel = inner_ty.sentinel(mod) orelse break :arr_sent;
const index_val = try sema.resolveDefinedValue(block, elem_index_src, elem_index) orelse break :arr_sent;
const index = try sema.usizeCast(block, src, try index_val.toUnsignedIntAdvanced(sema));
if (index != inner_ty.arrayLen(mod)) break :arr_sent;
return Air.internedToRef(sentinel.toIntern());
}
const elem_ptr = try sema.elemPtr(block, indexable_src, indexable, elem_index, elem_index_src, false, oob_safety);
return sema.analyzeLoad(block, indexable_src, elem_ptr, elem_index_src);
},
},
.Array => return sema.elemValArray(block, src, indexable_src, indexable, elem_index_src, elem_index, oob_safety),
.Vector => {
// TODO: If the index is a vector, the result should be a vector.
return sema.elemValArray(block, src, indexable_src, indexable, elem_index_src, elem_index, oob_safety);
},
.Struct => {
// Tuple field access.
const index_val = try sema.resolveConstDefinedValue(block, elem_index_src, elem_index, .{
.needed_comptime_reason = "tuple field access index must be comptime-known",
});
const index: u32 = @intCast(try index_val.toUnsignedIntAdvanced(sema));
return sema.tupleField(block, indexable_src, indexable, elem_index_src, index);
},
else => unreachable,
}
}
fn validateRuntimeElemAccess(
sema: *Sema,
block: *Block,
elem_index_src: LazySrcLoc,
elem_ty: Type,
parent_ty: Type,
parent_src: LazySrcLoc,
) CompileError!void {
const mod = sema.mod;
if (try sema.typeRequiresComptime(elem_ty)) {
const msg = msg: {
const msg = try sema.errMsg(
block,
elem_index_src,
"values of type '{}' must be comptime-known, but index value is runtime-known",
.{parent_ty.fmt(mod)},
);
errdefer msg.destroy(sema.gpa);
const src_decl = mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsComptime(msg, src_decl.toSrcLoc(parent_src, mod), parent_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
}
fn tupleFieldPtr(
sema: *Sema,
block: *Block,
tuple_ptr_src: LazySrcLoc,
tuple_ptr: Air.Inst.Ref,
field_index_src: LazySrcLoc,
field_index: u32,
init: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const tuple_ptr_ty = sema.typeOf(tuple_ptr);
const tuple_ty = tuple_ptr_ty.childType(mod);
try sema.resolveTypeFields(tuple_ty);
const field_count = tuple_ty.structFieldCount(mod);
if (field_count == 0) {
return sema.fail(block, tuple_ptr_src, "indexing into empty tuple is not allowed", .{});
}
if (field_index >= field_count) {
return sema.fail(block, field_index_src, "index {d} outside tuple of length {d}", .{
field_index, field_count,
});
}
const field_ty = tuple_ty.structFieldType(field_index, mod);
const ptr_field_ty = try sema.ptrType(.{
.child = field_ty.toIntern(),
.flags = .{
.is_const = !tuple_ptr_ty.ptrIsMutable(mod),
.is_volatile = tuple_ptr_ty.isVolatilePtr(mod),
.address_space = tuple_ptr_ty.ptrAddressSpace(mod),
},
});
if (tuple_ty.structFieldIsComptime(field_index, mod))
try sema.resolveStructFieldInits(tuple_ty);
if (try tuple_ty.structFieldValueComptime(mod, field_index)) |default_val| {
return Air.internedToRef((try mod.intern(.{ .ptr = .{
.ty = ptr_field_ty.toIntern(),
.addr = .{ .comptime_field = default_val.toIntern() },
} })));
}
if (try sema.resolveValue(tuple_ptr)) |tuple_ptr_val| {
return Air.internedToRef((try mod.intern(.{ .ptr = .{
.ty = ptr_field_ty.toIntern(),
.addr = .{ .field = .{
.base = tuple_ptr_val.toIntern(),
.index = field_index,
} },
} })));
}
if (!init) {
try sema.validateRuntimeElemAccess(block, field_index_src, field_ty, tuple_ty, tuple_ptr_src);
}
try sema.requireRuntimeBlock(block, tuple_ptr_src, null);
return block.addStructFieldPtr(tuple_ptr, field_index, ptr_field_ty);
}
fn tupleField(
sema: *Sema,
block: *Block,
tuple_src: LazySrcLoc,
tuple: Air.Inst.Ref,
field_index_src: LazySrcLoc,
field_index: u32,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const tuple_ty = sema.typeOf(tuple);
try sema.resolveTypeFields(tuple_ty);
const field_count = tuple_ty.structFieldCount(mod);
if (field_count == 0) {
return sema.fail(block, tuple_src, "indexing into empty tuple is not allowed", .{});
}
if (field_index >= field_count) {
return sema.fail(block, field_index_src, "index {d} outside tuple of length {d}", .{
field_index, field_count,
});
}
const field_ty = tuple_ty.structFieldType(field_index, mod);
if (tuple_ty.structFieldIsComptime(field_index, mod))
try sema.resolveStructFieldInits(tuple_ty);
if (try tuple_ty.structFieldValueComptime(mod, field_index)) |default_value| {
return Air.internedToRef(default_value.toIntern()); // comptime field
}
if (try sema.resolveValue(tuple)) |tuple_val| {
if (tuple_val.isUndef(mod)) return mod.undefRef(field_ty);
return Air.internedToRef((try tuple_val.fieldValue(mod, field_index)).toIntern());
}
try sema.validateRuntimeElemAccess(block, field_index_src, field_ty, tuple_ty, tuple_src);
try sema.requireRuntimeBlock(block, tuple_src, null);
try sema.resolveTypeLayout(field_ty);
return block.addStructFieldVal(tuple, field_index, field_ty);
}
fn elemValArray(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
array_src: LazySrcLoc,
array: Air.Inst.Ref,
elem_index_src: LazySrcLoc,
elem_index: Air.Inst.Ref,
oob_safety: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const array_ty = sema.typeOf(array);
const array_sent = array_ty.sentinel(mod);
const array_len = array_ty.arrayLen(mod);
const array_len_s = array_len + @intFromBool(array_sent != null);
const elem_ty = array_ty.childType(mod);
if (array_len_s == 0) {
return sema.fail(block, array_src, "indexing into empty array is not allowed", .{});
}
const maybe_undef_array_val = try sema.resolveValue(array);
// index must be defined since it can access out of bounds
const maybe_index_val = try sema.resolveDefinedValue(block, elem_index_src, elem_index);
if (maybe_index_val) |index_val| {
const index: usize = @intCast(try index_val.toUnsignedIntAdvanced(sema));
if (array_sent) |s| {
if (index == array_len) {
return Air.internedToRef(s.toIntern());
}
}
if (index >= array_len_s) {
const sentinel_label: []const u8 = if (array_sent != null) " +1 (sentinel)" else "";
return sema.fail(block, elem_index_src, "index {d} outside array of length {d}{s}", .{ index, array_len, sentinel_label });
}
}
if (maybe_undef_array_val) |array_val| {
if (array_val.isUndef(mod)) {
return mod.undefRef(elem_ty);
}
if (maybe_index_val) |index_val| {
const index: usize = @intCast(try index_val.toUnsignedIntAdvanced(sema));
const elem_val = try array_val.elemValue(mod, index);
return Air.internedToRef(elem_val.toIntern());
}
}
try sema.validateRuntimeElemAccess(block, elem_index_src, elem_ty, array_ty, array_src);
const runtime_src = if (maybe_undef_array_val != null) elem_index_src else array_src;
if (oob_safety and block.wantSafety()) {
// Runtime check is only needed if unable to comptime check
if (maybe_index_val == null) {
const len_inst = try mod.intRef(Type.usize, array_len);
const cmp_op: Air.Inst.Tag = if (array_sent != null) .cmp_lte else .cmp_lt;
try sema.panicIndexOutOfBounds(block, src, elem_index, len_inst, cmp_op);
}
}
if (try sema.typeHasOnePossibleValue(elem_ty)) |elem_val|
return Air.internedToRef(elem_val.toIntern());
try sema.requireRuntimeBlock(block, src, runtime_src);
try sema.queueFullTypeResolution(array_ty);
return block.addBinOp(.array_elem_val, array, elem_index);
}
fn elemPtrArray(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
array_ptr_src: LazySrcLoc,
array_ptr: Air.Inst.Ref,
elem_index_src: LazySrcLoc,
elem_index: Air.Inst.Ref,
init: bool,
oob_safety: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const array_ptr_ty = sema.typeOf(array_ptr);
const array_ty = array_ptr_ty.childType(mod);
const array_sent = array_ty.sentinel(mod) != null;
const array_len = array_ty.arrayLen(mod);
const array_len_s = array_len + @intFromBool(array_sent);
if (array_len_s == 0) {
return sema.fail(block, array_ptr_src, "indexing into empty array is not allowed", .{});
}
const maybe_undef_array_ptr_val = try sema.resolveValue(array_ptr);
// The index must not be undefined since it can be out of bounds.
const offset: ?usize = if (try sema.resolveDefinedValue(block, elem_index_src, elem_index)) |index_val| o: {
const index = try sema.usizeCast(block, elem_index_src, try index_val.toUnsignedIntAdvanced(sema));
if (index >= array_len_s) {
const sentinel_label: []const u8 = if (array_sent) " +1 (sentinel)" else "";
return sema.fail(block, elem_index_src, "index {d} outside array of length {d}{s}", .{ index, array_len, sentinel_label });
}
break :o index;
} else null;
const elem_ptr_ty = try sema.elemPtrType(array_ptr_ty, offset);
if (maybe_undef_array_ptr_val) |array_ptr_val| {
if (array_ptr_val.isUndef(mod)) {
return mod.undefRef(elem_ptr_ty);
}
if (offset) |index| {
const elem_ptr = try array_ptr_val.elemPtr(elem_ptr_ty, index, mod);
return Air.internedToRef(elem_ptr.toIntern());
}
}
if (!init) {
try sema.validateRuntimeElemAccess(block, elem_index_src, array_ty.elemType2(mod), array_ty, array_ptr_src);
}
const runtime_src = if (maybe_undef_array_ptr_val != null) elem_index_src else array_ptr_src;
try sema.requireRuntimeBlock(block, src, runtime_src);
// Runtime check is only needed if unable to comptime check.
if (oob_safety and block.wantSafety() and offset == null) {
const len_inst = try mod.intRef(Type.usize, array_len);
const cmp_op: Air.Inst.Tag = if (array_sent) .cmp_lte else .cmp_lt;
try sema.panicIndexOutOfBounds(block, src, elem_index, len_inst, cmp_op);
}
return block.addPtrElemPtr(array_ptr, elem_index, elem_ptr_ty);
}
fn elemValSlice(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
slice_src: LazySrcLoc,
slice: Air.Inst.Ref,
elem_index_src: LazySrcLoc,
elem_index: Air.Inst.Ref,
oob_safety: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const slice_ty = sema.typeOf(slice);
const slice_sent = slice_ty.sentinel(mod) != null;
const elem_ty = slice_ty.elemType2(mod);
var runtime_src = slice_src;
// slice must be defined since it can dereferenced as null
const maybe_slice_val = try sema.resolveDefinedValue(block, slice_src, slice);
// index must be defined since it can index out of bounds
const maybe_index_val = try sema.resolveDefinedValue(block, elem_index_src, elem_index);
if (maybe_slice_val) |slice_val| {
runtime_src = elem_index_src;
const slice_len = try slice_val.sliceLen(sema);
const slice_len_s = slice_len + @intFromBool(slice_sent);
if (slice_len_s == 0) {
return sema.fail(block, slice_src, "indexing into empty slice is not allowed", .{});
}
if (maybe_index_val) |index_val| {
const index: usize = @intCast(try index_val.toUnsignedIntAdvanced(sema));
if (index >= slice_len_s) {
const sentinel_label: []const u8 = if (slice_sent) " +1 (sentinel)" else "";
return sema.fail(block, elem_index_src, "index {d} outside slice of length {d}{s}", .{ index, slice_len, sentinel_label });
}
const elem_ptr_ty = try sema.elemPtrType(slice_ty, index);
const elem_ptr_val = try slice_val.elemPtr(elem_ptr_ty, index, mod);
if (try sema.pointerDeref(block, slice_src, elem_ptr_val, elem_ptr_ty)) |elem_val| {
return Air.internedToRef(elem_val.toIntern());
}
runtime_src = slice_src;
}
}
try sema.validateRuntimeElemAccess(block, elem_index_src, elem_ty, slice_ty, slice_src);
try sema.requireRuntimeBlock(block, src, runtime_src);
if (oob_safety and block.wantSafety()) {
const len_inst = if (maybe_slice_val) |slice_val|
try mod.intRef(Type.usize, try slice_val.sliceLen(sema))
else
try block.addTyOp(.slice_len, Type.usize, slice);
const cmp_op: Air.Inst.Tag = if (slice_sent) .cmp_lte else .cmp_lt;
try sema.panicIndexOutOfBounds(block, src, elem_index, len_inst, cmp_op);
}
try sema.queueFullTypeResolution(sema.typeOf(slice));
return block.addBinOp(.slice_elem_val, slice, elem_index);
}
fn elemPtrSlice(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
slice_src: LazySrcLoc,
slice: Air.Inst.Ref,
elem_index_src: LazySrcLoc,
elem_index: Air.Inst.Ref,
oob_safety: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const slice_ty = sema.typeOf(slice);
const slice_sent = slice_ty.sentinel(mod) != null;
const maybe_undef_slice_val = try sema.resolveValue(slice);
// The index must not be undefined since it can be out of bounds.
const offset: ?usize = if (try sema.resolveDefinedValue(block, elem_index_src, elem_index)) |index_val| o: {
const index = try sema.usizeCast(block, elem_index_src, try index_val.toUnsignedIntAdvanced(sema));
break :o index;
} else null;
const elem_ptr_ty = try sema.elemPtrType(slice_ty, offset);
if (maybe_undef_slice_val) |slice_val| {
if (slice_val.isUndef(mod)) {
return mod.undefRef(elem_ptr_ty);
}
const slice_len = try slice_val.sliceLen(sema);
const slice_len_s = slice_len + @intFromBool(slice_sent);
if (slice_len_s == 0) {
return sema.fail(block, slice_src, "indexing into empty slice is not allowed", .{});
}
if (offset) |index| {
if (index >= slice_len_s) {
const sentinel_label: []const u8 = if (slice_sent) " +1 (sentinel)" else "";
return sema.fail(block, elem_index_src, "index {d} outside slice of length {d}{s}", .{ index, slice_len, sentinel_label });
}
const elem_ptr_val = try slice_val.elemPtr(elem_ptr_ty, index, mod);
return Air.internedToRef(elem_ptr_val.toIntern());
}
}
try sema.validateRuntimeElemAccess(block, elem_index_src, elem_ptr_ty, slice_ty, slice_src);
const runtime_src = if (maybe_undef_slice_val != null) elem_index_src else slice_src;
try sema.requireRuntimeBlock(block, src, runtime_src);
if (oob_safety and block.wantSafety()) {
const len_inst = len: {
if (maybe_undef_slice_val) |slice_val|
if (!slice_val.isUndef(mod))
break :len try mod.intRef(Type.usize, try slice_val.sliceLen(sema));
break :len try block.addTyOp(.slice_len, Type.usize, slice);
};
const cmp_op: Air.Inst.Tag = if (slice_sent) .cmp_lte else .cmp_lt;
try sema.panicIndexOutOfBounds(block, src, elem_index, len_inst, cmp_op);
}
return block.addSliceElemPtr(slice, elem_index, elem_ptr_ty);
}
fn coerce(
sema: *Sema,
block: *Block,
dest_ty_unresolved: Type,
inst: Air.Inst.Ref,
inst_src: LazySrcLoc,
) CompileError!Air.Inst.Ref {
return sema.coerceExtra(block, dest_ty_unresolved, inst, inst_src, .{}) catch |err| switch (err) {
error.NotCoercible => unreachable,
else => |e| return e,
};
}
const CoersionError = CompileError || error{
/// When coerce is called recursively, this error should be returned instead of using `fail`
/// to ensure correct types in compile errors.
NotCoercible,
};
const CoerceOpts = struct {
/// Should coerceExtra emit error messages.
report_err: bool = true,
/// Ignored if `report_err == false`.
is_ret: bool = false,
/// Should coercion to comptime_int emit an error message.
no_cast_to_comptime_int: bool = false,
param_src: struct {
func_inst: Air.Inst.Ref = .none,
param_i: u32 = undefined,
fn get(info: @This(), sema: *Sema) !?Module.SrcLoc {
if (info.func_inst == .none) return null;
const mod = sema.mod;
const fn_decl = (try sema.funcDeclSrc(info.func_inst)) orelse return null;
const param_src = Module.paramSrc(0, mod, fn_decl, info.param_i);
if (param_src == .node_offset_param) {
return Module.SrcLoc{
.file_scope = fn_decl.getFileScope(mod),
.parent_decl_node = fn_decl.src_node,
.lazy = LazySrcLoc.nodeOffset(param_src.node_offset_param),
};
}
return fn_decl.toSrcLoc(param_src, mod);
}
} = .{},
};
fn coerceExtra(
sema: *Sema,
block: *Block,
dest_ty: Type,
inst: Air.Inst.Ref,
inst_src: LazySrcLoc,
opts: CoerceOpts,
) CoersionError!Air.Inst.Ref {
if (dest_ty.isGenericPoison()) return inst;
const mod = sema.mod;
const dest_ty_src = inst_src; // TODO better source location
try sema.resolveTypeFields(dest_ty);
const inst_ty = sema.typeOf(inst);
try sema.resolveTypeFields(inst_ty);
const target = mod.getTarget();
// If the types are the same, we can return the operand.
if (dest_ty.eql(inst_ty, mod))
return inst;
const maybe_inst_val = try sema.resolveValue(inst);
var in_memory_result = try sema.coerceInMemoryAllowed(block, dest_ty, inst_ty, false, target, dest_ty_src, inst_src);
if (in_memory_result == .ok) {
if (maybe_inst_val) |val| {
return sema.coerceInMemory(val, dest_ty);
}
try sema.requireRuntimeBlock(block, inst_src, null);
try sema.queueFullTypeResolution(dest_ty);
const new_val = try block.addBitCast(dest_ty, inst);
try sema.checkKnownAllocPtr(block, inst, new_val);
return new_val;
}
switch (dest_ty.zigTypeTag(mod)) {
.Optional => optional: {
if (maybe_inst_val) |val| {
// undefined sets the optional bit also to undefined.
if (val.toIntern() == .undef) {
return mod.undefRef(dest_ty);
}
// null to ?T
if (val.toIntern() == .null_value) {
return Air.internedToRef((try mod.intern(.{ .opt = .{
.ty = dest_ty.toIntern(),
.val = .none,
} })));
}
}
// cast from ?*T and ?[*]T to ?*anyopaque
// but don't do it if the source type is a double pointer
if (dest_ty.isPtrLikeOptional(mod) and
dest_ty.elemType2(mod).toIntern() == .anyopaque_type and
inst_ty.isPtrAtRuntime(mod))
anyopaque_check: {
if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :optional;
const elem_ty = inst_ty.elemType2(mod);
if (elem_ty.zigTypeTag(mod) == .Pointer or elem_ty.isPtrLikeOptional(mod)) {
in_memory_result = .{ .double_ptr_to_anyopaque = .{
.actual = inst_ty,
.wanted = dest_ty,
} };
break :optional;
}
// Let the logic below handle wrapping the optional now that
// it has been checked to correctly coerce.
if (!inst_ty.isPtrLikeOptional(mod)) break :anyopaque_check;
return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src);
}
// T to ?T
const child_type = dest_ty.optionalChild(mod);
const intermediate = sema.coerceExtra(block, child_type, inst, inst_src, .{ .report_err = false }) catch |err| switch (err) {
error.NotCoercible => {
if (in_memory_result == .no_match) {
// Try to give more useful notes
in_memory_result = try sema.coerceInMemoryAllowed(block, child_type, inst_ty, false, target, dest_ty_src, inst_src);
}
break :optional;
},
else => |e| return e,
};
return try sema.wrapOptional(block, dest_ty, intermediate, inst_src);
},
.Pointer => pointer: {
const dest_info = dest_ty.ptrInfo(mod);
// Function body to function pointer.
if (inst_ty.zigTypeTag(mod) == .Fn) {
const fn_val = try sema.resolveConstDefinedValue(block, .unneeded, inst, undefined);
const fn_decl = fn_val.pointerDecl(mod).?;
const inst_as_ptr = try sema.analyzeDeclRef(fn_decl);
return sema.coerce(block, dest_ty, inst_as_ptr, inst_src);
}
// *T to *[1]T
single_item: {
if (dest_info.flags.size != .One) break :single_item;
if (!inst_ty.isSinglePointer(mod)) break :single_item;
if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :pointer;
const ptr_elem_ty = inst_ty.childType(mod);
const array_ty = Type.fromInterned(dest_info.child);
if (array_ty.zigTypeTag(mod) != .Array) break :single_item;
const array_elem_ty = array_ty.childType(mod);
if (array_ty.arrayLen(mod) != 1) break :single_item;
const dest_is_mut = !dest_info.flags.is_const;
switch (try sema.coerceInMemoryAllowed(block, array_elem_ty, ptr_elem_ty, dest_is_mut, target, dest_ty_src, inst_src)) {
.ok => {},
else => break :single_item,
}
return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src);
}
// Coercions where the source is a single pointer to an array.
src_array_ptr: {
if (!inst_ty.isSinglePointer(mod)) break :src_array_ptr;
if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :pointer;
const array_ty = inst_ty.childType(mod);
if (array_ty.zigTypeTag(mod) != .Array) break :src_array_ptr;
const array_elem_type = array_ty.childType(mod);
const dest_is_mut = !dest_info.flags.is_const;
const dst_elem_type = Type.fromInterned(dest_info.child);
const elem_res = try sema.coerceInMemoryAllowed(block, dst_elem_type, array_elem_type, dest_is_mut, target, dest_ty_src, inst_src);
switch (elem_res) {
.ok => {},
else => {
in_memory_result = .{ .ptr_child = .{
.child = try elem_res.dupe(sema.arena),
.actual = array_elem_type,
.wanted = dst_elem_type,
} };
break :src_array_ptr;
},
}
if (dest_info.sentinel != .none) {
if (array_ty.sentinel(mod)) |inst_sent| {
if (Air.internedToRef(dest_info.sentinel) !=
try sema.coerceInMemory(inst_sent, dst_elem_type))
{
in_memory_result = .{ .ptr_sentinel = .{
.actual = inst_sent,
.wanted = Value.fromInterned(dest_info.sentinel),
.ty = dst_elem_type,
} };
break :src_array_ptr;
}
} else {
in_memory_result = .{ .ptr_sentinel = .{
.actual = Value.@"unreachable",
.wanted = Value.fromInterned(dest_info.sentinel),
.ty = dst_elem_type,
} };
break :src_array_ptr;
}
}
switch (dest_info.flags.size) {
.Slice => {
// *[N]T to []T
return sema.coerceArrayPtrToSlice(block, dest_ty, inst, inst_src);
},
.C => {
// *[N]T to [*c]T
return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src);
},
.Many => {
// *[N]T to [*]T
return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src);
},
.One => {},
}
}
// coercion from C pointer
if (inst_ty.isCPtr(mod)) src_c_ptr: {
if (dest_info.flags.size == .Slice) break :src_c_ptr;
if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :src_c_ptr;
// In this case we must add a safety check because the C pointer
// could be null.
const src_elem_ty = inst_ty.childType(mod);
const dest_is_mut = !dest_info.flags.is_const;
const dst_elem_type = Type.fromInterned(dest_info.child);
switch (try sema.coerceInMemoryAllowed(block, dst_elem_type, src_elem_ty, dest_is_mut, target, dest_ty_src, inst_src)) {
.ok => {},
else => break :src_c_ptr,
}
return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src);
}
// cast from *T and [*]T to *anyopaque
// but don't do it if the source type is a double pointer
if (dest_info.child == .anyopaque_type and inst_ty.zigTypeTag(mod) == .Pointer) to_anyopaque: {
if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :pointer;
const elem_ty = inst_ty.elemType2(mod);
if (elem_ty.zigTypeTag(mod) == .Pointer or elem_ty.isPtrLikeOptional(mod)) {
in_memory_result = .{ .double_ptr_to_anyopaque = .{
.actual = inst_ty,
.wanted = dest_ty,
} };
break :pointer;
}
if (dest_ty.isSlice(mod)) break :to_anyopaque;
if (inst_ty.isSlice(mod)) {
in_memory_result = .{ .slice_to_anyopaque = .{
.actual = inst_ty,
.wanted = dest_ty,
} };
break :pointer;
}
return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src);
}
switch (dest_info.flags.size) {
// coercion to C pointer
.C => switch (inst_ty.zigTypeTag(mod)) {
.Null => return Air.internedToRef(try mod.intern(.{ .ptr = .{
.ty = dest_ty.toIntern(),
.addr = .{ .int = .zero_usize },
} })),
.ComptimeInt => {
const addr = sema.coerceExtra(block, Type.usize, inst, inst_src, .{ .report_err = false }) catch |err| switch (err) {
error.NotCoercible => break :pointer,
else => |e| return e,
};
return try sema.coerceCompatiblePtrs(block, dest_ty, addr, inst_src);
},
.Int => {
const ptr_size_ty = switch (inst_ty.intInfo(mod).signedness) {
.signed => Type.isize,
.unsigned => Type.usize,
};
const addr = sema.coerceExtra(block, ptr_size_ty, inst, inst_src, .{ .report_err = false }) catch |err| switch (err) {
error.NotCoercible => {
// Try to give more useful notes
in_memory_result = try sema.coerceInMemoryAllowed(block, ptr_size_ty, inst_ty, false, target, dest_ty_src, inst_src);
break :pointer;
},
else => |e| return e,
};
return try sema.coerceCompatiblePtrs(block, dest_ty, addr, inst_src);
},
.Pointer => p: {
if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :p;
const inst_info = inst_ty.ptrInfo(mod);
switch (try sema.coerceInMemoryAllowed(
block,
Type.fromInterned(dest_info.child),
Type.fromInterned(inst_info.child),
!dest_info.flags.is_const,
target,
dest_ty_src,
inst_src,
)) {
.ok => {},
else => break :p,
}
if (inst_info.flags.size == .Slice) {
assert(dest_info.sentinel == .none);
if (inst_info.sentinel == .none or
inst_info.sentinel != (try mod.intValue(Type.fromInterned(inst_info.child), 0)).toIntern())
break :p;
const slice_ptr = try sema.analyzeSlicePtr(block, inst_src, inst, inst_ty);
return sema.coerceCompatiblePtrs(block, dest_ty, slice_ptr, inst_src);
}
return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src);
},
else => {},
},
.One => switch (Type.fromInterned(dest_info.child).zigTypeTag(mod)) {
.Union => {
// pointer to anonymous struct to pointer to union
if (inst_ty.isSinglePointer(mod) and
inst_ty.childType(mod).isAnonStruct(mod) and
sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result))
{
return sema.coerceAnonStructToUnionPtrs(block, dest_ty, dest_ty_src, inst, inst_src);
}
},
.Struct => {
// pointer to anonymous struct to pointer to struct
if (inst_ty.isSinglePointer(mod) and
inst_ty.childType(mod).isAnonStruct(mod) and
sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result))
{
return sema.coerceAnonStructToStructPtrs(block, dest_ty, dest_ty_src, inst, inst_src) catch |err| switch (err) {
error.NotCoercible => break :pointer,
else => |e| return e,
};
}
},
.Array => {
// pointer to tuple to pointer to array
if (inst_ty.isSinglePointer(mod) and
inst_ty.childType(mod).isTuple(mod) and
sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result))
{
return sema.coerceTupleToArrayPtrs(block, dest_ty, dest_ty_src, inst, inst_src);
}
},
else => {},
},
.Slice => to_slice: {
if (inst_ty.zigTypeTag(mod) == .Array) {
return sema.fail(
block,
inst_src,
"array literal requires address-of operator (&) to coerce to slice type '{}'",
.{dest_ty.fmt(mod)},
);
}
if (!inst_ty.isSinglePointer(mod)) break :to_slice;
const inst_child_ty = inst_ty.childType(mod);
if (!inst_child_ty.isTuple(mod)) break :to_slice;
// empty tuple to zero-length slice
// note that this allows coercing to a mutable slice.
if (inst_child_ty.structFieldCount(mod) == 0) {
// Optional slice is represented with a null pointer so
// we use a dummy pointer value with the required alignment.
return Air.internedToRef((try mod.intern(.{ .slice = .{
.ty = dest_ty.toIntern(),
.ptr = try mod.intern(.{ .ptr = .{
.ty = dest_ty.slicePtrFieldType(mod).toIntern(),
.addr = .{ .int = if (dest_info.flags.alignment != .none)
(try mod.intValue(
Type.usize,
dest_info.flags.alignment.toByteUnits().?,
)).toIntern()
else
try mod.intern_pool.getCoercedInts(
mod.gpa,
mod.intern_pool.indexToKey(
(try Type.fromInterned(dest_info.child).lazyAbiAlignment(mod)).toIntern(),
).int,
.usize_type,
) },
} }),
.len = (try mod.intValue(Type.usize, 0)).toIntern(),
} })));
}
// pointer to tuple to slice
if (!dest_info.flags.is_const) {
const err_msg = err_msg: {
const err_msg = try sema.errMsg(block, inst_src, "cannot cast pointer to tuple to '{}'", .{dest_ty.fmt(mod)});
errdefer err_msg.destroy(sema.gpa);
try sema.errNote(block, dest_ty_src, err_msg, "pointers to tuples can only coerce to constant pointers", .{});
break :err_msg err_msg;
};
return sema.failWithOwnedErrorMsg(block, err_msg);
}
return sema.coerceTupleToSlicePtrs(block, dest_ty, dest_ty_src, inst, inst_src);
},
.Many => p: {
if (!inst_ty.isSlice(mod)) break :p;
if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :p;
const inst_info = inst_ty.ptrInfo(mod);
switch (try sema.coerceInMemoryAllowed(
block,
Type.fromInterned(dest_info.child),
Type.fromInterned(inst_info.child),
!dest_info.flags.is_const,
target,
dest_ty_src,
inst_src,
)) {
.ok => {},
else => break :p,
}
if (dest_info.sentinel == .none or inst_info.sentinel == .none or
Air.internedToRef(dest_info.sentinel) !=
try sema.coerceInMemory(Value.fromInterned(inst_info.sentinel), Type.fromInterned(dest_info.child)))
break :p;
const slice_ptr = try sema.analyzeSlicePtr(block, inst_src, inst, inst_ty);
return sema.coerceCompatiblePtrs(block, dest_ty, slice_ptr, inst_src);
},
}
},
.Int, .ComptimeInt => switch (inst_ty.zigTypeTag(mod)) {
.Float, .ComptimeFloat => float: {
const val = maybe_inst_val orelse {
if (dest_ty.zigTypeTag(mod) == .ComptimeInt) {
if (!opts.report_err) return error.NotCoercible;
return sema.failWithNeededComptime(block, inst_src, .{
.needed_comptime_reason = "value being casted to 'comptime_int' must be comptime-known",
});
}
break :float;
};
const result_val = try sema.intFromFloat(block, inst_src, val, inst_ty, dest_ty, .exact);
return Air.internedToRef(result_val.toIntern());
},
.Int, .ComptimeInt => {
if (maybe_inst_val) |val| {
// comptime-known integer to other number
if (!(try sema.intFitsInType(val, dest_ty, null))) {
if (!opts.report_err) return error.NotCoercible;
return sema.fail(block, inst_src, "type '{}' cannot represent integer value '{}'", .{ dest_ty.fmt(mod), val.fmtValue(mod) });
}
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.undef => try mod.undefRef(dest_ty),
.int => |int| Air.internedToRef(
try mod.intern_pool.getCoercedInts(mod.gpa, int, dest_ty.toIntern()),
),
else => unreachable,
};
}
if (dest_ty.zigTypeTag(mod) == .ComptimeInt) {
if (!opts.report_err) return error.NotCoercible;
if (opts.no_cast_to_comptime_int) return inst;
return sema.failWithNeededComptime(block, inst_src, .{
.needed_comptime_reason = "value being casted to 'comptime_int' must be comptime-known",
});
}
// integer widening
const dst_info = dest_ty.intInfo(mod);
const src_info = inst_ty.intInfo(mod);
if ((src_info.signedness == dst_info.signedness and dst_info.bits >= src_info.bits) or
// small enough unsigned ints can get casted to large enough signed ints
(dst_info.signedness == .signed and dst_info.bits > src_info.bits))
{
try sema.requireRuntimeBlock(block, inst_src, null);
return block.addTyOp(.intcast, dest_ty, inst);
}
},
else => {},
},
.Float, .ComptimeFloat => switch (inst_ty.zigTypeTag(mod)) {
.ComptimeFloat => {
const val = try sema.resolveConstDefinedValue(block, .unneeded, inst, undefined);
const result_val = try val.floatCast(dest_ty, mod);
return Air.internedToRef(result_val.toIntern());
},
.Float => {
if (maybe_inst_val) |val| {
const result_val = try val.floatCast(dest_ty, mod);
if (!val.eql(try result_val.floatCast(inst_ty, mod), inst_ty, mod)) {
return sema.fail(
block,
inst_src,
"type '{}' cannot represent float value '{}'",
.{ dest_ty.fmt(mod), val.fmtValue(mod) },
);
}
return Air.internedToRef(result_val.toIntern());
} else if (dest_ty.zigTypeTag(mod) == .ComptimeFloat) {
if (!opts.report_err) return error.NotCoercible;
return sema.failWithNeededComptime(block, inst_src, .{
.needed_comptime_reason = "value being casted to 'comptime_float' must be comptime-known",
});
}
// float widening
const src_bits = inst_ty.floatBits(target);
const dst_bits = dest_ty.floatBits(target);
if (dst_bits >= src_bits) {
try sema.requireRuntimeBlock(block, inst_src, null);
return block.addTyOp(.fpext, dest_ty, inst);
}
},
.Int, .ComptimeInt => int: {
const val = maybe_inst_val orelse {
if (dest_ty.zigTypeTag(mod) == .ComptimeFloat) {
if (!opts.report_err) return error.NotCoercible;
return sema.failWithNeededComptime(block, inst_src, .{
.needed_comptime_reason = "value being casted to 'comptime_float' must be comptime-known",
});
}
break :int;
};
const result_val = try val.floatFromIntAdvanced(sema.arena, inst_ty, dest_ty, mod, sema);
// TODO implement this compile error
//const int_again_val = try result_val.intFromFloat(sema.arena, inst_ty);
//if (!int_again_val.eql(val, inst_ty, mod)) {
// return sema.fail(
// block,
// inst_src,
// "type '{}' cannot represent integer value '{}'",
// .{ dest_ty.fmt(mod), val },
// );
//}
return Air.internedToRef(result_val.toIntern());
},
else => {},
},
.Enum => switch (inst_ty.zigTypeTag(mod)) {
.EnumLiteral => {
// enum literal to enum
const val = try sema.resolveConstDefinedValue(block, .unneeded, inst, undefined);
const string = mod.intern_pool.indexToKey(val.toIntern()).enum_literal;
const field_index = dest_ty.enumFieldIndex(string, mod) orelse {
return sema.fail(block, inst_src, "no field named '{}' in enum '{}'", .{
string.fmt(&mod.intern_pool), dest_ty.fmt(mod),
});
};
return Air.internedToRef((try mod.enumValueFieldIndex(dest_ty, @intCast(field_index))).toIntern());
},
.Union => blk: {
// union to its own tag type
const union_tag_ty = inst_ty.unionTagType(mod) orelse break :blk;
if (union_tag_ty.eql(dest_ty, mod)) {
return sema.unionToTag(block, dest_ty, inst, inst_src);
}
},
else => {},
},
.ErrorUnion => switch (inst_ty.zigTypeTag(mod)) {
.ErrorUnion => eu: {
if (maybe_inst_val) |inst_val| {
switch (inst_val.toIntern()) {
.undef => return mod.undefRef(dest_ty),
else => switch (mod.intern_pool.indexToKey(inst_val.toIntern())) {
.error_union => |error_union| switch (error_union.val) {
.err_name => |err_name| {
const error_set_ty = inst_ty.errorUnionSet(mod);
const error_set_val = Air.internedToRef((try mod.intern(.{ .err = .{
.ty = error_set_ty.toIntern(),
.name = err_name,
} })));
return sema.wrapErrorUnionSet(block, dest_ty, error_set_val, inst_src);
},
.payload => |payload| {
const payload_val = Air.internedToRef(payload);
return sema.wrapErrorUnionPayload(block, dest_ty, payload_val, inst_src) catch |err| switch (err) {
error.NotCoercible => break :eu,
else => |e| return e,
};
},
},
else => unreachable,
},
}
}
},
.ErrorSet => {
// E to E!T
return sema.wrapErrorUnionSet(block, dest_ty, inst, inst_src);
},
else => eu: {
// T to E!T
return sema.wrapErrorUnionPayload(block, dest_ty, inst, inst_src) catch |err| switch (err) {
error.NotCoercible => break :eu,
else => |e| return e,
};
},
},
.Union => switch (inst_ty.zigTypeTag(mod)) {
.Enum, .EnumLiteral => return sema.coerceEnumToUnion(block, dest_ty, dest_ty_src, inst, inst_src),
.Struct => {
if (inst_ty.isAnonStruct(mod)) {
return sema.coerceAnonStructToUnion(block, dest_ty, dest_ty_src, inst, inst_src);
}
},
else => {},
},
.Array => switch (inst_ty.zigTypeTag(mod)) {
.Vector => return sema.coerceArrayLike(block, dest_ty, dest_ty_src, inst, inst_src),
.Struct => {
if (inst == .empty_struct) {
return sema.arrayInitEmpty(block, inst_src, dest_ty);
}
if (inst_ty.isTuple(mod)) {
return sema.coerceTupleToArray(block, dest_ty, dest_ty_src, inst, inst_src);
}
},
else => {},
},
.Vector => switch (inst_ty.zigTypeTag(mod)) {
.Array, .Vector => return sema.coerceArrayLike(block, dest_ty, dest_ty_src, inst, inst_src),
.Struct => {
if (inst_ty.isTuple(mod)) {
return sema.coerceTupleToArray(block, dest_ty, dest_ty_src, inst, inst_src);
}
},
else => {},
},
.Struct => blk: {
if (inst == .empty_struct) {
return sema.structInitEmpty(block, dest_ty, dest_ty_src, inst_src);
}
if (inst_ty.isTupleOrAnonStruct(mod)) {
return sema.coerceTupleToStruct(block, dest_ty, inst, inst_src) catch |err| switch (err) {
error.NotCoercible => break :blk,
else => |e| return e,
};
}
},
else => {},
}
// undefined to anything. We do this after the big switch above so that
// special logic has a chance to run first, such as `*[N]T` to `[]T` which
// should initialize the length field of the slice.
if (maybe_inst_val) |val| if (val.toIntern() == .undef) return mod.undefRef(dest_ty);
if (!opts.report_err) return error.NotCoercible;
if (opts.is_ret and dest_ty.zigTypeTag(mod) == .NoReturn) {
const msg = msg: {
const msg = try sema.errMsg(block, inst_src, "function declared 'noreturn' returns", .{});
errdefer msg.destroy(sema.gpa);
const ret_ty_src: LazySrcLoc = .{ .node_offset_fn_type_ret_ty = 0 };
const src_decl = mod.funcOwnerDeclPtr(sema.func_index);
try mod.errNoteNonLazy(src_decl.toSrcLoc(ret_ty_src, mod), msg, "'noreturn' declared here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
const msg = msg: {
const msg = try sema.errMsg(block, inst_src, "expected type '{}', found '{}'", .{ dest_ty.fmt(mod), inst_ty.fmt(mod) });
errdefer msg.destroy(sema.gpa);
// E!T to T
if (inst_ty.zigTypeTag(mod) == .ErrorUnion and
(try sema.coerceInMemoryAllowed(block, inst_ty.errorUnionPayload(mod), dest_ty, false, target, dest_ty_src, inst_src)) == .ok)
{
try sema.errNote(block, inst_src, msg, "cannot convert error union to payload type", .{});
try sema.errNote(block, inst_src, msg, "consider using 'try', 'catch', or 'if'", .{});
}
// ?T to T
if (inst_ty.zigTypeTag(mod) == .Optional and
(try sema.coerceInMemoryAllowed(block, inst_ty.optionalChild(mod), dest_ty, false, target, dest_ty_src, inst_src)) == .ok)
{
try sema.errNote(block, inst_src, msg, "cannot convert optional to payload type", .{});
try sema.errNote(block, inst_src, msg, "consider using '.?', 'orelse', or 'if'", .{});
}
try in_memory_result.report(sema, block, inst_src, msg);
// Add notes about function return type
if (opts.is_ret and
mod.test_functions.get(mod.funcOwnerDeclIndex(sema.func_index)) == null)
{
const ret_ty_src: LazySrcLoc = .{ .node_offset_fn_type_ret_ty = 0 };
const src_decl = mod.funcOwnerDeclPtr(sema.func_index);
if (inst_ty.isError(mod) and !dest_ty.isError(mod)) {
try mod.errNoteNonLazy(src_decl.toSrcLoc(ret_ty_src, mod), msg, "function cannot return an error", .{});
} else {
try mod.errNoteNonLazy(src_decl.toSrcLoc(ret_ty_src, mod), msg, "function return type declared here", .{});
}
}
if (try opts.param_src.get(sema)) |param_src| {
try mod.errNoteNonLazy(param_src, msg, "parameter type declared here", .{});
}
// TODO maybe add "cannot store an error in type '{}'" note
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
fn coerceInMemory(
sema: *Sema,
val: Value,
dst_ty: Type,
) CompileError!Air.Inst.Ref {
return Air.internedToRef((try sema.mod.getCoerced(val, dst_ty)).toIntern());
}
const InMemoryCoercionResult = union(enum) {
ok,
no_match: Pair,
int_not_coercible: Int,
error_union_payload: PairAndChild,
array_len: IntPair,
array_sentinel: Sentinel,
array_elem: PairAndChild,
vector_len: IntPair,
vector_elem: PairAndChild,
optional_shape: Pair,
optional_child: PairAndChild,
from_anyerror,
missing_error: []const InternPool.NullTerminatedString,
/// true if wanted is var args
fn_var_args: bool,
/// true if wanted is generic
fn_generic: bool,
fn_param_count: IntPair,
fn_param_noalias: IntPair,
fn_param_comptime: ComptimeParam,
fn_param: Param,
fn_cc: CC,
fn_return_type: PairAndChild,
ptr_child: PairAndChild,
ptr_addrspace: AddressSpace,
ptr_sentinel: Sentinel,
ptr_size: Size,
ptr_qualifiers: Qualifiers,
ptr_allowzero: Pair,
ptr_bit_range: BitRange,
ptr_alignment: AlignPair,
double_ptr_to_anyopaque: Pair,
slice_to_anyopaque: Pair,
const Pair = struct {
actual: Type,
wanted: Type,
};
const PairAndChild = struct {
child: *InMemoryCoercionResult,
actual: Type,
wanted: Type,
};
const Param = struct {
child: *InMemoryCoercionResult,
actual: Type,
wanted: Type,
index: u64,
};
const ComptimeParam = struct {
index: u64,
wanted: bool,
};
const Sentinel = struct {
// unreachable_value indicates no sentinel
actual: Value,
wanted: Value,
ty: Type,
};
const Int = struct {
actual_signedness: std.builtin.Signedness,
wanted_signedness: std.builtin.Signedness,
actual_bits: u16,
wanted_bits: u16,
};
const IntPair = struct {
actual: u64,
wanted: u64,
};
const AlignPair = struct {
actual: Alignment,
wanted: Alignment,
};
const Size = struct {
actual: std.builtin.Type.Pointer.Size,
wanted: std.builtin.Type.Pointer.Size,
};
const Qualifiers = struct {
actual_const: bool,
wanted_const: bool,
actual_volatile: bool,
wanted_volatile: bool,
};
const AddressSpace = struct {
actual: std.builtin.AddressSpace,
wanted: std.builtin.AddressSpace,
};
const CC = struct {
actual: std.builtin.CallingConvention,
wanted: std.builtin.CallingConvention,
};
const BitRange = struct {
actual_host: u16,
wanted_host: u16,
actual_offset: u16,
wanted_offset: u16,
};
fn dupe(child: *const InMemoryCoercionResult, arena: Allocator) !*InMemoryCoercionResult {
const res = try arena.create(InMemoryCoercionResult);
res.* = child.*;
return res;
}
fn report(res: *const InMemoryCoercionResult, sema: *Sema, block: *Block, src: LazySrcLoc, msg: *Module.ErrorMsg) !void {
const mod = sema.mod;
var cur = res;
while (true) switch (cur.*) {
.ok => unreachable,
.no_match => |types| {
try sema.addDeclaredHereNote(msg, types.wanted);
try sema.addDeclaredHereNote(msg, types.actual);
break;
},
.int_not_coercible => |int| {
try sema.errNote(block, src, msg, "{s} {d}-bit int cannot represent all possible {s} {d}-bit values", .{
@tagName(int.wanted_signedness), int.wanted_bits, @tagName(int.actual_signedness), int.actual_bits,
});
break;
},
.error_union_payload => |pair| {
try sema.errNote(block, src, msg, "error union payload '{}' cannot cast into error union payload '{}'", .{
pair.actual.fmt(mod), pair.wanted.fmt(mod),
});
cur = pair.child;
},
.array_len => |lens| {
try sema.errNote(block, src, msg, "array of length {d} cannot cast into an array of length {d}", .{
lens.actual, lens.wanted,
});
break;
},
.array_sentinel => |sentinel| {
if (sentinel.actual.toIntern() != .unreachable_value) {
try sema.errNote(block, src, msg, "array sentinel '{}' cannot cast into array sentinel '{}'", .{
sentinel.actual.fmtValue(mod), sentinel.wanted.fmtValue(mod),
});
} else {
try sema.errNote(block, src, msg, "destination array requires '{}' sentinel", .{
sentinel.wanted.fmtValue(mod),
});
}
break;
},
.array_elem => |pair| {
try sema.errNote(block, src, msg, "array element type '{}' cannot cast into array element type '{}'", .{
pair.actual.fmt(mod), pair.wanted.fmt(mod),
});
cur = pair.child;
},
.vector_len => |lens| {
try sema.errNote(block, src, msg, "vector of length {d} cannot cast into a vector of length {d}", .{
lens.actual, lens.wanted,
});
break;
},
.vector_elem => |pair| {
try sema.errNote(block, src, msg, "vector element type '{}' cannot cast into vector element type '{}'", .{
pair.actual.fmt(mod), pair.wanted.fmt(mod),
});
cur = pair.child;
},
.optional_shape => |pair| {
try sema.errNote(block, src, msg, "optional type child '{}' cannot cast into optional type child '{}'", .{
pair.actual.optionalChild(mod).fmt(mod), pair.wanted.optionalChild(mod).fmt(mod),
});
break;
},
.optional_child => |pair| {
try sema.errNote(block, src, msg, "optional type child '{}' cannot cast into optional type child '{}'", .{
pair.actual.fmt(mod), pair.wanted.fmt(mod),
});
cur = pair.child;
},
.from_anyerror => {
try sema.errNote(block, src, msg, "global error set cannot cast into a smaller set", .{});
break;
},
.missing_error => |missing_errors| {
for (missing_errors) |err| {
try sema.errNote(block, src, msg, "'error.{}' not a member of destination error set", .{err.fmt(&mod.intern_pool)});
}
break;
},
.fn_var_args => |wanted_var_args| {
if (wanted_var_args) {
try sema.errNote(block, src, msg, "non-variadic function cannot cast into a variadic function", .{});
} else {
try sema.errNote(block, src, msg, "variadic function cannot cast into a non-variadic function", .{});
}
break;
},
.fn_generic => |wanted_generic| {
if (wanted_generic) {
try sema.errNote(block, src, msg, "non-generic function cannot cast into a generic function", .{});
} else {
try sema.errNote(block, src, msg, "generic function cannot cast into a non-generic function", .{});
}
break;
},
.fn_param_count => |lens| {
try sema.errNote(block, src, msg, "function with {d} parameters cannot cast into a function with {d} parameters", .{
lens.actual, lens.wanted,
});
break;
},
.fn_param_noalias => |param| {
var index: u6 = 0;
var actual_noalias = false;
while (true) : (index += 1) {
const actual: u1 = @truncate(param.actual >> index);
const wanted: u1 = @truncate(param.wanted >> index);
if (actual != wanted) {
actual_noalias = actual == 1;
break;
}
}
if (!actual_noalias) {
try sema.errNote(block, src, msg, "regular parameter {d} cannot cast into a noalias parameter", .{index});
} else {
try sema.errNote(block, src, msg, "noalias parameter {d} cannot cast into a regular parameter", .{index});
}
break;
},
.fn_param_comptime => |param| {
if (param.wanted) {
try sema.errNote(block, src, msg, "non-comptime parameter {d} cannot cast into a comptime parameter", .{param.index});
} else {
try sema.errNote(block, src, msg, "comptime parameter {d} cannot cast into a non-comptime parameter", .{param.index});
}
break;
},
.fn_param => |param| {
try sema.errNote(block, src, msg, "parameter {d} '{}' cannot cast into '{}'", .{
param.index, param.actual.fmt(mod), param.wanted.fmt(mod),
});
cur = param.child;
},
.fn_cc => |cc| {
try sema.errNote(block, src, msg, "calling convention '{s}' cannot cast into calling convention '{s}'", .{ @tagName(cc.actual), @tagName(cc.wanted) });
break;
},
.fn_return_type => |pair| {
try sema.errNote(block, src, msg, "return type '{}' cannot cast into return type '{}'", .{
pair.actual.fmt(mod), pair.wanted.fmt(mod),
});
cur = pair.child;
},
.ptr_child => |pair| {
try sema.errNote(block, src, msg, "pointer type child '{}' cannot cast into pointer type child '{}'", .{
pair.actual.fmt(mod), pair.wanted.fmt(mod),
});
cur = pair.child;
},
.ptr_addrspace => |@"addrspace"| {
try sema.errNote(block, src, msg, "address space '{s}' cannot cast into address space '{s}'", .{ @tagName(@"addrspace".actual), @tagName(@"addrspace".wanted) });
break;
},
.ptr_sentinel => |sentinel| {
if (sentinel.actual.toIntern() != .unreachable_value) {
try sema.errNote(block, src, msg, "pointer sentinel '{}' cannot cast into pointer sentinel '{}'", .{
sentinel.actual.fmtValue(mod), sentinel.wanted.fmtValue(mod),
});
} else {
try sema.errNote(block, src, msg, "destination pointer requires '{}' sentinel", .{
sentinel.wanted.fmtValue(mod),
});
}
break;
},
.ptr_size => |size| {
try sema.errNote(block, src, msg, "a {s} pointer cannot cast into a {s} pointer", .{ pointerSizeString(size.actual), pointerSizeString(size.wanted) });
break;
},
.ptr_qualifiers => |qualifiers| {
const ok_const = !qualifiers.actual_const or qualifiers.wanted_const;
const ok_volatile = !qualifiers.actual_volatile or qualifiers.wanted_volatile;
if (!ok_const) {
try sema.errNote(block, src, msg, "cast discards const qualifier", .{});
} else if (!ok_volatile) {
try sema.errNote(block, src, msg, "cast discards volatile qualifier", .{});
}
break;
},
.ptr_allowzero => |pair| {
const wanted_allow_zero = pair.wanted.ptrAllowsZero(mod);
const actual_allow_zero = pair.actual.ptrAllowsZero(mod);
if (actual_allow_zero and !wanted_allow_zero) {
try sema.errNote(block, src, msg, "'{}' could have null values which are illegal in type '{}'", .{
pair.actual.fmt(mod), pair.wanted.fmt(mod),
});
} else {
try sema.errNote(block, src, msg, "mutable '{}' allows illegal null values stored to type '{}'", .{
pair.actual.fmt(mod), pair.wanted.fmt(mod),
});
}
break;
},
.ptr_bit_range => |bit_range| {
if (bit_range.actual_host != bit_range.wanted_host) {
try sema.errNote(block, src, msg, "pointer host size '{}' cannot cast into pointer host size '{}'", .{
bit_range.actual_host, bit_range.wanted_host,
});
}
if (bit_range.actual_offset != bit_range.wanted_offset) {
try sema.errNote(block, src, msg, "pointer bit offset '{}' cannot cast into pointer bit offset '{}'", .{
bit_range.actual_offset, bit_range.wanted_offset,
});
}
break;
},
.ptr_alignment => |pair| {
try sema.errNote(block, src, msg, "pointer alignment '{d}' cannot cast into pointer alignment '{d}'", .{
pair.actual.toByteUnits() orelse 0, pair.wanted.toByteUnits() orelse 0,
});
break;
},
.double_ptr_to_anyopaque => |pair| {
try sema.errNote(block, src, msg, "cannot implicitly cast double pointer '{}' to anyopaque pointer '{}'", .{
pair.actual.fmt(mod), pair.wanted.fmt(mod),
});
break;
},
.slice_to_anyopaque => |pair| {
try sema.errNote(block, src, msg, "cannot implicitly cast slice '{}' to anyopaque pointer '{}'", .{
pair.actual.fmt(mod), pair.wanted.fmt(mod),
});
try sema.errNote(block, src, msg, "consider using '.ptr'", .{});
break;
},
};
}
};
fn pointerSizeString(size: std.builtin.Type.Pointer.Size) []const u8 {
return switch (size) {
.One => "single",
.Many => "many",
.C => "C",
.Slice => unreachable,
};
}
/// If pointers have the same representation in runtime memory, a bitcast AIR instruction
/// may be used for the coercion.
/// * `const` attribute can be gained
/// * `volatile` attribute can be gained
/// * `allowzero` attribute can be gained (whether from explicit attribute, C pointer, or optional pointer) but only if !dest_is_mut
/// * alignment can be decreased
/// * bit offset attributes must match exactly
/// * `*`/`[*]` must match exactly, but `[*c]` matches either one
/// * sentinel-terminated pointers can coerce into `[*]`
fn coerceInMemoryAllowed(
sema: *Sema,
block: *Block,
dest_ty: Type,
src_ty: Type,
dest_is_mut: bool,
target: std.Target,
dest_src: LazySrcLoc,
src_src: LazySrcLoc,
) CompileError!InMemoryCoercionResult {
const mod = sema.mod;
if (dest_ty.eql(src_ty, mod))
return .ok;
const dest_tag = dest_ty.zigTypeTag(mod);
const src_tag = src_ty.zigTypeTag(mod);
// Differently-named integers with the same number of bits.
if (dest_tag == .Int and src_tag == .Int) {
const dest_info = dest_ty.intInfo(mod);
const src_info = src_ty.intInfo(mod);
if (dest_info.signedness == src_info.signedness and
dest_info.bits == src_info.bits)
{
return .ok;
}
if ((src_info.signedness == dest_info.signedness and dest_info.bits < src_info.bits) or
// small enough unsigned ints can get casted to large enough signed ints
(dest_info.signedness == .signed and (src_info.signedness == .unsigned or dest_info.bits <= src_info.bits)) or
(dest_info.signedness == .unsigned and src_info.signedness == .signed))
{
return InMemoryCoercionResult{ .int_not_coercible = .{
.actual_signedness = src_info.signedness,
.wanted_signedness = dest_info.signedness,
.actual_bits = src_info.bits,
.wanted_bits = dest_info.bits,
} };
}
}
// Differently-named floats with the same number of bits.
if (dest_tag == .Float and src_tag == .Float) {
const dest_bits = dest_ty.floatBits(target);
const src_bits = src_ty.floatBits(target);
if (dest_bits == src_bits) {
return .ok;
}
}
// Pointers / Pointer-like Optionals
const maybe_dest_ptr_ty = try sema.typePtrOrOptionalPtrTy(dest_ty);
const maybe_src_ptr_ty = try sema.typePtrOrOptionalPtrTy(src_ty);
if (maybe_dest_ptr_ty) |dest_ptr_ty| {
if (maybe_src_ptr_ty) |src_ptr_ty| {
return try sema.coerceInMemoryAllowedPtrs(block, dest_ty, src_ty, dest_ptr_ty, src_ptr_ty, dest_is_mut, target, dest_src, src_src);
}
}
// Slices
if (dest_ty.isSlice(mod) and src_ty.isSlice(mod)) {
return try sema.coerceInMemoryAllowedPtrs(block, dest_ty, src_ty, dest_ty, src_ty, dest_is_mut, target, dest_src, src_src);
}
// Functions
if (dest_tag == .Fn and src_tag == .Fn) {
return try sema.coerceInMemoryAllowedFns(block, dest_ty, src_ty, target, dest_src, src_src);
}
// Error Unions
if (dest_tag == .ErrorUnion and src_tag == .ErrorUnion) {
const dest_payload = dest_ty.errorUnionPayload(mod);
const src_payload = src_ty.errorUnionPayload(mod);
const child = try sema.coerceInMemoryAllowed(block, dest_payload, src_payload, dest_is_mut, target, dest_src, src_src);
if (child != .ok) {
return InMemoryCoercionResult{ .error_union_payload = .{
.child = try child.dupe(sema.arena),
.actual = src_payload,
.wanted = dest_payload,
} };
}
return try sema.coerceInMemoryAllowed(block, dest_ty.errorUnionSet(mod), src_ty.errorUnionSet(mod), dest_is_mut, target, dest_src, src_src);
}
// Error Sets
if (dest_tag == .ErrorSet and src_tag == .ErrorSet) {
return try sema.coerceInMemoryAllowedErrorSets(block, dest_ty, src_ty, dest_src, src_src);
}
// Arrays
if (dest_tag == .Array and src_tag == .Array) {
const dest_info = dest_ty.arrayInfo(mod);
const src_info = src_ty.arrayInfo(mod);
if (dest_info.len != src_info.len) {
return InMemoryCoercionResult{ .array_len = .{
.actual = src_info.len,
.wanted = dest_info.len,
} };
}
const child = try sema.coerceInMemoryAllowed(block, dest_info.elem_type, src_info.elem_type, dest_is_mut, target, dest_src, src_src);
if (child != .ok) {
return InMemoryCoercionResult{ .array_elem = .{
.child = try child.dupe(sema.arena),
.actual = src_info.elem_type,
.wanted = dest_info.elem_type,
} };
}
const ok_sent = dest_info.sentinel == null or
(src_info.sentinel != null and
dest_info.sentinel.?.eql(
try mod.getCoerced(src_info.sentinel.?, dest_info.elem_type),
dest_info.elem_type,
mod,
));
if (!ok_sent) {
return InMemoryCoercionResult{ .array_sentinel = .{
.actual = src_info.sentinel orelse Value.@"unreachable",
.wanted = dest_info.sentinel orelse Value.@"unreachable",
.ty = dest_info.elem_type,
} };
}
return .ok;
}
// Vectors
if (dest_tag == .Vector and src_tag == .Vector) {
const dest_len = dest_ty.vectorLen(mod);
const src_len = src_ty.vectorLen(mod);
if (dest_len != src_len) {
return InMemoryCoercionResult{ .vector_len = .{
.actual = src_len,
.wanted = dest_len,
} };
}
const dest_elem_ty = dest_ty.scalarType(mod);
const src_elem_ty = src_ty.scalarType(mod);
const child = try sema.coerceInMemoryAllowed(block, dest_elem_ty, src_elem_ty, dest_is_mut, target, dest_src, src_src);
if (child != .ok) {
return InMemoryCoercionResult{ .vector_elem = .{
.child = try child.dupe(sema.arena),
.actual = src_elem_ty,
.wanted = dest_elem_ty,
} };
}
return .ok;
}
// Arrays <-> Vectors
if ((dest_tag == .Vector and src_tag == .Array) or
(dest_tag == .Array and src_tag == .Vector))
{
const dest_len = dest_ty.arrayLen(mod);
const src_len = src_ty.arrayLen(mod);
if (dest_len != src_len) {
return InMemoryCoercionResult{ .array_len = .{
.actual = src_len,
.wanted = dest_len,
} };
}
const dest_elem_ty = dest_ty.childType(mod);
const src_elem_ty = src_ty.childType(mod);
const child = try sema.coerceInMemoryAllowed(block, dest_elem_ty, src_elem_ty, dest_is_mut, target, dest_src, src_src);
if (child != .ok) {
return InMemoryCoercionResult{ .array_elem = .{
.child = try child.dupe(sema.arena),
.actual = src_elem_ty,
.wanted = dest_elem_ty,
} };
}
if (dest_tag == .Array) {
const dest_info = dest_ty.arrayInfo(mod);
if (dest_info.sentinel != null) {
return InMemoryCoercionResult{ .array_sentinel = .{
.actual = Value.@"unreachable",
.wanted = dest_info.sentinel.?,
.ty = dest_info.elem_type,
} };
}
}
// The memory layout of @Vector(N, iM) is the same as the integer type i(N*M),
// that is to say, the padding bits are not in the same place as the array [N]iM.
// If there's no padding, the bitcast is possible.
const elem_bit_size = dest_elem_ty.bitSize(mod);
const elem_abi_byte_size = dest_elem_ty.abiSize(mod);
if (elem_abi_byte_size * 8 == elem_bit_size)
return .ok;
}
// Optionals
if (dest_tag == .Optional and src_tag == .Optional) {
if ((maybe_dest_ptr_ty != null) != (maybe_src_ptr_ty != null)) {
return InMemoryCoercionResult{ .optional_shape = .{
.actual = src_ty,
.wanted = dest_ty,
} };
}
const dest_child_type = dest_ty.optionalChild(mod);
const src_child_type = src_ty.optionalChild(mod);
const child = try sema.coerceInMemoryAllowed(block, dest_child_type, src_child_type, dest_is_mut, target, dest_src, src_src);
if (child != .ok) {
return InMemoryCoercionResult{ .optional_child = .{
.child = try child.dupe(sema.arena),
.actual = src_child_type,
.wanted = dest_child_type,
} };
}
return .ok;
}
// Tuples (with in-memory-coercible fields)
if (dest_ty.isTuple(mod) and src_ty.isTuple(mod)) tuple: {
if (dest_ty.containerLayout(mod) != src_ty.containerLayout(mod)) break :tuple;
if (dest_ty.structFieldCount(mod) != src_ty.structFieldCount(mod)) break :tuple;
const field_count = dest_ty.structFieldCount(mod);
for (0..field_count) |field_idx| {
if (dest_ty.structFieldIsComptime(field_idx, mod) != src_ty.structFieldIsComptime(field_idx, mod)) break :tuple;
if (dest_ty.structFieldAlign(field_idx, mod) != src_ty.structFieldAlign(field_idx, mod)) break :tuple;
const dest_field_ty = dest_ty.structFieldType(field_idx, mod);
const src_field_ty = src_ty.structFieldType(field_idx, mod);
const field = try sema.coerceInMemoryAllowed(block, dest_field_ty, src_field_ty, dest_is_mut, target, dest_src, src_src);
if (field != .ok) break :tuple;
}
return .ok;
}
return InMemoryCoercionResult{ .no_match = .{
.actual = dest_ty,
.wanted = src_ty,
} };
}
fn coerceInMemoryAllowedErrorSets(
sema: *Sema,
block: *Block,
dest_ty: Type,
src_ty: Type,
dest_src: LazySrcLoc,
src_src: LazySrcLoc,
) !InMemoryCoercionResult {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
// Coercion to `anyerror`. Note that this check can return false negatives
// in case the error sets did not get resolved.
if (dest_ty.isAnyError(mod)) {
return .ok;
}
if (dest_ty.toIntern() == .adhoc_inferred_error_set_type) {
// We are trying to coerce an error set to the current function's
// inferred error set.
const dst_ies = sema.fn_ret_ty_ies.?;
try dst_ies.addErrorSet(src_ty, ip, sema.arena);
return .ok;
}
if (ip.isInferredErrorSetType(dest_ty.toIntern())) {
const dst_ies_func_index = ip.iesFuncIndex(dest_ty.toIntern());
if (sema.fn_ret_ty_ies) |dst_ies| {
if (dst_ies.func == dst_ies_func_index) {
// We are trying to coerce an error set to the current function's
// inferred error set.
try dst_ies.addErrorSet(src_ty, ip, sema.arena);
return .ok;
}
}
switch (try sema.resolveInferredErrorSet(block, dest_src, dest_ty.toIntern())) {
// isAnyError might have changed from a false negative to a true
// positive after resolution.
.anyerror_type => return .ok,
else => {},
}
}
var missing_error_buf = std.ArrayList(InternPool.NullTerminatedString).init(gpa);
defer missing_error_buf.deinit();
switch (src_ty.toIntern()) {
.anyerror_type => switch (ip.indexToKey(dest_ty.toIntern())) {
.simple_type => unreachable, // filtered out above
.error_set_type, .inferred_error_set_type => return .from_anyerror,
else => unreachable,
},
else => switch (ip.indexToKey(src_ty.toIntern())) {
.inferred_error_set_type => {
const resolved_src_ty = try sema.resolveInferredErrorSet(block, src_src, src_ty.toIntern());
// src anyerror status might have changed after the resolution.
if (resolved_src_ty == .anyerror_type) {
// dest_ty.isAnyError(mod) == true is already checked for at this point.
return .from_anyerror;
}
for (ip.indexToKey(resolved_src_ty).error_set_type.names.get(ip)) |key| {
if (!Type.errorSetHasFieldIp(ip, dest_ty.toIntern(), key)) {
try missing_error_buf.append(key);
}
}
if (missing_error_buf.items.len != 0) {
return InMemoryCoercionResult{
.missing_error = try sema.arena.dupe(InternPool.NullTerminatedString, missing_error_buf.items),
};
}
return .ok;
},
.error_set_type => |error_set_type| {
for (error_set_type.names.get(ip)) |name| {
if (!Type.errorSetHasFieldIp(ip, dest_ty.toIntern(), name)) {
try missing_error_buf.append(name);
}
}
if (missing_error_buf.items.len != 0) {
return InMemoryCoercionResult{
.missing_error = try sema.arena.dupe(InternPool.NullTerminatedString, missing_error_buf.items),
};
}
return .ok;
},
else => unreachable,
},
}
}
fn coerceInMemoryAllowedFns(
sema: *Sema,
block: *Block,
dest_ty: Type,
src_ty: Type,
target: std.Target,
dest_src: LazySrcLoc,
src_src: LazySrcLoc,
) !InMemoryCoercionResult {
const mod = sema.mod;
const ip = &mod.intern_pool;
const dest_info = mod.typeToFunc(dest_ty).?;
const src_info = mod.typeToFunc(src_ty).?;
{
if (dest_info.is_var_args != src_info.is_var_args) {
return InMemoryCoercionResult{ .fn_var_args = dest_info.is_var_args };
}
if (dest_info.is_generic != src_info.is_generic) {
return InMemoryCoercionResult{ .fn_generic = dest_info.is_generic };
}
if (dest_info.cc != src_info.cc) {
return InMemoryCoercionResult{ .fn_cc = .{
.actual = src_info.cc,
.wanted = dest_info.cc,
} };
}
switch (src_info.return_type) {
.noreturn_type, .generic_poison_type => {},
else => {
const dest_return_type = Type.fromInterned(dest_info.return_type);
const src_return_type = Type.fromInterned(src_info.return_type);
const rt = try sema.coerceInMemoryAllowed(block, dest_return_type, src_return_type, false, target, dest_src, src_src);
if (rt != .ok) {
return InMemoryCoercionResult{ .fn_return_type = .{
.child = try rt.dupe(sema.arena),
.actual = src_return_type,
.wanted = dest_return_type,
} };
}
},
}
}
const params_len = params_len: {
if (dest_info.param_types.len != src_info.param_types.len) {
return InMemoryCoercionResult{ .fn_param_count = .{
.actual = src_info.param_types.len,
.wanted = dest_info.param_types.len,
} };
}
if (dest_info.noalias_bits != src_info.noalias_bits) {
return InMemoryCoercionResult{ .fn_param_noalias = .{
.actual = src_info.noalias_bits,
.wanted = dest_info.noalias_bits,
} };
}
break :params_len dest_info.param_types.len;
};
for (0..params_len) |param_i| {
const dest_param_ty = Type.fromInterned(dest_info.param_types.get(ip)[param_i]);
const src_param_ty = Type.fromInterned(src_info.param_types.get(ip)[param_i]);
const param_i_small: u5 = @intCast(param_i);
if (dest_info.paramIsComptime(param_i_small) != src_info.paramIsComptime(param_i_small)) {
return InMemoryCoercionResult{ .fn_param_comptime = .{
.index = param_i,
.wanted = dest_info.paramIsComptime(param_i_small),
} };
}
switch (src_param_ty.toIntern()) {
.generic_poison_type => {},
else => {
// Note: Cast direction is reversed here.
const param = try sema.coerceInMemoryAllowed(block, src_param_ty, dest_param_ty, false, target, dest_src, src_src);
if (param != .ok) {
return InMemoryCoercionResult{ .fn_param = .{
.child = try param.dupe(sema.arena),
.actual = src_param_ty,
.wanted = dest_param_ty,
.index = param_i,
} };
}
},
}
}
return .ok;
}
fn coerceInMemoryAllowedPtrs(
sema: *Sema,
block: *Block,
dest_ty: Type,
src_ty: Type,
dest_ptr_ty: Type,
src_ptr_ty: Type,
dest_is_mut: bool,
target: std.Target,
dest_src: LazySrcLoc,
src_src: LazySrcLoc,
) !InMemoryCoercionResult {
const mod = sema.mod;
const dest_info = dest_ptr_ty.ptrInfo(mod);
const src_info = src_ptr_ty.ptrInfo(mod);
const ok_ptr_size = src_info.flags.size == dest_info.flags.size or
src_info.flags.size == .C or dest_info.flags.size == .C;
if (!ok_ptr_size) {
return InMemoryCoercionResult{ .ptr_size = .{
.actual = src_info.flags.size,
.wanted = dest_info.flags.size,
} };
}
const ok_cv_qualifiers =
(!src_info.flags.is_const or dest_info.flags.is_const) and
(!src_info.flags.is_volatile or dest_info.flags.is_volatile);
if (!ok_cv_qualifiers) {
return InMemoryCoercionResult{ .ptr_qualifiers = .{
.actual_const = src_info.flags.is_const,
.wanted_const = dest_info.flags.is_const,
.actual_volatile = src_info.flags.is_volatile,
.wanted_volatile = dest_info.flags.is_volatile,
} };
}
if (dest_info.flags.address_space != src_info.flags.address_space) {
return InMemoryCoercionResult{ .ptr_addrspace = .{
.actual = src_info.flags.address_space,
.wanted = dest_info.flags.address_space,
} };
}
const child = try sema.coerceInMemoryAllowed(block, Type.fromInterned(dest_info.child), Type.fromInterned(src_info.child), !dest_info.flags.is_const, target, dest_src, src_src);
if (child != .ok) {
return InMemoryCoercionResult{ .ptr_child = .{
.child = try child.dupe(sema.arena),
.actual = Type.fromInterned(src_info.child),
.wanted = Type.fromInterned(dest_info.child),
} };
}
const dest_allow_zero = dest_ty.ptrAllowsZero(mod);
const src_allow_zero = src_ty.ptrAllowsZero(mod);
const ok_allows_zero = (dest_allow_zero and
(src_allow_zero or !dest_is_mut)) or
(!dest_allow_zero and !src_allow_zero);
if (!ok_allows_zero) {
return InMemoryCoercionResult{ .ptr_allowzero = .{
.actual = src_ty,
.wanted = dest_ty,
} };
}
if (src_info.packed_offset.host_size != dest_info.packed_offset.host_size or
src_info.packed_offset.bit_offset != dest_info.packed_offset.bit_offset)
{
return InMemoryCoercionResult{ .ptr_bit_range = .{
.actual_host = src_info.packed_offset.host_size,
.wanted_host = dest_info.packed_offset.host_size,
.actual_offset = src_info.packed_offset.bit_offset,
.wanted_offset = dest_info.packed_offset.bit_offset,
} };
}
const ok_sent = dest_info.sentinel == .none or src_info.flags.size == .C or
(src_info.sentinel != .none and
dest_info.sentinel == try mod.intern_pool.getCoerced(sema.gpa, src_info.sentinel, dest_info.child));
if (!ok_sent) {
return InMemoryCoercionResult{ .ptr_sentinel = .{
.actual = switch (src_info.sentinel) {
.none => Value.@"unreachable",
else => Value.fromInterned(src_info.sentinel),
},
.wanted = switch (dest_info.sentinel) {
.none => Value.@"unreachable",
else => Value.fromInterned(dest_info.sentinel),
},
.ty = Type.fromInterned(dest_info.child),
} };
}
// If both pointers have alignment 0, it means they both want ABI alignment.
// In this case, if they share the same child type, no need to resolve
// pointee type alignment. Otherwise both pointee types must have their alignment
// resolved and we compare the alignment numerically.
if (src_info.flags.alignment != .none or dest_info.flags.alignment != .none or
dest_info.child != src_info.child)
{
const src_align = if (src_info.flags.alignment != .none)
src_info.flags.alignment
else
try sema.typeAbiAlignment(Type.fromInterned(src_info.child));
const dest_align = if (dest_info.flags.alignment != .none)
dest_info.flags.alignment
else
try sema.typeAbiAlignment(Type.fromInterned(dest_info.child));
if (dest_align.compare(.gt, src_align)) {
return InMemoryCoercionResult{ .ptr_alignment = .{
.actual = src_align,
.wanted = dest_align,
} };
}
}
return .ok;
}
fn coerceVarArgParam(
sema: *Sema,
block: *Block,
inst: Air.Inst.Ref,
inst_src: LazySrcLoc,
) !Air.Inst.Ref {
if (block.is_typeof) return inst;
const mod = sema.mod;
const uncasted_ty = sema.typeOf(inst);
const coerced = switch (uncasted_ty.zigTypeTag(mod)) {
// TODO consider casting to c_int/f64 if they fit
.ComptimeInt, .ComptimeFloat => return sema.fail(
block,
inst_src,
"integer and float literals passed to variadic function must be casted to a fixed-size number type",
.{},
),
.Fn => fn_ptr: {
const fn_val = try sema.resolveConstDefinedValue(block, .unneeded, inst, undefined);
const fn_decl = fn_val.pointerDecl(mod).?;
break :fn_ptr try sema.analyzeDeclRef(fn_decl);
},
.Array => return sema.fail(block, inst_src, "arrays must be passed by reference to variadic function", .{}),
.Float => float: {
const target = sema.mod.getTarget();
const double_bits = target.c_type_bit_size(.double);
const inst_bits = uncasted_ty.floatBits(sema.mod.getTarget());
if (inst_bits >= double_bits) break :float inst;
switch (double_bits) {
32 => break :float try sema.coerce(block, Type.f32, inst, inst_src),
64 => break :float try sema.coerce(block, Type.f64, inst, inst_src),
else => unreachable,
}
},
else => if (uncasted_ty.isAbiInt(mod)) int: {
if (!try sema.validateExternType(uncasted_ty, .param_ty)) break :int inst;
const target = sema.mod.getTarget();
const uncasted_info = uncasted_ty.intInfo(mod);
if (uncasted_info.bits <= target.c_type_bit_size(switch (uncasted_info.signedness) {
.signed => .int,
.unsigned => .uint,
})) break :int try sema.coerce(block, switch (uncasted_info.signedness) {
.signed => Type.c_int,
.unsigned => Type.c_uint,
}, inst, inst_src);
if (uncasted_info.bits <= target.c_type_bit_size(switch (uncasted_info.signedness) {
.signed => .long,
.unsigned => .ulong,
})) break :int try sema.coerce(block, switch (uncasted_info.signedness) {
.signed => Type.c_long,
.unsigned => Type.c_ulong,
}, inst, inst_src);
if (uncasted_info.bits <= target.c_type_bit_size(switch (uncasted_info.signedness) {
.signed => .longlong,
.unsigned => .ulonglong,
})) break :int try sema.coerce(block, switch (uncasted_info.signedness) {
.signed => Type.c_longlong,
.unsigned => Type.c_ulonglong,
}, inst, inst_src);
break :int inst;
} else inst,
};
const coerced_ty = sema.typeOf(coerced);
if (!try sema.validateExternType(coerced_ty, .param_ty)) {
const msg = msg: {
const msg = try sema.errMsg(block, inst_src, "cannot pass '{}' to variadic function", .{coerced_ty.fmt(sema.mod)});
errdefer msg.destroy(sema.gpa);
const src_decl = sema.mod.declPtr(block.src_decl);
try sema.explainWhyTypeIsNotExtern(msg, src_decl.toSrcLoc(inst_src, mod), coerced_ty, .param_ty);
try sema.addDeclaredHereNote(msg, coerced_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
return coerced;
}
// TODO migrate callsites to use storePtr2 instead.
fn storePtr(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
ptr: Air.Inst.Ref,
uncasted_operand: Air.Inst.Ref,
) CompileError!void {
const air_tag: Air.Inst.Tag = if (block.wantSafety()) .store_safe else .store;
return sema.storePtr2(block, src, ptr, src, uncasted_operand, src, air_tag);
}
fn storePtr2(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
ptr: Air.Inst.Ref,
ptr_src: LazySrcLoc,
uncasted_operand: Air.Inst.Ref,
operand_src: LazySrcLoc,
air_tag: Air.Inst.Tag,
) CompileError!void {
const mod = sema.mod;
const ptr_ty = sema.typeOf(ptr);
if (ptr_ty.isConstPtr(mod))
return sema.fail(block, ptr_src, "cannot assign to constant", .{});
const elem_ty = ptr_ty.childType(mod);
// To generate better code for tuples, we detect a tuple operand here, and
// analyze field loads and stores directly. This avoids an extra allocation + memcpy
// which would occur if we used `coerce`.
// However, we avoid this mechanism if the destination element type is a tuple,
// because the regular store will be better for this case.
// If the destination type is a struct we don't want this mechanism to trigger, because
// this code does not handle tuple-to-struct coercion which requires dealing with missing
// fields.
const operand_ty = sema.typeOf(uncasted_operand);
if (operand_ty.isTuple(mod) and elem_ty.zigTypeTag(mod) == .Array) {
const field_count = operand_ty.structFieldCount(mod);
var i: u32 = 0;
while (i < field_count) : (i += 1) {
const elem_src = operand_src; // TODO better source location
const elem = try sema.tupleField(block, operand_src, uncasted_operand, elem_src, i);
const elem_index = try mod.intRef(Type.usize, i);
const elem_ptr = try sema.elemPtr(block, ptr_src, ptr, elem_index, elem_src, false, true);
try sema.storePtr2(block, src, elem_ptr, elem_src, elem, elem_src, .store);
}
return;
}
// TODO do the same thing for anon structs as for tuples above.
// However, beware of the need to handle missing/extra fields.
const is_ret = air_tag == .ret_ptr;
// Detect if we are storing an array operand to a bitcasted vector pointer.
// If so, we instead reach through the bitcasted pointer to the vector pointer,
// bitcast the array operand to a vector, and then lower this as a store of
// a vector value to a vector pointer. This generally results in better code,
// as well as working around an LLVM bug:
// https://github.com/ziglang/zig/issues/11154
if (sema.obtainBitCastedVectorPtr(ptr)) |vector_ptr| {
const vector_ty = sema.typeOf(vector_ptr).childType(mod);
const vector = sema.coerceExtra(block, vector_ty, uncasted_operand, operand_src, .{ .is_ret = is_ret }) catch |err| switch (err) {
error.NotCoercible => unreachable,
else => |e| return e,
};
try sema.storePtr2(block, src, vector_ptr, ptr_src, vector, operand_src, .store);
return;
}
const operand = sema.coerceExtra(block, elem_ty, uncasted_operand, operand_src, .{ .is_ret = is_ret }) catch |err| switch (err) {
error.NotCoercible => unreachable,
else => |e| return e,
};
const maybe_operand_val = try sema.resolveValue(operand);
const runtime_src = if (try sema.resolveDefinedValue(block, ptr_src, ptr)) |ptr_val| rs: {
const operand_val = maybe_operand_val orelse {
try sema.checkPtrIsNotComptimeMutable(block, ptr_val, ptr_src, operand_src);
break :rs operand_src;
};
if (sema.isComptimeMutablePtr(ptr_val)) {
try sema.storePtrVal(block, src, ptr_val, operand_val, elem_ty);
return;
} else break :rs ptr_src;
} else ptr_src;
// We do this after the possible comptime store above, for the case of field_ptr stores
// to unions because we want the comptime tag to be set, even if the field type is void.
if ((try sema.typeHasOnePossibleValue(elem_ty)) != null) {
return;
}
try sema.requireRuntimeBlock(block, src, runtime_src);
try sema.queueFullTypeResolution(elem_ty);
if (ptr_ty.ptrInfo(mod).flags.vector_index == .runtime) {
const ptr_inst = ptr.toIndex().?;
const air_tags = sema.air_instructions.items(.tag);
if (air_tags[@intFromEnum(ptr_inst)] == .ptr_elem_ptr) {
const ty_pl = sema.air_instructions.items(.data)[@intFromEnum(ptr_inst)].ty_pl;
const bin_op = sema.getTmpAir().extraData(Air.Bin, ty_pl.payload).data;
_ = try block.addInst(.{
.tag = .vector_store_elem,
.data = .{ .vector_store_elem = .{
.vector_ptr = bin_op.lhs,
.payload = try block.sema.addExtra(Air.Bin{
.lhs = bin_op.rhs,
.rhs = operand,
}),
} },
});
return;
}
return sema.fail(block, ptr_src, "unable to determine vector element index of type '{}'", .{
ptr_ty.fmt(sema.mod),
});
}
const store_inst = if (is_ret)
try block.addBinOp(.store, ptr, operand)
else
try block.addBinOp(air_tag, ptr, operand);
try sema.checkComptimeKnownStore(block, store_inst, operand_src);
return;
}
/// Given an AIR store instruction, checks whether we are performing a
/// comptime-known store to a local alloc, and updates `maybe_comptime_allocs`
/// accordingly.
/// Handles calling `validateRuntimeValue` if the store is runtime for any reason.
fn checkComptimeKnownStore(sema: *Sema, block: *Block, store_inst_ref: Air.Inst.Ref, store_src: LazySrcLoc) !void {
const store_inst = store_inst_ref.toIndex().?;
const inst_data = sema.air_instructions.items(.data)[@intFromEnum(store_inst)].bin_op;
const ptr = inst_data.lhs.toIndex() orelse return;
const operand = inst_data.rhs;
known: {
const maybe_base_alloc = sema.base_allocs.get(ptr) orelse break :known;
const maybe_comptime_alloc = sema.maybe_comptime_allocs.getPtr(maybe_base_alloc) orelse break :known;
if ((try sema.resolveValue(operand)) != null and
block.runtime_index == maybe_comptime_alloc.runtime_index)
{
try maybe_comptime_alloc.stores.append(sema.arena, .{
.inst = store_inst,
.src_decl = block.src_decl,
.src = store_src,
});
return;
}
// We're newly discovering that this alloc is runtime-known.
try sema.markMaybeComptimeAllocRuntime(block, maybe_base_alloc);
}
try sema.validateRuntimeValue(block, store_src, operand);
}
/// Given an AIR instruction transforming a pointer (struct_field_ptr,
/// ptr_elem_ptr, bitcast, etc), checks whether the base pointer refers to a
/// local alloc, and updates `base_allocs` accordingly.
fn checkKnownAllocPtr(sema: *Sema, block: *Block, base_ptr: Air.Inst.Ref, new_ptr: Air.Inst.Ref) !void {
const base_ptr_inst = base_ptr.toIndex() orelse return;
const new_ptr_inst = new_ptr.toIndex() orelse return;
const alloc_inst = sema.base_allocs.get(base_ptr_inst) orelse return;
try sema.base_allocs.put(sema.gpa, new_ptr_inst, alloc_inst);
switch (sema.air_instructions.items(.tag)[@intFromEnum(new_ptr_inst)]) {
.optional_payload_ptr_set, .errunion_payload_ptr_set => {
const maybe_comptime_alloc = sema.maybe_comptime_allocs.getPtr(alloc_inst) orelse return;
try maybe_comptime_alloc.non_elideable_pointers.append(sema.arena, new_ptr_inst);
},
.ptr_elem_ptr => {
const tmp_air = sema.getTmpAir();
const pl_idx = tmp_air.instructions.items(.data)[@intFromEnum(new_ptr_inst)].ty_pl.payload;
const bin = tmp_air.extraData(Air.Bin, pl_idx).data;
const index_ref = bin.rhs;
// If the index value is runtime-known, this pointer is also runtime-known, so
// we must in turn make the alloc value runtime-known.
if (null == try sema.resolveValue(index_ref)) {
try sema.markMaybeComptimeAllocRuntime(block, alloc_inst);
}
},
else => {},
}
}
fn markMaybeComptimeAllocRuntime(sema: *Sema, block: *Block, alloc_inst: Air.Inst.Index) CompileError!void {
const maybe_comptime_alloc = (sema.maybe_comptime_allocs.fetchRemove(alloc_inst) orelse return).value;
// Since the alloc has been determined to be runtime, we must check that
// all other stores to it are permitted to be runtime values.
const mod = sema.mod;
const slice = maybe_comptime_alloc.stores.slice();
for (slice.items(.inst), slice.items(.src_decl), slice.items(.src)) |other_inst, other_src_decl, other_src| {
const other_data = sema.air_instructions.items(.data)[@intFromEnum(other_inst)].bin_op;
const other_operand = other_data.rhs;
if (!sema.checkRuntimeValue(other_operand)) {
return sema.failWithOwnedErrorMsg(block, msg: {
const other_src_resolved = mod.declPtr(other_src_decl).toSrcLoc(other_src, mod);
const msg = try Module.ErrorMsg.create(sema.gpa, other_src_resolved, "runtime value contains reference to comptime var", .{});
errdefer msg.destroy(sema.gpa);
try mod.errNoteNonLazy(other_src_resolved, msg, "comptime var pointers are not available at runtime", .{});
break :msg msg;
});
}
}
}
/// Traverse an arbitrary number of bitcasted pointers and return the underyling vector
/// pointer. Only if the final element type matches the vector element type, and the
/// lengths match.
fn obtainBitCastedVectorPtr(sema: *Sema, ptr: Air.Inst.Ref) ?Air.Inst.Ref {
const mod = sema.mod;
const array_ty = sema.typeOf(ptr).childType(mod);
if (array_ty.zigTypeTag(mod) != .Array) return null;
var ptr_ref = ptr;
var ptr_inst = ptr_ref.toIndex() orelse return null;
const air_datas = sema.air_instructions.items(.data);
const air_tags = sema.air_instructions.items(.tag);
const vector_ty = while (air_tags[@intFromEnum(ptr_inst)] == .bitcast) {
ptr_ref = air_datas[@intFromEnum(ptr_inst)].ty_op.operand;
if (!sema.isKnownZigType(ptr_ref, .Pointer)) return null;
const child_ty = sema.typeOf(ptr_ref).childType(mod);
if (child_ty.zigTypeTag(mod) == .Vector) break child_ty;
ptr_inst = ptr_ref.toIndex() orelse return null;
} else return null;
// We have a pointer-to-array and a pointer-to-vector. If the elements and
// lengths match, return the result.
if (array_ty.childType(mod).eql(vector_ty.childType(mod), sema.mod) and
array_ty.arrayLen(mod) == vector_ty.vectorLen(mod))
{
return ptr_ref;
} else {
return null;
}
}
/// Call when you have Value objects rather than Air instructions, and you want to
/// assert the store must be done at comptime.
fn storePtrVal(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
ptr_val: Value,
operand_val: Value,
operand_ty: Type,
) !void {
const mod = sema.mod;
var mut_kit = try sema.beginComptimePtrMutation(block, src, ptr_val, operand_ty);
switch (mut_kit.root) {
.alloc => |a| try sema.checkComptimeVarStore(block, src, a),
.comptime_field => {},
}
try sema.resolveTypeLayout(operand_ty);
switch (mut_kit.pointee) {
.opv => {},
.direct => |val_ptr| {
if (mut_kit.root == .comptime_field) {
val_ptr.* = .{ .interned = try val_ptr.intern(mod, sema.arena) };
if (operand_val.toIntern() != val_ptr.interned) {
// TODO use failWithInvalidComptimeFieldStore
return sema.fail(block, src, "value stored in comptime field does not match the default value of the field", .{});
}
return;
}
val_ptr.* = .{ .interned = operand_val.toIntern() };
},
.reinterpret => |reinterpret| {
try sema.resolveTypeLayout(mut_kit.ty);
const abi_size = try sema.usizeCast(block, src, mut_kit.ty.abiSize(mod));
const buffer = try sema.gpa.alloc(u8, abi_size);
defer sema.gpa.free(buffer);
const interned_old = Value.fromInterned(try reinterpret.val_ptr.intern(mod, sema.arena));
interned_old.writeToMemory(mut_kit.ty, mod, buffer) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.ReinterpretDeclRef => unreachable,
error.IllDefinedMemoryLayout => unreachable, // Sema was supposed to emit a compile error already
error.Unimplemented => return sema.fail(block, src, "TODO: implement writeToMemory for type '{}'", .{mut_kit.ty.fmt(mod)}),
};
if (reinterpret.write_packed) {
operand_val.writeToPackedMemory(operand_ty, mod, buffer[reinterpret.byte_offset..], 0) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.ReinterpretDeclRef => unreachable,
};
} else {
operand_val.writeToMemory(operand_ty, mod, buffer[reinterpret.byte_offset..]) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.ReinterpretDeclRef => unreachable,
error.IllDefinedMemoryLayout => unreachable, // Sema was supposed to emit a compile error already
error.Unimplemented => return sema.fail(block, src, "TODO: implement writeToMemory for type '{}'", .{operand_ty.fmt(mod)}),
};
}
const val = Value.readFromMemory(mut_kit.ty, mod, buffer, sema.arena) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.IllDefinedMemoryLayout => unreachable,
error.Unimplemented => return sema.fail(block, src, "TODO: implement readFromMemory for type '{}'", .{mut_kit.ty.fmt(mod)}),
};
reinterpret.val_ptr.* = .{ .interned = val.toIntern() };
},
.bad_decl_ty, .bad_ptr_ty => {
// TODO show the decl declaration site in a note and explain whether the decl
// or the pointer is the problematic type
return sema.fail(
block,
src,
"comptime mutation of a reinterpreted pointer requires type '{}' to have a well-defined memory layout",
.{mut_kit.ty.fmt(mod)},
);
},
}
}
const ComptimePtrMutationKit = struct {
const Root = union(enum) {
alloc: ComptimeAllocIndex,
comptime_field,
};
root: Root,
pointee: union(enum) {
opv,
/// The pointer type matches the actual comptime Value so a direct
/// modification is possible.
direct: *MutableValue,
/// The largest parent Value containing pointee and having a well-defined memory layout.
/// This is used for bitcasting, if direct dereferencing failed.
reinterpret: struct {
val_ptr: *MutableValue,
byte_offset: usize,
/// If set, write the operand to packed memory
write_packed: bool = false,
},
/// If the root decl could not be used as parent, this means `ty` is the type that
/// caused that by not having a well-defined layout.
/// This one means the Decl that owns the value trying to be modified does not
/// have a well defined memory layout.
bad_decl_ty,
/// If the root decl could not be used as parent, this means `ty` is the type that
/// caused that by not having a well-defined layout.
/// This one means the pointer type that is being stored through does not
/// have a well defined memory layout.
bad_ptr_ty,
},
ty: Type,
};
fn beginComptimePtrMutation(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
ptr_val: Value,
ptr_elem_ty: Type,
) CompileError!ComptimePtrMutationKit {
const mod = sema.mod;
const ptr = mod.intern_pool.indexToKey(ptr_val.toIntern()).ptr;
switch (ptr.addr) {
.decl, .anon_decl, .int => unreachable, // isComptimeMutablePtr has been checked already
.comptime_alloc => |alloc_index| {
const alloc = sema.getComptimeAlloc(alloc_index);
return sema.beginComptimePtrMutationInner(block, src, alloc.val.typeOf(mod), &alloc.val, ptr_elem_ty, .{ .alloc = alloc_index });
},
.comptime_field => |comptime_field| {
const duped = try sema.arena.create(MutableValue);
duped.* = .{ .interned = comptime_field };
return sema.beginComptimePtrMutationInner(
block,
src,
duped.typeOf(mod),
duped,
ptr_elem_ty,
.comptime_field,
);
},
.eu_payload => |eu_ptr| {
const eu_ty = Type.fromInterned(mod.intern_pool.typeOf(eu_ptr)).childType(mod);
var parent = try sema.beginComptimePtrMutation(block, src, Value.fromInterned(eu_ptr), eu_ty);
switch (parent.pointee) {
.opv => unreachable,
.direct => |val_ptr| {
const payload_ty = parent.ty.errorUnionPayload(mod);
try val_ptr.unintern(mod, sema.arena, false, false);
if (val_ptr.* == .interned) {
// An error union has been initialized to undefined at comptime and now we
// are for the first time setting the payload. We must change the
// representation of the error union to `eu_payload`.
const child = try sema.arena.create(MutableValue);
child.* = .{ .interned = try mod.intern(.{ .undef = payload_ty.toIntern() }) };
val_ptr.* = .{ .eu_payload = .{
.ty = parent.ty.toIntern(),
.child = child,
} };
}
return .{
.root = parent.root,
.pointee = .{ .direct = val_ptr.eu_payload.child },
.ty = payload_ty,
};
},
.bad_decl_ty, .bad_ptr_ty => return parent,
// Even though the parent value type has well-defined memory layout, our
// pointer type does not.
.reinterpret => return .{
.root = parent.root,
.pointee = .bad_ptr_ty,
.ty = eu_ty,
},
}
},
.opt_payload => |opt_ptr| {
const opt_ty = Type.fromInterned(mod.intern_pool.typeOf(opt_ptr)).childType(mod);
var parent = try sema.beginComptimePtrMutation(block, src, Value.fromInterned(opt_ptr), opt_ty);
switch (parent.pointee) {
.opv => unreachable,
.direct => |val_ptr| {
const payload_ty = parent.ty.optionalChild(mod);
try val_ptr.unintern(mod, sema.arena, false, false);
if (val_ptr.* == .interned) {
// An optional has been initialized to undefined at comptime and now we
// are for the first time setting the payload. We must change the
// representation of the optional to `opt_payload`.
const child = try sema.arena.create(MutableValue);
child.* = .{ .interned = try mod.intern(.{ .undef = payload_ty.toIntern() }) };
val_ptr.* = .{ .opt_payload = .{
.ty = parent.ty.toIntern(),
.child = child,
} };
}
return .{
.root = parent.root,
.pointee = .{ .direct = val_ptr.opt_payload.child },
.ty = payload_ty,
};
},
.bad_decl_ty, .bad_ptr_ty => return parent,
// Even though the parent value type has well-defined memory layout, our
// pointer type does not.
.reinterpret => return .{
.root = parent.root,
.pointee = .bad_ptr_ty,
.ty = opt_ty,
},
}
},
.elem => |elem_ptr| {
const base_elem_ty = Type.fromInterned(mod.intern_pool.typeOf(elem_ptr.base)).elemType2(mod);
var parent = try sema.beginComptimePtrMutation(block, src, Value.fromInterned(elem_ptr.base), base_elem_ty);
switch (parent.pointee) {
.opv => unreachable,
.direct => |val_ptr| switch (parent.ty.zigTypeTag(mod)) {
.Array, .Vector => {
const elem_ty = parent.ty.childType(mod);
const check_len = parent.ty.arrayLenIncludingSentinel(mod);
if ((try sema.typeHasOnePossibleValue(ptr_elem_ty)) != null) {
if (elem_ptr.index > check_len) {
// TODO have the parent include the decl so we can say "declared here"
return sema.fail(block, src, "comptime store of index {d} out of bounds of array length {d}", .{
elem_ptr.index, check_len,
});
}
return .{
.root = parent.root,
.pointee = .opv,
.ty = elem_ty,
};
}
if (elem_ptr.index >= check_len) {
// TODO have the parent include the decl so we can say "declared here"
return sema.fail(block, src, "comptime store of index {d} out of bounds of array length {d}", .{
elem_ptr.index, check_len,
});
}
// We might have a pointer to multiple elements of the array (e.g. a pointer
// to a sub-array). In this case, we just have to reinterpret the relevant
// bytes of the whole array rather than any single element.
reinterp_multi_elem: {
if (try sema.typeRequiresComptime(base_elem_ty)) break :reinterp_multi_elem;
if (try sema.typeRequiresComptime(ptr_elem_ty)) break :reinterp_multi_elem;
const elem_abi_size_u64 = try sema.typeAbiSize(base_elem_ty);
if (elem_abi_size_u64 >= try sema.typeAbiSize(ptr_elem_ty)) break :reinterp_multi_elem;
const elem_abi_size = try sema.usizeCast(block, src, elem_abi_size_u64);
const elem_idx = try sema.usizeCast(block, src, elem_ptr.index);
return .{
.root = parent.root,
.pointee = .{ .reinterpret = .{
.val_ptr = val_ptr,
.byte_offset = elem_abi_size * elem_idx,
} },
.ty = parent.ty,
};
}
try val_ptr.unintern(mod, sema.arena, false, false);
const aggregate = switch (val_ptr.*) {
.interned,
.bytes,
.repeated,
.eu_payload,
.opt_payload,
.slice,
.un,
=> unreachable,
.aggregate => |*a| a,
};
return sema.beginComptimePtrMutationInner(
block,
src,
elem_ty,
&aggregate.elems[@intCast(elem_ptr.index)],
ptr_elem_ty,
parent.root,
);
},
else => {
if (elem_ptr.index != 0) {
// TODO include a "declared here" note for the decl
return sema.fail(block, src, "out of bounds comptime store of index {d}", .{
elem_ptr.index,
});
}
return beginComptimePtrMutationInner(
sema,
block,
src,
parent.ty,
val_ptr,
ptr_elem_ty,
parent.root,
);
},
},
.reinterpret => |reinterpret| {
if (!base_elem_ty.hasWellDefinedLayout(mod)) {
// Even though the parent value type has well-defined memory layout, our
// pointer type does not.
return .{
.root = parent.root,
.pointee = .bad_ptr_ty,
.ty = base_elem_ty,
};
}
const elem_abi_size_u64 = try sema.typeAbiSize(base_elem_ty);
const elem_abi_size = try sema.usizeCast(block, src, elem_abi_size_u64);
const elem_idx = try sema.usizeCast(block, src, elem_ptr.index);
return .{
.root = parent.root,
.pointee = .{ .reinterpret = .{
.val_ptr = reinterpret.val_ptr,
.byte_offset = reinterpret.byte_offset + elem_abi_size * elem_idx,
} },
.ty = parent.ty,
};
},
.bad_decl_ty, .bad_ptr_ty => return parent,
}
},
.field => |field_ptr| {
const base_child_ty = Type.fromInterned(mod.intern_pool.typeOf(field_ptr.base)).childType(mod);
const field_index: u32 = @intCast(field_ptr.index);
var parent = try sema.beginComptimePtrMutation(block, src, Value.fromInterned(field_ptr.base), base_child_ty);
switch (parent.pointee) {
.opv => unreachable,
.direct => |val_ptr| {
try val_ptr.unintern(mod, sema.arena, false, false);
switch (val_ptr.*) {
.interned,
.eu_payload,
.opt_payload,
.repeated,
.bytes,
=> unreachable,
.aggregate => |*a| return sema.beginComptimePtrMutationInner(
block,
src,
parent.ty.structFieldType(field_index, mod),
&a.elems[field_index],
ptr_elem_ty,
parent.root,
),
.slice => |*s| switch (field_index) {
Value.slice_ptr_index => return sema.beginComptimePtrMutationInner(
block,
src,
parent.ty.slicePtrFieldType(mod),
s.ptr,
ptr_elem_ty,
parent.root,
),
Value.slice_len_index => return sema.beginComptimePtrMutationInner(
block,
src,
Type.usize,
s.len,
ptr_elem_ty,
parent.root,
),
else => unreachable,
},
.un => |*un| {
const layout = base_child_ty.containerLayout(mod);
const tag_type = base_child_ty.unionTagTypeHypothetical(mod);
const hypothetical_tag = try mod.enumValueFieldIndex(tag_type, field_index);
if (un.tag == .none and un.payload.* == .interned and un.payload.interned == .undef) {
// A union has been initialized to undefined at comptime and now we
// are for the first time setting the payload. We must change the
// tag implicitly.
const payload_ty = parent.ty.structFieldType(field_index, mod);
un.tag = hypothetical_tag.toIntern();
un.payload.* = .{ .interned = try mod.intern(.{ .undef = payload_ty.toIntern() }) };
return beginComptimePtrMutationInner(
sema,
block,
src,
payload_ty,
un.payload,
ptr_elem_ty,
parent.root,
);
}
if (layout == .auto or hypothetical_tag.toIntern() == un.tag) {
// We need to set the active field of the union.
un.tag = hypothetical_tag.toIntern();
const field_ty = parent.ty.structFieldType(field_index, mod);
return beginComptimePtrMutationInner(
sema,
block,
src,
field_ty,
un.payload,
ptr_elem_ty,
parent.root,
);
} else {
// Writing to a different field (a different or unknown tag is active) requires reinterpreting
// memory of the entire union, which requires knowing its abiSize.
try sema.resolveTypeLayout(parent.ty);
// This union value no longer has a well-defined tag type.
// The reinterpretation will read it back out as .none.
try un.payload.unintern(mod, sema.arena, false, false);
return .{
.root = parent.root,
.pointee = .{ .reinterpret = .{
.val_ptr = val_ptr,
.byte_offset = 0,
.write_packed = layout == .@"packed",
} },
.ty = parent.ty,
};
}
},
}
},
.reinterpret => |reinterpret| {
const field_offset_u64 = base_child_ty.structFieldOffset(field_index, mod);
const field_offset = try sema.usizeCast(block, src, field_offset_u64);
return .{
.root = parent.root,
.pointee = .{ .reinterpret = .{
.val_ptr = reinterpret.val_ptr,
.byte_offset = reinterpret.byte_offset + field_offset,
} },
.ty = parent.ty,
};
},
.bad_decl_ty, .bad_ptr_ty => return parent,
}
},
}
}
fn beginComptimePtrMutationInner(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
decl_ty: Type,
decl_val: *MutableValue,
ptr_elem_ty: Type,
root: ComptimePtrMutationKit.Root,
) CompileError!ComptimePtrMutationKit {
const mod = sema.mod;
const target = mod.getTarget();
const coerce_ok = (try sema.coerceInMemoryAllowed(block, ptr_elem_ty, decl_ty, true, target, src, src)) == .ok;
const old_decl_val = decl_val.*;
try decl_val.unintern(mod, sema.arena, false, false);
if (decl_val.* == .un and decl_val.un.tag == .none and decl_val.un.payload.* == .interned and decl_val.un.payload.interned == .undef) {
// HACKHACK: undefined union - re-intern it for now
// `unintern` probably should just leave these as is, but I'm leaving it until I rewrite comptime pointer access.
decl_val.* = old_decl_val;
}
if (coerce_ok) {
return ComptimePtrMutationKit{
.root = root,
.pointee = .{ .direct = decl_val },
.ty = decl_ty,
};
}
// Handle the case that the decl is an array and we're actually trying to point to an element.
if (decl_ty.isArrayOrVector(mod)) {
const decl_elem_ty = decl_ty.childType(mod);
if ((try sema.coerceInMemoryAllowed(block, ptr_elem_ty, decl_elem_ty, true, target, src, src)) == .ok) {
return ComptimePtrMutationKit{
.root = root,
.pointee = .{ .direct = decl_val },
.ty = decl_ty,
};
}
}
if (!decl_ty.hasWellDefinedLayout(mod)) {
return ComptimePtrMutationKit{
.root = root,
.pointee = .bad_decl_ty,
.ty = decl_ty,
};
}
if (!ptr_elem_ty.hasWellDefinedLayout(mod)) {
return ComptimePtrMutationKit{
.root = root,
.pointee = .bad_ptr_ty,
.ty = ptr_elem_ty,
};
}
return ComptimePtrMutationKit{
.root = root,
.pointee = .{ .reinterpret = .{
.val_ptr = decl_val,
.byte_offset = 0,
} },
.ty = decl_ty,
};
}
const ComptimePtrLoadKit = struct {
/// The Value and Type corresponding to the pointee of the provided pointer.
/// If a direct dereference is not possible, this is null.
pointee: ?MutableValue,
/// The largest parent Value containing `pointee` and having a well-defined memory layout.
/// This is used for bitcasting, if direct dereferencing failed (i.e. `pointee` is null).
parent: ?struct {
val: MutableValue,
byte_offset: usize,
},
/// If the root decl could not be used as `parent`, this is the type that
/// caused that by not having a well-defined layout
ty_without_well_defined_layout: ?Type,
};
const ComptimePtrLoadError = CompileError || error{
RuntimeLoad,
};
/// If `maybe_array_ty` is provided, it will be used to directly dereference an
/// .elem_ptr of type T to a value of [N]T, if necessary.
fn beginComptimePtrLoad(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
ptr_val: Value,
maybe_array_ty: ?Type,
) ComptimePtrLoadError!ComptimePtrLoadKit {
const mod = sema.mod;
const ip = &mod.intern_pool;
const target = mod.getTarget();
var deref: ComptimePtrLoadKit = switch (ip.indexToKey(ptr_val.toIntern())) {
.ptr => |ptr| switch (ptr.addr) {
.decl => |decl_index| blk: {
const decl = mod.declPtr(decl_index);
try sema.declareDependency(.{ .decl_val = decl_index });
if (decl.val.getVariable(mod) != null) return error.RuntimeLoad;
const decl_val: MutableValue = .{ .interned = decl.val.toIntern() };
const layout_defined = decl.typeOf(mod).hasWellDefinedLayout(mod);
break :blk ComptimePtrLoadKit{
.parent = if (layout_defined) .{ .val = decl_val, .byte_offset = 0 } else null,
.pointee = decl_val,
.ty_without_well_defined_layout = if (!layout_defined) decl.typeOf(mod) else null,
};
},
.comptime_alloc => |alloc_index| kit: {
const alloc = sema.getComptimeAlloc(alloc_index);
const alloc_ty = alloc.val.typeOf(mod);
const layout_defined = alloc_ty.hasWellDefinedLayout(mod);
break :kit .{
.parent = if (layout_defined) .{ .val = alloc.val, .byte_offset = 0 } else null,
.pointee = alloc.val,
.ty_without_well_defined_layout = if (!layout_defined) alloc_ty else null,
};
},
.anon_decl => |anon_decl| blk: {
const decl_val = anon_decl.val;
if (Value.fromInterned(decl_val).getVariable(mod) != null) return error.RuntimeLoad;
const decl_ty = Type.fromInterned(ip.typeOf(decl_val));
const decl_mv: MutableValue = .{ .interned = decl_val };
const layout_defined = decl_ty.hasWellDefinedLayout(mod);
break :blk ComptimePtrLoadKit{
.parent = if (layout_defined) .{ .val = decl_mv, .byte_offset = 0 } else null,
.pointee = decl_mv,
.ty_without_well_defined_layout = if (!layout_defined) decl_ty else null,
};
},
.int => return error.RuntimeLoad,
.eu_payload, .opt_payload => |container_ptr| blk: {
const container_ty = Type.fromInterned(ip.typeOf(container_ptr)).childType(mod);
var deref = try sema.beginComptimePtrLoad(block, src, Value.fromInterned(container_ptr), container_ty);
// eu_payload and opt_payload never have a well-defined layout
if (deref.parent != null) {
deref.parent = null;
deref.ty_without_well_defined_layout = container_ty;
}
if (deref.pointee) |pointee| {
const pointee_ty = pointee.typeOf(mod);
const coerce_in_mem_ok =
(try sema.coerceInMemoryAllowed(block, container_ty, pointee_ty, false, target, src, src)) == .ok or
(try sema.coerceInMemoryAllowed(block, pointee_ty, container_ty, false, target, src, src)) == .ok;
if (coerce_in_mem_ok) {
deref.pointee = switch (pointee) {
.interned => |ip_index| .{ .interned = switch (ip.indexToKey(ip_index)) {
.error_union => |error_union| switch (error_union.val) {
.err_name => |err_name| return sema.fail(
block,
src,
"attempt to unwrap error: {}",
.{err_name.fmt(ip)},
),
.payload => |payload| payload,
},
.opt => |opt| switch (opt.val) {
.none => return sema.fail(block, src, "attempt to use null value", .{}),
else => |payload| payload,
},
else => unreachable,
} },
.eu_payload, .opt_payload => |p| p.child.*,
else => unreachable,
};
break :blk deref;
}
}
deref.pointee = null;
break :blk deref;
},
.comptime_field => |field_val| .{
.parent = null,
.pointee = .{ .interned = field_val },
.ty_without_well_defined_layout = Type.fromInterned(ip.typeOf(field_val)),
},
.elem => |elem_ptr| blk: {
const elem_ty = Type.fromInterned(ip.typeOf(elem_ptr.base)).elemType2(mod);
var deref = try sema.beginComptimePtrLoad(block, src, Value.fromInterned(elem_ptr.base), null);
// This code assumes that elem_ptrs have been "flattened" in order for direct dereference
// to succeed, meaning that elem ptrs of the same elem_ty are coalesced. Here we check that
// our parent is not an elem_ptr with the same elem_ty, since that would be "unflattened"
switch (ip.indexToKey(elem_ptr.base)) {
.ptr => |base_ptr| switch (base_ptr.addr) {
.elem => |base_elem| assert(!Type.fromInterned(ip.typeOf(base_elem.base)).elemType2(mod).eql(elem_ty, mod)),
else => {},
},
else => {},
}
if (elem_ptr.index != 0) {
if (elem_ty.hasWellDefinedLayout(mod)) {
if (deref.parent) |*parent| {
// Update the byte offset (in-place)
const elem_size = try sema.typeAbiSize(elem_ty);
const offset = parent.byte_offset + elem_size * elem_ptr.index;
parent.byte_offset = try sema.usizeCast(block, src, offset);
}
} else {
deref.parent = null;
deref.ty_without_well_defined_layout = elem_ty;
}
}
// If we're loading an elem that was derived from a different type
// than the true type of the underlying decl, we cannot deref directly
const ty_matches = if (deref.pointee) |pointee| match: {
const ty = pointee.typeOf(mod);
if (!ty.isArrayOrVector(mod)) break :match false;
const deref_elem_ty = ty.childType(mod);
if ((try sema.coerceInMemoryAllowed(block, deref_elem_ty, elem_ty, false, target, src, src)) == .ok) break :match true;
if ((try sema.coerceInMemoryAllowed(block, elem_ty, deref_elem_ty, false, target, src, src)) == .ok) break :match true;
break :match false;
} else false;
if (!ty_matches) {
deref.pointee = null;
break :blk deref;
}
var array_val = deref.pointee.?;
const check_len = array_val.typeOf(mod).arrayLenIncludingSentinel(mod);
if (maybe_array_ty) |load_ty| {
// It's possible that we're loading a [N]T, in which case we'd like to slice
// the pointee array directly from our parent array.
if (load_ty.isArrayOrVector(mod) and load_ty.childType(mod).eql(elem_ty, mod)) {
const len = try sema.usizeCast(block, src, load_ty.arrayLenIncludingSentinel(mod));
const elem_idx = try sema.usizeCast(block, src, elem_ptr.index);
deref.pointee = if (elem_ptr.index + len <= check_len) switch (array_val) {
.aggregate => |a| .{ .aggregate = .{
.ty = (try mod.arrayType(.{ .len = len, .child = elem_ty.toIntern() })).toIntern(),
.elems = a.elems[elem_idx..][0..len],
} },
else => .{
.interned = (try (Value.fromInterned(
try array_val.intern(mod, sema.arena),
).sliceArray(sema, elem_idx, elem_idx + len))).toIntern(),
},
} else null;
break :blk deref;
}
}
if (elem_ptr.index >= check_len) {
deref.pointee = null;
break :blk deref;
}
if (elem_ptr.index == check_len - 1) {
if (array_val.typeOf(mod).sentinel(mod)) |sent| {
deref.pointee = .{ .interned = sent.toIntern() };
break :blk deref;
}
}
deref.pointee = try array_val.getElem(mod, @intCast(elem_ptr.index));
break :blk deref;
},
.field => |field_ptr| blk: {
const field_index: u32 = @intCast(field_ptr.index);
const container_ty = Type.fromInterned(ip.typeOf(field_ptr.base)).childType(mod);
var deref = try sema.beginComptimePtrLoad(block, src, Value.fromInterned(field_ptr.base), container_ty);
if (container_ty.hasWellDefinedLayout(mod)) {
const struct_obj = mod.typeToStruct(container_ty);
if (struct_obj != null and struct_obj.?.layout == .@"packed") {
// packed structs are not byte addressable
deref.parent = null;
} else if (deref.parent) |*parent| {
// Update the byte offset (in-place)
try sema.resolveTypeLayout(container_ty);
const field_offset = container_ty.structFieldOffset(field_index, mod);
parent.byte_offset = try sema.usizeCast(block, src, parent.byte_offset + field_offset);
}
} else {
deref.parent = null;
deref.ty_without_well_defined_layout = container_ty;
}
const pointee = deref.pointee orelse break :blk deref;
const pointee_ty = pointee.typeOf(mod);
const coerce_in_mem_ok =
(try sema.coerceInMemoryAllowed(block, container_ty, pointee_ty, false, target, src, src)) == .ok or
(try sema.coerceInMemoryAllowed(block, pointee_ty, container_ty, false, target, src, src)) == .ok;
if (!coerce_in_mem_ok) {
deref.pointee = null;
break :blk deref;
}
deref.pointee = try pointee.getElem(mod, field_index);
break :blk deref;
},
},
.opt => |opt| switch (opt.val) {
.none => return sema.fail(block, src, "attempt to use null value", .{}),
else => |payload| try sema.beginComptimePtrLoad(block, src, Value.fromInterned(payload), null),
},
else => unreachable,
};
if (deref.pointee) |val| {
if (deref.parent == null and val.typeOf(mod).hasWellDefinedLayout(mod)) {
deref.parent = .{ .val = val, .byte_offset = 0 };
}
}
return deref;
}
fn bitCast(
sema: *Sema,
block: *Block,
dest_ty: Type,
inst: Air.Inst.Ref,
inst_src: LazySrcLoc,
operand_src: ?LazySrcLoc,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
try sema.resolveTypeLayout(dest_ty);
const old_ty = sema.typeOf(inst);
try sema.resolveTypeLayout(old_ty);
const dest_bits = dest_ty.bitSize(mod);
const old_bits = old_ty.bitSize(mod);
if (old_bits != dest_bits) {
return sema.fail(block, inst_src, "@bitCast size mismatch: destination type '{}' has {d} bits but source type '{}' has {d} bits", .{
dest_ty.fmt(mod),
dest_bits,
old_ty.fmt(mod),
old_bits,
});
}
if (try sema.resolveValue(inst)) |val| {
if (val.isUndef(mod))
return mod.undefRef(dest_ty);
if (try sema.bitCastVal(block, inst_src, val, old_ty, dest_ty, 0)) |result_val| {
return Air.internedToRef(result_val.toIntern());
}
}
try sema.requireRuntimeBlock(block, inst_src, operand_src);
try sema.validateRuntimeValue(block, inst_src, inst);
return block.addBitCast(dest_ty, inst);
}
fn bitCastVal(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
val: Value,
old_ty: Type,
new_ty: Type,
buffer_offset: usize,
) !?Value {
const mod = sema.mod;
if (old_ty.eql(new_ty, mod)) return val;
// For types with well-defined memory layouts, we serialize them a byte buffer,
// then deserialize to the new type.
const abi_size = try sema.usizeCast(block, src, old_ty.abiSize(mod));
const buffer = try sema.gpa.alloc(u8, abi_size);
defer sema.gpa.free(buffer);
val.writeToMemory(old_ty, mod, buffer) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.ReinterpretDeclRef => return null,
error.IllDefinedMemoryLayout => unreachable, // Sema was supposed to emit a compile error already
error.Unimplemented => return sema.fail(block, src, "TODO: implement writeToMemory for type '{}'", .{old_ty.fmt(mod)}),
};
return Value.readFromMemory(new_ty, mod, buffer[buffer_offset..], sema.arena) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.IllDefinedMemoryLayout => unreachable,
error.Unimplemented => return sema.fail(block, src, "TODO: implement readFromMemory for type '{}'", .{new_ty.fmt(mod)}),
};
}
fn bitCastUnionFieldVal(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
val: Value,
old_ty: Type,
field_ty: Type,
layout: std.builtin.Type.ContainerLayout,
) !?Value {
const mod = sema.mod;
if (old_ty.eql(field_ty, mod)) return val;
// Bitcasting a union field value requires that that field's layout be known
try sema.resolveTypeLayout(field_ty);
const old_size = try sema.usizeCast(block, src, old_ty.abiSize(mod));
const field_size = try sema.usizeCast(block, src, field_ty.abiSize(mod));
const endian = mod.getTarget().cpu.arch.endian();
const buffer = try sema.gpa.alloc(u8, @max(old_size, field_size));
defer sema.gpa.free(buffer);
// Reading a larger value means we need to reinterpret from undefined bytes.
const offset = switch (layout) {
.@"extern" => offset: {
if (field_size > old_size) @memset(buffer[old_size..], 0xaa);
val.writeToMemory(old_ty, mod, buffer) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.ReinterpretDeclRef => return null,
error.IllDefinedMemoryLayout => unreachable, // Sema was supposed to emit a compile error already
error.Unimplemented => return sema.fail(block, src, "TODO: implement writeToMemory for type '{}'", .{old_ty.fmt(mod)}),
};
break :offset 0;
},
.@"packed" => offset: {
if (field_size > old_size) {
const min_size = @max(old_size, 1);
switch (endian) {
.little => @memset(buffer[min_size - 1 ..], 0xaa),
.big => @memset(buffer[0 .. buffer.len - min_size + 1], 0xaa),
}
}
val.writeToPackedMemory(old_ty, mod, buffer, 0) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.ReinterpretDeclRef => return null,
};
break :offset if (endian == .big) buffer.len - field_size else 0;
},
.auto => unreachable,
};
return Value.readFromMemory(field_ty, mod, buffer[offset..], sema.arena) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.IllDefinedMemoryLayout => unreachable,
error.Unimplemented => return sema.fail(block, src, "TODO: implement readFromMemory for type '{}'", .{field_ty.fmt(mod)}),
};
}
fn coerceArrayPtrToSlice(
sema: *Sema,
block: *Block,
dest_ty: Type,
inst: Air.Inst.Ref,
inst_src: LazySrcLoc,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
if (try sema.resolveValue(inst)) |val| {
const ptr_array_ty = sema.typeOf(inst);
const array_ty = ptr_array_ty.childType(mod);
const slice_ptr_ty = dest_ty.slicePtrFieldType(mod);
const slice_ptr = try mod.getCoerced(val, slice_ptr_ty);
const slice_val = try mod.intern(.{ .slice = .{
.ty = dest_ty.toIntern(),
.ptr = slice_ptr.toIntern(),
.len = (try mod.intValue(Type.usize, array_ty.arrayLen(mod))).toIntern(),
} });
return Air.internedToRef(slice_val);
}
try sema.requireRuntimeBlock(block, inst_src, null);
return block.addTyOp(.array_to_slice, dest_ty, inst);
}
fn checkPtrAttributes(sema: *Sema, dest_ty: Type, inst_ty: Type, in_memory_result: *InMemoryCoercionResult) bool {
const mod = sema.mod;
const dest_info = dest_ty.ptrInfo(mod);
const inst_info = inst_ty.ptrInfo(mod);
const len0 = (Type.fromInterned(inst_info.child).zigTypeTag(mod) == .Array and (Type.fromInterned(inst_info.child).arrayLenIncludingSentinel(mod) == 0 or
(Type.fromInterned(inst_info.child).arrayLen(mod) == 0 and dest_info.sentinel == .none and dest_info.flags.size != .C and dest_info.flags.size != .Many))) or
(Type.fromInterned(inst_info.child).isTuple(mod) and Type.fromInterned(inst_info.child).structFieldCount(mod) == 0);
const ok_cv_qualifiers =
((!inst_info.flags.is_const or dest_info.flags.is_const) or len0) and
(!inst_info.flags.is_volatile or dest_info.flags.is_volatile);
if (!ok_cv_qualifiers) {
in_memory_result.* = .{ .ptr_qualifiers = .{
.actual_const = inst_info.flags.is_const,
.wanted_const = dest_info.flags.is_const,
.actual_volatile = inst_info.flags.is_volatile,
.wanted_volatile = dest_info.flags.is_volatile,
} };
return false;
}
if (dest_info.flags.address_space != inst_info.flags.address_space) {
in_memory_result.* = .{ .ptr_addrspace = .{
.actual = inst_info.flags.address_space,
.wanted = dest_info.flags.address_space,
} };
return false;
}
if (inst_info.flags.alignment == .none and dest_info.flags.alignment == .none) return true;
if (len0) return true;
const inst_align = if (inst_info.flags.alignment != .none)
inst_info.flags.alignment
else
Type.fromInterned(inst_info.child).abiAlignment(mod);
const dest_align = if (dest_info.flags.alignment != .none)
dest_info.flags.alignment
else
Type.fromInterned(dest_info.child).abiAlignment(mod);
if (dest_align.compare(.gt, inst_align)) {
in_memory_result.* = .{ .ptr_alignment = .{
.actual = inst_align,
.wanted = dest_align,
} };
return false;
}
return true;
}
fn coerceCompatiblePtrs(
sema: *Sema,
block: *Block,
dest_ty: Type,
inst: Air.Inst.Ref,
inst_src: LazySrcLoc,
) !Air.Inst.Ref {
const mod = sema.mod;
const inst_ty = sema.typeOf(inst);
if (try sema.resolveValue(inst)) |val| {
if (!val.isUndef(mod) and val.isNull(mod) and !dest_ty.isAllowzeroPtr(mod)) {
return sema.fail(block, inst_src, "null pointer casted to type '{}'", .{dest_ty.fmt(sema.mod)});
}
// The comptime Value representation is compatible with both types.
return Air.internedToRef(
(try mod.getCoerced(val, dest_ty)).toIntern(),
);
}
try sema.requireRuntimeBlock(block, inst_src, null);
const inst_allows_zero = inst_ty.zigTypeTag(mod) != .Pointer or inst_ty.ptrAllowsZero(mod);
if (block.wantSafety() and inst_allows_zero and !dest_ty.ptrAllowsZero(mod) and
(try sema.typeHasRuntimeBits(dest_ty.elemType2(mod)) or dest_ty.elemType2(mod).zigTypeTag(mod) == .Fn))
{
const actual_ptr = if (inst_ty.isSlice(mod))
try sema.analyzeSlicePtr(block, inst_src, inst, inst_ty)
else
inst;
const ptr_int = try block.addUnOp(.int_from_ptr, actual_ptr);
const is_non_zero = try block.addBinOp(.cmp_neq, ptr_int, .zero_usize);
const ok = if (inst_ty.isSlice(mod)) ok: {
const len = try sema.analyzeSliceLen(block, inst_src, inst);
const len_zero = try block.addBinOp(.cmp_eq, len, .zero_usize);
break :ok try block.addBinOp(.bool_or, len_zero, is_non_zero);
} else is_non_zero;
try sema.addSafetyCheck(block, inst_src, ok, .cast_to_null);
}
const new_ptr = try sema.bitCast(block, dest_ty, inst, inst_src, null);
try sema.checkKnownAllocPtr(block, inst, new_ptr);
return new_ptr;
}
fn coerceEnumToUnion(
sema: *Sema,
block: *Block,
union_ty: Type,
union_ty_src: LazySrcLoc,
inst: Air.Inst.Ref,
inst_src: LazySrcLoc,
) !Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
const inst_ty = sema.typeOf(inst);
const tag_ty = union_ty.unionTagType(mod) orelse {
const msg = msg: {
const msg = try sema.errMsg(block, inst_src, "expected type '{}', found '{}'", .{
union_ty.fmt(sema.mod), inst_ty.fmt(sema.mod),
});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, union_ty_src, msg, "cannot coerce enum to untagged union", .{});
try sema.addDeclaredHereNote(msg, union_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
};
const enum_tag = try sema.coerce(block, tag_ty, inst, inst_src);
if (try sema.resolveDefinedValue(block, inst_src, enum_tag)) |val| {
const field_index = union_ty.unionTagFieldIndex(val, sema.mod) orelse {
return sema.fail(block, inst_src, "union '{}' has no tag with value '{}'", .{
union_ty.fmt(sema.mod), val.fmtValue(sema.mod),
});
};
const union_obj = mod.typeToUnion(union_ty).?;
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[field_index]);
try sema.resolveTypeFields(field_ty);
if (field_ty.zigTypeTag(mod) == .NoReturn) {
const msg = msg: {
const msg = try sema.errMsg(block, inst_src, "cannot initialize 'noreturn' field of union", .{});
errdefer msg.destroy(sema.gpa);
const field_name = union_obj.loadTagType(ip).names.get(ip)[field_index];
try sema.addFieldErrNote(union_ty, field_index, msg, "field '{}' declared here", .{
field_name.fmt(ip),
});
try sema.addDeclaredHereNote(msg, union_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
const opv = (try sema.typeHasOnePossibleValue(field_ty)) orelse {
const msg = msg: {
const field_name = union_obj.loadTagType(ip).names.get(ip)[field_index];
const msg = try sema.errMsg(block, inst_src, "coercion from enum '{}' to union '{}' must initialize '{}' field '{}'", .{
inst_ty.fmt(sema.mod), union_ty.fmt(sema.mod),
field_ty.fmt(sema.mod), field_name.fmt(ip),
});
errdefer msg.destroy(sema.gpa);
try sema.addFieldErrNote(union_ty, field_index, msg, "field '{}' declared here", .{
field_name.fmt(ip),
});
try sema.addDeclaredHereNote(msg, union_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
};
return Air.internedToRef((try mod.unionValue(union_ty, val, opv)).toIntern());
}
try sema.requireRuntimeBlock(block, inst_src, null);
if (tag_ty.isNonexhaustiveEnum(mod)) {
const msg = msg: {
const msg = try sema.errMsg(block, inst_src, "runtime coercion to union '{}' from non-exhaustive enum", .{
union_ty.fmt(sema.mod),
});
errdefer msg.destroy(sema.gpa);
try sema.addDeclaredHereNote(msg, tag_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
const union_obj = mod.typeToUnion(union_ty).?;
{
var msg: ?*Module.ErrorMsg = null;
errdefer if (msg) |some| some.destroy(sema.gpa);
for (union_obj.field_types.get(ip), 0..) |field_ty, field_index| {
if (Type.fromInterned(field_ty).zigTypeTag(mod) == .NoReturn) {
const err_msg = msg orelse try sema.errMsg(
block,
inst_src,
"runtime coercion from enum '{}' to union '{}' which has a 'noreturn' field",
.{ tag_ty.fmt(sema.mod), union_ty.fmt(sema.mod) },
);
msg = err_msg;
try sema.addFieldErrNote(union_ty, field_index, err_msg, "'noreturn' field here", .{});
}
}
if (msg) |some| {
msg = null;
try sema.addDeclaredHereNote(some, union_ty);
return sema.failWithOwnedErrorMsg(block, some);
}
}
// If the union has all fields 0 bits, the union value is just the enum value.
if (union_ty.unionHasAllZeroBitFieldTypes(mod)) {
return block.addBitCast(union_ty, enum_tag);
}
const msg = msg: {
const msg = try sema.errMsg(
block,
inst_src,
"runtime coercion from enum '{}' to union '{}' which has non-void fields",
.{ tag_ty.fmt(sema.mod), union_ty.fmt(sema.mod) },
);
errdefer msg.destroy(sema.gpa);
for (0..union_obj.field_types.len) |field_index| {
const field_name = union_obj.loadTagType(ip).names.get(ip)[field_index];
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[field_index]);
if (!(try sema.typeHasRuntimeBits(field_ty))) continue;
try sema.addFieldErrNote(union_ty, field_index, msg, "field '{}' has type '{}'", .{
field_name.fmt(ip),
field_ty.fmt(sema.mod),
});
}
try sema.addDeclaredHereNote(msg, union_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
fn coerceAnonStructToUnion(
sema: *Sema,
block: *Block,
union_ty: Type,
union_ty_src: LazySrcLoc,
inst: Air.Inst.Ref,
inst_src: LazySrcLoc,
) !Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
const inst_ty = sema.typeOf(inst);
const field_info: union(enum) {
name: InternPool.NullTerminatedString,
count: usize,
} = switch (ip.indexToKey(inst_ty.toIntern())) {
.anon_struct_type => |anon_struct_type| if (anon_struct_type.names.len == 1)
.{ .name = anon_struct_type.names.get(ip)[0] }
else
.{ .count = anon_struct_type.names.len },
.struct_type => name: {
const field_names = ip.loadStructType(inst_ty.toIntern()).field_names.get(ip);
break :name if (field_names.len == 1)
.{ .name = field_names[0] }
else
.{ .count = field_names.len };
},
else => unreachable,
};
switch (field_info) {
.name => |field_name| {
const init = try sema.structFieldVal(block, inst_src, inst, field_name, inst_src, inst_ty);
return sema.unionInit(block, init, inst_src, union_ty, union_ty_src, field_name, inst_src);
},
.count => |field_count| {
assert(field_count != 1);
const msg = msg: {
const msg = if (field_count > 1) try sema.errMsg(
block,
inst_src,
"cannot initialize multiple union fields at once; unions can only have one active field",
.{},
) else try sema.errMsg(
block,
inst_src,
"union initializer must initialize one field",
.{},
);
errdefer msg.destroy(sema.gpa);
// TODO add notes for where the anon struct was created to point out
// the extra fields.
try sema.addDeclaredHereNote(msg, union_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
},
}
}
fn coerceAnonStructToUnionPtrs(
sema: *Sema,
block: *Block,
ptr_union_ty: Type,
union_ty_src: LazySrcLoc,
ptr_anon_struct: Air.Inst.Ref,
anon_struct_src: LazySrcLoc,
) !Air.Inst.Ref {
const mod = sema.mod;
const union_ty = ptr_union_ty.childType(mod);
const anon_struct = try sema.analyzeLoad(block, anon_struct_src, ptr_anon_struct, anon_struct_src);
const union_inst = try sema.coerceAnonStructToUnion(block, union_ty, union_ty_src, anon_struct, anon_struct_src);
return sema.analyzeRef(block, union_ty_src, union_inst);
}
fn coerceAnonStructToStructPtrs(
sema: *Sema,
block: *Block,
ptr_struct_ty: Type,
struct_ty_src: LazySrcLoc,
ptr_anon_struct: Air.Inst.Ref,
anon_struct_src: LazySrcLoc,
) !Air.Inst.Ref {
const mod = sema.mod;
const struct_ty = ptr_struct_ty.childType(mod);
const anon_struct = try sema.analyzeLoad(block, anon_struct_src, ptr_anon_struct, anon_struct_src);
const struct_inst = try sema.coerceTupleToStruct(block, struct_ty, anon_struct, anon_struct_src);
return sema.analyzeRef(block, struct_ty_src, struct_inst);
}
/// If the lengths match, coerces element-wise.
fn coerceArrayLike(
sema: *Sema,
block: *Block,
dest_ty: Type,
dest_ty_src: LazySrcLoc,
inst: Air.Inst.Ref,
inst_src: LazySrcLoc,
) !Air.Inst.Ref {
const mod = sema.mod;
const inst_ty = sema.typeOf(inst);
const target = mod.getTarget();
// try coercion of the whole array
const in_memory_result = try sema.coerceInMemoryAllowed(block, dest_ty, inst_ty, false, target, dest_ty_src, inst_src);
if (in_memory_result == .ok) {
if (try sema.resolveValue(inst)) |inst_val| {
// These types share the same comptime value representation.
return sema.coerceInMemory(inst_val, dest_ty);
}
try sema.requireRuntimeBlock(block, inst_src, null);
return block.addBitCast(dest_ty, inst);
}
// otherwise, try element by element
const inst_len = inst_ty.arrayLen(mod);
const dest_len = try sema.usizeCast(block, dest_ty_src, dest_ty.arrayLen(mod));
if (dest_len != inst_len) {
const msg = msg: {
const msg = try sema.errMsg(block, inst_src, "expected type '{}', found '{}'", .{
dest_ty.fmt(mod), inst_ty.fmt(mod),
});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, dest_ty_src, msg, "destination has length {d}", .{dest_len});
try sema.errNote(block, inst_src, msg, "source has length {d}", .{inst_len});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
const dest_elem_ty = dest_ty.childType(mod);
if (dest_ty.isVector(mod) and inst_ty.isVector(mod) and (try sema.resolveValue(inst)) == null) {
const inst_elem_ty = inst_ty.childType(mod);
switch (dest_elem_ty.zigTypeTag(mod)) {
.Int => if (inst_elem_ty.isInt(mod)) {
// integer widening
const dst_info = dest_elem_ty.intInfo(mod);
const src_info = inst_elem_ty.intInfo(mod);
if ((src_info.signedness == dst_info.signedness and dst_info.bits >= src_info.bits) or
// small enough unsigned ints can get casted to large enough signed ints
(dst_info.signedness == .signed and dst_info.bits > src_info.bits))
{
try sema.requireRuntimeBlock(block, inst_src, null);
return block.addTyOp(.intcast, dest_ty, inst);
}
},
.Float => if (inst_elem_ty.isRuntimeFloat()) {
// float widening
const src_bits = inst_elem_ty.floatBits(target);
const dst_bits = dest_elem_ty.floatBits(target);
if (dst_bits >= src_bits) {
try sema.requireRuntimeBlock(block, inst_src, null);
return block.addTyOp(.fpext, dest_ty, inst);
}
},
else => {},
}
}
const element_vals = try sema.arena.alloc(InternPool.Index, dest_len);
const element_refs = try sema.arena.alloc(Air.Inst.Ref, dest_len);
var runtime_src: ?LazySrcLoc = null;
for (element_vals, element_refs, 0..) |*val, *ref, i| {
const index_ref = Air.internedToRef((try mod.intValue(Type.usize, i)).toIntern());
const src = inst_src; // TODO better source location
const elem_src = inst_src; // TODO better source location
const elem_ref = try sema.elemValArray(block, src, inst_src, inst, elem_src, index_ref, true);
const coerced = try sema.coerce(block, dest_elem_ty, elem_ref, elem_src);
ref.* = coerced;
if (runtime_src == null) {
if (try sema.resolveValue(coerced)) |elem_val| {
val.* = elem_val.toIntern();
} else {
runtime_src = elem_src;
}
}
}
if (runtime_src) |rs| {
try sema.requireRuntimeBlock(block, inst_src, rs);
return block.addAggregateInit(dest_ty, element_refs);
}
return Air.internedToRef((try mod.intern(.{ .aggregate = .{
.ty = dest_ty.toIntern(),
.storage = .{ .elems = element_vals },
} })));
}
/// If the lengths match, coerces element-wise.
fn coerceTupleToArray(
sema: *Sema,
block: *Block,
dest_ty: Type,
dest_ty_src: LazySrcLoc,
inst: Air.Inst.Ref,
inst_src: LazySrcLoc,
) !Air.Inst.Ref {
const mod = sema.mod;
const inst_ty = sema.typeOf(inst);
const inst_len = inst_ty.arrayLen(mod);
const dest_len = dest_ty.arrayLen(mod);
if (dest_len != inst_len) {
const msg = msg: {
const msg = try sema.errMsg(block, inst_src, "expected type '{}', found '{}'", .{
dest_ty.fmt(sema.mod), inst_ty.fmt(sema.mod),
});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, dest_ty_src, msg, "destination has length {d}", .{dest_len});
try sema.errNote(block, inst_src, msg, "source has length {d}", .{inst_len});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
const dest_elems = try sema.usizeCast(block, dest_ty_src, dest_len);
const element_vals = try sema.arena.alloc(InternPool.Index, dest_elems);
const element_refs = try sema.arena.alloc(Air.Inst.Ref, dest_elems);
const dest_elem_ty = dest_ty.childType(mod);
var runtime_src: ?LazySrcLoc = null;
for (element_vals, element_refs, 0..) |*val, *ref, i_usize| {
const i: u32 = @intCast(i_usize);
if (i_usize == inst_len) {
const sentinel_val = dest_ty.sentinel(mod).?;
val.* = sentinel_val.toIntern();
ref.* = Air.internedToRef(sentinel_val.toIntern());
break;
}
const elem_src = inst_src; // TODO better source location
const elem_ref = try sema.tupleField(block, inst_src, inst, elem_src, i);
const coerced = try sema.coerce(block, dest_elem_ty, elem_ref, elem_src);
ref.* = coerced;
if (runtime_src == null) {
if (try sema.resolveValue(coerced)) |elem_val| {
val.* = elem_val.toIntern();
} else {
runtime_src = elem_src;
}
}
}
if (runtime_src) |rs| {
try sema.requireRuntimeBlock(block, inst_src, rs);
return block.addAggregateInit(dest_ty, element_refs);
}
return Air.internedToRef((try mod.intern(.{ .aggregate = .{
.ty = dest_ty.toIntern(),
.storage = .{ .elems = element_vals },
} })));
}
/// If the lengths match, coerces element-wise.
fn coerceTupleToSlicePtrs(
sema: *Sema,
block: *Block,
slice_ty: Type,
slice_ty_src: LazySrcLoc,
ptr_tuple: Air.Inst.Ref,
tuple_src: LazySrcLoc,
) !Air.Inst.Ref {
const mod = sema.mod;
const tuple_ty = sema.typeOf(ptr_tuple).childType(mod);
const tuple = try sema.analyzeLoad(block, tuple_src, ptr_tuple, tuple_src);
const slice_info = slice_ty.ptrInfo(mod);
const array_ty = try mod.arrayType(.{
.len = tuple_ty.structFieldCount(mod),
.sentinel = slice_info.sentinel,
.child = slice_info.child,
});
const array_inst = try sema.coerceTupleToArray(block, array_ty, slice_ty_src, tuple, tuple_src);
if (slice_info.flags.alignment != .none) {
return sema.fail(block, slice_ty_src, "TODO: override the alignment of the array decl we create here", .{});
}
const ptr_array = try sema.analyzeRef(block, slice_ty_src, array_inst);
return sema.coerceArrayPtrToSlice(block, slice_ty, ptr_array, slice_ty_src);
}
/// If the lengths match, coerces element-wise.
fn coerceTupleToArrayPtrs(
sema: *Sema,
block: *Block,
ptr_array_ty: Type,
array_ty_src: LazySrcLoc,
ptr_tuple: Air.Inst.Ref,
tuple_src: LazySrcLoc,
) !Air.Inst.Ref {
const mod = sema.mod;
const tuple = try sema.analyzeLoad(block, tuple_src, ptr_tuple, tuple_src);
const ptr_info = ptr_array_ty.ptrInfo(mod);
const array_ty = Type.fromInterned(ptr_info.child);
const array_inst = try sema.coerceTupleToArray(block, array_ty, array_ty_src, tuple, tuple_src);
if (ptr_info.flags.alignment != .none) {
return sema.fail(block, array_ty_src, "TODO: override the alignment of the array decl we create here", .{});
}
const ptr_array = try sema.analyzeRef(block, array_ty_src, array_inst);
return ptr_array;
}
/// Handles both tuples and anon struct literals. Coerces field-wise. Reports
/// errors for both extra fields and missing fields.
fn coerceTupleToStruct(
sema: *Sema,
block: *Block,
struct_ty: Type,
inst: Air.Inst.Ref,
inst_src: LazySrcLoc,
) !Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
try sema.resolveTypeFields(struct_ty);
try sema.resolveStructFieldInits(struct_ty);
if (struct_ty.isTupleOrAnonStruct(mod)) {
return sema.coerceTupleToTuple(block, struct_ty, inst, inst_src);
}
const struct_type = mod.typeToStruct(struct_ty).?;
const field_vals = try sema.arena.alloc(InternPool.Index, struct_type.field_types.len);
const field_refs = try sema.arena.alloc(Air.Inst.Ref, field_vals.len);
@memset(field_refs, .none);
const inst_ty = sema.typeOf(inst);
var runtime_src: ?LazySrcLoc = null;
const field_count = switch (ip.indexToKey(inst_ty.toIntern())) {
.anon_struct_type => |anon_struct_type| anon_struct_type.types.len,
.struct_type => ip.loadStructType(inst_ty.toIntern()).field_types.len,
else => unreachable,
};
for (0..field_count) |field_index_usize| {
const field_i: u32 = @intCast(field_index_usize);
const field_src = inst_src; // TODO better source location
// https://github.com/ziglang/zig/issues/15709
const field_name: InternPool.NullTerminatedString = switch (ip.indexToKey(inst_ty.toIntern())) {
.anon_struct_type => |anon_struct_type| if (anon_struct_type.names.len > 0)
anon_struct_type.names.get(ip)[field_i]
else
try ip.getOrPutStringFmt(sema.gpa, "{d}", .{field_i}),
.struct_type => ip.loadStructType(inst_ty.toIntern()).field_names.get(ip)[field_i],
else => unreachable,
};
const field_index = try sema.structFieldIndex(block, struct_ty, field_name, field_src);
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[field_index]);
const elem_ref = try sema.tupleField(block, inst_src, inst, field_src, field_i);
const coerced = try sema.coerce(block, field_ty, elem_ref, field_src);
field_refs[field_index] = coerced;
if (struct_type.fieldIsComptime(ip, field_index)) {
const init_val = (try sema.resolveValue(coerced)) orelse {
return sema.failWithNeededComptime(block, field_src, .{
.needed_comptime_reason = "value stored in comptime field must be comptime-known",
});
};
const field_init = Value.fromInterned(struct_type.field_inits.get(ip)[field_index]);
if (!init_val.eql(field_init, field_ty, sema.mod)) {
return sema.failWithInvalidComptimeFieldStore(block, field_src, inst_ty, field_i);
}
}
if (runtime_src == null) {
if (try sema.resolveValue(coerced)) |field_val| {
field_vals[field_index] = field_val.toIntern();
} else {
runtime_src = field_src;
}
}
}
// Populate default field values and report errors for missing fields.
var root_msg: ?*Module.ErrorMsg = null;
errdefer if (root_msg) |msg| msg.destroy(sema.gpa);
for (field_refs, 0..) |*field_ref, i| {
if (field_ref.* != .none) continue;
const field_name = struct_type.field_names.get(ip)[i];
const field_default_val = struct_type.fieldInit(ip, i);
const field_src = inst_src; // TODO better source location
if (field_default_val == .none) {
const template = "missing struct field: {}";
const args = .{field_name.fmt(ip)};
if (root_msg) |msg| {
try sema.errNote(block, field_src, msg, template, args);
} else {
root_msg = try sema.errMsg(block, field_src, template, args);
}
continue;
}
if (runtime_src == null) {
field_vals[i] = field_default_val;
} else {
field_ref.* = Air.internedToRef(field_default_val);
}
}
if (root_msg) |msg| {
try sema.addDeclaredHereNote(msg, struct_ty);
root_msg = null;
return sema.failWithOwnedErrorMsg(block, msg);
}
if (runtime_src) |rs| {
try sema.requireRuntimeBlock(block, inst_src, rs);
return block.addAggregateInit(struct_ty, field_refs);
}
const struct_val = try mod.intern(.{ .aggregate = .{
.ty = struct_ty.toIntern(),
.storage = .{ .elems = field_vals },
} });
// TODO: figure out InternPool removals for incremental compilation
//errdefer ip.remove(struct_val);
return Air.internedToRef(struct_val);
}
fn coerceTupleToTuple(
sema: *Sema,
block: *Block,
tuple_ty: Type,
inst: Air.Inst.Ref,
inst_src: LazySrcLoc,
) !Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
const dest_field_count = switch (ip.indexToKey(tuple_ty.toIntern())) {
.anon_struct_type => |anon_struct_type| anon_struct_type.types.len,
.struct_type => ip.loadStructType(tuple_ty.toIntern()).field_types.len,
else => unreachable,
};
const field_vals = try sema.arena.alloc(InternPool.Index, dest_field_count);
const field_refs = try sema.arena.alloc(Air.Inst.Ref, field_vals.len);
@memset(field_refs, .none);
const inst_ty = sema.typeOf(inst);
const src_field_count = switch (ip.indexToKey(inst_ty.toIntern())) {
.anon_struct_type => |anon_struct_type| anon_struct_type.types.len,
.struct_type => ip.loadStructType(inst_ty.toIntern()).field_types.len,
else => unreachable,
};
if (src_field_count > dest_field_count) return error.NotCoercible;
var runtime_src: ?LazySrcLoc = null;
for (0..dest_field_count) |field_index_usize| {
const field_i: u32 = @intCast(field_index_usize);
const field_src = inst_src; // TODO better source location
// https://github.com/ziglang/zig/issues/15709
const field_name: InternPool.NullTerminatedString = switch (ip.indexToKey(inst_ty.toIntern())) {
.anon_struct_type => |anon_struct_type| if (anon_struct_type.names.len > 0)
anon_struct_type.names.get(ip)[field_i]
else
try ip.getOrPutStringFmt(sema.gpa, "{d}", .{field_i}),
.struct_type => s: {
const struct_type = ip.loadStructType(inst_ty.toIntern());
if (struct_type.field_names.len > 0) {
break :s struct_type.field_names.get(ip)[field_i];
} else {
break :s try ip.getOrPutStringFmt(sema.gpa, "{d}", .{field_i});
}
},
else => unreachable,
};
if (ip.stringEqlSlice(field_name, "len"))
return sema.fail(block, field_src, "cannot assign to 'len' field of tuple", .{});
const field_ty = switch (ip.indexToKey(tuple_ty.toIntern())) {
.anon_struct_type => |anon_struct_type| anon_struct_type.types.get(ip)[field_index_usize],
.struct_type => ip.loadStructType(tuple_ty.toIntern()).field_types.get(ip)[field_index_usize],
else => unreachable,
};
const default_val = switch (ip.indexToKey(tuple_ty.toIntern())) {
.anon_struct_type => |anon_struct_type| anon_struct_type.values.get(ip)[field_index_usize],
.struct_type => ip.loadStructType(tuple_ty.toIntern()).fieldInit(ip, field_index_usize),
else => unreachable,
};
const field_index = try sema.tupleFieldIndex(block, tuple_ty, field_name, field_src);
const elem_ref = try sema.tupleField(block, inst_src, inst, field_src, field_i);
const coerced = try sema.coerce(block, Type.fromInterned(field_ty), elem_ref, field_src);
field_refs[field_index] = coerced;
if (default_val != .none) {
const init_val = (try sema.resolveValue(coerced)) orelse {
return sema.failWithNeededComptime(block, field_src, .{
.needed_comptime_reason = "value stored in comptime field must be comptime-known",
});
};
if (!init_val.eql(Value.fromInterned(default_val), Type.fromInterned(field_ty), sema.mod)) {
return sema.failWithInvalidComptimeFieldStore(block, field_src, inst_ty, field_i);
}
}
if (runtime_src == null) {
if (try sema.resolveValue(coerced)) |field_val| {
field_vals[field_index] = field_val.toIntern();
} else {
runtime_src = field_src;
}
}
}
// Populate default field values and report errors for missing fields.
var root_msg: ?*Module.ErrorMsg = null;
errdefer if (root_msg) |msg| msg.destroy(sema.gpa);
for (field_refs, 0..) |*field_ref, i_usize| {
const i: u32 = @intCast(i_usize);
if (field_ref.* != .none) continue;
const default_val = switch (ip.indexToKey(tuple_ty.toIntern())) {
.anon_struct_type => |anon_struct_type| anon_struct_type.values.get(ip)[i],
.struct_type => ip.loadStructType(tuple_ty.toIntern()).fieldInit(ip, i),
else => unreachable,
};
const field_src = inst_src; // TODO better source location
if (default_val == .none) {
const field_name = tuple_ty.structFieldName(i, mod).unwrap() orelse {
const template = "missing tuple field: {d}";
if (root_msg) |msg| {
try sema.errNote(block, field_src, msg, template, .{i});
} else {
root_msg = try sema.errMsg(block, field_src, template, .{i});
}
continue;
};
const template = "missing struct field: {}";
const args = .{field_name.fmt(ip)};
if (root_msg) |msg| {
try sema.errNote(block, field_src, msg, template, args);
} else {
root_msg = try sema.errMsg(block, field_src, template, args);
}
continue;
}
if (runtime_src == null) {
field_vals[i] = default_val;
} else {
field_ref.* = Air.internedToRef(default_val);
}
}
if (root_msg) |msg| {
try sema.addDeclaredHereNote(msg, tuple_ty);
root_msg = null;
return sema.failWithOwnedErrorMsg(block, msg);
}
if (runtime_src) |rs| {
try sema.requireRuntimeBlock(block, inst_src, rs);
return block.addAggregateInit(tuple_ty, field_refs);
}
return Air.internedToRef((try mod.intern(.{ .aggregate = .{
.ty = tuple_ty.toIntern(),
.storage = .{ .elems = field_vals },
} })));
}
fn analyzeDeclVal(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
decl_index: InternPool.DeclIndex,
) CompileError!Air.Inst.Ref {
try sema.addReferencedBy(block, src, decl_index);
if (sema.decl_val_table.get(decl_index)) |result| {
return result;
}
const decl_ref = try sema.analyzeDeclRefInner(decl_index, false);
const result = try sema.analyzeLoad(block, src, decl_ref, src);
if (result.toInterned() != null) {
if (!block.is_typeof) {
try sema.decl_val_table.put(sema.gpa, decl_index, result);
}
}
return result;
}
fn addReferencedBy(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
decl_index: InternPool.DeclIndex,
) !void {
if (sema.mod.comp.reference_trace == 0) return;
if (src == .unneeded) {
// We can't use NeededSourceLocation, since sites handling that assume it means a compile
// error. Our long-term strategy here is to gradually transition from NeededSourceLocation
// into having more LazySrcLoc tags. In the meantime, let release compilers just ignore this
// reference (a slightly-incomplete error is better than a crash!), but trigger a panic in
// debug so we can fix this case.
if (std.debug.runtime_safety) unreachable else return;
}
try sema.mod.reference_table.put(sema.gpa, decl_index, .{
.referencer = block.src_decl,
.src = src,
});
}
fn ensureDeclAnalyzed(sema: *Sema, decl_index: InternPool.DeclIndex) CompileError!void {
const mod = sema.mod;
const ip = &mod.intern_pool;
const decl = mod.declPtr(decl_index);
if (decl.analysis == .in_progress) {
const msg = try Module.ErrorMsg.create(sema.gpa, decl.srcLoc(mod), "dependency loop detected", .{});
return sema.failWithOwnedErrorMsg(null, msg);
}
mod.ensureDeclAnalyzed(decl_index) catch |err| {
if (sema.owner_func_index != .none) {
ip.funcAnalysis(sema.owner_func_index).state = .dependency_failure;
} else {
sema.owner_decl.analysis = .dependency_failure;
}
return err;
};
}
fn ensureFuncBodyAnalyzed(sema: *Sema, func: InternPool.Index) CompileError!void {
const mod = sema.mod;
const ip = &mod.intern_pool;
mod.ensureFuncBodyAnalyzed(func) catch |err| {
if (sema.owner_func_index != .none) {
ip.funcAnalysis(sema.owner_func_index).state = .dependency_failure;
} else {
sema.owner_decl.analysis = .dependency_failure;
}
return err;
};
}
fn optRefValue(sema: *Sema, opt_val: ?Value) !Value {
const mod = sema.mod;
const ptr_anyopaque_ty = try mod.singleConstPtrType(Type.anyopaque);
return Value.fromInterned((try mod.intern(.{ .opt = .{
.ty = (try mod.optionalType(ptr_anyopaque_ty.toIntern())).toIntern(),
.val = if (opt_val) |val| (try mod.getCoerced(
Value.fromInterned(try sema.refValue(val.toIntern())),
ptr_anyopaque_ty,
)).toIntern() else .none,
} })));
}
fn analyzeDeclRef(sema: *Sema, decl_index: InternPool.DeclIndex) CompileError!Air.Inst.Ref {
return sema.analyzeDeclRefInner(decl_index, true);
}
/// Analyze a reference to the decl at the given index. Ensures the underlying decl is analyzed, but
/// only triggers analysis for function bodies if `analyze_fn_body` is true. If it's possible for a
/// decl_ref to end up in runtime code, the function body must be analyzed: `analyzeDeclRef` wraps
/// this function with `analyze_fn_body` set to true.
fn analyzeDeclRefInner(sema: *Sema, decl_index: InternPool.DeclIndex, analyze_fn_body: bool) CompileError!Air.Inst.Ref {
const mod = sema.mod;
try sema.ensureDeclAnalyzed(decl_index);
const decl_val = try mod.declPtr(decl_index).valueOrFail();
const owner_decl = mod.declPtr(switch (mod.intern_pool.indexToKey(decl_val.toIntern())) {
.variable => |variable| variable.decl,
.extern_func => |extern_func| extern_func.decl,
.func => |func| func.owner_decl,
else => decl_index,
});
// TODO: if this is a `decl_ref` of a non-variable decl, only depend on decl type
try sema.declareDependency(.{ .decl_val = decl_index });
const ptr_ty = try sema.ptrType(.{
.child = decl_val.typeOf(mod).toIntern(),
.flags = .{
.alignment = owner_decl.alignment,
.is_const = if (decl_val.getVariable(mod)) |variable| variable.is_const else true,
.address_space = owner_decl.@"addrspace",
},
});
if (analyze_fn_body) {
try sema.maybeQueueFuncBodyAnalysis(decl_index);
}
return Air.internedToRef((try mod.intern(.{ .ptr = .{
.ty = ptr_ty.toIntern(),
.addr = .{ .decl = decl_index },
} })));
}
fn maybeQueueFuncBodyAnalysis(sema: *Sema, decl_index: InternPool.DeclIndex) !void {
const mod = sema.mod;
const decl = mod.declPtr(decl_index);
const decl_val = try decl.valueOrFail();
if (!mod.intern_pool.isFuncBody(decl_val.toIntern())) return;
if (!try sema.fnHasRuntimeBits(decl_val.typeOf(mod))) return;
try mod.ensureFuncBodyAnalysisQueued(decl_val.toIntern());
}
fn analyzeRef(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
operand: Air.Inst.Ref,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const operand_ty = sema.typeOf(operand);
if (try sema.resolveValue(operand)) |val| {
switch (mod.intern_pool.indexToKey(val.toIntern())) {
.extern_func => |extern_func| return sema.analyzeDeclRef(extern_func.decl),
.func => |func| return sema.analyzeDeclRef(func.owner_decl),
else => return anonDeclRef(sema, val.toIntern()),
}
}
try sema.requireRuntimeBlock(block, src, null);
const address_space = target_util.defaultAddressSpace(mod.getTarget(), .local);
const ptr_type = try sema.ptrType(.{
.child = operand_ty.toIntern(),
.flags = .{
.is_const = true,
.address_space = address_space,
},
});
const mut_ptr_type = try sema.ptrType(.{
.child = operand_ty.toIntern(),
.flags = .{ .address_space = address_space },
});
const alloc = try block.addTy(.alloc, mut_ptr_type);
try sema.storePtr(block, src, alloc, operand);
// TODO: Replace with sema.coerce when that supports adding pointer constness.
return sema.bitCast(block, ptr_type, alloc, src, null);
}
fn analyzeLoad(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
ptr: Air.Inst.Ref,
ptr_src: LazySrcLoc,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ptr_ty = sema.typeOf(ptr);
const elem_ty = switch (ptr_ty.zigTypeTag(mod)) {
.Pointer => ptr_ty.childType(mod),
else => return sema.fail(block, ptr_src, "expected pointer, found '{}'", .{ptr_ty.fmt(sema.mod)}),
};
if (elem_ty.zigTypeTag(mod) == .Opaque) {
return sema.fail(block, ptr_src, "cannot load opaque type '{}'", .{elem_ty.fmt(mod)});
}
if (try sema.typeHasOnePossibleValue(elem_ty)) |opv| {
return Air.internedToRef(opv.toIntern());
}
if (try sema.resolveDefinedValue(block, ptr_src, ptr)) |ptr_val| {
if (try sema.pointerDeref(block, src, ptr_val, ptr_ty)) |elem_val| {
return Air.internedToRef(elem_val.toIntern());
}
}
if (ptr_ty.ptrInfo(mod).flags.vector_index == .runtime) {
const ptr_inst = ptr.toIndex().?;
const air_tags = sema.air_instructions.items(.tag);
if (air_tags[@intFromEnum(ptr_inst)] == .ptr_elem_ptr) {
const ty_pl = sema.air_instructions.items(.data)[@intFromEnum(ptr_inst)].ty_pl;
const bin_op = sema.getTmpAir().extraData(Air.Bin, ty_pl.payload).data;
return block.addBinOp(.ptr_elem_val, bin_op.lhs, bin_op.rhs);
}
return sema.fail(block, ptr_src, "unable to determine vector element index of type '{}'", .{
ptr_ty.fmt(sema.mod),
});
}
return block.addTyOp(.load, elem_ty, ptr);
}
fn analyzeSlicePtr(
sema: *Sema,
block: *Block,
slice_src: LazySrcLoc,
slice: Air.Inst.Ref,
slice_ty: Type,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const result_ty = slice_ty.slicePtrFieldType(mod);
if (try sema.resolveValue(slice)) |val| {
if (val.isUndef(mod)) return mod.undefRef(result_ty);
return Air.internedToRef(val.slicePtr(mod).toIntern());
}
try sema.requireRuntimeBlock(block, slice_src, null);
return block.addTyOp(.slice_ptr, result_ty, slice);
}
fn analyzeOptionalSlicePtr(
sema: *Sema,
block: *Block,
opt_slice_src: LazySrcLoc,
opt_slice: Air.Inst.Ref,
opt_slice_ty: Type,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const result_ty = opt_slice_ty.optionalChild(mod).slicePtrFieldType(mod);
if (try sema.resolveValue(opt_slice)) |opt_val| {
if (opt_val.isUndef(mod)) return mod.undefRef(result_ty);
const slice_ptr: InternPool.Index = if (opt_val.optionalValue(mod)) |val|
val.slicePtr(mod).toIntern()
else
.null_value;
return Air.internedToRef(slice_ptr);
}
try sema.requireRuntimeBlock(block, opt_slice_src, null);
const slice = try block.addTyOp(.optional_payload, opt_slice_ty, opt_slice);
return block.addTyOp(.slice_ptr, result_ty, slice);
}
fn analyzeSliceLen(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
slice_inst: Air.Inst.Ref,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
if (try sema.resolveValue(slice_inst)) |slice_val| {
if (slice_val.isUndef(mod)) {
return mod.undefRef(Type.usize);
}
return mod.intRef(Type.usize, try slice_val.sliceLen(sema));
}
try sema.requireRuntimeBlock(block, src, null);
return block.addTyOp(.slice_len, Type.usize, slice_inst);
}
fn analyzeIsNull(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
operand: Air.Inst.Ref,
invert_logic: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const result_ty = Type.bool;
if (try sema.resolveValue(operand)) |opt_val| {
if (opt_val.isUndef(mod)) {
return mod.undefRef(result_ty);
}
const is_null = opt_val.isNull(mod);
const bool_value = if (invert_logic) !is_null else is_null;
return if (bool_value) .bool_true else .bool_false;
}
const inverted_non_null_res: Air.Inst.Ref = if (invert_logic) .bool_true else .bool_false;
const operand_ty = sema.typeOf(operand);
if (operand_ty.zigTypeTag(mod) == .Optional and operand_ty.optionalChild(mod).zigTypeTag(mod) == .NoReturn) {
return inverted_non_null_res;
}
if (operand_ty.zigTypeTag(mod) != .Optional and !operand_ty.isPtrLikeOptional(mod)) {
return inverted_non_null_res;
}
try sema.requireRuntimeBlock(block, src, null);
const air_tag: Air.Inst.Tag = if (invert_logic) .is_non_null else .is_null;
return block.addUnOp(air_tag, operand);
}
fn analyzePtrIsNonErrComptimeOnly(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
operand: Air.Inst.Ref,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ptr_ty = sema.typeOf(operand);
assert(ptr_ty.zigTypeTag(mod) == .Pointer);
const child_ty = ptr_ty.childType(mod);
const child_tag = child_ty.zigTypeTag(mod);
if (child_tag != .ErrorSet and child_tag != .ErrorUnion) return .bool_true;
if (child_tag == .ErrorSet) return .bool_false;
assert(child_tag == .ErrorUnion);
_ = block;
_ = src;
return .none;
}
fn analyzeIsNonErrComptimeOnly(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
operand: Air.Inst.Ref,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
const operand_ty = sema.typeOf(operand);
const ot = operand_ty.zigTypeTag(mod);
if (ot != .ErrorSet and ot != .ErrorUnion) return .bool_true;
if (ot == .ErrorSet) return .bool_false;
assert(ot == .ErrorUnion);
const payload_ty = operand_ty.errorUnionPayload(mod);
if (payload_ty.zigTypeTag(mod) == .NoReturn) {
return .bool_false;
}
if (operand.toIndex()) |operand_inst| {
switch (sema.air_instructions.items(.tag)[@intFromEnum(operand_inst)]) {
.wrap_errunion_payload => return .bool_true,
.wrap_errunion_err => return .bool_false,
else => {},
}
} else if (operand == .undef) {
return mod.undefRef(Type.bool);
} else if (@intFromEnum(operand) < InternPool.static_len) {
// None of the ref tags can be errors.
return .bool_true;
}
const maybe_operand_val = try sema.resolveValue(operand);
// exception if the error union error set is known to be empty,
// we allow the comparison but always make it comptime-known.
const set_ty = ip.errorUnionSet(operand_ty.toIntern());
switch (set_ty) {
.anyerror_type => {},
.adhoc_inferred_error_set_type => if (sema.fn_ret_ty_ies) |ies| blk: {
// If the error set is empty, we must return a comptime true or false.
// However we want to avoid unnecessarily resolving an inferred error set
// in case it is already non-empty.
switch (ies.resolved) {
.anyerror_type => break :blk,
.none => {},
else => |i| if (ip.indexToKey(i).error_set_type.names.len != 0) break :blk,
}
if (maybe_operand_val != null) break :blk;
// Try to avoid resolving inferred error set if possible.
if (ies.errors.count() != 0) return .none;
switch (ies.resolved) {
.anyerror_type => return .none,
.none => {},
else => switch (ip.indexToKey(ies.resolved).error_set_type.names.len) {
0 => return .bool_true,
else => return .none,
},
}
// We do not have a comptime answer because this inferred error
// set is not resolved, and an instruction later in this function
// body may or may not cause an error to be added to this set.
return .none;
},
else => switch (ip.indexToKey(set_ty)) {
.error_set_type => |error_set_type| {
if (error_set_type.names.len == 0) return .bool_true;
},
.inferred_error_set_type => |func_index| blk: {
// If the error set is empty, we must return a comptime true or false.
// However we want to avoid unnecessarily resolving an inferred error set
// in case it is already non-empty.
switch (ip.funcIesResolved(func_index).*) {
.anyerror_type => break :blk,
.none => {},
else => |i| if (ip.indexToKey(i).error_set_type.names.len != 0) break :blk,
}
if (maybe_operand_val != null) break :blk;
if (sema.fn_ret_ty_ies) |ies| {
if (ies.func == func_index) {
// Try to avoid resolving inferred error set if possible.
if (ies.errors.count() != 0) return .none;
switch (ies.resolved) {
.anyerror_type => return .none,
.none => {},
else => switch (ip.indexToKey(ies.resolved).error_set_type.names.len) {
0 => return .bool_true,
else => return .none,
},
}
// We do not have a comptime answer because this inferred error
// set is not resolved, and an instruction later in this function
// body may or may not cause an error to be added to this set.
return .none;
}
}
const resolved_ty = try sema.resolveInferredErrorSet(block, src, set_ty);
if (resolved_ty == .anyerror_type)
break :blk;
if (ip.indexToKey(resolved_ty).error_set_type.names.len == 0)
return .bool_true;
},
else => unreachable,
},
}
if (maybe_operand_val) |err_union| {
if (err_union.isUndef(mod)) {
return mod.undefRef(Type.bool);
}
if (err_union.getErrorName(mod) == .none) {
return .bool_true;
} else {
return .bool_false;
}
}
return .none;
}
fn analyzeIsNonErr(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
operand: Air.Inst.Ref,
) CompileError!Air.Inst.Ref {
const result = try sema.analyzeIsNonErrComptimeOnly(block, src, operand);
if (result == .none) {
try sema.requireRuntimeBlock(block, src, null);
return block.addUnOp(.is_non_err, operand);
} else {
return result;
}
}
fn analyzePtrIsNonErr(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
operand: Air.Inst.Ref,
) CompileError!Air.Inst.Ref {
const result = try sema.analyzePtrIsNonErrComptimeOnly(block, src, operand);
if (result == .none) {
try sema.requireRuntimeBlock(block, src, null);
return block.addUnOp(.is_non_err_ptr, operand);
} else {
return result;
}
}
fn analyzeSlice(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
ptr_ptr: Air.Inst.Ref,
uncasted_start: Air.Inst.Ref,
uncasted_end_opt: Air.Inst.Ref,
sentinel_opt: Air.Inst.Ref,
sentinel_src: LazySrcLoc,
ptr_src: LazySrcLoc,
start_src: LazySrcLoc,
end_src: LazySrcLoc,
by_length: bool,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
// Slice expressions can operate on a variable whose type is an array. This requires
// the slice operand to be a pointer. In the case of a non-array, it will be a double pointer.
const ptr_ptr_ty = sema.typeOf(ptr_ptr);
const ptr_ptr_child_ty = switch (ptr_ptr_ty.zigTypeTag(mod)) {
.Pointer => ptr_ptr_ty.childType(mod),
else => return sema.fail(block, ptr_src, "expected pointer, found '{}'", .{ptr_ptr_ty.fmt(mod)}),
};
var array_ty = ptr_ptr_child_ty;
var slice_ty = ptr_ptr_ty;
var ptr_or_slice = ptr_ptr;
var elem_ty: Type = undefined;
var ptr_sentinel: ?Value = null;
switch (ptr_ptr_child_ty.zigTypeTag(mod)) {
.Array => {
ptr_sentinel = ptr_ptr_child_ty.sentinel(mod);
elem_ty = ptr_ptr_child_ty.childType(mod);
},
.Pointer => switch (ptr_ptr_child_ty.ptrSize(mod)) {
.One => {
const double_child_ty = ptr_ptr_child_ty.childType(mod);
ptr_or_slice = try sema.analyzeLoad(block, src, ptr_ptr, ptr_src);
if (double_child_ty.zigTypeTag(mod) == .Array) {
ptr_sentinel = double_child_ty.sentinel(mod);
slice_ty = ptr_ptr_child_ty;
array_ty = double_child_ty;
elem_ty = double_child_ty.childType(mod);
} else {
const bounds_error_message = "slice of single-item pointer must have comptime-known bounds [0..0], [0..1], or [1..1]";
if (uncasted_end_opt == .none) {
return sema.fail(block, src, bounds_error_message, .{});
}
const start_value = try sema.resolveConstDefinedValue(
block,
start_src,
uncasted_start,
.{ .needed_comptime_reason = bounds_error_message },
);
const end_value = try sema.resolveConstDefinedValue(
block,
end_src,
uncasted_end_opt,
.{ .needed_comptime_reason = bounds_error_message },
);
if (try sema.compareScalar(start_value, .neq, end_value, Type.comptime_int)) {
if (try sema.compareScalar(start_value, .neq, Value.zero_comptime_int, Type.comptime_int)) {
const msg = msg: {
const msg = try sema.errMsg(block, start_src, bounds_error_message, .{});
errdefer msg.destroy(sema.gpa);
try sema.errNote(
block,
start_src,
msg,
"expected '{}', found '{}'",
.{
Value.zero_comptime_int.fmtValue(mod),
start_value.fmtValue(mod),
},
);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
} else if (try sema.compareScalar(end_value, .neq, Value.one_comptime_int, Type.comptime_int)) {
const msg = msg: {
const msg = try sema.errMsg(block, end_src, bounds_error_message, .{});
errdefer msg.destroy(sema.gpa);
try sema.errNote(
block,
end_src,
msg,
"expected '{}', found '{}'",
.{
Value.one_comptime_int.fmtValue(mod),
end_value.fmtValue(mod),
},
);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
} else {
if (try sema.compareScalar(end_value, .gt, Value.one_comptime_int, Type.comptime_int)) {
return sema.fail(
block,
end_src,
"end index {} out of bounds for slice of single-item pointer",
.{end_value.fmtValue(mod)},
);
}
}
array_ty = try mod.arrayType(.{
.len = 1,
.child = double_child_ty.toIntern(),
});
const ptr_info = ptr_ptr_child_ty.ptrInfo(mod);
slice_ty = try mod.ptrType(.{
.child = array_ty.toIntern(),
.flags = .{
.alignment = ptr_info.flags.alignment,
.is_const = ptr_info.flags.is_const,
.is_allowzero = ptr_info.flags.is_allowzero,
.is_volatile = ptr_info.flags.is_volatile,
.address_space = ptr_info.flags.address_space,
},
});
elem_ty = double_child_ty;
}
},
.Many, .C => {
ptr_sentinel = ptr_ptr_child_ty.sentinel(mod);
ptr_or_slice = try sema.analyzeLoad(block, src, ptr_ptr, ptr_src);
slice_ty = ptr_ptr_child_ty;
array_ty = ptr_ptr_child_ty;
elem_ty = ptr_ptr_child_ty.childType(mod);
if (ptr_ptr_child_ty.ptrSize(mod) == .C) {
if (try sema.resolveDefinedValue(block, ptr_src, ptr_or_slice)) |ptr_val| {
if (ptr_val.isNull(mod)) {
return sema.fail(block, src, "slice of null pointer", .{});
}
}
}
},
.Slice => {
ptr_sentinel = ptr_ptr_child_ty.sentinel(mod);
ptr_or_slice = try sema.analyzeLoad(block, src, ptr_ptr, ptr_src);
slice_ty = ptr_ptr_child_ty;
array_ty = ptr_ptr_child_ty;
elem_ty = ptr_ptr_child_ty.childType(mod);
},
},
else => return sema.fail(block, src, "slice of non-array type '{}'", .{ptr_ptr_child_ty.fmt(mod)}),
}
const ptr = if (slice_ty.isSlice(mod))
try sema.analyzeSlicePtr(block, ptr_src, ptr_or_slice, slice_ty)
else if (array_ty.zigTypeTag(mod) == .Array) ptr: {
var manyptr_ty_key = mod.intern_pool.indexToKey(slice_ty.toIntern()).ptr_type;
assert(manyptr_ty_key.child == array_ty.toIntern());
assert(manyptr_ty_key.flags.size == .One);
manyptr_ty_key.child = elem_ty.toIntern();
manyptr_ty_key.flags.size = .Many;
break :ptr try sema.coerceCompatiblePtrs(block, try sema.ptrType(manyptr_ty_key), ptr_or_slice, ptr_src);
} else ptr_or_slice;
const start = try sema.coerce(block, Type.usize, uncasted_start, start_src);
const new_ptr = try sema.analyzePtrArithmetic(block, src, ptr, start, .ptr_add, ptr_src, start_src);
const new_ptr_ty = sema.typeOf(new_ptr);
// true if and only if the end index of the slice, implicitly or explicitly, equals
// the length of the underlying object being sliced. we might learn the length of the
// underlying object because it is an array (which has the length in the type), or
// we might learn of the length because it is a comptime-known slice value.
var end_is_len = uncasted_end_opt == .none;
const end = e: {
if (array_ty.zigTypeTag(mod) == .Array) {
const len_val = try mod.intValue(Type.usize, array_ty.arrayLen(mod));
if (!end_is_len) {
const end = if (by_length) end: {
const len = try sema.coerce(block, Type.usize, uncasted_end_opt, end_src);
const uncasted_end = try sema.analyzeArithmetic(block, .add, start, len, src, start_src, end_src, false);
break :end try sema.coerce(block, Type.usize, uncasted_end, end_src);
} else try sema.coerce(block, Type.usize, uncasted_end_opt, end_src);
if (try sema.resolveValue(end)) |end_val| {
const len_s_val = try mod.intValue(
Type.usize,
array_ty.arrayLenIncludingSentinel(mod),
);
if (!(try sema.compareAll(end_val, .lte, len_s_val, Type.usize))) {
const sentinel_label: []const u8 = if (array_ty.sentinel(mod) != null)
" +1 (sentinel)"
else
"";
return sema.fail(
block,
end_src,
"end index {} out of bounds for array of length {}{s}",
.{
end_val.fmtValue(mod),
len_val.fmtValue(mod),
sentinel_label,
},
);
}
// end_is_len is only true if we are NOT using the sentinel
// length. For sentinel-length, we don't want the type to
// contain the sentinel.
if (end_val.eql(len_val, Type.usize, mod)) {
end_is_len = true;
}
}
break :e end;
}
break :e Air.internedToRef(len_val.toIntern());
} else if (slice_ty.isSlice(mod)) {
if (!end_is_len) {
const end = if (by_length) end: {
const len = try sema.coerce(block, Type.usize, uncasted_end_opt, end_src);
const uncasted_end = try sema.analyzeArithmetic(block, .add, start, len, src, start_src, end_src, false);
break :end try sema.coerce(block, Type.usize, uncasted_end, end_src);
} else try sema.coerce(block, Type.usize, uncasted_end_opt, end_src);
if (try sema.resolveDefinedValue(block, end_src, end)) |end_val| {
if (try sema.resolveValue(ptr_or_slice)) |slice_val| {
if (slice_val.isUndef(mod)) {
return sema.fail(block, src, "slice of undefined", .{});
}
const has_sentinel = slice_ty.sentinel(mod) != null;
const slice_len = try slice_val.sliceLen(sema);
const len_plus_sent = slice_len + @intFromBool(has_sentinel);
const slice_len_val_with_sentinel = try mod.intValue(Type.usize, len_plus_sent);
if (!(try sema.compareAll(end_val, .lte, slice_len_val_with_sentinel, Type.usize))) {
const sentinel_label: []const u8 = if (has_sentinel)
" +1 (sentinel)"
else
"";
return sema.fail(
block,
end_src,
"end index {} out of bounds for slice of length {d}{s}",
.{
end_val.fmtValue(mod),
try slice_val.sliceLen(sema),
sentinel_label,
},
);
}
// If the slice has a sentinel, we consider end_is_len
// is only true if it equals the length WITHOUT the
// sentinel, so we don't add a sentinel type.
const slice_len_val = try mod.intValue(Type.usize, slice_len);
if (end_val.eql(slice_len_val, Type.usize, mod)) {
end_is_len = true;
}
}
}
break :e end;
}
break :e try sema.analyzeSliceLen(block, src, ptr_or_slice);
}
if (!end_is_len) {
if (by_length) {
const len = try sema.coerce(block, Type.usize, uncasted_end_opt, end_src);
const uncasted_end = try sema.analyzeArithmetic(block, .add, start, len, src, start_src, end_src, false);
break :e try sema.coerce(block, Type.usize, uncasted_end, end_src);
} else break :e try sema.coerce(block, Type.usize, uncasted_end_opt, end_src);
}
return sema.analyzePtrArithmetic(block, src, ptr, start, .ptr_add, ptr_src, start_src);
};
const sentinel = s: {
if (sentinel_opt != .none) {
const casted = try sema.coerce(block, elem_ty, sentinel_opt, sentinel_src);
break :s try sema.resolveConstDefinedValue(block, sentinel_src, casted, .{
.needed_comptime_reason = "slice sentinel must be comptime-known",
});
}
// If we are slicing to the end of something that is sentinel-terminated
// then the resulting slice type is also sentinel-terminated.
if (end_is_len) {
if (ptr_sentinel) |sent| {
break :s sent;
}
}
break :s null;
};
const slice_sentinel = if (sentinel_opt != .none) sentinel else null;
var checked_start_lte_end = by_length;
var runtime_src: ?LazySrcLoc = null;
// requirement: start <= end
if (try sema.resolveDefinedValue(block, end_src, end)) |end_val| {
if (try sema.resolveDefinedValue(block, start_src, start)) |start_val| {
if (!by_length and !(try sema.compareAll(start_val, .lte, end_val, Type.usize))) {
return sema.fail(
block,
start_src,
"start index {} is larger than end index {}",
.{
start_val.fmtValue(mod),
end_val.fmtValue(mod),
},
);
}
checked_start_lte_end = true;
if (try sema.resolveValue(new_ptr)) |ptr_val| sentinel_check: {
const expected_sentinel = sentinel orelse break :sentinel_check;
const start_int = start_val.getUnsignedInt(mod).?;
const end_int = end_val.getUnsignedInt(mod).?;
const sentinel_index = try sema.usizeCast(block, end_src, end_int - start_int);
const many_ptr_ty = try mod.manyConstPtrType(elem_ty);
const many_ptr_val = try mod.getCoerced(ptr_val, many_ptr_ty);
const elem_ptr_ty = try mod.singleConstPtrType(elem_ty);
const elem_ptr = try many_ptr_val.elemPtr(elem_ptr_ty, sentinel_index, mod);
const res = try sema.pointerDerefExtra(block, src, elem_ptr, elem_ty);
const actual_sentinel = switch (res) {
.runtime_load => break :sentinel_check,
.val => |v| v,
.needed_well_defined => |ty| return sema.fail(
block,
src,
"comptime dereference requires '{}' to have a well-defined layout, but it does not.",
.{ty.fmt(mod)},
),
.out_of_bounds => |ty| return sema.fail(
block,
end_src,
"slice end index {d} exceeds bounds of containing decl of type '{}'",
.{ end_int, ty.fmt(mod) },
),
};
if (!actual_sentinel.eql(expected_sentinel, elem_ty, mod)) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "value in memory does not match slice sentinel", .{});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "expected '{}', found '{}'", .{
expected_sentinel.fmtValue(mod),
actual_sentinel.fmtValue(mod),
});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
} else {
runtime_src = ptr_src;
}
} else {
runtime_src = start_src;
}
} else {
runtime_src = end_src;
}
if (!checked_start_lte_end and block.wantSafety() and !block.is_comptime) {
// requirement: start <= end
assert(!block.is_comptime);
try sema.requireRuntimeBlock(block, src, runtime_src.?);
const ok = try block.addBinOp(.cmp_lte, start, end);
if (!sema.mod.comp.formatted_panics) {
try sema.addSafetyCheck(block, src, ok, .start_index_greater_than_end);
} else {
try sema.safetyCheckFormatted(block, src, ok, "panicStartGreaterThanEnd", &.{ start, end });
}
}
const new_len = if (by_length)
try sema.coerce(block, Type.usize, uncasted_end_opt, end_src)
else
try sema.analyzeArithmetic(block, .sub, end, start, src, end_src, start_src, false);
const opt_new_len_val = try sema.resolveDefinedValue(block, src, new_len);
const new_ptr_ty_info = new_ptr_ty.ptrInfo(mod);
const new_allowzero = new_ptr_ty_info.flags.is_allowzero and sema.typeOf(ptr).ptrSize(mod) != .C;
if (opt_new_len_val) |new_len_val| {
const new_len_int = try new_len_val.toUnsignedIntAdvanced(sema);
const return_ty = try sema.ptrType(.{
.child = (try mod.arrayType(.{
.len = new_len_int,
.sentinel = if (sentinel) |s| s.toIntern() else .none,
.child = elem_ty.toIntern(),
})).toIntern(),
.flags = .{
.alignment = new_ptr_ty_info.flags.alignment,
.is_const = new_ptr_ty_info.flags.is_const,
.is_allowzero = new_allowzero,
.is_volatile = new_ptr_ty_info.flags.is_volatile,
.address_space = new_ptr_ty_info.flags.address_space,
},
});
const opt_new_ptr_val = try sema.resolveValue(new_ptr);
const new_ptr_val = opt_new_ptr_val orelse {
const result = try block.addBitCast(return_ty, new_ptr);
if (block.wantSafety()) {
// requirement: slicing C ptr is non-null
if (ptr_ptr_child_ty.isCPtr(mod)) {
const is_non_null = try sema.analyzeIsNull(block, ptr_src, ptr, true);
try sema.addSafetyCheck(block, src, is_non_null, .unwrap_null);
}
bounds_check: {
const actual_len = if (array_ty.zigTypeTag(mod) == .Array)
try mod.intRef(Type.usize, array_ty.arrayLenIncludingSentinel(mod))
else if (slice_ty.isSlice(mod)) l: {
const slice_len_inst = try block.addTyOp(.slice_len, Type.usize, ptr_or_slice);
break :l if (slice_ty.sentinel(mod) == null)
slice_len_inst
else
try sema.analyzeArithmetic(block, .add, slice_len_inst, .one, src, end_src, end_src, true);
} else break :bounds_check;
const actual_end = if (slice_sentinel != null)
try sema.analyzeArithmetic(block, .add, end, .one, src, end_src, end_src, true)
else
end;
try sema.panicIndexOutOfBounds(block, src, actual_end, actual_len, .cmp_lte);
}
// requirement: result[new_len] == slice_sentinel
try sema.panicSentinelMismatch(block, src, slice_sentinel, elem_ty, result, new_len);
}
return result;
};
if (!new_ptr_val.isUndef(mod)) {
return Air.internedToRef((try mod.getCoerced(new_ptr_val, return_ty)).toIntern());
}
// Special case: @as([]i32, undefined)[x..x]
if (new_len_int == 0) {
return mod.undefRef(return_ty);
}
return sema.fail(block, src, "non-zero length slice of undefined pointer", .{});
}
const return_ty = try sema.ptrType(.{
.child = elem_ty.toIntern(),
.sentinel = if (sentinel) |s| s.toIntern() else .none,
.flags = .{
.size = .Slice,
.alignment = new_ptr_ty_info.flags.alignment,
.is_const = new_ptr_ty_info.flags.is_const,
.is_volatile = new_ptr_ty_info.flags.is_volatile,
.is_allowzero = new_allowzero,
.address_space = new_ptr_ty_info.flags.address_space,
},
});
try sema.requireRuntimeBlock(block, src, runtime_src.?);
if (block.wantSafety()) {
// requirement: slicing C ptr is non-null
if (ptr_ptr_child_ty.isCPtr(mod)) {
const is_non_null = try sema.analyzeIsNull(block, ptr_src, ptr, true);
try sema.addSafetyCheck(block, src, is_non_null, .unwrap_null);
}
// requirement: end <= len
const opt_len_inst = if (array_ty.zigTypeTag(mod) == .Array)
try mod.intRef(Type.usize, array_ty.arrayLenIncludingSentinel(mod))
else if (slice_ty.isSlice(mod)) blk: {
if (try sema.resolveDefinedValue(block, src, ptr_or_slice)) |slice_val| {
// we don't need to add one for sentinels because the
// underlying value data includes the sentinel
break :blk try mod.intRef(Type.usize, try slice_val.sliceLen(sema));
}
const slice_len_inst = try block.addTyOp(.slice_len, Type.usize, ptr_or_slice);
if (slice_ty.sentinel(mod) == null) break :blk slice_len_inst;
// we have to add one because slice lengths don't include the sentinel
break :blk try sema.analyzeArithmetic(block, .add, slice_len_inst, .one, src, end_src, end_src, true);
} else null;
if (opt_len_inst) |len_inst| {
const actual_end = if (slice_sentinel != null)
try sema.analyzeArithmetic(block, .add, end, .one, src, end_src, end_src, true)
else
end;
try sema.panicIndexOutOfBounds(block, src, actual_end, len_inst, .cmp_lte);
}
// requirement: start <= end
try sema.panicIndexOutOfBounds(block, src, start, end, .cmp_lte);
}
const result = try block.addInst(.{
.tag = .slice,
.data = .{ .ty_pl = .{
.ty = Air.internedToRef(return_ty.toIntern()),
.payload = try sema.addExtra(Air.Bin{
.lhs = new_ptr,
.rhs = new_len,
}),
} },
});
if (block.wantSafety()) {
// requirement: result[new_len] == slice_sentinel
try sema.panicSentinelMismatch(block, src, slice_sentinel, elem_ty, result, new_len);
}
return result;
}
/// Asserts that lhs and rhs types are both numeric.
fn cmpNumeric(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
uncasted_lhs: Air.Inst.Ref,
uncasted_rhs: Air.Inst.Ref,
op: std.math.CompareOperator,
lhs_src: LazySrcLoc,
rhs_src: LazySrcLoc,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const lhs_ty = sema.typeOf(uncasted_lhs);
const rhs_ty = sema.typeOf(uncasted_rhs);
assert(lhs_ty.isNumeric(mod));
assert(rhs_ty.isNumeric(mod));
const lhs_ty_tag = lhs_ty.zigTypeTag(mod);
const rhs_ty_tag = rhs_ty.zigTypeTag(mod);
const target = mod.getTarget();
// One exception to heterogeneous comparison: comptime_float needs to
// coerce to fixed-width float.
const lhs = if (lhs_ty_tag == .ComptimeFloat and rhs_ty_tag == .Float)
try sema.coerce(block, rhs_ty, uncasted_lhs, lhs_src)
else
uncasted_lhs;
const rhs = if (lhs_ty_tag == .Float and rhs_ty_tag == .ComptimeFloat)
try sema.coerce(block, lhs_ty, uncasted_rhs, rhs_src)
else
uncasted_rhs;
const runtime_src: LazySrcLoc = src: {
if (try sema.resolveValue(lhs)) |lhs_val| {
if (try sema.resolveValue(rhs)) |rhs_val| {
// Compare ints: const vs. undefined (or vice versa)
if (!lhs_val.isUndef(mod) and (lhs_ty.isInt(mod) or lhs_ty_tag == .ComptimeInt) and rhs_ty.isInt(mod) and rhs_val.isUndef(mod)) {
if (try sema.compareIntsOnlyPossibleResult(try sema.resolveLazyValue(lhs_val), op, rhs_ty)) |res| {
return if (res) .bool_true else .bool_false;
}
} else if (!rhs_val.isUndef(mod) and (rhs_ty.isInt(mod) or rhs_ty_tag == .ComptimeInt) and lhs_ty.isInt(mod) and lhs_val.isUndef(mod)) {
if (try sema.compareIntsOnlyPossibleResult(try sema.resolveLazyValue(rhs_val), op.reverse(), lhs_ty)) |res| {
return if (res) .bool_true else .bool_false;
}
}
if (lhs_val.isUndef(mod) or rhs_val.isUndef(mod)) {
return mod.undefRef(Type.bool);
}
if (lhs_val.isNan(mod) or rhs_val.isNan(mod)) {
return if (op == std.math.CompareOperator.neq) .bool_true else .bool_false;
}
return if (try Value.compareHeteroAdvanced(lhs_val, op, rhs_val, mod, sema))
.bool_true
else
.bool_false;
} else {
if (!lhs_val.isUndef(mod) and (lhs_ty.isInt(mod) or lhs_ty_tag == .ComptimeInt) and rhs_ty.isInt(mod)) {
// Compare ints: const vs. var
if (try sema.compareIntsOnlyPossibleResult(try sema.resolveLazyValue(lhs_val), op, rhs_ty)) |res| {
return if (res) .bool_true else .bool_false;
}
}
break :src rhs_src;
}
} else {
if (try sema.resolveValueResolveLazy(rhs)) |rhs_val| {
if (!rhs_val.isUndef(mod) and (rhs_ty.isInt(mod) or rhs_ty_tag == .ComptimeInt) and lhs_ty.isInt(mod)) {
// Compare ints: var vs. const
if (try sema.compareIntsOnlyPossibleResult(try sema.resolveLazyValue(rhs_val), op.reverse(), lhs_ty)) |res| {
return if (res) .bool_true else .bool_false;
}
}
}
break :src lhs_src;
}
};
// TODO handle comparisons against lazy zero values
// Some values can be compared against zero without being runtime-known or without forcing
// a full resolution of their value, for example `@sizeOf(@Frame(function))` is known to
// always be nonzero, and we benefit from not forcing the full evaluation and stack frame layout
// of this function if we don't need to.
try sema.requireRuntimeBlock(block, src, runtime_src);
// For floats, emit a float comparison instruction.
const lhs_is_float = switch (lhs_ty_tag) {
.Float, .ComptimeFloat => true,
else => false,
};
const rhs_is_float = switch (rhs_ty_tag) {
.Float, .ComptimeFloat => true,
else => false,
};
if (lhs_is_float and rhs_is_float) {
// Smaller fixed-width floats coerce to larger fixed-width floats.
// comptime_float coerces to fixed-width float.
const dest_ty = x: {
if (lhs_ty_tag == .ComptimeFloat) {
break :x rhs_ty;
} else if (rhs_ty_tag == .ComptimeFloat) {
break :x lhs_ty;
}
if (lhs_ty.floatBits(target) >= rhs_ty.floatBits(target)) {
break :x lhs_ty;
} else {
break :x rhs_ty;
}
};
const casted_lhs = try sema.coerce(block, dest_ty, lhs, lhs_src);
const casted_rhs = try sema.coerce(block, dest_ty, rhs, rhs_src);
return block.addBinOp(Air.Inst.Tag.fromCmpOp(op, block.float_mode == .optimized), casted_lhs, casted_rhs);
}
// For mixed unsigned integer sizes, implicit cast both operands to the larger integer.
// For mixed signed and unsigned integers, implicit cast both operands to a signed
// integer with + 1 bit.
// For mixed floats and integers, extract the integer part from the float, cast that to
// a signed integer with mantissa bits + 1, and if there was any non-integral part of the float,
// add/subtract 1.
const lhs_is_signed = if (try sema.resolveDefinedValue(block, lhs_src, lhs)) |lhs_val|
!(try lhs_val.compareAllWithZeroAdvanced(.gte, sema))
else
(lhs_ty.isRuntimeFloat() or lhs_ty.isSignedInt(mod));
const rhs_is_signed = if (try sema.resolveDefinedValue(block, rhs_src, rhs)) |rhs_val|
!(try rhs_val.compareAllWithZeroAdvanced(.gte, sema))
else
(rhs_ty.isRuntimeFloat() or rhs_ty.isSignedInt(mod));
const dest_int_is_signed = lhs_is_signed or rhs_is_signed;
var dest_float_type: ?Type = null;
var lhs_bits: usize = undefined;
if (try sema.resolveValueResolveLazy(lhs)) |lhs_val| {
if (lhs_val.isUndef(mod))
return mod.undefRef(Type.bool);
if (lhs_val.isNan(mod)) switch (op) {
.neq => return .bool_true,
else => return .bool_false,
};
if (lhs_val.isInf(mod)) switch (op) {
.neq => return .bool_true,
.eq => return .bool_false,
.gt, .gte => return if (lhs_val.isNegativeInf(mod)) .bool_false else .bool_true,
.lt, .lte => return if (lhs_val.isNegativeInf(mod)) .bool_true else .bool_false,
};
if (!rhs_is_signed) {
switch (lhs_val.orderAgainstZero(mod)) {
.gt => {},
.eq => switch (op) { // LHS = 0, RHS is unsigned
.lte => return .bool_true,
.gt => return .bool_false,
else => {},
},
.lt => switch (op) { // LHS < 0, RHS is unsigned
.neq, .lt, .lte => return .bool_true,
.eq, .gt, .gte => return .bool_false,
},
}
}
if (lhs_is_float) {
if (lhs_val.floatHasFraction(mod)) {
switch (op) {
.eq => return .bool_false,
.neq => return .bool_true,
else => {},
}
}
var bigint = try float128IntPartToBigInt(sema.gpa, lhs_val.toFloat(f128, mod));
defer bigint.deinit();
if (lhs_val.floatHasFraction(mod)) {
if (lhs_is_signed) {
try bigint.addScalar(&bigint, -1);
} else {
try bigint.addScalar(&bigint, 1);
}
}
lhs_bits = bigint.toConst().bitCountTwosComp();
} else {
lhs_bits = lhs_val.intBitCountTwosComp(mod);
}
lhs_bits += @intFromBool(!lhs_is_signed and dest_int_is_signed);
} else if (lhs_is_float) {
dest_float_type = lhs_ty;
} else {
const int_info = lhs_ty.intInfo(mod);
lhs_bits = int_info.bits + @intFromBool(int_info.signedness == .unsigned and dest_int_is_signed);
}
var rhs_bits: usize = undefined;
if (try sema.resolveValueResolveLazy(rhs)) |rhs_val| {
if (rhs_val.isUndef(mod))
return mod.undefRef(Type.bool);
if (rhs_val.isNan(mod)) switch (op) {
.neq => return .bool_true,
else => return .bool_false,
};
if (rhs_val.isInf(mod)) switch (op) {
.neq => return .bool_true,
.eq => return .bool_false,
.gt, .gte => return if (rhs_val.isNegativeInf(mod)) .bool_true else .bool_false,
.lt, .lte => return if (rhs_val.isNegativeInf(mod)) .bool_false else .bool_true,
};
if (!lhs_is_signed) {
switch (rhs_val.orderAgainstZero(mod)) {
.gt => {},
.eq => switch (op) { // RHS = 0, LHS is unsigned
.gte => return .bool_true,
.lt => return .bool_false,
else => {},
},
.lt => switch (op) { // RHS < 0, LHS is unsigned
.neq, .gt, .gte => return .bool_true,
.eq, .lt, .lte => return .bool_false,
},
}
}
if (rhs_is_float) {
if (rhs_val.floatHasFraction(mod)) {
switch (op) {
.eq => return .bool_false,
.neq => return .bool_true,
else => {},
}
}
var bigint = try float128IntPartToBigInt(sema.gpa, rhs_val.toFloat(f128, mod));
defer bigint.deinit();
if (rhs_val.floatHasFraction(mod)) {
if (rhs_is_signed) {
try bigint.addScalar(&bigint, -1);
} else {
try bigint.addScalar(&bigint, 1);
}
}
rhs_bits = bigint.toConst().bitCountTwosComp();
} else {
rhs_bits = rhs_val.intBitCountTwosComp(mod);
}
rhs_bits += @intFromBool(!rhs_is_signed and dest_int_is_signed);
} else if (rhs_is_float) {
dest_float_type = rhs_ty;
} else {
const int_info = rhs_ty.intInfo(mod);
rhs_bits = int_info.bits + @intFromBool(int_info.signedness == .unsigned and dest_int_is_signed);
}
const dest_ty = if (dest_float_type) |ft| ft else blk: {
const max_bits = @max(lhs_bits, rhs_bits);
const casted_bits = std.math.cast(u16, max_bits) orelse return sema.fail(block, src, "{d} exceeds maximum integer bit count", .{max_bits});
const signedness: std.builtin.Signedness = if (dest_int_is_signed) .signed else .unsigned;
break :blk try mod.intType(signedness, casted_bits);
};
const casted_lhs = try sema.coerce(block, dest_ty, lhs, lhs_src);
const casted_rhs = try sema.coerce(block, dest_ty, rhs, rhs_src);
return block.addBinOp(Air.Inst.Tag.fromCmpOp(op, block.float_mode == .optimized), casted_lhs, casted_rhs);
}
/// Asserts that LHS value is an int or comptime int and not undefined, and
/// that RHS type is an int. Given a const LHS and an unknown RHS, attempt to
/// determine whether `op` has a guaranteed result.
/// If it cannot be determined, returns null.
/// Otherwise returns a bool for the guaranteed comparison operation.
fn compareIntsOnlyPossibleResult(
sema: *Sema,
lhs_val: Value,
op: std.math.CompareOperator,
rhs_ty: Type,
) Allocator.Error!?bool {
const mod = sema.mod;
const rhs_info = rhs_ty.intInfo(mod);
const vs_zero = lhs_val.orderAgainstZeroAdvanced(mod, sema) catch unreachable;
const is_zero = vs_zero == .eq;
const is_negative = vs_zero == .lt;
const is_positive = vs_zero == .gt;
// Anything vs. zero-sized type has guaranteed outcome.
if (rhs_info.bits == 0) return switch (op) {
.eq, .lte, .gte => is_zero,
.neq, .lt, .gt => !is_zero,
};
// Special case for i1, which can only be 0 or -1.
// Zero and positive ints have guaranteed outcome.
if (rhs_info.bits == 1 and rhs_info.signedness == .signed) {
if (is_positive) return switch (op) {
.gt, .gte, .neq => true,
.lt, .lte, .eq => false,
};
if (is_zero) return switch (op) {
.gte => true,
.lt => false,
.gt, .lte, .eq, .neq => null,
};
}
// Negative vs. unsigned has guaranteed outcome.
if (rhs_info.signedness == .unsigned and is_negative) return switch (op) {
.eq, .gt, .gte => false,
.neq, .lt, .lte => true,
};
const sign_adj = @intFromBool(!is_negative and rhs_info.signedness == .signed);
const req_bits = lhs_val.intBitCountTwosComp(mod) + sign_adj;
// No sized type can have more than 65535 bits.
// The RHS type operand is either a runtime value or sized (but undefined) constant.
if (req_bits > 65535) return switch (op) {
.lt, .lte => is_negative,
.gt, .gte => is_positive,
.eq => false,
.neq => true,
};
const fits = req_bits <= rhs_info.bits;
// Oversized int has guaranteed outcome.
switch (op) {
.eq => return if (!fits) false else null,
.neq => return if (!fits) true else null,
.lt, .lte => if (!fits) return is_negative,
.gt, .gte => if (!fits) return !is_negative,
}
// For any other comparison, we need to know if the LHS value is
// equal to the maximum or minimum possible value of the RHS type.
const is_min, const is_max = edge: {
if (is_zero and rhs_info.signedness == .unsigned) break :edge .{ true, false };
if (req_bits != rhs_info.bits) break :edge .{ false, false };
const ty = try mod.intType(
if (is_negative) .signed else .unsigned,
@intCast(req_bits),
);
const pop_count = lhs_val.popCount(ty, mod);
if (is_negative) {
break :edge .{ pop_count == 1, false };
} else {
break :edge .{ false, pop_count == req_bits - sign_adj };
}
};
assert(fits);
return switch (op) {
.lt => if (is_max) false else null,
.lte => if (is_min) true else null,
.gt => if (is_min) false else null,
.gte => if (is_max) true else null,
.eq, .neq => unreachable,
};
}
/// Asserts that lhs and rhs types are both vectors.
fn cmpVector(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
lhs: Air.Inst.Ref,
rhs: Air.Inst.Ref,
op: std.math.CompareOperator,
lhs_src: LazySrcLoc,
rhs_src: LazySrcLoc,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
const lhs_ty = sema.typeOf(lhs);
const rhs_ty = sema.typeOf(rhs);
assert(lhs_ty.zigTypeTag(mod) == .Vector);
assert(rhs_ty.zigTypeTag(mod) == .Vector);
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
const resolved_ty = try sema.resolvePeerTypes(block, src, &.{ lhs, rhs }, .{ .override = &.{ lhs_src, rhs_src } });
const casted_lhs = try sema.coerce(block, resolved_ty, lhs, lhs_src);
const casted_rhs = try sema.coerce(block, resolved_ty, rhs, rhs_src);
const result_ty = try mod.vectorType(.{
.len = lhs_ty.vectorLen(mod),
.child = .bool_type,
});
const runtime_src: LazySrcLoc = src: {
if (try sema.resolveValue(casted_lhs)) |lhs_val| {
if (try sema.resolveValue(casted_rhs)) |rhs_val| {
if (lhs_val.isUndef(mod) or rhs_val.isUndef(mod)) {
return mod.undefRef(result_ty);
}
const cmp_val = try sema.compareVector(lhs_val, op, rhs_val, resolved_ty);
return Air.internedToRef(cmp_val.toIntern());
} else {
break :src rhs_src;
}
} else {
break :src lhs_src;
}
};
try sema.requireRuntimeBlock(block, src, runtime_src);
return block.addCmpVector(casted_lhs, casted_rhs, op);
}
fn wrapOptional(
sema: *Sema,
block: *Block,
dest_ty: Type,
inst: Air.Inst.Ref,
inst_src: LazySrcLoc,
) !Air.Inst.Ref {
if (try sema.resolveValue(inst)) |val| {
return Air.internedToRef((try sema.mod.intern(.{ .opt = .{
.ty = dest_ty.toIntern(),
.val = val.toIntern(),
} })));
}
try sema.requireRuntimeBlock(block, inst_src, null);
return block.addTyOp(.wrap_optional, dest_ty, inst);
}
fn wrapErrorUnionPayload(
sema: *Sema,
block: *Block,
dest_ty: Type,
inst: Air.Inst.Ref,
inst_src: LazySrcLoc,
) !Air.Inst.Ref {
const mod = sema.mod;
const dest_payload_ty = dest_ty.errorUnionPayload(mod);
const coerced = try sema.coerceExtra(block, dest_payload_ty, inst, inst_src, .{ .report_err = false });
if (try sema.resolveValue(coerced)) |val| {
return Air.internedToRef((try mod.intern(.{ .error_union = .{
.ty = dest_ty.toIntern(),
.val = .{ .payload = val.toIntern() },
} })));
}
try sema.requireRuntimeBlock(block, inst_src, null);
try sema.queueFullTypeResolution(dest_payload_ty);
return block.addTyOp(.wrap_errunion_payload, dest_ty, coerced);
}
fn wrapErrorUnionSet(
sema: *Sema,
block: *Block,
dest_ty: Type,
inst: Air.Inst.Ref,
inst_src: LazySrcLoc,
) !Air.Inst.Ref {
const mod = sema.mod;
const ip = &mod.intern_pool;
const inst_ty = sema.typeOf(inst);
const dest_err_set_ty = dest_ty.errorUnionSet(mod);
if (try sema.resolveValue(inst)) |val| {
const expected_name = mod.intern_pool.indexToKey(val.toIntern()).err.name;
switch (dest_err_set_ty.toIntern()) {
.anyerror_type => {},
.adhoc_inferred_error_set_type => ok: {
const ies = sema.fn_ret_ty_ies.?;
switch (ies.resolved) {
.anyerror_type => break :ok,
.none => if (.ok == try sema.coerceInMemoryAllowedErrorSets(block, dest_err_set_ty, inst_ty, inst_src, inst_src)) {
break :ok;
},
else => |i| if (ip.indexToKey(i).error_set_type.nameIndex(ip, expected_name) != null) {
break :ok;
},
}
return sema.failWithErrorSetCodeMissing(block, inst_src, dest_err_set_ty, inst_ty);
},
else => switch (ip.indexToKey(dest_err_set_ty.toIntern())) {
.error_set_type => |error_set_type| ok: {
if (error_set_type.nameIndex(ip, expected_name) != null) break :ok;
return sema.failWithErrorSetCodeMissing(block, inst_src, dest_err_set_ty, inst_ty);
},
.inferred_error_set_type => |func_index| ok: {
// We carefully do this in an order that avoids unnecessarily
// resolving the destination error set type.
switch (ip.funcIesResolved(func_index).*) {
.anyerror_type => break :ok,
.none => if (.ok == try sema.coerceInMemoryAllowedErrorSets(block, dest_err_set_ty, inst_ty, inst_src, inst_src)) {
break :ok;
},
else => |i| if (ip.indexToKey(i).error_set_type.nameIndex(ip, expected_name) != null) {
break :ok;
},
}
return sema.failWithErrorSetCodeMissing(block, inst_src, dest_err_set_ty, inst_ty);
},
else => unreachable,
},
}
return Air.internedToRef((try mod.intern(.{ .error_union = .{
.ty = dest_ty.toIntern(),
.val = .{ .err_name = expected_name },
} })));
}
try sema.requireRuntimeBlock(block, inst_src, null);
const coerced = try sema.coerce(block, dest_err_set_ty, inst, inst_src);
return block.addTyOp(.wrap_errunion_err, dest_ty, coerced);
}
fn unionToTag(
sema: *Sema,
block: *Block,
enum_ty: Type,
un: Air.Inst.Ref,
un_src: LazySrcLoc,
) !Air.Inst.Ref {
const mod = sema.mod;
if ((try sema.typeHasOnePossibleValue(enum_ty))) |opv| {
return Air.internedToRef(opv.toIntern());
}
if (try sema.resolveValue(un)) |un_val| {
const tag_val = un_val.unionTag(mod).?;
if (tag_val.isUndef(mod))
return try mod.undefRef(enum_ty);
return Air.internedToRef(tag_val.toIntern());
}
try sema.requireRuntimeBlock(block, un_src, null);
return block.addTyOp(.get_union_tag, enum_ty, un);
}
const PeerResolveStrategy = enum {
/// The type is not known.
/// If refined no further, this is equivalent to `exact`.
unknown,
/// The type may be an error set or error union.
/// If refined no further, it is an error set.
error_set,
/// The type must be some error union.
error_union,
/// The type may be @TypeOf(null), an optional or a C pointer.
/// If refined no further, it is @TypeOf(null).
nullable,
/// The type must be some optional or a C pointer.
/// If refined no further, it is an optional.
optional,
/// The type must be either an array or a vector.
/// If refined no further, it is an array.
array,
/// The type must be a vector.
vector,
/// The type must be a C pointer.
c_ptr,
/// The type must be a pointer (C or not).
/// If refined no further, it is a non-C pointer.
ptr,
/// The type must be a function or a pointer to a function.
/// If refined no further, it is a function.
func,
/// The type must be an enum literal, or some specific enum or union. Which one is decided
/// afterwards based on the types in question.
enum_or_union,
/// The type must be some integer or float type.
/// If refined no further, it is `comptime_int`.
comptime_int,
/// The type must be some float type.
/// If refined no further, it is `comptime_float`.
comptime_float,
/// The type must be some float or fixed-width integer type.
/// If refined no further, it is some fixed-width integer type.
fixed_int,
/// The type must be some fixed-width float type.
fixed_float,
/// The type must be a struct literal or tuple type.
coercible_struct,
/// The peers must all be of the same type.
exact,
/// Given two strategies, find a strategy that satisfies both, if one exists. If no such
/// strategy exists, any strategy may be returned; an error will be emitted when the caller
/// attempts to use the strategy to resolve the type.
/// Strategy `a` comes from the peer in `reason_peer`, while strategy `b` comes from the peer at
/// index `b_peer_idx`. `reason_peer` is updated to reflect the reason for the new strategy.
fn merge(a: PeerResolveStrategy, b: PeerResolveStrategy, reason_peer: *usize, b_peer_idx: usize) PeerResolveStrategy {
// Our merging should be order-independent. Thus, even though the union order is arbitrary,
// by sorting the tags and switching first on the smaller, we have half as many cases to
// worry about (since we avoid the duplicates).
const s0_is_a = @intFromEnum(a) <= @intFromEnum(b);
const s0 = if (s0_is_a) a else b;
const s1 = if (s0_is_a) b else a;
const ReasonMethod = enum {
all_s0,
all_s1,
either,
};
const reason_method: ReasonMethod, const strat: PeerResolveStrategy = switch (s0) {
.unknown => .{ .all_s1, s1 },
.error_set => switch (s1) {
.error_set => .{ .either, .error_set },
else => .{ .all_s0, .error_union },
},
.error_union => switch (s1) {
.error_union => .{ .either, .error_union },
else => .{ .all_s0, .error_union },
},
.nullable => switch (s1) {
.nullable => .{ .either, .nullable },
.c_ptr => .{ .all_s1, .c_ptr },
else => .{ .all_s0, .optional },
},
.optional => switch (s1) {
.optional => .{ .either, .optional },
.c_ptr => .{ .all_s1, .c_ptr },
else => .{ .all_s0, .optional },
},
.array => switch (s1) {
.array => .{ .either, .array },
.vector => .{ .all_s1, .vector },
else => .{ .all_s0, .array },
},
.vector => switch (s1) {
.vector => .{ .either, .vector },
else => .{ .all_s0, .vector },
},
.c_ptr => switch (s1) {
.c_ptr => .{ .either, .c_ptr },
else => .{ .all_s0, .c_ptr },
},
.ptr => switch (s1) {
.ptr => .{ .either, .ptr },
else => .{ .all_s0, .ptr },
},
.func => switch (s1) {
.func => .{ .either, .func },
else => .{ .all_s1, s1 }, // doesn't override anything later
},
.enum_or_union => switch (s1) {
.enum_or_union => .{ .either, .enum_or_union },
else => .{ .all_s0, .enum_or_union },
},
.comptime_int => switch (s1) {
.comptime_int => .{ .either, .comptime_int },
else => .{ .all_s1, s1 }, // doesn't override anything later
},
.comptime_float => switch (s1) {
.comptime_float => .{ .either, .comptime_float },
else => .{ .all_s1, s1 }, // doesn't override anything later
},
.fixed_int => switch (s1) {
.fixed_int => .{ .either, .fixed_int },
else => .{ .all_s1, s1 }, // doesn't override anything later
},
.fixed_float => switch (s1) {
.fixed_float => .{ .either, .fixed_float },
else => .{ .all_s1, s1 }, // doesn't override anything later
},
.coercible_struct => switch (s1) {
.exact => .{ .all_s1, .exact },
else => .{ .all_s0, .coercible_struct },
},
.exact => .{ .all_s0, .exact },
};
switch (reason_method) {
.all_s0 => {
if (!s0_is_a) {
reason_peer.* = b_peer_idx;
}
},
.all_s1 => {
if (s0_is_a) {
reason_peer.* = b_peer_idx;
}
},
.either => {
// Prefer the earliest peer
reason_peer.* = @min(reason_peer.*, b_peer_idx);
},
}
return strat;
}
fn select(ty: Type, mod: *Module) PeerResolveStrategy {
return switch (ty.zigTypeTag(mod)) {
.Type, .Void, .Bool, .Opaque, .Frame, .AnyFrame => .exact,
.NoReturn, .Undefined => .unknown,
.Null => .nullable,
.ComptimeInt => .comptime_int,
.Int => .fixed_int,
.ComptimeFloat => .comptime_float,
.Float => .fixed_float,
.Pointer => if (ty.ptrInfo(mod).flags.size == .C) .c_ptr else .ptr,
.Array => .array,
.Vector => .vector,
.Optional => .optional,
.ErrorSet => .error_set,
.ErrorUnion => .error_union,
.EnumLiteral, .Enum, .Union => .enum_or_union,
.Struct => if (ty.isTupleOrAnonStruct(mod)) .coercible_struct else .exact,
.Fn => .func,
};
}
};
const PeerResolveResult = union(enum) {
/// The peer type resolution was successful, and resulted in the given type.
success: Type,
/// There was some generic conflict between two peers.
conflict: struct {
peer_idx_a: usize,
peer_idx_b: usize,
},
/// There was an error when resolving the type of a struct or tuple field.
field_error: struct {
/// The name of the field which caused the failure.
field_name: []const u8,
/// The type of this field in each peer.
field_types: []Type,
/// The error from resolving the field type. Guaranteed not to be `success`.
sub_result: *PeerResolveResult,
},
fn report(
result: PeerResolveResult,
sema: *Sema,
block: *Block,
src: LazySrcLoc,
instructions: []const Air.Inst.Ref,
candidate_srcs: Module.PeerTypeCandidateSrc,
) !*Module.ErrorMsg {
const mod = sema.mod;
const decl_ptr = mod.declPtr(block.src_decl);
var opt_msg: ?*Module.ErrorMsg = null;
errdefer if (opt_msg) |msg| msg.destroy(sema.gpa);
// If we mention fields we'll want to include field types, so put peer types in a buffer
var peer_tys = try sema.arena.alloc(Type, instructions.len);
for (peer_tys, instructions) |*ty, inst| {
ty.* = sema.typeOf(inst);
}
var cur = result;
while (true) {
var conflict_idx: [2]usize = undefined;
switch (cur) {
.success => unreachable,
.conflict => |conflict| {
// Fall through to two-peer conflict handling below
conflict_idx = .{
conflict.peer_idx_a,
conflict.peer_idx_b,
};
},
.field_error => |field_error| {
const fmt = "struct field '{s}' has conflicting types";
const args = .{field_error.field_name};
if (opt_msg) |msg| {
try sema.errNote(block, src, msg, fmt, args);
} else {
opt_msg = try sema.errMsg(block, src, fmt, args);
}
// Continue on to child error
cur = field_error.sub_result.*;
peer_tys = field_error.field_types;
continue;
},
}
// This is the path for reporting a generic conflict between two peers.
if (conflict_idx[1] < conflict_idx[0]) {
// b comes first in source, so it's better if it comes first in the error
std.mem.swap(usize, &conflict_idx[0], &conflict_idx[1]);
}
const conflict_tys: [2]Type = .{
peer_tys[conflict_idx[0]],
peer_tys[conflict_idx[1]],
};
const conflict_srcs: [2]?LazySrcLoc = .{
candidate_srcs.resolve(mod, decl_ptr, conflict_idx[0]),
candidate_srcs.resolve(mod, decl_ptr, conflict_idx[1]),
};
const fmt = "incompatible types: '{}' and '{}'";
const args = .{
conflict_tys[0].fmt(mod),
conflict_tys[1].fmt(mod),
};
const msg = if (opt_msg) |msg| msg: {
try sema.errNote(block, src, msg, fmt, args);
break :msg msg;
} else msg: {
const msg = try sema.errMsg(block, src, fmt, args);
opt_msg = msg;
break :msg msg;
};
if (conflict_srcs[0]) |src_loc| try sema.errNote(block, src_loc, msg, "type '{}' here", .{conflict_tys[0].fmt(mod)});
if (conflict_srcs[1]) |src_loc| try sema.errNote(block, src_loc, msg, "type '{}' here", .{conflict_tys[1].fmt(mod)});
// No child error
break;
}
return opt_msg.?;
}
};
fn resolvePeerTypes(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
instructions: []const Air.Inst.Ref,
candidate_srcs: Module.PeerTypeCandidateSrc,
) !Type {
switch (instructions.len) {
0 => return Type.noreturn,
1 => return sema.typeOf(instructions[0]),
else => {},
}
const peer_tys = try sema.arena.alloc(?Type, instructions.len);
const peer_vals = try sema.arena.alloc(?Value, instructions.len);
for (instructions, peer_tys, peer_vals) |inst, *ty, *val| {
ty.* = sema.typeOf(inst);
val.* = try sema.resolveValue(inst);
}
switch (try sema.resolvePeerTypesInner(block, src, peer_tys, peer_vals)) {
.success => |ty| return ty,
else => |result| {
const msg = try result.report(sema, block, src, instructions, candidate_srcs);
return sema.failWithOwnedErrorMsg(block, msg);
},
}
}
fn resolvePeerTypesInner(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
peer_tys: []?Type,
peer_vals: []?Value,
) !PeerResolveResult {
const mod = sema.mod;
const ip = &mod.intern_pool;
var strat_reason: usize = 0;
var s: PeerResolveStrategy = .unknown;
for (peer_tys, 0..) |opt_ty, i| {
const ty = opt_ty orelse continue;
s = s.merge(PeerResolveStrategy.select(ty, mod), &strat_reason, i);
}
if (s == .unknown) {
// The whole thing was noreturn or undefined - try to do an exact match
s = .exact;
} else {
// There was something other than noreturn and undefined, so we can ignore those peers
for (peer_tys) |*ty_ptr| {
const ty = ty_ptr.* orelse continue;
switch (ty.zigTypeTag(mod)) {
.NoReturn, .Undefined => ty_ptr.* = null,
else => {},
}
}
}
const target = mod.getTarget();
switch (s) {
.unknown => unreachable,
.error_set => {
var final_set: ?Type = null;
for (peer_tys, 0..) |opt_ty, i| {
const ty = opt_ty orelse continue;
if (ty.zigTypeTag(mod) != .ErrorSet) return .{ .conflict = .{
.peer_idx_a = strat_reason,
.peer_idx_b = i,
} };
if (final_set) |cur_set| {
final_set = try sema.maybeMergeErrorSets(block, src, cur_set, ty);
} else {
final_set = ty;
}
}
return .{ .success = final_set.? };
},
.error_union => {
var final_set: ?Type = null;
for (peer_tys, peer_vals) |*ty_ptr, *val_ptr| {
const ty = ty_ptr.* orelse continue;
const set_ty = switch (ty.zigTypeTag(mod)) {
.ErrorSet => blk: {
ty_ptr.* = null; // no payload to decide on
val_ptr.* = null;
break :blk ty;
},
.ErrorUnion => blk: {
const set_ty = ty.errorUnionSet(mod);
ty_ptr.* = ty.errorUnionPayload(mod);
if (val_ptr.*) |eu_val| switch (ip.indexToKey(eu_val.toIntern())) {
.error_union => |eu| switch (eu.val) {
.payload => |payload_ip| val_ptr.* = Value.fromInterned(payload_ip),
.err_name => val_ptr.* = null,
},
.undef => val_ptr.* = Value.fromInterned((try sema.mod.intern(.{ .undef = ty_ptr.*.?.toIntern() }))),
else => unreachable,
};
break :blk set_ty;
},
else => continue, // whole type is the payload
};
if (final_set) |cur_set| {
final_set = try sema.maybeMergeErrorSets(block, src, cur_set, set_ty);
} else {
final_set = set_ty;
}
}
assert(final_set != null);
const final_payload = switch (try sema.resolvePeerTypesInner(
block,
src,
peer_tys,
peer_vals,
)) {
.success => |ty| ty,
else => |result| return result,
};
return .{ .success = try mod.errorUnionType(final_set.?, final_payload) };
},
.nullable => {
for (peer_tys, 0..) |opt_ty, i| {
const ty = opt_ty orelse continue;
if (!ty.eql(Type.null, mod)) return .{ .conflict = .{
.peer_idx_a = strat_reason,
.peer_idx_b = i,
} };
}
return .{ .success = Type.null };
},
.optional => {
for (peer_tys, peer_vals) |*ty_ptr, *val_ptr| {
const ty = ty_ptr.* orelse continue;
switch (ty.zigTypeTag(mod)) {
.Null => {
ty_ptr.* = null;
val_ptr.* = null;
},
.Optional => {
ty_ptr.* = ty.optionalChild(mod);
if (val_ptr.*) |opt_val| val_ptr.* = if (!opt_val.isUndef(mod)) opt_val.optionalValue(mod) else null;
},
else => {},
}
}
const child_ty = switch (try sema.resolvePeerTypesInner(
block,
src,
peer_tys,
peer_vals,
)) {
.success => |ty| ty,
else => |result| return result,
};
return .{ .success = try mod.optionalType(child_ty.toIntern()) };
},
.array => {
// Index of the first non-null peer
var opt_first_idx: ?usize = null;
// Index of the first array or vector peer (i.e. not a tuple)
var opt_first_arr_idx: ?usize = null;
// Set to non-null once we see any peer, even a tuple
var len: u64 = undefined;
var sentinel: ?Value = undefined;
// Only set once we see a non-tuple peer
var elem_ty: Type = undefined;
for (peer_tys, 0..) |*ty_ptr, i| {
const ty = ty_ptr.* orelse continue;
if (!ty.isArrayOrVector(mod)) {
// We allow tuples of the correct length. We won't validate their elem type, since the elements can be coerced.
const arr_like = sema.typeIsArrayLike(ty) orelse return .{ .conflict = .{
.peer_idx_a = strat_reason,
.peer_idx_b = i,
} };
if (opt_first_idx) |first_idx| {
if (arr_like.len != len) return .{ .conflict = .{
.peer_idx_a = first_idx,
.peer_idx_b = i,
} };
} else {
opt_first_idx = i;
len = arr_like.len;
}
sentinel = null;
continue;
}
const first_arr_idx = opt_first_arr_idx orelse {
if (opt_first_idx == null) {
opt_first_idx = i;
len = ty.arrayLen(mod);
sentinel = ty.sentinel(mod);
}
opt_first_arr_idx = i;
elem_ty = ty.childType(mod);
continue;
};
if (ty.arrayLen(mod) != len) return .{ .conflict = .{
.peer_idx_a = first_arr_idx,
.peer_idx_b = i,
} };
const peer_elem_ty = ty.childType(mod);
if (!peer_elem_ty.eql(elem_ty, mod)) coerce: {
const peer_elem_coerces_to_elem =
try sema.coerceInMemoryAllowed(block, elem_ty, peer_elem_ty, false, mod.getTarget(), src, src);
if (peer_elem_coerces_to_elem == .ok) {
break :coerce;
}
const elem_coerces_to_peer_elem =
try sema.coerceInMemoryAllowed(block, peer_elem_ty, elem_ty, false, mod.getTarget(), src, src);
if (elem_coerces_to_peer_elem == .ok) {
elem_ty = peer_elem_ty;
break :coerce;
}
return .{ .conflict = .{
.peer_idx_a = first_arr_idx,
.peer_idx_b = i,
} };
}
if (sentinel) |cur_sent| {
if (ty.sentinel(mod)) |peer_sent| {
if (!peer_sent.eql(cur_sent, elem_ty, mod)) sentinel = null;
} else {
sentinel = null;
}
}
}
// There should always be at least one array or vector peer
assert(opt_first_arr_idx != null);
return .{ .success = try mod.arrayType(.{
.len = len,
.child = elem_ty.toIntern(),
.sentinel = if (sentinel) |sent_val| sent_val.toIntern() else .none,
}) };
},
.vector => {
var len: ?u64 = null;
var first_idx: usize = undefined;
for (peer_tys, peer_vals, 0..) |*ty_ptr, *val_ptr, i| {
const ty = ty_ptr.* orelse continue;
if (!ty.isArrayOrVector(mod)) {
// Allow tuples of the correct length
const arr_like = sema.typeIsArrayLike(ty) orelse return .{ .conflict = .{
.peer_idx_a = strat_reason,
.peer_idx_b = i,
} };
if (len) |expect_len| {
if (arr_like.len != expect_len) return .{ .conflict = .{
.peer_idx_a = first_idx,
.peer_idx_b = i,
} };
} else {
len = arr_like.len;
first_idx = i;
}
// Tuples won't participate in the child type resolution. We'll resolve without
// them, and if the tuples have a bad type, we'll get a coercion error later.
ty_ptr.* = null;
val_ptr.* = null;
continue;
}
if (len) |expect_len| {
if (ty.arrayLen(mod) != expect_len) return .{ .conflict = .{
.peer_idx_a = first_idx,
.peer_idx_b = i,
} };
} else {
len = ty.arrayLen(mod);
first_idx = i;
}
ty_ptr.* = ty.childType(mod);
val_ptr.* = null; // multiple child vals, so we can't easily use them in PTR
}
const child_ty = switch (try sema.resolvePeerTypesInner(
block,
src,
peer_tys,
peer_vals,
)) {
.success => |ty| ty,
else => |result| return result,
};
return .{ .success = try mod.vectorType(.{
.len = @intCast(len.?),
.child = child_ty.toIntern(),
}) };
},
.c_ptr => {
var opt_ptr_info: ?InternPool.Key.PtrType = null;
var first_idx: usize = undefined;
for (peer_tys, peer_vals, 0..) |opt_ty, opt_val, i| {
const ty = opt_ty orelse continue;
switch (ty.zigTypeTag(mod)) {
.ComptimeInt => continue, // comptime-known integers can always coerce to C pointers
.Int => {
if (opt_val != null) {
// Always allow the coercion for comptime-known ints
continue;
} else {
// Runtime-known, so check if the type is no bigger than a usize
const ptr_bits = target.ptrBitWidth();
const bits = ty.intInfo(mod).bits;
if (bits <= ptr_bits) continue;
}
},
.Null => continue,
else => {},
}
if (!ty.isPtrAtRuntime(mod)) return .{ .conflict = .{
.peer_idx_a = strat_reason,
.peer_idx_b = i,
} };
// Goes through optionals
const peer_info = ty.ptrInfo(mod);
var ptr_info = opt_ptr_info orelse {
opt_ptr_info = peer_info;
opt_ptr_info.?.flags.size = .C;
first_idx = i;
continue;
};
// Try peer -> cur, then cur -> peer
ptr_info.child = ((try sema.resolvePairInMemoryCoercible(block, src, Type.fromInterned(ptr_info.child), Type.fromInterned(peer_info.child))) orelse {
return .{ .conflict = .{
.peer_idx_a = first_idx,
.peer_idx_b = i,
} };
}).toIntern();
if (ptr_info.sentinel != .none and peer_info.sentinel != .none) {
const peer_sent = try ip.getCoerced(sema.gpa, ptr_info.sentinel, ptr_info.child);
const ptr_sent = try ip.getCoerced(sema.gpa, peer_info.sentinel, ptr_info.child);
if (ptr_sent == peer_sent) {
ptr_info.sentinel = ptr_sent;
} else {
ptr_info.sentinel = .none;
}
} else {
ptr_info.sentinel = .none;
}
// Note that the align can be always non-zero; Module.ptrType will canonicalize it
ptr_info.flags.alignment = InternPool.Alignment.min(
if (ptr_info.flags.alignment != .none)
ptr_info.flags.alignment
else
Type.fromInterned(ptr_info.child).abiAlignment(mod),
if (peer_info.flags.alignment != .none)
peer_info.flags.alignment
else
Type.fromInterned(peer_info.child).abiAlignment(mod),
);
if (ptr_info.flags.address_space != peer_info.flags.address_space) {
return .{ .conflict = .{
.peer_idx_a = first_idx,
.peer_idx_b = i,
} };
}
if (ptr_info.packed_offset.bit_offset != peer_info.packed_offset.bit_offset or
ptr_info.packed_offset.host_size != peer_info.packed_offset.host_size)
{
return .{ .conflict = .{
.peer_idx_a = first_idx,
.peer_idx_b = i,
} };
}
ptr_info.flags.is_const = ptr_info.flags.is_const or peer_info.flags.is_const;
ptr_info.flags.is_volatile = ptr_info.flags.is_volatile or peer_info.flags.is_volatile;
opt_ptr_info = ptr_info;
}
return .{ .success = try sema.ptrType(opt_ptr_info.?) };
},
.ptr => {
// If we've resolved to a `[]T` but then see a `[*]T`, we can resolve to a `[*]T` only
// if there were no actual slices. Else, we want the slice index to report a conflict.
var opt_slice_idx: ?usize = null;
var opt_ptr_info: ?InternPool.Key.PtrType = null;
var first_idx: usize = undefined;
var other_idx: usize = undefined; // We sometimes need a second peer index to report a generic error
for (peer_tys, 0..) |opt_ty, i| {
const ty = opt_ty orelse continue;
const peer_info: InternPool.Key.PtrType = switch (ty.zigTypeTag(mod)) {
.Pointer => ty.ptrInfo(mod),
.Fn => .{
.child = ty.toIntern(),
.flags = .{
.address_space = target_util.defaultAddressSpace(target, .global_constant),
},
},
else => return .{ .conflict = .{
.peer_idx_a = strat_reason,
.peer_idx_b = i,
} },
};
switch (peer_info.flags.size) {
.One, .Many => {},
.Slice => opt_slice_idx = i,
.C => return .{ .conflict = .{
.peer_idx_a = strat_reason,
.peer_idx_b = i,
} },
}
var ptr_info = opt_ptr_info orelse {
opt_ptr_info = peer_info;
first_idx = i;
continue;
};
other_idx = i;
// We want to return this in a lot of cases, so alias it here for convenience
const generic_err: PeerResolveResult = .{ .conflict = .{
.peer_idx_a = first_idx,
.peer_idx_b = i,
} };
// Note that the align can be always non-zero; Type.ptr will canonicalize it
ptr_info.flags.alignment = Alignment.min(
if (ptr_info.flags.alignment != .none)
ptr_info.flags.alignment
else
try sema.typeAbiAlignment(Type.fromInterned(ptr_info.child)),
if (peer_info.flags.alignment != .none)
peer_info.flags.alignment
else
try sema.typeAbiAlignment(Type.fromInterned(peer_info.child)),
);
if (ptr_info.flags.address_space != peer_info.flags.address_space) {
return generic_err;
}
if (ptr_info.packed_offset.bit_offset != peer_info.packed_offset.bit_offset or
ptr_info.packed_offset.host_size != peer_info.packed_offset.host_size)
{
return generic_err;
}
ptr_info.flags.is_const = ptr_info.flags.is_const or peer_info.flags.is_const;
ptr_info.flags.is_volatile = ptr_info.flags.is_volatile or peer_info.flags.is_volatile;
const peer_sentinel: InternPool.Index = switch (peer_info.flags.size) {
.One => switch (ip.indexToKey(peer_info.child)) {
.array_type => |array_type| array_type.sentinel,
else => .none,
},
.Many, .Slice => peer_info.sentinel,
.C => unreachable,
};
const cur_sentinel: InternPool.Index = switch (ptr_info.flags.size) {
.One => switch (ip.indexToKey(ptr_info.child)) {
.array_type => |array_type| array_type.sentinel,
else => .none,
},
.Many, .Slice => ptr_info.sentinel,
.C => unreachable,
};
// We abstract array handling slightly so that tuple pointers can work like array pointers
const peer_pointee_array = sema.typeIsArrayLike(Type.fromInterned(peer_info.child));
const cur_pointee_array = sema.typeIsArrayLike(Type.fromInterned(ptr_info.child));
// This switch is just responsible for deciding the size and pointee (not including
// single-pointer array sentinel).
good: {
switch (peer_info.flags.size) {
.One => switch (ptr_info.flags.size) {
.One => {
if (try sema.resolvePairInMemoryCoercible(block, src, Type.fromInterned(ptr_info.child), Type.fromInterned(peer_info.child))) |pointee| {
ptr_info.child = pointee.toIntern();
break :good;
}
const cur_arr = cur_pointee_array orelse return generic_err;
const peer_arr = peer_pointee_array orelse return generic_err;
if (try sema.resolvePairInMemoryCoercible(block, src, cur_arr.elem_ty, peer_arr.elem_ty)) |elem_ty| {
// *[n:x]T + *[n:y]T = *[n]T
if (cur_arr.len == peer_arr.len) {
ptr_info.child = (try mod.arrayType(.{
.len = cur_arr.len,
.child = elem_ty.toIntern(),
})).toIntern();
break :good;
}
// *[a]T + *[b]T = []T
ptr_info.flags.size = .Slice;
ptr_info.child = elem_ty.toIntern();
break :good;
}
if (peer_arr.elem_ty.toIntern() == .noreturn_type) {
// *struct{} + *[a]T = []T
ptr_info.flags.size = .Slice;
ptr_info.child = cur_arr.elem_ty.toIntern();
break :good;
}
if (cur_arr.elem_ty.toIntern() == .noreturn_type) {
// *[a]T + *struct{} = []T
ptr_info.flags.size = .Slice;
ptr_info.child = peer_arr.elem_ty.toIntern();
break :good;
}
return generic_err;
},
.Many => {
// Only works for *[n]T + [*]T -> [*]T
const arr = peer_pointee_array orelse return generic_err;
if (try sema.resolvePairInMemoryCoercible(block, src, Type.fromInterned(ptr_info.child), arr.elem_ty)) |pointee| {
ptr_info.child = pointee.toIntern();
break :good;
}
if (arr.elem_ty.toIntern() == .noreturn_type) {
// *struct{} + [*]T -> [*]T
break :good;
}
return generic_err;
},
.Slice => {
// Only works for *[n]T + []T -> []T
const arr = peer_pointee_array orelse return generic_err;
if (try sema.resolvePairInMemoryCoercible(block, src, Type.fromInterned(ptr_info.child), arr.elem_ty)) |pointee| {
ptr_info.child = pointee.toIntern();
break :good;
}
if (arr.elem_ty.toIntern() == .noreturn_type) {
// *struct{} + []T -> []T
break :good;
}
return generic_err;
},
.C => unreachable,
},
.Many => switch (ptr_info.flags.size) {
.One => {
// Only works for [*]T + *[n]T -> [*]T
const arr = cur_pointee_array orelse return generic_err;
if (try sema.resolvePairInMemoryCoercible(block, src, arr.elem_ty, Type.fromInterned(peer_info.child))) |pointee| {
ptr_info.flags.size = .Many;
ptr_info.child = pointee.toIntern();
break :good;
}
if (arr.elem_ty.toIntern() == .noreturn_type) {
// [*]T + *struct{} -> [*]T
ptr_info.flags.size = .Many;
ptr_info.child = peer_info.child;
break :good;
}
return generic_err;
},
.Many => {
if (try sema.resolvePairInMemoryCoercible(block, src, Type.fromInterned(ptr_info.child), Type.fromInterned(peer_info.child))) |pointee| {
ptr_info.child = pointee.toIntern();
break :good;
}
return generic_err;
},
.Slice => {
// Only works if no peers are actually slices
if (opt_slice_idx) |slice_idx| {
return .{ .conflict = .{
.peer_idx_a = slice_idx,
.peer_idx_b = i,
} };
}
// Okay, then works for [*]T + "[]T" -> [*]T
if (try sema.resolvePairInMemoryCoercible(block, src, Type.fromInterned(ptr_info.child), Type.fromInterned(peer_info.child))) |pointee| {
ptr_info.flags.size = .Many;
ptr_info.child = pointee.toIntern();
break :good;
}
return generic_err;
},
.C => unreachable,
},
.Slice => switch (ptr_info.flags.size) {
.One => {
// Only works for []T + *[n]T -> []T
const arr = cur_pointee_array orelse return generic_err;
if (try sema.resolvePairInMemoryCoercible(block, src, arr.elem_ty, Type.fromInterned(peer_info.child))) |pointee| {
ptr_info.flags.size = .Slice;
ptr_info.child = pointee.toIntern();
break :good;
}
if (arr.elem_ty.toIntern() == .noreturn_type) {
// []T + *struct{} -> []T
ptr_info.flags.size = .Slice;
ptr_info.child = peer_info.child;
break :good;
}
return generic_err;
},
.Many => {
// Impossible! (current peer is an actual slice)
return generic_err;
},
.Slice => {
if (try sema.resolvePairInMemoryCoercible(block, src, Type.fromInterned(ptr_info.child), Type.fromInterned(peer_info.child))) |pointee| {
ptr_info.child = pointee.toIntern();
break :good;
}
return generic_err;
},
.C => unreachable,
},
.C => unreachable,
}
}
const sentinel_ty = switch (ptr_info.flags.size) {
.One => switch (ip.indexToKey(ptr_info.child)) {
.array_type => |array_type| array_type.child,
else => ptr_info.child,
},
.Many, .Slice, .C => ptr_info.child,
};
sentinel: {
no_sentinel: {
if (peer_sentinel == .none) break :no_sentinel;
if (cur_sentinel == .none) break :no_sentinel;
const peer_sent_coerced = try ip.getCoerced(sema.gpa, peer_sentinel, sentinel_ty);
const cur_sent_coerced = try ip.getCoerced(sema.gpa, cur_sentinel, sentinel_ty);
if (peer_sent_coerced != cur_sent_coerced) break :no_sentinel;
// Sentinels match
if (ptr_info.flags.size == .One) switch (ip.indexToKey(ptr_info.child)) {
.array_type => |array_type| ptr_info.child = (try mod.arrayType(.{
.len = array_type.len,
.child = array_type.child,
.sentinel = cur_sent_coerced,
})).toIntern(),
else => unreachable,
} else {
ptr_info.sentinel = cur_sent_coerced;
}
break :sentinel;
}
// Clear existing sentinel
ptr_info.sentinel = .none;
switch (ip.indexToKey(ptr_info.child)) {
.array_type => |array_type| ptr_info.child = (try mod.arrayType(.{
.len = array_type.len,
.child = array_type.child,
.sentinel = .none,
})).toIntern(),
else => {},
}
}
opt_ptr_info = ptr_info;
}
// Before we succeed, check the pointee type. If we tried to apply PTR to (for instance)
// &.{} and &.{}, we'll currently have a pointer type of `*[0]noreturn` - we wanted to
// coerce the empty struct to a specific type, but no peer provided one. We need to
// detect this case and emit an error.
const pointee = opt_ptr_info.?.child;
switch (pointee) {
.noreturn_type => return .{ .conflict = .{
.peer_idx_a = first_idx,
.peer_idx_b = other_idx,
} },
else => switch (ip.indexToKey(pointee)) {
.array_type => |array_type| if (array_type.child == .noreturn_type) return .{ .conflict = .{
.peer_idx_a = first_idx,
.peer_idx_b = other_idx,
} },
else => {},
},
}
return .{ .success = try sema.ptrType(opt_ptr_info.?) };
},
.func => {
var opt_cur_ty: ?Type = null;
var first_idx: usize = undefined;
for (peer_tys, 0..) |opt_ty, i| {
const ty = opt_ty orelse continue;
const cur_ty = opt_cur_ty orelse {
opt_cur_ty = ty;
first_idx = i;
continue;
};
if (ty.zigTypeTag(mod) != .Fn) return .{ .conflict = .{
.peer_idx_a = strat_reason,
.peer_idx_b = i,
} };
// ty -> cur_ty
if (.ok == try sema.coerceInMemoryAllowedFns(block, cur_ty, ty, target, src, src)) {
continue;
}
// cur_ty -> ty
if (.ok == try sema.coerceInMemoryAllowedFns(block, ty, cur_ty, target, src, src)) {
opt_cur_ty = ty;
continue;
}
return .{ .conflict = .{
.peer_idx_a = first_idx,
.peer_idx_b = i,
} };
}
return .{ .success = opt_cur_ty.? };
},
.enum_or_union => {
var opt_cur_ty: ?Type = null;
// The peer index which gave the current type
var cur_ty_idx: usize = undefined;
for (peer_tys, 0..) |opt_ty, i| {
const ty = opt_ty orelse continue;
switch (ty.zigTypeTag(mod)) {
.EnumLiteral, .Enum, .Union => {},
else => return .{ .conflict = .{
.peer_idx_a = strat_reason,
.peer_idx_b = i,
} },
}
const cur_ty = opt_cur_ty orelse {
opt_cur_ty = ty;
cur_ty_idx = i;
continue;
};
// We want to return this in a lot of cases, so alias it here for convenience
const generic_err: PeerResolveResult = .{ .conflict = .{
.peer_idx_a = cur_ty_idx,
.peer_idx_b = i,
} };
switch (cur_ty.zigTypeTag(mod)) {
.EnumLiteral => {
opt_cur_ty = ty;
cur_ty_idx = i;
},
.Enum => switch (ty.zigTypeTag(mod)) {
.EnumLiteral => {},
.Enum => {
if (!ty.eql(cur_ty, mod)) return generic_err;
},
.Union => {
const tag_ty = ty.unionTagTypeHypothetical(mod);
if (!tag_ty.eql(cur_ty, mod)) return generic_err;
opt_cur_ty = ty;
cur_ty_idx = i;
},
else => unreachable,
},
.Union => switch (ty.zigTypeTag(mod)) {
.EnumLiteral => {},
.Enum => {
const cur_tag_ty = cur_ty.unionTagTypeHypothetical(mod);
if (!ty.eql(cur_tag_ty, mod)) return generic_err;
},
.Union => {
if (!ty.eql(cur_ty, mod)) return generic_err;
},
else => unreachable,
},
else => unreachable,
}
}
return .{ .success = opt_cur_ty.? };
},
.comptime_int => {
for (peer_tys, 0..) |opt_ty, i| {
const ty = opt_ty orelse continue;
switch (ty.zigTypeTag(mod)) {
.ComptimeInt => {},
else => return .{ .conflict = .{
.peer_idx_a = strat_reason,
.peer_idx_b = i,
} },
}
}
return .{ .success = Type.comptime_int };
},
.comptime_float => {
for (peer_tys, 0..) |opt_ty, i| {
const ty = opt_ty orelse continue;
switch (ty.zigTypeTag(mod)) {
.ComptimeInt, .ComptimeFloat => {},
else => return .{ .conflict = .{
.peer_idx_a = strat_reason,
.peer_idx_b = i,
} },
}
}
return .{ .success = Type.comptime_float };
},
.fixed_int => {
var idx_unsigned: ?usize = null;
var idx_signed: ?usize = null;
// TODO: this is for compatibility with legacy behavior. See beneath the loop.
var any_comptime_known = false;
for (peer_tys, peer_vals, 0..) |opt_ty, *ptr_opt_val, i| {
const ty = opt_ty orelse continue;
const opt_val = ptr_opt_val.*;
const peer_tag = ty.zigTypeTag(mod);
switch (peer_tag) {
.ComptimeInt => {
// If the value is undefined, we can't refine to a fixed-width int
if (opt_val == null or opt_val.?.isUndef(mod)) return .{ .conflict = .{
.peer_idx_a = strat_reason,
.peer_idx_b = i,
} };
any_comptime_known = true;
ptr_opt_val.* = try sema.resolveLazyValue(opt_val.?);
continue;
},
.Int => {},
else => return .{ .conflict = .{
.peer_idx_a = strat_reason,
.peer_idx_b = i,
} },
}
if (opt_val != null) any_comptime_known = true;
const info = ty.intInfo(mod);
const idx_ptr = switch (info.signedness) {
.unsigned => &idx_unsigned,
.signed => &idx_signed,
};
const largest_idx = idx_ptr.* orelse {
idx_ptr.* = i;
continue;
};
const cur_info = peer_tys[largest_idx].?.intInfo(mod);
if (info.bits > cur_info.bits) {
idx_ptr.* = i;
}
}
if (idx_signed == null) {
return .{ .success = peer_tys[idx_unsigned.?].? };
}
if (idx_unsigned == null) {
return .{ .success = peer_tys[idx_signed.?].? };
}
const unsigned_info = peer_tys[idx_unsigned.?].?.intInfo(mod);
const signed_info = peer_tys[idx_signed.?].?.intInfo(mod);
if (signed_info.bits > unsigned_info.bits) {
return .{ .success = peer_tys[idx_signed.?].? };
}
// TODO: this is for compatibility with legacy behavior. Before this version of PTR was
// implemented, the algorithm very often returned false positives, with the expectation
// that you'd just hit a coercion error later. One of these was that for integers, the
// largest type would always be returned, even if it couldn't fit everything. This had
// an unintentional consequence to semantics, which is that if values were known at
// comptime, they would be coerced down to the smallest type where possible. This
// behavior is unintuitive and order-dependent, so in my opinion should be eliminated,
// but for now we'll retain compatibility.
if (any_comptime_known) {
if (unsigned_info.bits > signed_info.bits) {
return .{ .success = peer_tys[idx_unsigned.?].? };
}
const idx = @min(idx_unsigned.?, idx_signed.?);
return .{ .success = peer_tys[idx].? };
}
return .{ .conflict = .{
.peer_idx_a = idx_unsigned.?,
.peer_idx_b = idx_signed.?,
} };
},
.fixed_float => {
var opt_cur_ty: ?Type = null;
for (peer_tys, peer_vals, 0..) |opt_ty, opt_val, i| {
const ty = opt_ty orelse continue;
switch (ty.zigTypeTag(mod)) {
.ComptimeFloat, .ComptimeInt => {},
.Int => {
if (opt_val == null) return .{ .conflict = .{
.peer_idx_a = strat_reason,
.peer_idx_b = i,
} };
},
.Float => {
if (opt_cur_ty) |cur_ty| {
if (cur_ty.eql(ty, mod)) continue;
// Recreate the type so we eliminate any c_longdouble
const bits = @max(cur_ty.floatBits(target), ty.floatBits(target));
opt_cur_ty = switch (bits) {
16 => Type.f16,
32 => Type.f32,
64 => Type.f64,
80 => Type.f80,
128 => Type.f128,
else => unreachable,
};
} else {
opt_cur_ty = ty;
}
},
else => return .{ .conflict = .{
.peer_idx_a = strat_reason,
.peer_idx_b = i,
} },
}
}
// Note that fixed_float is only chosen if there is at least one fixed-width float peer,
// so opt_cur_ty must be non-null.
return .{ .success = opt_cur_ty.? };
},
.coercible_struct => {
// First, check that every peer has the same approximate structure (field count and names)
var opt_first_idx: ?usize = null;
var is_tuple: bool = undefined;
var field_count: usize = undefined;
// Only defined for non-tuples.
var field_names: []InternPool.NullTerminatedString = undefined;
for (peer_tys, 0..) |opt_ty, i| {
const ty = opt_ty orelse continue;
if (!ty.isTupleOrAnonStruct(mod)) {
return .{ .conflict = .{
.peer_idx_a = strat_reason,
.peer_idx_b = i,
} };
}
const first_idx = opt_first_idx orelse {
opt_first_idx = i;
is_tuple = ty.isTuple(mod);
field_count = ty.structFieldCount(mod);
if (!is_tuple) {
const names = ip.indexToKey(ty.toIntern()).anon_struct_type.names.get(ip);
field_names = try sema.arena.dupe(InternPool.NullTerminatedString, names);
}
continue;
};
if (ty.isTuple(mod) != is_tuple or ty.structFieldCount(mod) != field_count) {
return .{ .conflict = .{
.peer_idx_a = first_idx,
.peer_idx_b = i,
} };
}
if (!is_tuple) {
for (field_names, 0..) |expected, field_index_usize| {
const field_index: u32 = @intCast(field_index_usize);
const actual = ty.structFieldName(field_index, mod).unwrap().?;
if (actual == expected) continue;
return .{ .conflict = .{
.peer_idx_a = first_idx,
.peer_idx_b = i,
} };
}
}
}
assert(opt_first_idx != null);
// Now, we'll recursively resolve the field types
const field_types = try sema.arena.alloc(InternPool.Index, field_count);
// Values for `comptime` fields - `.none` used for non-comptime fields
const field_vals = try sema.arena.alloc(InternPool.Index, field_count);
const sub_peer_tys = try sema.arena.alloc(?Type, peer_tys.len);
const sub_peer_vals = try sema.arena.alloc(?Value, peer_vals.len);
for (field_types, field_vals, 0..) |*field_ty, *field_val, field_idx| {
// Fill buffers with types and values of the field
for (peer_tys, peer_vals, sub_peer_tys, sub_peer_vals) |opt_ty, opt_val, *peer_field_ty, *peer_field_val| {
const ty = opt_ty orelse {
peer_field_ty.* = null;
peer_field_val.* = null;
continue;
};
peer_field_ty.* = ty.structFieldType(field_idx, mod);
peer_field_val.* = if (opt_val) |val| try val.fieldValue(mod, field_idx) else null;
}
// Resolve field type recursively
field_ty.* = switch (try sema.resolvePeerTypesInner(block, src, sub_peer_tys, sub_peer_vals)) {
.success => |ty| ty.toIntern(),
else => |result| {
const result_buf = try sema.arena.create(PeerResolveResult);
result_buf.* = result;
const field_name = if (is_tuple) name: {
break :name try std.fmt.allocPrint(sema.arena, "{d}", .{field_idx});
} else try sema.arena.dupe(u8, ip.stringToSlice(field_names[field_idx]));
// The error info needs the field types, but we can't reuse sub_peer_tys
// since the recursive call may have clobbered it.
const peer_field_tys = try sema.arena.alloc(Type, peer_tys.len);
for (peer_tys, peer_field_tys) |opt_ty, *peer_field_ty| {
// Already-resolved types won't be referenced by the error so it's fine
// to leave them undefined.
const ty = opt_ty orelse continue;
peer_field_ty.* = ty.structFieldType(field_idx, mod);
}
return .{ .field_error = .{
.field_name = field_name,
.field_types = peer_field_tys,
.sub_result = result_buf,
} };
},
};
// Decide if this is a comptime field. If it is comptime in all peers, and the
// coerced comptime values are all the same, we say it is comptime, else not.
var comptime_val: ?Value = null;
for (peer_tys) |opt_ty| {
const struct_ty = opt_ty orelse continue;
try sema.resolveStructFieldInits(struct_ty);
const uncoerced_field_val = try struct_ty.structFieldValueComptime(mod, field_idx) orelse {
comptime_val = null;
break;
};
const uncoerced_field = Air.internedToRef(uncoerced_field_val.toIntern());
const coerced_inst = sema.coerceExtra(block, Type.fromInterned(field_ty.*), uncoerced_field, src, .{ .report_err = false }) catch |err| switch (err) {
// It's possible for PTR to give false positives. Just give up on making this a comptime field, we'll get an error later anyway
error.NotCoercible => {
comptime_val = null;
break;
},
else => |e| return e,
};
const coerced_val = (try sema.resolveValue(coerced_inst)) orelse continue;
const existing = comptime_val orelse {
comptime_val = coerced_val;
continue;
};
if (!coerced_val.eql(existing, Type.fromInterned(field_ty.*), mod)) {
comptime_val = null;
break;
}
}
field_val.* = if (comptime_val) |v| v.toIntern() else .none;
}
const final_ty = try ip.getAnonStructType(mod.gpa, .{
.types = field_types,
.names = if (is_tuple) &.{} else field_names,
.values = field_vals,
});
return .{ .success = Type.fromInterned(final_ty) };
},
.exact => {
var expect_ty: ?Type = null;
var first_idx: usize = undefined;
for (peer_tys, 0..) |opt_ty, i| {
const ty = opt_ty orelse continue;
if (expect_ty) |expect| {
if (!ty.eql(expect, mod)) return .{ .conflict = .{
.peer_idx_a = first_idx,
.peer_idx_b = i,
} };
} else {
expect_ty = ty;
first_idx = i;
}
}
return .{ .success = expect_ty.? };
},
}
}
fn maybeMergeErrorSets(sema: *Sema, block: *Block, src: LazySrcLoc, e0: Type, e1: Type) !Type {
// e0 -> e1
if (.ok == try sema.coerceInMemoryAllowedErrorSets(block, e1, e0, src, src)) {
return e1;
}
// e1 -> e0
if (.ok == try sema.coerceInMemoryAllowedErrorSets(block, e0, e1, src, src)) {
return e0;
}
return sema.errorSetMerge(e0, e1);
}
fn resolvePairInMemoryCoercible(sema: *Sema, block: *Block, src: LazySrcLoc, ty_a: Type, ty_b: Type) !?Type {
// ty_b -> ty_a
if (.ok == try sema.coerceInMemoryAllowed(block, ty_a, ty_b, true, sema.mod.getTarget(), src, src)) {
return ty_a;
}
// ty_a -> ty_b
if (.ok == try sema.coerceInMemoryAllowed(block, ty_b, ty_a, true, sema.mod.getTarget(), src, src)) {
return ty_b;
}
return null;
}
const ArrayLike = struct {
len: u64,
/// `noreturn` indicates that this type is `struct{}` so can coerce to anything
elem_ty: Type,
};
fn typeIsArrayLike(sema: *Sema, ty: Type) ?ArrayLike {
const mod = sema.mod;
return switch (ty.zigTypeTag(mod)) {
.Array => .{
.len = ty.arrayLen(mod),
.elem_ty = ty.childType(mod),
},
.Struct => {
const field_count = ty.structFieldCount(mod);
if (field_count == 0) return .{
.len = 0,
.elem_ty = Type.noreturn,
};
if (!ty.isTuple(mod)) return null;
const elem_ty = ty.structFieldType(0, mod);
for (1..field_count) |i| {
if (!ty.structFieldType(i, mod).eql(elem_ty, mod)) {
return null;
}
}
return .{
.len = field_count,
.elem_ty = elem_ty,
};
},
else => null,
};
}
pub fn resolveIes(sema: *Sema, block: *Block, src: LazySrcLoc) CompileError!void {
const mod = sema.mod;
const ip = &mod.intern_pool;
if (sema.fn_ret_ty_ies) |ies| {
try sema.resolveInferredErrorSetPtr(block, src, ies);
assert(ies.resolved != .none);
ip.funcIesResolved(sema.func_index).* = ies.resolved;
}
}
pub fn resolveFnTypes(sema: *Sema, fn_ty: Type) CompileError!void {
const mod = sema.mod;
const ip = &mod.intern_pool;
const fn_ty_info = mod.typeToFunc(fn_ty).?;
try sema.resolveTypeFully(Type.fromInterned(fn_ty_info.return_type));
if (mod.comp.config.any_error_tracing and
Type.fromInterned(fn_ty_info.return_type).isError(mod))
{
// Ensure the type exists so that backends can assume that.
_ = try sema.getBuiltinType("StackTrace");
}
for (0..fn_ty_info.param_types.len) |i| {
try sema.resolveTypeFully(Type.fromInterned(fn_ty_info.param_types.get(ip)[i]));
}
}
/// Make it so that calling hash() and eql() on `val` will not assert due
/// to a type not having its layout resolved.
fn resolveLazyValue(sema: *Sema, val: Value) CompileError!Value {
const mod = sema.mod;
switch (mod.intern_pool.indexToKey(val.toIntern())) {
.int => |int| switch (int.storage) {
.u64, .i64, .big_int => return val,
.lazy_align, .lazy_size => return mod.intValue(
Type.fromInterned(int.ty),
(try val.getUnsignedIntAdvanced(mod, sema)).?,
),
},
.slice => |slice| {
const ptr = try sema.resolveLazyValue(Value.fromInterned(slice.ptr));
const len = try sema.resolveLazyValue(Value.fromInterned(slice.len));
if (ptr.toIntern() == slice.ptr and len.toIntern() == slice.len) return val;
return Value.fromInterned(try mod.intern(.{ .slice = .{
.ty = slice.ty,
.ptr = ptr.toIntern(),
.len = len.toIntern(),
} }));
},
.ptr => |ptr| {
switch (ptr.addr) {
.decl, .comptime_alloc, .anon_decl => return val,
.comptime_field => |field_val| {
const resolved_field_val =
(try sema.resolveLazyValue(Value.fromInterned(field_val))).toIntern();
return if (resolved_field_val == field_val)
val
else
Value.fromInterned((try mod.intern(.{ .ptr = .{
.ty = ptr.ty,
.addr = .{ .comptime_field = resolved_field_val },
} })));
},
.int => |int| {
const resolved_int = (try sema.resolveLazyValue(Value.fromInterned(int))).toIntern();
return if (resolved_int == int)
val
else
Value.fromInterned((try mod.intern(.{ .ptr = .{
.ty = ptr.ty,
.addr = .{ .int = resolved_int },
} })));
},
.eu_payload, .opt_payload => |base| {
const resolved_base = (try sema.resolveLazyValue(Value.fromInterned(base))).toIntern();
return if (resolved_base == base)
val
else
Value.fromInterned((try mod.intern(.{ .ptr = .{
.ty = ptr.ty,
.addr = switch (ptr.addr) {
.eu_payload => .{ .eu_payload = resolved_base },
.opt_payload => .{ .opt_payload = resolved_base },
else => unreachable,
},
} })));
},
.elem, .field => |base_index| {
const resolved_base = (try sema.resolveLazyValue(Value.fromInterned(base_index.base))).toIntern();
return if (resolved_base == base_index.base)
val
else
Value.fromInterned((try mod.intern(.{ .ptr = .{
.ty = ptr.ty,
.addr = switch (ptr.addr) {
.elem => .{ .elem = .{
.base = resolved_base,
.index = base_index.index,
} },
.field => .{ .field = .{
.base = resolved_base,
.index = base_index.index,
} },
else => unreachable,
},
} })));
},
}
},
.aggregate => |aggregate| switch (aggregate.storage) {
.bytes => return val,
.elems => |elems| {
var resolved_elems: []InternPool.Index = &.{};
for (elems, 0..) |elem, i| {
const resolved_elem = (try sema.resolveLazyValue(Value.fromInterned(elem))).toIntern();
if (resolved_elems.len == 0 and resolved_elem != elem) {
resolved_elems = try sema.arena.alloc(InternPool.Index, elems.len);
@memcpy(resolved_elems[0..i], elems[0..i]);
}
if (resolved_elems.len > 0) resolved_elems[i] = resolved_elem;
}
return if (resolved_elems.len == 0) val else Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = aggregate.ty,
.storage = .{ .elems = resolved_elems },
} })));
},
.repeated_elem => |elem| {
const resolved_elem = (try sema.resolveLazyValue(Value.fromInterned(elem))).toIntern();
return if (resolved_elem == elem) val else Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = aggregate.ty,
.storage = .{ .repeated_elem = resolved_elem },
} })));
},
},
.un => |un| {
const resolved_tag = if (un.tag == .none)
.none
else
(try sema.resolveLazyValue(Value.fromInterned(un.tag))).toIntern();
const resolved_val = (try sema.resolveLazyValue(Value.fromInterned(un.val))).toIntern();
return if (resolved_tag == un.tag and resolved_val == un.val)
val
else
Value.fromInterned((try mod.intern(.{ .un = .{
.ty = un.ty,
.tag = resolved_tag,
.val = resolved_val,
} })));
},
else => return val,
}
}
pub fn resolveTypeLayout(sema: *Sema, ty: Type) CompileError!void {
const mod = sema.mod;
switch (mod.intern_pool.indexToKey(ty.toIntern())) {
.simple_type => |simple_type| return sema.resolveSimpleType(simple_type),
else => {},
}
switch (ty.zigTypeTag(mod)) {
.Struct => return sema.resolveStructLayout(ty),
.Union => return sema.resolveUnionLayout(ty),
.Array => {
if (ty.arrayLenIncludingSentinel(mod) == 0) return;
const elem_ty = ty.childType(mod);
return sema.resolveTypeLayout(elem_ty);
},
.Optional => {
const payload_ty = ty.optionalChild(mod);
// In case of querying the ABI alignment of this optional, we will ask
// for hasRuntimeBits() of the payload type, so we need "requires comptime"
// to be known already before this function returns.
_ = try sema.typeRequiresComptime(payload_ty);
return sema.resolveTypeLayout(payload_ty);
},
.ErrorUnion => {
const payload_ty = ty.errorUnionPayload(mod);
return sema.resolveTypeLayout(payload_ty);
},
.Fn => {
const info = mod.typeToFunc(ty).?;
if (info.is_generic) {
// Resolving of generic function types is deferred to when
// the function is instantiated.
return;
}
const ip = &mod.intern_pool;
for (0..info.param_types.len) |i| {
const param_ty = info.param_types.get(ip)[i];
try sema.resolveTypeLayout(Type.fromInterned(param_ty));
}
try sema.resolveTypeLayout(Type.fromInterned(info.return_type));
},
else => {},
}
}
/// Resolve a struct's alignment only without triggering resolution of its layout.
/// Asserts that the alignment is not yet resolved and the layout is non-packed.
pub fn resolveStructAlignment(
sema: *Sema,
ty: InternPool.Index,
struct_type: InternPool.LoadedStructType,
) CompileError!Alignment {
const mod = sema.mod;
const ip = &mod.intern_pool;
const target = mod.getTarget();
assert(struct_type.flagsPtr(ip).alignment == .none);
assert(struct_type.layout != .@"packed");
if (struct_type.flagsPtr(ip).field_types_wip) {
// We'll guess "pointer-aligned", if the struct has an
// underaligned pointer field then some allocations
// might require explicit alignment.
struct_type.flagsPtr(ip).assumed_pointer_aligned = true;
const result = Alignment.fromByteUnits(@divExact(target.ptrBitWidth(), 8));
struct_type.flagsPtr(ip).alignment = result;
return result;
}
try sema.resolveTypeFieldsStruct(ty, struct_type);
if (struct_type.setAlignmentWip(ip)) {
// We'll guess "pointer-aligned", if the struct has an
// underaligned pointer field then some allocations
// might require explicit alignment.
struct_type.flagsPtr(ip).assumed_pointer_aligned = true;
const result = Alignment.fromByteUnits(@divExact(target.ptrBitWidth(), 8));
struct_type.flagsPtr(ip).alignment = result;
return result;
}
defer struct_type.clearAlignmentWip(ip);
var result: Alignment = .@"1";
for (0..struct_type.field_types.len) |i| {
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
if (struct_type.fieldIsComptime(ip, i) or try sema.typeRequiresComptime(field_ty))
continue;
const field_align = try sema.structFieldAlignment(
struct_type.fieldAlign(ip, i),
field_ty,
struct_type.layout,
);
result = result.maxStrict(field_align);
}
struct_type.flagsPtr(ip).alignment = result;
return result;
}
fn resolveStructLayout(sema: *Sema, ty: Type) CompileError!void {
const mod = sema.mod;
const ip = &mod.intern_pool;
const struct_type = mod.typeToStruct(ty) orelse return;
if (struct_type.haveLayout(ip))
return;
try sema.resolveTypeFields(ty);
if (struct_type.layout == .@"packed") {
try semaBackingIntType(mod, struct_type);
return;
}
if (struct_type.setLayoutWip(ip)) {
const msg = try Module.ErrorMsg.create(
sema.gpa,
mod.declPtr(struct_type.decl.unwrap().?).srcLoc(mod),
"struct '{}' depends on itself",
.{ty.fmt(mod)},
);
return sema.failWithOwnedErrorMsg(null, msg);
}
defer struct_type.clearLayoutWip(ip);
const aligns = try sema.arena.alloc(Alignment, struct_type.field_types.len);
const sizes = try sema.arena.alloc(u64, struct_type.field_types.len);
var big_align: Alignment = .@"1";
for (aligns, sizes, 0..) |*field_align, *field_size, i| {
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
if (struct_type.fieldIsComptime(ip, i) or try sema.typeRequiresComptime(field_ty)) {
struct_type.offsets.get(ip)[i] = 0;
field_size.* = 0;
field_align.* = .none;
continue;
}
field_size.* = sema.typeAbiSize(field_ty) catch |err| switch (err) {
error.AnalysisFail => {
const msg = sema.err orelse return err;
try sema.addFieldErrNote(ty, i, msg, "while checking this field", .{});
return err;
},
else => return err,
};
field_align.* = try sema.structFieldAlignment(
struct_type.fieldAlign(ip, i),
field_ty,
struct_type.layout,
);
big_align = big_align.maxStrict(field_align.*);
}
if (struct_type.flagsPtr(ip).assumed_runtime_bits and !(try sema.typeHasRuntimeBits(ty))) {
const msg = try Module.ErrorMsg.create(
sema.gpa,
mod.declPtr(struct_type.decl.unwrap().?).srcLoc(mod),
"struct layout depends on it having runtime bits",
.{},
);
return sema.failWithOwnedErrorMsg(null, msg);
}
if (struct_type.flagsPtr(ip).assumed_pointer_aligned and
big_align.compareStrict(.neq, Alignment.fromByteUnits(@divExact(mod.getTarget().ptrBitWidth(), 8))))
{
const msg = try Module.ErrorMsg.create(
sema.gpa,
mod.declPtr(struct_type.decl.unwrap().?).srcLoc(mod),
"struct layout depends on being pointer aligned",
.{},
);
return sema.failWithOwnedErrorMsg(null, msg);
}
if (struct_type.hasReorderedFields()) {
const runtime_order = struct_type.runtime_order.get(ip);
for (runtime_order, 0..) |*ro, i| {
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
if (struct_type.fieldIsComptime(ip, i) or try sema.typeRequiresComptime(field_ty)) {
ro.* = .omitted;
} else {
ro.* = @enumFromInt(i);
}
}
const RuntimeOrder = InternPool.LoadedStructType.RuntimeOrder;
const AlignSortContext = struct {
aligns: []const Alignment,
fn lessThan(ctx: @This(), a: RuntimeOrder, b: RuntimeOrder) bool {
if (a == .omitted) return false;
if (b == .omitted) return true;
const a_align = ctx.aligns[@intFromEnum(a)];
const b_align = ctx.aligns[@intFromEnum(b)];
return a_align.compare(.gt, b_align);
}
};
if (struct_type.isTuple(ip) or !mod.backendSupportsFeature(.field_reordering)) {
// TODO: don't handle tuples differently. This logic exists only because it
// uncovers latent bugs if removed. Fix the latent bugs and remove this logic!
// Likewise, implement field reordering support in all the backends!
// This logic does not reorder fields; it only moves the omitted ones to the end
// so that logic elsewhere does not need to special-case tuples.
var i: usize = 0;
var off: usize = 0;
while (i + off < runtime_order.len) {
if (runtime_order[i + off] == .omitted) {
off += 1;
continue;
}
runtime_order[i] = runtime_order[i + off];
i += 1;
}
@memset(runtime_order[i..], .omitted);
} else {
mem.sortUnstable(RuntimeOrder, runtime_order, AlignSortContext{
.aligns = aligns,
}, AlignSortContext.lessThan);
}
}
// Calculate size, alignment, and field offsets.
const offsets = struct_type.offsets.get(ip);
var it = struct_type.iterateRuntimeOrder(ip);
var offset: u64 = 0;
while (it.next()) |i| {
offsets[i] = @intCast(aligns[i].forward(offset));
offset = offsets[i] + sizes[i];
}
struct_type.size(ip).* = @intCast(big_align.forward(offset));
const flags = struct_type.flagsPtr(ip);
flags.alignment = big_align;
flags.layout_resolved = true;
_ = try sema.typeRequiresComptime(ty);
}
fn semaBackingIntType(mod: *Module, struct_type: InternPool.LoadedStructType) CompileError!void {
const gpa = mod.gpa;
const ip = &mod.intern_pool;
const decl_index = struct_type.decl.unwrap().?;
const decl = mod.declPtr(decl_index);
const zir = mod.namespacePtr(struct_type.namespace.unwrap().?).file_scope.zir;
var analysis_arena = std.heap.ArenaAllocator.init(gpa);
defer analysis_arena.deinit();
var comptime_err_ret_trace = std.ArrayList(Module.SrcLoc).init(gpa);
defer comptime_err_ret_trace.deinit();
var sema: Sema = .{
.mod = mod,
.gpa = gpa,
.arena = analysis_arena.allocator(),
.code = zir,
.owner_decl = decl,
.owner_decl_index = decl_index,
.func_index = .none,
.func_is_naked = false,
.fn_ret_ty = Type.void,
.fn_ret_ty_ies = null,
.owner_func_index = .none,
.comptime_err_ret_trace = &comptime_err_ret_trace,
};
defer sema.deinit();
var block: Block = .{
.parent = null,
.sema = &sema,
.src_decl = decl_index,
.namespace = struct_type.namespace.unwrap() orelse decl.src_namespace,
.instructions = .{},
.inlining = null,
.is_comptime = true,
};
defer assert(block.instructions.items.len == 0);
const fields_bit_sum = blk: {
var accumulator: u64 = 0;
for (0..struct_type.field_types.len) |i| {
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
accumulator += try field_ty.bitSizeAdvanced(mod, &sema);
}
break :blk accumulator;
};
const zir_index = struct_type.zir_index.unwrap().?.resolve(ip);
const extended = zir.instructions.items(.data)[@intFromEnum(zir_index)].extended;
assert(extended.opcode == .struct_decl);
const small: Zir.Inst.StructDecl.Small = @bitCast(extended.small);
if (small.has_backing_int) {
var extra_index: usize = extended.operand + @typeInfo(Zir.Inst.StructDecl).Struct.fields.len;
const captures_len = if (small.has_captures_len) blk: {
const captures_len = zir.extra[extra_index];
extra_index += 1;
break :blk captures_len;
} else 0;
extra_index += @intFromBool(small.has_fields_len);
extra_index += @intFromBool(small.has_decls_len);
extra_index += captures_len;
const backing_int_body_len = zir.extra[extra_index];
extra_index += 1;
const backing_int_src: LazySrcLoc = .{ .node_offset_container_tag = 0 };
const backing_int_ty = blk: {
if (backing_int_body_len == 0) {
const backing_int_ref: Zir.Inst.Ref = @enumFromInt(zir.extra[extra_index]);
break :blk try sema.resolveType(&block, backing_int_src, backing_int_ref);
} else {
const body = zir.bodySlice(extra_index, backing_int_body_len);
const ty_ref = try sema.resolveInlineBody(&block, body, zir_index);
break :blk try sema.analyzeAsType(&block, backing_int_src, ty_ref);
}
};
try sema.checkBackingIntType(&block, backing_int_src, backing_int_ty, fields_bit_sum);
struct_type.backingIntType(ip).* = backing_int_ty.toIntern();
} else {
if (fields_bit_sum > std.math.maxInt(u16)) {
return sema.fail(&block, LazySrcLoc.nodeOffset(0), "size of packed struct '{d}' exceeds maximum bit width of 65535", .{fields_bit_sum});
}
const backing_int_ty = try mod.intType(.unsigned, @intCast(fields_bit_sum));
struct_type.backingIntType(ip).* = backing_int_ty.toIntern();
}
}
fn checkBackingIntType(sema: *Sema, block: *Block, src: LazySrcLoc, backing_int_ty: Type, fields_bit_sum: u64) CompileError!void {
const mod = sema.mod;
if (!backing_int_ty.isInt(mod)) {
return sema.fail(block, src, "expected backing integer type, found '{}'", .{backing_int_ty.fmt(sema.mod)});
}
if (backing_int_ty.bitSize(mod) != fields_bit_sum) {
return sema.fail(
block,
src,
"backing integer type '{}' has bit size {} but the struct fields have a total bit size of {}",
.{ backing_int_ty.fmt(sema.mod), backing_int_ty.bitSize(mod), fields_bit_sum },
);
}
}
fn checkIndexable(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) !void {
const mod = sema.mod;
if (!ty.isIndexable(mod)) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "type '{}' does not support indexing", .{ty.fmt(sema.mod)});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "operand must be an array, slice, tuple, or vector", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
}
fn checkMemOperand(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) !void {
const mod = sema.mod;
if (ty.zigTypeTag(mod) == .Pointer) {
switch (ty.ptrSize(mod)) {
.Slice, .Many, .C => return,
.One => {
const elem_ty = ty.childType(mod);
if (elem_ty.zigTypeTag(mod) == .Array) return;
// TODO https://github.com/ziglang/zig/issues/15479
// if (elem_ty.isTuple()) return;
},
}
}
const msg = msg: {
const msg = try sema.errMsg(block, src, "type '{}' is not an indexable pointer", .{ty.fmt(sema.mod)});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, src, msg, "operand must be a slice, a many pointer or a pointer to an array", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
/// Resolve a unions's alignment only without triggering resolution of its layout.
/// Asserts that the alignment is not yet resolved.
pub fn resolveUnionAlignment(
sema: *Sema,
ty: Type,
union_type: InternPool.LoadedUnionType,
) CompileError!Alignment {
const mod = sema.mod;
const ip = &mod.intern_pool;
const target = mod.getTarget();
assert(!union_type.haveLayout(ip));
if (union_type.flagsPtr(ip).status == .field_types_wip) {
// We'll guess "pointer-aligned", if the union has an
// underaligned pointer field then some allocations
// might require explicit alignment.
union_type.flagsPtr(ip).assumed_pointer_aligned = true;
const result = Alignment.fromByteUnits(@divExact(target.ptrBitWidth(), 8));
union_type.flagsPtr(ip).alignment = result;
return result;
}
try sema.resolveTypeFieldsUnion(ty, union_type);
var max_align: Alignment = .@"1";
for (0..union_type.field_types.len) |field_index| {
const field_ty = Type.fromInterned(union_type.field_types.get(ip)[field_index]);
if (!(try sema.typeHasRuntimeBits(field_ty))) continue;
const explicit_align = union_type.fieldAlign(ip, @intCast(field_index));
const field_align = if (explicit_align != .none)
explicit_align
else
try sema.typeAbiAlignment(field_ty);
max_align = max_align.max(field_align);
}
union_type.flagsPtr(ip).alignment = max_align;
return max_align;
}
/// This logic must be kept in sync with `Module.getUnionLayout`.
fn resolveUnionLayout(sema: *Sema, ty: Type) CompileError!void {
const mod = sema.mod;
const ip = &mod.intern_pool;
try sema.resolveTypeFieldsUnion(ty, ip.loadUnionType(ty.ip_index));
// Load again, since the tag type might have changed due to resolution.
const union_type = ip.loadUnionType(ty.ip_index);
switch (union_type.flagsPtr(ip).status) {
.none, .have_field_types => {},
.field_types_wip, .layout_wip => {
const msg = try Module.ErrorMsg.create(
sema.gpa,
mod.declPtr(union_type.decl).srcLoc(mod),
"union '{}' depends on itself",
.{ty.fmt(mod)},
);
return sema.failWithOwnedErrorMsg(null, msg);
},
.have_layout, .fully_resolved_wip, .fully_resolved => return,
}
const prev_status = union_type.flagsPtr(ip).status;
errdefer if (union_type.flagsPtr(ip).status == .layout_wip) {
union_type.flagsPtr(ip).status = prev_status;
};
union_type.flagsPtr(ip).status = .layout_wip;
var max_size: u64 = 0;
var max_align: Alignment = .@"1";
for (0..union_type.field_types.len) |field_index| {
const field_ty = Type.fromInterned(union_type.field_types.get(ip)[field_index]);
if (!(try sema.typeHasRuntimeBits(field_ty))) continue;
max_size = @max(max_size, sema.typeAbiSize(field_ty) catch |err| switch (err) {
error.AnalysisFail => {
const msg = sema.err orelse return err;
try sema.addFieldErrNote(ty, field_index, msg, "while checking this field", .{});
return err;
},
else => return err,
});
const explicit_align = union_type.fieldAlign(ip, @intCast(field_index));
const field_align = if (explicit_align != .none)
explicit_align
else
try sema.typeAbiAlignment(field_ty);
max_align = max_align.max(field_align);
}
const flags = union_type.flagsPtr(ip);
const has_runtime_tag = flags.runtime_tag.hasTag() and try sema.typeHasRuntimeBits(Type.fromInterned(union_type.enum_tag_ty));
const size, const alignment, const padding = if (has_runtime_tag) layout: {
const enum_tag_type = Type.fromInterned(union_type.enum_tag_ty);
const tag_align = try sema.typeAbiAlignment(enum_tag_type);
const tag_size = try sema.typeAbiSize(enum_tag_type);
// Put the tag before or after the payload depending on which one's
// alignment is greater.
var size: u64 = 0;
var padding: u32 = 0;
if (tag_align.order(max_align).compare(.gte)) {
// {Tag, Payload}
size += tag_size;
size = max_align.forward(size);
size += max_size;
const prev_size = size;
size = tag_align.forward(size);
padding = @intCast(size - prev_size);
} else {
// {Payload, Tag}
size += max_size;
size = switch (mod.getTarget().ofmt) {
.c => max_align,
else => tag_align,
}.forward(size);
size += tag_size;
const prev_size = size;
size = max_align.forward(size);
padding = @intCast(size - prev_size);
}
break :layout .{ size, max_align.max(tag_align), padding };
} else .{ max_align.forward(max_size), max_align, 0 };
union_type.size(ip).* = @intCast(size);
union_type.padding(ip).* = padding;
flags.alignment = alignment;
flags.status = .have_layout;
if (union_type.flagsPtr(ip).assumed_runtime_bits and !(try sema.typeHasRuntimeBits(ty))) {
const msg = try Module.ErrorMsg.create(
sema.gpa,
mod.declPtr(union_type.decl).srcLoc(mod),
"union layout depends on it having runtime bits",
.{},
);
return sema.failWithOwnedErrorMsg(null, msg);
}
if (union_type.flagsPtr(ip).assumed_pointer_aligned and
alignment.compareStrict(.neq, Alignment.fromByteUnits(@divExact(mod.getTarget().ptrBitWidth(), 8))))
{
const msg = try Module.ErrorMsg.create(
sema.gpa,
mod.declPtr(union_type.decl).srcLoc(mod),
"union layout depends on being pointer aligned",
.{},
);
return sema.failWithOwnedErrorMsg(null, msg);
}
}
/// Returns `error.AnalysisFail` if any of the types (recursively) failed to
/// be resolved.
pub fn resolveTypeFully(sema: *Sema, ty: Type) CompileError!void {
const mod = sema.mod;
const ip = &mod.intern_pool;
switch (ty.zigTypeTag(mod)) {
.Pointer => {
return sema.resolveTypeFully(ty.childType(mod));
},
.Struct => switch (mod.intern_pool.indexToKey(ty.toIntern())) {
.struct_type => try sema.resolveStructFully(ty),
.anon_struct_type => |tuple| {
for (tuple.types.get(ip)) |field_ty| {
try sema.resolveTypeFully(Type.fromInterned(field_ty));
}
},
.simple_type => |simple_type| try sema.resolveSimpleType(simple_type),
else => {},
},
.Union => return sema.resolveUnionFully(ty),
.Array => return sema.resolveTypeFully(ty.childType(mod)),
.Optional => {
return sema.resolveTypeFully(ty.optionalChild(mod));
},
.ErrorUnion => return sema.resolveTypeFully(ty.errorUnionPayload(mod)),
.Fn => {
const info = mod.typeToFunc(ty).?;
if (info.is_generic) {
// Resolving of generic function types is deferred to when
// the function is instantiated.
return;
}
for (0..info.param_types.len) |i| {
const param_ty = info.param_types.get(ip)[i];
try sema.resolveTypeFully(Type.fromInterned(param_ty));
}
try sema.resolveTypeFully(Type.fromInterned(info.return_type));
},
else => {},
}
}
fn resolveStructFully(sema: *Sema, ty: Type) CompileError!void {
try sema.resolveStructLayout(ty);
const mod = sema.mod;
const ip = &mod.intern_pool;
const struct_type = mod.typeToStruct(ty).?;
if (struct_type.setFullyResolved(ip)) return;
errdefer struct_type.clearFullyResolved(ip);
// After we have resolve struct layout we have to go over the fields again to
// make sure pointer fields get their child types resolved as well.
// See also similar code for unions.
for (0..struct_type.field_types.len) |i| {
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
try sema.resolveTypeFully(field_ty);
}
}
fn resolveUnionFully(sema: *Sema, ty: Type) CompileError!void {
try sema.resolveUnionLayout(ty);
const mod = sema.mod;
const ip = &mod.intern_pool;
const union_obj = mod.typeToUnion(ty).?;
switch (union_obj.flagsPtr(ip).status) {
.none, .have_field_types, .field_types_wip, .layout_wip, .have_layout => {},
.fully_resolved_wip, .fully_resolved => return,
}
{
// After we have resolve union layout we have to go over the fields again to
// make sure pointer fields get their child types resolved as well.
// See also similar code for structs.
const prev_status = union_obj.flagsPtr(ip).status;
errdefer union_obj.flagsPtr(ip).status = prev_status;
union_obj.flagsPtr(ip).status = .fully_resolved_wip;
for (0..union_obj.field_types.len) |field_index| {
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[field_index]);
try sema.resolveTypeFully(field_ty);
}
union_obj.flagsPtr(ip).status = .fully_resolved;
}
// And let's not forget comptime-only status.
_ = try sema.typeRequiresComptime(ty);
}
pub fn resolveTypeFields(sema: *Sema, ty: Type) CompileError!void {
const mod = sema.mod;
const ip = &mod.intern_pool;
const ty_ip = ty.toIntern();
switch (ty_ip) {
.var_args_param_type => unreachable,
.none => unreachable,
.u0_type,
.i0_type,
.u1_type,
.u8_type,
.i8_type,
.u16_type,
.i16_type,
.u29_type,
.u32_type,
.i32_type,
.u64_type,
.i64_type,
.u80_type,
.u128_type,
.i128_type,
.usize_type,
.isize_type,
.c_char_type,
.c_short_type,
.c_ushort_type,
.c_int_type,
.c_uint_type,
.c_long_type,
.c_ulong_type,
.c_longlong_type,
.c_ulonglong_type,
.c_longdouble_type,
.f16_type,
.f32_type,
.f64_type,
.f80_type,
.f128_type,
.anyopaque_type,
.bool_type,
.void_type,
.type_type,
.anyerror_type,
.adhoc_inferred_error_set_type,
.comptime_int_type,
.comptime_float_type,
.noreturn_type,
.anyframe_type,
.null_type,
.undefined_type,
.enum_literal_type,
.manyptr_u8_type,
.manyptr_const_u8_type,
.manyptr_const_u8_sentinel_0_type,
.single_const_pointer_to_comptime_int_type,
.slice_const_u8_type,
.slice_const_u8_sentinel_0_type,
.optional_noreturn_type,
.anyerror_void_error_union_type,
.generic_poison_type,
.empty_struct_type,
=> {},
.undef => unreachable,
.zero => unreachable,
.zero_usize => unreachable,
.zero_u8 => unreachable,
.one => unreachable,
.one_usize => unreachable,
.one_u8 => unreachable,
.four_u8 => unreachable,
.negative_one => unreachable,
.calling_convention_c => unreachable,
.calling_convention_inline => unreachable,
.void_value => unreachable,
.unreachable_value => unreachable,
.null_value => unreachable,
.bool_true => unreachable,
.bool_false => unreachable,
.empty_struct => unreachable,
.generic_poison => unreachable,
else => switch (ip.items.items(.tag)[@intFromEnum(ty_ip)]) {
.type_struct,
.type_struct_packed,
.type_struct_packed_inits,
=> try sema.resolveTypeFieldsStruct(ty_ip, ip.loadStructType(ty_ip)),
.type_union => try sema.resolveTypeFieldsUnion(Type.fromInterned(ty_ip), ip.loadUnionType(ty_ip)),
.simple_type => try sema.resolveSimpleType(ip.indexToKey(ty_ip).simple_type),
else => {},
},
}
}
/// Fully resolves a simple type. This is usually a nop, but for builtin types with
/// special InternPool indices (such as std.builtin.Type) it will analyze and fully
/// resolve the container type.
fn resolveSimpleType(sema: *Sema, simple_type: InternPool.SimpleType) CompileError!void {
const builtin_type_name: []const u8 = switch (simple_type) {
.atomic_order => "AtomicOrder",
.atomic_rmw_op => "AtomicRmwOp",
.calling_convention => "CallingConvention",
.address_space => "AddressSpace",
.float_mode => "FloatMode",
.reduce_op => "ReduceOp",
.call_modifier => "CallModifer",
.prefetch_options => "PrefetchOptions",
.export_options => "ExportOptions",
.extern_options => "ExternOptions",
.type_info => "Type",
else => return,
};
// This will fully resolve the type.
_ = try sema.getBuiltinType(builtin_type_name);
}
pub fn resolveTypeFieldsStruct(
sema: *Sema,
ty: InternPool.Index,
struct_type: InternPool.LoadedStructType,
) CompileError!void {
const mod = sema.mod;
const ip = &mod.intern_pool;
// If there is no owner decl it means the struct has no fields.
const owner_decl = struct_type.decl.unwrap() orelse return;
switch (mod.declPtr(owner_decl).analysis) {
.file_failure,
.dependency_failure,
.sema_failure,
=> {
sema.owner_decl.analysis = .dependency_failure;
return error.AnalysisFail;
},
else => {},
}
if (struct_type.haveFieldTypes(ip)) return;
if (struct_type.setTypesWip(ip)) {
const msg = try Module.ErrorMsg.create(
sema.gpa,
mod.declPtr(owner_decl).srcLoc(mod),
"struct '{}' depends on itself",
.{Type.fromInterned(ty).fmt(mod)},
);
return sema.failWithOwnedErrorMsg(null, msg);
}
defer struct_type.clearTypesWip(ip);
try semaStructFields(mod, sema.arena, struct_type);
}
pub fn resolveStructFieldInits(sema: *Sema, ty: Type) CompileError!void {
const mod = sema.mod;
const ip = &mod.intern_pool;
const struct_type = mod.typeToStruct(ty) orelse return;
const owner_decl = struct_type.decl.unwrap() orelse return;
// Inits can start as resolved
if (struct_type.haveFieldInits(ip)) return;
try sema.resolveStructLayout(ty);
if (struct_type.setInitsWip(ip)) {
const msg = try Module.ErrorMsg.create(
sema.gpa,
mod.declPtr(owner_decl).srcLoc(mod),
"struct '{}' depends on itself",
.{ty.fmt(mod)},
);
return sema.failWithOwnedErrorMsg(null, msg);
}
defer struct_type.clearInitsWip(ip);
try semaStructFieldInits(mod, sema.arena, struct_type);
struct_type.setHaveFieldInits(ip);
}
pub fn resolveTypeFieldsUnion(sema: *Sema, ty: Type, union_type: InternPool.LoadedUnionType) CompileError!void {
const mod = sema.mod;
const ip = &mod.intern_pool;
const owner_decl = mod.declPtr(union_type.decl);
switch (owner_decl.analysis) {
.file_failure,
.dependency_failure,
.sema_failure,
=> {
sema.owner_decl.analysis = .dependency_failure;
return error.AnalysisFail;
},
else => {},
}
switch (union_type.flagsPtr(ip).status) {
.none => {},
.field_types_wip => {
const msg = try Module.ErrorMsg.create(
sema.gpa,
owner_decl.srcLoc(mod),
"union '{}' depends on itself",
.{ty.fmt(mod)},
);
return sema.failWithOwnedErrorMsg(null, msg);
},
.have_field_types,
.have_layout,
.layout_wip,
.fully_resolved_wip,
.fully_resolved,
=> return,
}
union_type.flagsPtr(ip).status = .field_types_wip;
errdefer union_type.flagsPtr(ip).status = .none;
try semaUnionFields(mod, sema.arena, union_type);
union_type.flagsPtr(ip).status = .have_field_types;
}
/// Returns a normal error set corresponding to the fully populated inferred
/// error set.
fn resolveInferredErrorSet(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
ies_index: InternPool.Index,
) CompileError!InternPool.Index {
const mod = sema.mod;
const ip = &mod.intern_pool;
const func_index = ip.iesFuncIndex(ies_index);
const func = mod.funcInfo(func_index);
try sema.declareDependency(.{ .func_ies = func_index });
// TODO: during an incremental update this might not be `.none`, but the
// function might be out-of-date!
const resolved_ty = func.resolvedErrorSet(ip).*;
if (resolved_ty != .none) return resolved_ty;
if (func.analysis(ip).state == .in_progress)
return sema.fail(block, src, "unable to resolve inferred error set", .{});
// In order to ensure that all dependencies are properly added to the set,
// we need to ensure the function body is analyzed of the inferred error
// set. However, in the case of comptime/inline function calls with
// inferred error sets, each call gets an adhoc InferredErrorSet object, which
// has no corresponding function body.
const ies_func_owner_decl = mod.declPtr(func.owner_decl);
const ies_func_info = mod.typeToFunc(ies_func_owner_decl.typeOf(mod)).?;
// if ies declared by a inline function with generic return type, the return_type should be generic_poison,
// because inline function does not create a new declaration, and the ies has been filled with analyzeCall,
// so here we can simply skip this case.
if (ies_func_info.return_type == .generic_poison_type) {
assert(ies_func_info.cc == .Inline);
} else if (ip.errorUnionSet(ies_func_info.return_type) == ies_index) {
if (ies_func_info.is_generic) {
const msg = msg: {
const msg = try sema.errMsg(block, src, "unable to resolve inferred error set of generic function", .{});
errdefer msg.destroy(sema.gpa);
try sema.mod.errNoteNonLazy(ies_func_owner_decl.srcLoc(mod), msg, "generic function declared here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(block, msg);
}
// In this case we are dealing with the actual InferredErrorSet object that
// corresponds to the function, not one created to track an inline/comptime call.
try sema.ensureFuncBodyAnalyzed(func_index);
}
// This will now have been resolved by the logic at the end of `Module.analyzeFnBody`
// which calls `resolveInferredErrorSetPtr`.
const final_resolved_ty = func.resolvedErrorSet(ip).*;
assert(final_resolved_ty != .none);
return final_resolved_ty;
}
pub fn resolveInferredErrorSetPtr(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
ies: *InferredErrorSet,
) CompileError!void {
const mod = sema.mod;
const ip = &mod.intern_pool;
if (ies.resolved != .none) return;
const ies_index = ip.errorUnionSet(sema.fn_ret_ty.toIntern());
for (ies.inferred_error_sets.keys()) |other_ies_index| {
if (ies_index == other_ies_index) continue;
switch (try sema.resolveInferredErrorSet(block, src, other_ies_index)) {
.anyerror_type => {
ies.resolved = .anyerror_type;
return;
},
else => |error_set_ty_index| {
const names = ip.indexToKey(error_set_ty_index).error_set_type.names;
for (names.get(ip)) |name| {
try ies.errors.put(sema.arena, name, {});
}
},
}
}
const resolved_error_set_ty = try mod.errorSetFromUnsortedNames(ies.errors.keys());
ies.resolved = resolved_error_set_ty.toIntern();
}
fn resolveAdHocInferredErrorSet(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
value: InternPool.Index,
) CompileError!InternPool.Index {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const new_ty = try resolveAdHocInferredErrorSetTy(sema, block, src, ip.typeOf(value));
if (new_ty == .none) return value;
return ip.getCoerced(gpa, value, new_ty);
}
fn resolveAdHocInferredErrorSetTy(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
ty: InternPool.Index,
) CompileError!InternPool.Index {
const ies = sema.fn_ret_ty_ies orelse return .none;
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const error_union_info = switch (ip.indexToKey(ty)) {
.error_union_type => |x| x,
else => return .none,
};
if (error_union_info.error_set_type != .adhoc_inferred_error_set_type)
return .none;
try sema.resolveInferredErrorSetPtr(block, src, ies);
const new_ty = try ip.get(gpa, .{ .error_union_type = .{
.error_set_type = ies.resolved,
.payload_type = error_union_info.payload_type,
} });
return new_ty;
}
fn resolveInferredErrorSetTy(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
ty: InternPool.Index,
) CompileError!InternPool.Index {
const mod = sema.mod;
const ip = &mod.intern_pool;
if (ty == .anyerror_type) return ty;
switch (ip.indexToKey(ty)) {
.error_set_type => return ty,
.inferred_error_set_type => return sema.resolveInferredErrorSet(block, src, ty),
else => unreachable,
}
}
fn structZirInfo(zir: Zir, zir_index: Zir.Inst.Index) struct {
/// fields_len
usize,
Zir.Inst.StructDecl.Small,
/// extra_index
usize,
} {
const extended = zir.instructions.items(.data)[@intFromEnum(zir_index)].extended;
assert(extended.opcode == .struct_decl);
const small: Zir.Inst.StructDecl.Small = @bitCast(extended.small);
var extra_index: usize = extended.operand + @typeInfo(Zir.Inst.StructDecl).Struct.fields.len;
const captures_len = if (small.has_captures_len) blk: {
const captures_len = zir.extra[extra_index];
extra_index += 1;
break :blk captures_len;
} else 0;
const fields_len = if (small.has_fields_len) blk: {
const fields_len = zir.extra[extra_index];
extra_index += 1;
break :blk fields_len;
} else 0;
const decls_len = if (small.has_decls_len) decls_len: {
const decls_len = zir.extra[extra_index];
extra_index += 1;
break :decls_len decls_len;
} else 0;
extra_index += captures_len;
// The backing integer cannot be handled until `resolveStructLayout()`.
if (small.has_backing_int) {
const backing_int_body_len = zir.extra[extra_index];
extra_index += 1; // backing_int_body_len
if (backing_int_body_len == 0) {
extra_index += 1; // backing_int_ref
} else {
extra_index += backing_int_body_len; // backing_int_body_inst
}
}
// Skip over decls.
extra_index += decls_len;
return .{ fields_len, small, extra_index };
}
fn semaStructFields(
mod: *Module,
arena: Allocator,
struct_type: InternPool.LoadedStructType,
) CompileError!void {
const gpa = mod.gpa;
const ip = &mod.intern_pool;
const decl_index = struct_type.decl.unwrap() orelse return;
const decl = mod.declPtr(decl_index);
const namespace_index = struct_type.namespace.unwrap() orelse decl.src_namespace;
const zir = mod.namespacePtr(namespace_index).file_scope.zir;
const zir_index = struct_type.zir_index.unwrap().?.resolve(ip);
const fields_len, const small, var extra_index = structZirInfo(zir, zir_index);
if (fields_len == 0) switch (struct_type.layout) {
.@"packed" => {
try semaBackingIntType(mod, struct_type);
return;
},
.auto, .@"extern" => {
struct_type.size(ip).* = 0;
struct_type.flagsPtr(ip).layout_resolved = true;
return;
},
};
var comptime_err_ret_trace = std.ArrayList(Module.SrcLoc).init(gpa);
defer comptime_err_ret_trace.deinit();
var sema: Sema = .{
.mod = mod,
.gpa = gpa,
.arena = arena,
.code = zir,
.owner_decl = decl,
.owner_decl_index = decl_index,
.func_index = .none,
.func_is_naked = false,
.fn_ret_ty = Type.void,
.fn_ret_ty_ies = null,
.owner_func_index = .none,
.comptime_err_ret_trace = &comptime_err_ret_trace,
};
defer sema.deinit();
var block_scope: Block = .{
.parent = null,
.sema = &sema,
.src_decl = decl_index,
.namespace = namespace_index,
.instructions = .{},
.inlining = null,
.is_comptime = true,
};
defer assert(block_scope.instructions.items.len == 0);
const Field = struct {
type_body_len: u32 = 0,
align_body_len: u32 = 0,
init_body_len: u32 = 0,
type_ref: Zir.Inst.Ref = .none,
};
const fields = try sema.arena.alloc(Field, fields_len);
var any_inits = false;
var any_aligned = false;
{
const bits_per_field = 4;
const fields_per_u32 = 32 / bits_per_field;
const bit_bags_count = std.math.divCeil(usize, fields_len, fields_per_u32) catch unreachable;
const flags_index = extra_index;
var bit_bag_index: usize = flags_index;
extra_index += bit_bags_count;
var cur_bit_bag: u32 = undefined;
var field_i: u32 = 0;
while (field_i < fields_len) : (field_i += 1) {
if (field_i % fields_per_u32 == 0) {
cur_bit_bag = zir.extra[bit_bag_index];
bit_bag_index += 1;
}
const has_align = @as(u1, @truncate(cur_bit_bag)) != 0;
cur_bit_bag >>= 1;
const has_init = @as(u1, @truncate(cur_bit_bag)) != 0;
cur_bit_bag >>= 1;
const is_comptime = @as(u1, @truncate(cur_bit_bag)) != 0;
cur_bit_bag >>= 1;
const has_type_body = @as(u1, @truncate(cur_bit_bag)) != 0;
cur_bit_bag >>= 1;
if (is_comptime) struct_type.setFieldComptime(ip, field_i);
var opt_field_name_zir: ?[:0]const u8 = null;
if (!small.is_tuple) {
opt_field_name_zir = zir.nullTerminatedString(@enumFromInt(zir.extra[extra_index]));
extra_index += 1;
}
extra_index += 1; // doc_comment
fields[field_i] = .{};
if (has_type_body) {
fields[field_i].type_body_len = zir.extra[extra_index];
} else {
fields[field_i].type_ref = @enumFromInt(zir.extra[extra_index]);
}
extra_index += 1;
// This string needs to outlive the ZIR code.
if (opt_field_name_zir) |field_name_zir| {
const field_name = try ip.getOrPutString(gpa, field_name_zir);
assert(struct_type.addFieldName(ip, field_name) == null);
}
if (has_align) {
fields[field_i].align_body_len = zir.extra[extra_index];
extra_index += 1;
any_aligned = true;
}
if (has_init) {
fields[field_i].init_body_len = zir.extra[extra_index];
extra_index += 1;
any_inits = true;
}
}
}
// Next we do only types and alignments, saving the inits for a second pass,
// so that init values may depend on type layout.
for (fields, 0..) |zir_field, field_i| {
const field_ty: Type = ty: {
if (zir_field.type_ref != .none) {
break :ty sema.resolveType(&block_scope, .unneeded, zir_field.type_ref) catch |err| switch (err) {
error.NeededSourceLocation => {
const ty_src = mod.fieldSrcLoc(decl_index, .{
.index = field_i,
.range = .type,
}).lazy;
_ = try sema.resolveType(&block_scope, ty_src, zir_field.type_ref);
unreachable;
},
else => |e| return e,
};
}
assert(zir_field.type_body_len != 0);
const body = zir.bodySlice(extra_index, zir_field.type_body_len);
extra_index += body.len;
const ty_ref = try sema.resolveInlineBody(&block_scope, body, zir_index);
break :ty sema.analyzeAsType(&block_scope, .unneeded, ty_ref) catch |err| switch (err) {
error.NeededSourceLocation => {
const ty_src = mod.fieldSrcLoc(decl_index, .{
.index = field_i,
.range = .type,
}).lazy;
_ = try sema.analyzeAsType(&block_scope, ty_src, ty_ref);
unreachable;
},
else => |e| return e,
};
};
if (field_ty.isGenericPoison()) {
return error.GenericPoison;
}
struct_type.field_types.get(ip)[field_i] = field_ty.toIntern();
if (field_ty.zigTypeTag(mod) == .Opaque) {
const msg = msg: {
const ty_src = mod.fieldSrcLoc(decl_index, .{
.index = field_i,
.range = .type,
}).lazy;
const msg = try sema.errMsg(&block_scope, ty_src, "opaque types have unknown size and therefore cannot be directly embedded in structs", .{});
errdefer msg.destroy(sema.gpa);
try sema.addDeclaredHereNote(msg, field_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(&block_scope, msg);
}
if (field_ty.zigTypeTag(mod) == .NoReturn) {
const msg = msg: {
const ty_src = mod.fieldSrcLoc(decl_index, .{
.index = field_i,
.range = .type,
}).lazy;
const msg = try sema.errMsg(&block_scope, ty_src, "struct fields cannot be 'noreturn'", .{});
errdefer msg.destroy(sema.gpa);
try sema.addDeclaredHereNote(msg, field_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(&block_scope, msg);
}
switch (struct_type.layout) {
.@"extern" => if (!try sema.validateExternType(field_ty, .struct_field)) {
const msg = msg: {
const ty_src = mod.fieldSrcLoc(decl_index, .{
.index = field_i,
.range = .type,
});
const msg = try sema.errMsg(&block_scope, ty_src.lazy, "extern structs cannot contain fields of type '{}'", .{field_ty.fmt(mod)});
errdefer msg.destroy(sema.gpa);
try sema.explainWhyTypeIsNotExtern(msg, ty_src, field_ty, .struct_field);
try sema.addDeclaredHereNote(msg, field_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(&block_scope, msg);
},
.@"packed" => if (!try sema.validatePackedType(field_ty)) {
const msg = msg: {
const ty_src = mod.fieldSrcLoc(decl_index, .{
.index = field_i,
.range = .type,
});
const msg = try sema.errMsg(&block_scope, ty_src.lazy, "packed structs cannot contain fields of type '{}'", .{field_ty.fmt(mod)});
errdefer msg.destroy(sema.gpa);
try sema.explainWhyTypeIsNotPacked(msg, ty_src, field_ty);
try sema.addDeclaredHereNote(msg, field_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(&block_scope, msg);
},
else => {},
}
if (zir_field.align_body_len > 0) {
const body = zir.bodySlice(extra_index, zir_field.align_body_len);
extra_index += body.len;
const align_ref = try sema.resolveInlineBody(&block_scope, body, zir_index);
const field_align = sema.analyzeAsAlign(&block_scope, .unneeded, align_ref) catch |err| switch (err) {
error.NeededSourceLocation => {
const align_src = mod.fieldSrcLoc(decl_index, .{
.index = field_i,
.range = .alignment,
}).lazy;
_ = try sema.analyzeAsAlign(&block_scope, align_src, align_ref);
unreachable;
},
else => |e| return e,
};
struct_type.field_aligns.get(ip)[field_i] = field_align;
}
extra_index += zir_field.init_body_len;
}
struct_type.clearTypesWip(ip);
if (!any_inits) struct_type.setHaveFieldInits(ip);
}
// This logic must be kept in sync with `semaStructFields`
fn semaStructFieldInits(
mod: *Module,
arena: Allocator,
struct_type: InternPool.LoadedStructType,
) CompileError!void {
const gpa = mod.gpa;
const ip = &mod.intern_pool;
assert(!struct_type.haveFieldInits(ip));
const decl_index = struct_type.decl.unwrap() orelse return;
const decl = mod.declPtr(decl_index);
const namespace_index = struct_type.namespace.unwrap() orelse decl.src_namespace;
const zir = mod.namespacePtr(namespace_index).file_scope.zir;
const zir_index = struct_type.zir_index.unwrap().?.resolve(ip);
const fields_len, const small, var extra_index = structZirInfo(zir, zir_index);
var comptime_err_ret_trace = std.ArrayList(Module.SrcLoc).init(gpa);
defer comptime_err_ret_trace.deinit();
var sema: Sema = .{
.mod = mod,
.gpa = gpa,
.arena = arena,
.code = zir,
.owner_decl = decl,
.owner_decl_index = decl_index,
.func_index = .none,
.func_is_naked = false,
.fn_ret_ty = Type.void,
.fn_ret_ty_ies = null,
.owner_func_index = .none,
.comptime_err_ret_trace = &comptime_err_ret_trace,
};
defer sema.deinit();
var block_scope: Block = .{
.parent = null,
.sema = &sema,
.src_decl = decl_index,
.namespace = namespace_index,
.instructions = .{},
.inlining = null,
.is_comptime = true,
};
defer assert(block_scope.instructions.items.len == 0);
const Field = struct {
type_body_len: u32 = 0,
align_body_len: u32 = 0,
init_body_len: u32 = 0,
};
const fields = try sema.arena.alloc(Field, fields_len);
var any_inits = false;
{
const bits_per_field = 4;
const fields_per_u32 = 32 / bits_per_field;
const bit_bags_count = std.math.divCeil(usize, fields_len, fields_per_u32) catch unreachable;
const flags_index = extra_index;
var bit_bag_index: usize = flags_index;
extra_index += bit_bags_count;
var cur_bit_bag: u32 = undefined;
var field_i: u32 = 0;
while (field_i < fields_len) : (field_i += 1) {
if (field_i % fields_per_u32 == 0) {
cur_bit_bag = zir.extra[bit_bag_index];
bit_bag_index += 1;
}
const has_align = @as(u1, @truncate(cur_bit_bag)) != 0;
cur_bit_bag >>= 1;
const has_init = @as(u1, @truncate(cur_bit_bag)) != 0;
cur_bit_bag >>= 2;
const has_type_body = @as(u1, @truncate(cur_bit_bag)) != 0;
cur_bit_bag >>= 1;
if (!small.is_tuple) {
extra_index += 1;
}
extra_index += 1; // doc_comment
fields[field_i] = .{};
if (has_type_body) fields[field_i].type_body_len = zir.extra[extra_index];
extra_index += 1;
if (has_align) {
fields[field_i].align_body_len = zir.extra[extra_index];
extra_index += 1;
}
if (has_init) {
fields[field_i].init_body_len = zir.extra[extra_index];
extra_index += 1;
any_inits = true;
}
}
}
if (any_inits) {
for (fields, 0..) |zir_field, field_i| {
extra_index += zir_field.type_body_len;
extra_index += zir_field.align_body_len;
const body = zir.bodySlice(extra_index, zir_field.init_body_len);
extra_index += zir_field.init_body_len;
if (body.len == 0) continue;
// Pre-populate the type mapping the body expects to be there.
// In init bodies, the zir index of the struct itself is used
// to refer to the current field type.
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[field_i]);
const type_ref = Air.internedToRef(field_ty.toIntern());
try sema.inst_map.ensureSpaceForInstructions(sema.gpa, &.{zir_index});
sema.inst_map.putAssumeCapacity(zir_index, type_ref);
const init = try sema.resolveInlineBody(&block_scope, body, zir_index);
const coerced = sema.coerce(&block_scope, field_ty, init, .unneeded) catch |err| switch (err) {
error.NeededSourceLocation => {
const init_src = mod.fieldSrcLoc(decl_index, .{
.index = field_i,
.range = .value,
}).lazy;
_ = try sema.coerce(&block_scope, field_ty, init, init_src);
unreachable;
},
else => |e| return e,
};
const default_val = (try sema.resolveValue(coerced)) orelse {
const init_src = mod.fieldSrcLoc(decl_index, .{
.index = field_i,
.range = .value,
}).lazy;
return sema.failWithNeededComptime(&block_scope, init_src, .{
.needed_comptime_reason = "struct field default value must be comptime-known",
});
};
if (default_val.canMutateComptimeVarState(mod)) {
const init_src = mod.fieldSrcLoc(decl_index, .{
.index = field_i,
.range = .value,
}).lazy;
return sema.fail(&block_scope, init_src, "field default value contains reference to comptime-mutable memory", .{});
}
struct_type.field_inits.get(ip)[field_i] = default_val.toIntern();
}
}
}
fn semaUnionFields(mod: *Module, arena: Allocator, union_type: InternPool.LoadedUnionType) CompileError!void {
const tracy = trace(@src());
defer tracy.end();
const gpa = mod.gpa;
const ip = &mod.intern_pool;
const decl_index = union_type.decl;
const zir = mod.namespacePtr(union_type.namespace.unwrap().?).file_scope.zir;
const zir_index = union_type.zir_index.resolve(ip);
const extended = zir.instructions.items(.data)[@intFromEnum(zir_index)].extended;
assert(extended.opcode == .union_decl);
const small: Zir.Inst.UnionDecl.Small = @bitCast(extended.small);
var extra_index: usize = extended.operand + @typeInfo(Zir.Inst.UnionDecl).Struct.fields.len;
const src = LazySrcLoc.nodeOffset(0);
const tag_type_ref: Zir.Inst.Ref = if (small.has_tag_type) blk: {
const ty_ref: Zir.Inst.Ref = @enumFromInt(zir.extra[extra_index]);
extra_index += 1;
break :blk ty_ref;
} else .none;
const captures_len = if (small.has_captures_len) blk: {
const captures_len = zir.extra[extra_index];
extra_index += 1;
break :blk captures_len;
} else 0;
const body_len = if (small.has_body_len) blk: {
const body_len = zir.extra[extra_index];
extra_index += 1;
break :blk body_len;
} else 0;
const fields_len = if (small.has_fields_len) blk: {
const fields_len = zir.extra[extra_index];
extra_index += 1;
break :blk fields_len;
} else 0;
const decls_len = if (small.has_decls_len) decls_len: {
const decls_len = zir.extra[extra_index];
extra_index += 1;
break :decls_len decls_len;
} else 0;
// Skip over captures and decls.
extra_index += captures_len + decls_len;
const body = zir.bodySlice(extra_index, body_len);
extra_index += body.len;
const decl = mod.declPtr(decl_index);
var comptime_err_ret_trace = std.ArrayList(Module.SrcLoc).init(gpa);
defer comptime_err_ret_trace.deinit();
var sema: Sema = .{
.mod = mod,
.gpa = gpa,
.arena = arena,
.code = zir,
.owner_decl = decl,
.owner_decl_index = decl_index,
.func_index = .none,
.func_is_naked = false,
.fn_ret_ty = Type.void,
.fn_ret_ty_ies = null,
.owner_func_index = .none,
.comptime_err_ret_trace = &comptime_err_ret_trace,
};
defer sema.deinit();
var block_scope: Block = .{
.parent = null,
.sema = &sema,
.src_decl = decl_index,
.namespace = union_type.namespace.unwrap().?,
.instructions = .{},
.inlining = null,
.is_comptime = true,
};
defer assert(block_scope.instructions.items.len == 0);
if (body.len != 0) {
_ = try sema.analyzeInlineBody(&block_scope, body, zir_index);
}
var int_tag_ty: Type = undefined;
var enum_field_names: []InternPool.NullTerminatedString = &.{};
var enum_field_vals: std.AutoArrayHashMapUnmanaged(InternPool.Index, void) = .{};
var explicit_tags_seen: []bool = &.{};
if (tag_type_ref != .none) {
const tag_ty_src: LazySrcLoc = .{ .node_offset_container_tag = src.node_offset.x };
const provided_ty = try sema.resolveType(&block_scope, tag_ty_src, tag_type_ref);
if (small.auto_enum_tag) {
// The provided type is an integer type and we must construct the enum tag type here.
int_tag_ty = provided_ty;
if (int_tag_ty.zigTypeTag(mod) != .Int and int_tag_ty.zigTypeTag(mod) != .ComptimeInt) {
return sema.fail(&block_scope, tag_ty_src, "expected integer tag type, found '{}'", .{int_tag_ty.fmt(mod)});
}
if (fields_len > 0) {
const field_count_val = try mod.intValue(Type.comptime_int, fields_len - 1);
if (!(try sema.intFitsInType(field_count_val, int_tag_ty, null))) {
const msg = msg: {
const msg = try sema.errMsg(&block_scope, tag_ty_src, "specified integer tag type cannot represent every field", .{});
errdefer msg.destroy(sema.gpa);
try sema.errNote(&block_scope, tag_ty_src, msg, "type '{}' cannot fit values in range 0...{d}", .{
int_tag_ty.fmt(mod),
fields_len - 1,
});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(&block_scope, msg);
}
enum_field_names = try sema.arena.alloc(InternPool.NullTerminatedString, fields_len);
try enum_field_vals.ensureTotalCapacity(sema.arena, fields_len);
}
} else {
// The provided type is the enum tag type.
union_type.tagTypePtr(ip).* = provided_ty.toIntern();
const enum_type = switch (ip.indexToKey(provided_ty.toIntern())) {
.enum_type => ip.loadEnumType(provided_ty.toIntern()),
else => return sema.fail(&block_scope, tag_ty_src, "expected enum tag type, found '{}'", .{provided_ty.fmt(mod)}),
};
// The fields of the union must match the enum exactly.
// A flag per field is used to check for missing and extraneous fields.
explicit_tags_seen = try sema.arena.alloc(bool, enum_type.names.len);
@memset(explicit_tags_seen, false);
}
} else {
// If auto_enum_tag is false, this is an untagged union. However, for semantic analysis
// purposes, we still auto-generate an enum tag type the same way. That the union is
// untagged is represented by the Type tag (union vs union_tagged).
enum_field_names = try sema.arena.alloc(InternPool.NullTerminatedString, fields_len);
}
var field_types: std.ArrayListUnmanaged(InternPool.Index) = .{};
var field_aligns: std.ArrayListUnmanaged(InternPool.Alignment) = .{};
try field_types.ensureTotalCapacityPrecise(sema.arena, fields_len);
if (small.any_aligned_fields)
try field_aligns.ensureTotalCapacityPrecise(sema.arena, fields_len);
const bits_per_field = 4;
const fields_per_u32 = 32 / bits_per_field;
const bit_bags_count = std.math.divCeil(usize, fields_len, fields_per_u32) catch unreachable;
var bit_bag_index: usize = extra_index;
extra_index += bit_bags_count;
var cur_bit_bag: u32 = undefined;
var field_i: u32 = 0;
var last_tag_val: ?Value = null;
while (field_i < fields_len) : (field_i += 1) {
if (field_i % fields_per_u32 == 0) {
cur_bit_bag = zir.extra[bit_bag_index];
bit_bag_index += 1;
}
const has_type = @as(u1, @truncate(cur_bit_bag)) != 0;
cur_bit_bag >>= 1;
const has_align = @as(u1, @truncate(cur_bit_bag)) != 0;
cur_bit_bag >>= 1;
const has_tag = @as(u1, @truncate(cur_bit_bag)) != 0;
cur_bit_bag >>= 1;
const unused = @as(u1, @truncate(cur_bit_bag)) != 0;
cur_bit_bag >>= 1;
_ = unused;
const field_name_index: Zir.NullTerminatedString = @enumFromInt(zir.extra[extra_index]);
const field_name_zir = zir.nullTerminatedString(field_name_index);
extra_index += 1;
// doc_comment
extra_index += 1;
const field_type_ref: Zir.Inst.Ref = if (has_type) blk: {
const field_type_ref: Zir.Inst.Ref = @enumFromInt(zir.extra[extra_index]);
extra_index += 1;
break :blk field_type_ref;
} else .none;
const align_ref: Zir.Inst.Ref = if (has_align) blk: {
const align_ref: Zir.Inst.Ref = @enumFromInt(zir.extra[extra_index]);
extra_index += 1;
break :blk align_ref;
} else .none;
const tag_ref: Air.Inst.Ref = if (has_tag) blk: {
const tag_ref: Zir.Inst.Ref = @enumFromInt(zir.extra[extra_index]);
extra_index += 1;
break :blk try sema.resolveInst(tag_ref);
} else .none;
if (enum_field_vals.capacity() > 0) {
const enum_tag_val = if (tag_ref != .none) blk: {
const val = sema.semaUnionFieldVal(&block_scope, .unneeded, int_tag_ty, tag_ref) catch |err| switch (err) {
error.NeededSourceLocation => {
const val_src = mod.fieldSrcLoc(union_type.decl, .{
.index = field_i,
.range = .value,
}).lazy;
_ = try sema.semaUnionFieldVal(&block_scope, val_src, int_tag_ty, tag_ref);
unreachable;
},
else => |e| return e,
};
last_tag_val = val;
break :blk val;
} else blk: {
const val = if (last_tag_val) |val|
try sema.intAdd(val, Value.one_comptime_int, int_tag_ty, undefined)
else
try mod.intValue(int_tag_ty, 0);
last_tag_val = val;
break :blk val;
};
const gop = enum_field_vals.getOrPutAssumeCapacity(enum_tag_val.toIntern());
if (gop.found_existing) {
const field_src = mod.fieldSrcLoc(union_type.decl, .{ .index = field_i }).lazy;
const other_field_src = mod.fieldSrcLoc(union_type.decl, .{ .index = gop.index }).lazy;
const msg = msg: {
const msg = try sema.errMsg(&block_scope, field_src, "enum tag value {} already taken", .{enum_tag_val.fmtValue(mod)});
errdefer msg.destroy(gpa);
try sema.errNote(&block_scope, other_field_src, msg, "other occurrence here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(&block_scope, msg);
}
}
// This string needs to outlive the ZIR code.
const field_name = try ip.getOrPutString(gpa, field_name_zir);
if (enum_field_names.len != 0) {
enum_field_names[field_i] = field_name;
}
const field_ty: Type = if (!has_type)
Type.void
else if (field_type_ref == .none)
Type.noreturn
else
sema.resolveType(&block_scope, .unneeded, field_type_ref) catch |err| switch (err) {
error.NeededSourceLocation => {
const ty_src = mod.fieldSrcLoc(union_type.decl, .{
.index = field_i,
.range = .type,
}).lazy;
_ = try sema.resolveType(&block_scope, ty_src, field_type_ref);
unreachable;
},
else => |e| return e,
};
if (field_ty.isGenericPoison()) {
return error.GenericPoison;
}
if (explicit_tags_seen.len > 0) {
const tag_info = ip.loadEnumType(union_type.tagTypePtr(ip).*);
const enum_index = tag_info.nameIndex(ip, field_name) orelse {
const ty_src = mod.fieldSrcLoc(union_type.decl, .{
.index = field_i,
.range = .name,
}).lazy;
return sema.fail(&block_scope, ty_src, "no field named '{}' in enum '{}'", .{
field_name.fmt(ip), Type.fromInterned(union_type.tagTypePtr(ip).*).fmt(mod),
});
};
// No check for duplicate because the check already happened in order
// to create the enum type in the first place.
assert(!explicit_tags_seen[enum_index]);
explicit_tags_seen[enum_index] = true;
// Enforce the enum fields and the union fields being in the same order.
if (enum_index != field_i) {
const msg = msg: {
const ty_src = mod.fieldSrcLoc(union_type.decl, .{
.index = field_i,
.range = .name,
}).lazy;
const enum_field_src = mod.fieldSrcLoc(tag_info.decl, .{ .index = enum_index }).lazy;
const msg = try sema.errMsg(&block_scope, ty_src, "union field '{}' ordered differently than corresponding enum field", .{
field_name.fmt(ip),
});
errdefer msg.destroy(sema.gpa);
const decl_ptr = mod.declPtr(tag_info.decl);
try mod.errNoteNonLazy(decl_ptr.toSrcLoc(enum_field_src, mod), msg, "enum field here", .{});
break :msg msg;
};
return sema.failWithOwnedErrorMsg(&block_scope, msg);
}
}
if (field_ty.zigTypeTag(mod) == .Opaque) {
const msg = msg: {
const ty_src = mod.fieldSrcLoc(union_type.decl, .{
.index = field_i,
.range = .type,
}).lazy;
const msg = try sema.errMsg(&block_scope, ty_src, "opaque types have unknown size and therefore cannot be directly embedded in unions", .{});
errdefer msg.destroy(sema.gpa);
try sema.addDeclaredHereNote(msg, field_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(&block_scope, msg);
}
const layout = union_type.getLayout(ip);
if (layout == .@"extern" and
!try sema.validateExternType(field_ty, .union_field))
{
const msg = msg: {
const ty_src = mod.fieldSrcLoc(union_type.decl, .{
.index = field_i,
.range = .type,
});
const msg = try sema.errMsg(&block_scope, ty_src.lazy, "extern unions cannot contain fields of type '{}'", .{field_ty.fmt(mod)});
errdefer msg.destroy(sema.gpa);
try sema.explainWhyTypeIsNotExtern(msg, ty_src, field_ty, .union_field);
try sema.addDeclaredHereNote(msg, field_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(&block_scope, msg);
} else if (layout == .@"packed" and !try sema.validatePackedType(field_ty)) {
const msg = msg: {
const ty_src = mod.fieldSrcLoc(union_type.decl, .{
.index = field_i,
.range = .type,
});
const msg = try sema.errMsg(&block_scope, ty_src.lazy, "packed unions cannot contain fields of type '{}'", .{field_ty.fmt(mod)});
errdefer msg.destroy(sema.gpa);
try sema.explainWhyTypeIsNotPacked(msg, ty_src, field_ty);
try sema.addDeclaredHereNote(msg, field_ty);
break :msg msg;
};
return sema.failWithOwnedErrorMsg(&block_scope, msg);
}
field_types.appendAssumeCapacity(field_ty.toIntern());
if (small.any_aligned_fields) {
field_aligns.appendAssumeCapacity(if (align_ref != .none)
sema.resolveAlign(&block_scope, .unneeded, align_ref) catch |err| switch (err) {
error.NeededSourceLocation => {
const align_src = mod.fieldSrcLoc(union_type.decl, .{
.index = field_i,
.range = .alignment,
}).lazy;
_ = try sema.resolveAlign(&block_scope, align_src, align_ref);
unreachable;
},
else => |e| return e,
}
else
.none);
} else {
assert(align_ref == .none);
}
}
union_type.setFieldTypes(ip, field_types.items);
union_type.setFieldAligns(ip, field_aligns.items);
if (explicit_tags_seen.len > 0) {
const tag_info = ip.loadEnumType(union_type.tagTypePtr(ip).*);
if (tag_info.names.len > fields_len) {
const msg = msg: {
const msg = try sema.errMsg(&block_scope, src, "enum field(s) missing in union", .{});
errdefer msg.destroy(sema.gpa);
for (tag_info.names.get(ip), 0..) |field_name, field_index| {
if (explicit_tags_seen[field_index]) continue;
try sema.addFieldErrNote(Type.fromInterned(union_type.tagTypePtr(ip).*), field_index, msg, "field '{}' missing, declared here", .{
field_name.fmt(ip),
});
}
try sema.addDeclaredHereNote(msg, Type.fromInterned(union_type.tagTypePtr(ip).*));
break :msg msg;
};
return sema.failWithOwnedErrorMsg(&block_scope, msg);
}
} else if (enum_field_vals.count() > 0) {
const enum_ty = try sema.generateUnionTagTypeNumbered(&block_scope, enum_field_names, enum_field_vals.keys(), mod.declPtr(union_type.decl));
union_type.tagTypePtr(ip).* = enum_ty;
} else {
const enum_ty = try sema.generateUnionTagTypeSimple(&block_scope, enum_field_names, mod.declPtr(union_type.decl));
union_type.tagTypePtr(ip).* = enum_ty;
}
}
fn semaUnionFieldVal(sema: *Sema, block: *Block, src: LazySrcLoc, int_tag_ty: Type, tag_ref: Air.Inst.Ref) CompileError!Value {
const coerced = try sema.coerce(block, int_tag_ty, tag_ref, src);
return sema.resolveConstDefinedValue(block, src, coerced, .{
.needed_comptime_reason = "enum tag value must be comptime-known",
});
}
fn generateUnionTagTypeNumbered(
sema: *Sema,
block: *Block,
enum_field_names: []const InternPool.NullTerminatedString,
enum_field_vals: []const InternPool.Index,
union_owner_decl: *Module.Decl,
) !InternPool.Index {
const mod = sema.mod;
const gpa = sema.gpa;
const ip = &mod.intern_pool;
const src_decl = mod.declPtr(block.src_decl);
const new_decl_index = try mod.allocateNewDecl(block.namespace, src_decl.src_node);
errdefer mod.destroyDecl(new_decl_index);
const fqn = try union_owner_decl.fullyQualifiedName(mod);
const name = try ip.getOrPutStringFmt(gpa, "@typeInfo({}).Union.tag_type.?", .{fqn.fmt(ip)});
try mod.initNewAnonDecl(
new_decl_index,
src_decl.src_line,
Value.@"unreachable",
name,
);
errdefer mod.abortAnonDecl(new_decl_index);
const new_decl = mod.declPtr(new_decl_index);
new_decl.owns_tv = true;
new_decl.name_fully_qualified = true;
const enum_ty = try ip.getGeneratedTagEnumType(gpa, .{
.decl = new_decl_index,
.owner_union_ty = union_owner_decl.val.toIntern(),
.tag_ty = if (enum_field_vals.len == 0)
(try mod.intType(.unsigned, 0)).toIntern()
else
ip.typeOf(enum_field_vals[0]),
.names = enum_field_names,
.values = enum_field_vals,
.tag_mode = .explicit,
});
new_decl.val = Value.fromInterned(enum_ty);
try mod.finalizeAnonDecl(new_decl_index);
return enum_ty;
}
fn generateUnionTagTypeSimple(
sema: *Sema,
block: *Block,
enum_field_names: []const InternPool.NullTerminatedString,
union_owner_decl: *Module.Decl,
) !InternPool.Index {
const mod = sema.mod;
const ip = &mod.intern_pool;
const gpa = sema.gpa;
const new_decl_index = new_decl_index: {
const fqn = try union_owner_decl.fullyQualifiedName(mod);
const src_decl = mod.declPtr(block.src_decl);
const new_decl_index = try mod.allocateNewDecl(block.namespace, src_decl.src_node);
errdefer mod.destroyDecl(new_decl_index);
const name = try ip.getOrPutStringFmt(gpa, "@typeInfo({}).Union.tag_type.?", .{fqn.fmt(ip)});
try mod.initNewAnonDecl(
new_decl_index,
src_decl.src_line,
Value.@"unreachable",
name,
);
mod.declPtr(new_decl_index).name_fully_qualified = true;
break :new_decl_index new_decl_index;
};
errdefer mod.abortAnonDecl(new_decl_index);
const enum_ty = try ip.getGeneratedTagEnumType(gpa, .{
.decl = new_decl_index,
.owner_union_ty = union_owner_decl.val.toIntern(),
.tag_ty = if (enum_field_names.len == 0)
(try mod.intType(.unsigned, 0)).toIntern()
else
(try mod.smallestUnsignedInt(enum_field_names.len - 1)).toIntern(),
.names = enum_field_names,
.values = &.{},
.tag_mode = .auto,
});
const new_decl = mod.declPtr(new_decl_index);
new_decl.owns_tv = true;
new_decl.val = Value.fromInterned(enum_ty);
try mod.finalizeAnonDecl(new_decl_index);
return enum_ty;
}
fn getBuiltin(sema: *Sema, name: []const u8) CompileError!Air.Inst.Ref {
const gpa = sema.gpa;
const src = LazySrcLoc.nodeOffset(0);
var block: Block = .{
.parent = null,
.sema = sema,
.src_decl = sema.owner_decl_index,
.namespace = sema.owner_decl.src_namespace,
.instructions = .{},
.inlining = null,
.is_comptime = true,
};
defer block.instructions.deinit(gpa);
const decl_index = try getBuiltinDecl(sema, &block, name);
return sema.analyzeDeclVal(&block, src, decl_index);
}
fn getBuiltinDecl(sema: *Sema, block: *Block, name: []const u8) CompileError!InternPool.DeclIndex {
const gpa = sema.gpa;
const src = LazySrcLoc.nodeOffset(0);
const mod = sema.mod;
const ip = &mod.intern_pool;
const std_mod = mod.std_mod;
const std_file = (mod.importPkg(std_mod) catch unreachable).file;
const opt_builtin_inst = (try sema.namespaceLookupRef(
block,
src,
mod.declPtr(std_file.root_decl.unwrap().?).src_namespace.toOptional(),
try ip.getOrPutString(gpa, "builtin"),
)) orelse @panic("lib/std.zig is corrupt and missing 'builtin'");
const builtin_inst = try sema.analyzeLoad(block, src, opt_builtin_inst, src);
const builtin_ty = sema.analyzeAsType(block, src, builtin_inst) catch |err| switch (err) {
error.AnalysisFail => std.debug.panic("std.builtin is corrupt", .{}),
else => |e| return e,
};
const decl_index = (try sema.namespaceLookup(
block,
src,
builtin_ty.getNamespaceIndex(mod),
try ip.getOrPutString(gpa, name),
)) orelse std.debug.panic("lib/std/builtin.zig is corrupt and missing '{s}'", .{name});
return decl_index;
}
fn getBuiltinType(sema: *Sema, name: []const u8) CompileError!Type {
const ty_inst = try sema.getBuiltin(name);
var block: Block = .{
.parent = null,
.sema = sema,
.src_decl = sema.owner_decl_index,
.namespace = sema.owner_decl.src_namespace,
.instructions = .{},
.inlining = null,
.is_comptime = true,
};
defer block.instructions.deinit(sema.gpa);
const src = LazySrcLoc.nodeOffset(0);
const result_ty = sema.analyzeAsType(&block, src, ty_inst) catch |err| switch (err) {
error.AnalysisFail => std.debug.panic("std.builtin.{s} is corrupt", .{name}),
else => |e| return e,
};
try sema.resolveTypeFully(result_ty); // Should not fail
return result_ty;
}
/// There is another implementation of this in `Type.onePossibleValue`. This one
/// in `Sema` is for calling during semantic analysis, and performs field resolution
/// to get the answer. The one in `Type` is for calling during codegen and asserts
/// that the types are already resolved.
/// TODO assert the return value matches `ty.onePossibleValue`
pub fn typeHasOnePossibleValue(sema: *Sema, ty: Type) CompileError!?Value {
const mod = sema.mod;
const ip = &mod.intern_pool;
return switch (ty.toIntern()) {
.u0_type,
.i0_type,
=> try mod.intValue(ty, 0),
.u1_type,
.u8_type,
.i8_type,
.u16_type,
.i16_type,
.u29_type,
.u32_type,
.i32_type,
.u64_type,
.i64_type,
.u80_type,
.u128_type,
.i128_type,
.usize_type,
.isize_type,
.c_char_type,
.c_short_type,
.c_ushort_type,
.c_int_type,
.c_uint_type,
.c_long_type,
.c_ulong_type,
.c_longlong_type,
.c_ulonglong_type,
.c_longdouble_type,
.f16_type,
.f32_type,
.f64_type,
.f80_type,
.f128_type,
.anyopaque_type,
.bool_type,
.type_type,
.anyerror_type,
.adhoc_inferred_error_set_type,
.comptime_int_type,
.comptime_float_type,
.enum_literal_type,
.atomic_order_type,
.atomic_rmw_op_type,
.calling_convention_type,
.address_space_type,
.float_mode_type,
.reduce_op_type,
.call_modifier_type,
.prefetch_options_type,
.export_options_type,
.extern_options_type,
.type_info_type,
.manyptr_u8_type,
.manyptr_const_u8_type,
.manyptr_const_u8_sentinel_0_type,
.single_const_pointer_to_comptime_int_type,
.slice_const_u8_type,
.slice_const_u8_sentinel_0_type,
.anyerror_void_error_union_type,
=> null,
.void_type => Value.void,
.noreturn_type => Value.@"unreachable",
.anyframe_type => unreachable,
.null_type => Value.null,
.undefined_type => Value.undef,
.optional_noreturn_type => try mod.nullValue(ty),
.generic_poison_type => error.GenericPoison,
.empty_struct_type => Value.empty_struct,
// values, not types
.undef,
.zero,
.zero_usize,
.zero_u8,
.one,
.one_usize,
.one_u8,
.four_u8,
.negative_one,
.calling_convention_c,
.calling_convention_inline,
.void_value,
.unreachable_value,
.null_value,
.bool_true,
.bool_false,
.empty_struct,
.generic_poison,
// invalid
.var_args_param_type,
.none,
=> unreachable,
_ => switch (ip.items.items(.tag)[@intFromEnum(ty.toIntern())]) {
.removed => unreachable,
.type_int_signed, // i0 handled above
.type_int_unsigned, // u0 handled above
.type_pointer,
.type_slice,
.type_optional, // ?noreturn handled above
.type_anyframe,
.type_error_union,
.type_anyerror_union,
.type_error_set,
.type_inferred_error_set,
.type_opaque,
.type_function,
=> null,
.simple_type, // handled above
// values, not types
.undef,
.simple_value,
.ptr_decl,
.ptr_anon_decl,
.ptr_anon_decl_aligned,
.ptr_comptime_alloc,
.ptr_comptime_field,
.ptr_int,
.ptr_eu_payload,
.ptr_opt_payload,
.ptr_elem,
.ptr_field,
.ptr_slice,
.opt_payload,
.opt_null,
.int_u8,
.int_u16,
.int_u32,
.int_i32,
.int_usize,
.int_comptime_int_u32,
.int_comptime_int_i32,
.int_small,
.int_positive,
.int_negative,
.int_lazy_align,
.int_lazy_size,
.error_set_error,
.error_union_error,
.error_union_payload,
.enum_literal,
.enum_tag,
.float_f16,
.float_f32,
.float_f64,
.float_f80,
.float_f128,
.float_c_longdouble_f80,
.float_c_longdouble_f128,
.float_comptime_float,
.variable,
.extern_func,
.func_decl,
.func_instance,
.func_coerced,
.only_possible_value,
.union_value,
.bytes,
.aggregate,
.repeated,
// memoized value, not types
.memoized_call,
=> unreachable,
.type_array_big,
.type_array_small,
.type_vector,
.type_enum_auto,
.type_enum_explicit,
.type_enum_nonexhaustive,
.type_struct,
.type_struct_anon,
.type_struct_packed,
.type_struct_packed_inits,
.type_tuple_anon,
.type_union,
=> switch (ip.indexToKey(ty.toIntern())) {
inline .array_type, .vector_type => |seq_type, seq_tag| {
const has_sentinel = seq_tag == .array_type and seq_type.sentinel != .none;
if (seq_type.len + @intFromBool(has_sentinel) == 0) return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = &.{} },
} })));
if (try sema.typeHasOnePossibleValue(Type.fromInterned(seq_type.child))) |opv| {
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .repeated_elem = opv.toIntern() },
} })));
}
return null;
},
.struct_type => {
const struct_type = ip.loadStructType(ty.toIntern());
try sema.resolveTypeFieldsStruct(ty.toIntern(), struct_type);
if (struct_type.field_types.len == 0) {
// In this case the struct has no fields at all and
// therefore has one possible value.
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = &.{} },
} })));
}
const field_vals = try sema.arena.alloc(
InternPool.Index,
struct_type.field_types.len,
);
for (field_vals, 0..) |*field_val, i| {
if (struct_type.fieldIsComptime(ip, i)) {
try sema.resolveStructFieldInits(ty);
field_val.* = struct_type.field_inits.get(ip)[i];
continue;
}
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
if (field_ty.eql(ty, mod)) {
const msg = try Module.ErrorMsg.create(
sema.gpa,
mod.declPtr(struct_type.decl.unwrap().?).srcLoc(mod),
"struct '{}' depends on itself",
.{ty.fmt(mod)},
);
try sema.addFieldErrNote(ty, i, msg, "while checking this field", .{});
return sema.failWithOwnedErrorMsg(null, msg);
}
if (try sema.typeHasOnePossibleValue(field_ty)) |field_opv| {
field_val.* = field_opv.toIntern();
} else return null;
}
// In this case the struct has no runtime-known fields and
// therefore has one possible value.
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = field_vals },
} })));
},
.anon_struct_type => |tuple| {
for (tuple.values.get(ip)) |val| {
if (val == .none) return null;
}
// In this case the struct has all comptime-known fields and
// therefore has one possible value.
// TODO: write something like getCoercedInts to avoid needing to dupe
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = try sema.arena.dupe(InternPool.Index, tuple.values.get(ip)) },
} })));
},
.union_type => {
const union_obj = ip.loadUnionType(ty.toIntern());
try sema.resolveTypeFieldsUnion(ty, union_obj);
const tag_val = (try sema.typeHasOnePossibleValue(Type.fromInterned(union_obj.tagTypePtr(ip).*))) orelse
return null;
if (union_obj.field_types.len == 0) {
const only = try mod.intern(.{ .empty_enum_value = ty.toIntern() });
return Value.fromInterned(only);
}
const only_field_ty = Type.fromInterned(union_obj.field_types.get(ip)[0]);
if (only_field_ty.eql(ty, mod)) {
const msg = try Module.ErrorMsg.create(
sema.gpa,
mod.declPtr(union_obj.decl).srcLoc(mod),
"union '{}' depends on itself",
.{ty.fmt(mod)},
);
try sema.addFieldErrNote(ty, 0, msg, "while checking this field", .{});
return sema.failWithOwnedErrorMsg(null, msg);
}
const val_val = (try sema.typeHasOnePossibleValue(only_field_ty)) orelse
return null;
const only = try mod.intern(.{ .un = .{
.ty = ty.toIntern(),
.tag = tag_val.toIntern(),
.val = val_val.toIntern(),
} });
return Value.fromInterned(only);
},
.enum_type => {
const enum_type = ip.loadEnumType(ty.toIntern());
switch (enum_type.tag_mode) {
.nonexhaustive => {
if (enum_type.tag_ty == .comptime_int_type) return null;
if (try sema.typeHasOnePossibleValue(Type.fromInterned(enum_type.tag_ty))) |int_opv| {
const only = try mod.intern(.{ .enum_tag = .{
.ty = ty.toIntern(),
.int = int_opv.toIntern(),
} });
return Value.fromInterned(only);
}
return null;
},
.auto, .explicit => {
if (Type.fromInterned(enum_type.tag_ty).hasRuntimeBits(mod)) return null;
return Value.fromInterned(switch (enum_type.names.len) {
0 => try mod.intern(.{ .empty_enum_value = ty.toIntern() }),
1 => try mod.intern(.{ .enum_tag = .{
.ty = ty.toIntern(),
.int = if (enum_type.values.len == 0)
(try mod.intValue(Type.fromInterned(enum_type.tag_ty), 0)).toIntern()
else
try mod.intern_pool.getCoercedInts(
mod.gpa,
mod.intern_pool.indexToKey(enum_type.values.get(ip)[0]).int,
enum_type.tag_ty,
),
} }),
else => return null,
});
},
}
},
else => unreachable,
},
},
};
}
/// Returns the type of the AIR instruction.
fn typeOf(sema: *Sema, inst: Air.Inst.Ref) Type {
return sema.getTmpAir().typeOf(inst, &sema.mod.intern_pool);
}
pub fn getTmpAir(sema: Sema) Air {
return .{
.instructions = sema.air_instructions.slice(),
.extra = sema.air_extra.items,
};
}
pub fn addExtra(sema: *Sema, extra: anytype) Allocator.Error!u32 {
const fields = std.meta.fields(@TypeOf(extra));
try sema.air_extra.ensureUnusedCapacity(sema.gpa, fields.len);
return sema.addExtraAssumeCapacity(extra);
}
pub fn addExtraAssumeCapacity(sema: *Sema, extra: anytype) u32 {
const fields = std.meta.fields(@TypeOf(extra));
const result: u32 = @intCast(sema.air_extra.items.len);
inline for (fields) |field| {
sema.air_extra.appendAssumeCapacity(switch (field.type) {
u32 => @field(extra, field.name),
i32 => @bitCast(@field(extra, field.name)),
Air.Inst.Ref, InternPool.Index => @intFromEnum(@field(extra, field.name)),
else => @compileError("bad field type: " ++ @typeName(field.type)),
});
}
return result;
}
fn appendRefsAssumeCapacity(sema: *Sema, refs: []const Air.Inst.Ref) void {
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(refs));
}
fn getBreakBlock(sema: *Sema, inst_index: Air.Inst.Index) ?Air.Inst.Index {
const air_datas = sema.air_instructions.items(.data);
const air_tags = sema.air_instructions.items(.tag);
switch (air_tags[@intFromEnum(inst_index)]) {
.br => return air_datas[@intFromEnum(inst_index)].br.block_inst,
else => return null,
}
}
fn isComptimeKnown(
sema: *Sema,
inst: Air.Inst.Ref,
) !bool {
return (try sema.resolveValue(inst)) != null;
}
fn analyzeComptimeAlloc(
sema: *Sema,
block: *Block,
var_type: Type,
alignment: Alignment,
) CompileError!Air.Inst.Ref {
const mod = sema.mod;
// Needed to make an anon decl with type `var_type` (the `finish()` call below).
_ = try sema.typeHasOnePossibleValue(var_type);
const ptr_type = try sema.ptrType(.{
.child = var_type.toIntern(),
.flags = .{
.alignment = alignment,
.address_space = target_util.defaultAddressSpace(mod.getTarget(), .global_constant),
},
});
const alloc = try sema.newComptimeAlloc(block, var_type, alignment);
return Air.internedToRef((try mod.intern(.{ .ptr = .{
.ty = ptr_type.toIntern(),
.addr = .{ .comptime_alloc = alloc },
} })));
}
/// The places where a user can specify an address space attribute
pub const AddressSpaceContext = enum {
/// A function is specified to be placed in a certain address space.
function,
/// A (global) variable is specified to be placed in a certain address space.
/// In contrast to .constant, these values (and thus the address space they will be
/// placed in) are required to be mutable.
variable,
/// A (global) constant value is specified to be placed in a certain address space.
/// In contrast to .variable, values placed in this address space are not required to be mutable.
constant,
/// A pointer is ascripted to point into a certain address space.
pointer,
};
fn resolveAddressSpace(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
zir_ref: Zir.Inst.Ref,
ctx: AddressSpaceContext,
) !std.builtin.AddressSpace {
const air_ref = try sema.resolveInst(zir_ref);
return sema.analyzeAsAddressSpace(block, src, air_ref, ctx);
}
pub fn analyzeAsAddressSpace(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
air_ref: Air.Inst.Ref,
ctx: AddressSpaceContext,
) !std.builtin.AddressSpace {
const mod = sema.mod;
const coerced = try sema.coerce(block, Type.fromInterned(.address_space_type), air_ref, src);
const addrspace_val = try sema.resolveConstDefinedValue(block, src, coerced, .{
.needed_comptime_reason = "address space must be comptime-known",
});
const address_space = mod.toEnum(std.builtin.AddressSpace, addrspace_val);
const target = sema.mod.getTarget();
const arch = target.cpu.arch;
const is_nv = arch == .nvptx or arch == .nvptx64;
const is_amd = arch == .amdgcn;
const is_spirv = arch == .spirv32 or arch == .spirv64;
const is_gpu = is_nv or is_amd or is_spirv;
const supported = switch (address_space) {
// TODO: on spir-v only when os is opencl.
.generic => true,
.gs, .fs, .ss => (arch == .x86 or arch == .x86_64) and ctx == .pointer,
// TODO: check that .shared and .local are left uninitialized
.param => is_nv,
.input, .output, .uniform => is_spirv,
.global, .shared, .local => is_gpu,
.constant => is_gpu and (ctx == .constant),
// TODO this should also check how many flash banks the cpu has
.flash, .flash1, .flash2, .flash3, .flash4, .flash5 => arch == .avr,
};
if (!supported) {
// TODO error messages could be made more elaborate here
const entity = switch (ctx) {
.function => "functions",
.variable => "mutable values",
.constant => "constant values",
.pointer => "pointers",
};
return sema.fail(
block,
src,
"{s} with address space '{s}' are not supported on {s}",
.{ entity, @tagName(address_space), arch.genericName() },
);
}
return address_space;
}
/// Asserts the value is a pointer and dereferences it.
/// Returns `null` if the pointer contents cannot be loaded at comptime.
fn pointerDeref(sema: *Sema, block: *Block, src: LazySrcLoc, ptr_val: Value, ptr_ty: Type) CompileError!?Value {
const mod = sema.mod;
const load_ty = ptr_ty.childType(mod);
const res = try sema.pointerDerefExtra(block, src, ptr_val, load_ty);
switch (res) {
.runtime_load => return null,
.val => |v| return v,
.needed_well_defined => |ty| return sema.fail(
block,
src,
"comptime dereference requires '{}' to have a well-defined layout, but it does not.",
.{ty.fmt(sema.mod)},
),
.out_of_bounds => |ty| return sema.fail(
block,
src,
"dereference of '{}' exceeds bounds of containing decl of type '{}'",
.{ ptr_ty.fmt(sema.mod), ty.fmt(sema.mod) },
),
}
}
const DerefResult = union(enum) {
runtime_load,
val: Value,
needed_well_defined: Type,
out_of_bounds: Type,
};
fn pointerDerefExtra(sema: *Sema, block: *Block, src: LazySrcLoc, ptr_val: Value, load_ty: Type) CompileError!DerefResult {
const mod = sema.mod;
const target = mod.getTarget();
const deref = sema.beginComptimePtrLoad(block, src, ptr_val, load_ty) catch |err| switch (err) {
error.RuntimeLoad => return DerefResult{ .runtime_load = {} },
else => |e| return e,
};
if (deref.pointee) |pointee| {
const uncoerced_val = Value.fromInterned(try pointee.intern(mod, sema.arena));
const ty = Type.fromInterned(mod.intern_pool.typeOf(uncoerced_val.toIntern()));
const coerce_in_mem_ok =
(try sema.coerceInMemoryAllowed(block, load_ty, ty, false, target, src, src)) == .ok or
(try sema.coerceInMemoryAllowed(block, ty, load_ty, false, target, src, src)) == .ok;
if (coerce_in_mem_ok) {
// We have a Value that lines up in virtual memory exactly with what we want to load,
// and it is in-memory coercible to load_ty. It may be returned without modifications.
// Move mutable decl values to the InternPool and assert other decls are already in
// the InternPool.
const coerced_val = try mod.getCoerced(uncoerced_val, load_ty);
return .{ .val = coerced_val };
}
}
// The type is not in-memory coercible or the direct dereference failed, so it must
// be bitcast according to the pointer type we are performing the load through.
if (!load_ty.hasWellDefinedLayout(mod)) {
return DerefResult{ .needed_well_defined = load_ty };
}
const load_sz = try sema.typeAbiSize(load_ty);
// Try the smaller bit-cast first, since that's more efficient than using the larger `parent`
if (deref.pointee) |pointee| {
const val_ip_index = try pointee.intern(mod, sema.arena);
const val = Value.fromInterned(val_ip_index);
const ty = Type.fromInterned(mod.intern_pool.typeOf(val_ip_index));
if (load_sz <= try sema.typeAbiSize(ty)) {
return .{ .val = (try sema.bitCastVal(block, src, val, ty, load_ty, 0)) orelse return .runtime_load };
}
}
// If that fails, try to bit-cast from the largest parent value with a well-defined layout
if (deref.parent) |parent| {
const parent_ip_index = try parent.val.intern(mod, sema.arena);
const parent_val = Value.fromInterned(parent_ip_index);
const parent_ty = Type.fromInterned(mod.intern_pool.typeOf(parent_ip_index));
if (load_sz + parent.byte_offset <= try sema.typeAbiSize(parent_ty)) {
return .{ .val = (try sema.bitCastVal(block, src, parent_val, parent_ty, load_ty, parent.byte_offset)) orelse return .runtime_load };
}
}
if (deref.ty_without_well_defined_layout) |bad_ty| {
// We got no parent for bit-casting, or the parent we got was too small. Either way, the problem
// is that some type we encountered when de-referencing does not have a well-defined layout.
return .{ .needed_well_defined = bad_ty };
} else {
// If all encountered types had well-defined layouts, the parent is the root decl and it just
// wasn't big enough for the load.
const parent_ip_index = try deref.parent.?.val.intern(mod, sema.arena);
const parent_ty = Type.fromInterned(mod.intern_pool.typeOf(parent_ip_index));
return .{ .out_of_bounds = parent_ty };
}
}
/// Used to convert a u64 value to a usize value, emitting a compile error if the number
/// is too big to fit.
fn usizeCast(sema: *Sema, block: *Block, src: LazySrcLoc, int: u64) CompileError!usize {
if (@bitSizeOf(u64) <= @bitSizeOf(usize)) return int;
return std.math.cast(usize, int) orelse return sema.fail(block, src, "expression produces integer value '{d}' which is too big for this compiler implementation to handle", .{int});
}
/// For pointer-like optionals, it returns the pointer type. For pointers,
/// the type is returned unmodified.
/// This can return `error.AnalysisFail` because it sometimes requires resolving whether
/// a type has zero bits, which can cause a "foo depends on itself" compile error.
/// This logic must be kept in sync with `Type.isPtrLikeOptional`.
fn typePtrOrOptionalPtrTy(sema: *Sema, ty: Type) !?Type {
const mod = sema.mod;
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
.ptr_type => |ptr_type| switch (ptr_type.flags.size) {
.One, .Many, .C => ty,
.Slice => null,
},
.opt_type => |opt_child| switch (mod.intern_pool.indexToKey(opt_child)) {
.ptr_type => |ptr_type| switch (ptr_type.flags.size) {
.Slice, .C => null,
.Many, .One => {
if (ptr_type.flags.is_allowzero) return null;
// optionals of zero sized types behave like bools, not pointers
const payload_ty = Type.fromInterned(opt_child);
if ((try sema.typeHasOnePossibleValue(payload_ty)) != null) {
return null;
}
return payload_ty;
},
},
else => null,
},
else => null,
};
}
/// `generic_poison` will return false.
/// May return false negatives when structs and unions are having their field types resolved.
pub fn typeRequiresComptime(sema: *Sema, ty: Type) CompileError!bool {
return ty.comptimeOnlyAdvanced(sema.mod, sema);
}
pub fn typeHasRuntimeBits(sema: *Sema, ty: Type) CompileError!bool {
const mod = sema.mod;
return ty.hasRuntimeBitsAdvanced(mod, false, .{ .sema = sema }) catch |err| switch (err) {
error.NeedLazy => unreachable,
else => |e| return e,
};
}
fn typeAbiSize(sema: *Sema, ty: Type) !u64 {
try sema.resolveTypeLayout(ty);
return ty.abiSize(sema.mod);
}
fn typeAbiAlignment(sema: *Sema, ty: Type) CompileError!Alignment {
return (try ty.abiAlignmentAdvanced(sema.mod, .{ .sema = sema })).scalar;
}
/// Not valid to call for packed unions.
/// Keep implementation in sync with `Module.unionFieldNormalAlignment`.
fn unionFieldAlignment(sema: *Sema, u: InternPool.LoadedUnionType, field_index: u32) !Alignment {
const mod = sema.mod;
const ip = &mod.intern_pool;
const field_align = u.fieldAlign(ip, field_index);
if (field_align != .none) return field_align;
const field_ty = Type.fromInterned(u.field_types.get(ip)[field_index]);
if (field_ty.isNoReturn(sema.mod)) return .none;
return sema.typeAbiAlignment(field_ty);
}
/// Keep implementation in sync with `Module.structFieldAlignment`.
fn structFieldAlignment(
sema: *Sema,
explicit_alignment: InternPool.Alignment,
field_ty: Type,
layout: std.builtin.Type.ContainerLayout,
) !Alignment {
if (explicit_alignment != .none)
return explicit_alignment;
const mod = sema.mod;
switch (layout) {
.@"packed" => return .none,
.auto => if (mod.getTarget().ofmt != .c) return sema.typeAbiAlignment(field_ty),
.@"extern" => {},
}
// extern
const ty_abi_align = try sema.typeAbiAlignment(field_ty);
if (field_ty.isAbiInt(mod) and field_ty.intInfo(mod).bits >= 128) {
return ty_abi_align.maxStrict(.@"16");
}
return ty_abi_align;
}
pub fn fnHasRuntimeBits(sema: *Sema, ty: Type) CompileError!bool {
return ty.fnHasRuntimeBitsAdvanced(sema.mod, sema);
}
fn unionFieldIndex(
sema: *Sema,
block: *Block,
union_ty: Type,
field_name: InternPool.NullTerminatedString,
field_src: LazySrcLoc,
) !u32 {
const mod = sema.mod;
const ip = &mod.intern_pool;
try sema.resolveTypeFields(union_ty);
const union_obj = mod.typeToUnion(union_ty).?;
const field_index = union_obj.loadTagType(ip).nameIndex(ip, field_name) orelse
return sema.failWithBadUnionFieldAccess(block, union_obj, field_src, field_name);
return @intCast(field_index);
}
fn structFieldIndex(
sema: *Sema,
block: *Block,
struct_ty: Type,
field_name: InternPool.NullTerminatedString,
field_src: LazySrcLoc,
) !u32 {
const mod = sema.mod;
const ip = &mod.intern_pool;
try sema.resolveTypeFields(struct_ty);
if (struct_ty.isAnonStruct(mod)) {
return sema.anonStructFieldIndex(block, struct_ty, field_name, field_src);
} else {
const struct_type = mod.typeToStruct(struct_ty).?;
return struct_type.nameIndex(ip, field_name) orelse
return sema.failWithBadStructFieldAccess(block, struct_type, field_src, field_name);
}
}
fn anonStructFieldIndex(
sema: *Sema,
block: *Block,
struct_ty: Type,
field_name: InternPool.NullTerminatedString,
field_src: LazySrcLoc,
) !u32 {
const mod = sema.mod;
const ip = &mod.intern_pool;
switch (ip.indexToKey(struct_ty.toIntern())) {
.anon_struct_type => |anon_struct_type| for (anon_struct_type.names.get(ip), 0..) |name, i| {
if (name == field_name) return @intCast(i);
},
.struct_type => if (ip.loadStructType(struct_ty.toIntern()).nameIndex(ip, field_name)) |i| return i,
else => unreachable,
}
return sema.fail(block, field_src, "no field named '{}' in anonymous struct '{}'", .{
field_name.fmt(ip), struct_ty.fmt(sema.mod),
});
}
fn queueFullTypeResolution(sema: *Sema, ty: Type) !void {
try sema.types_to_resolve.put(sema.gpa, ty.toIntern(), {});
}
/// If the value overflowed the type, returns a comptime_int (or vector thereof) instead, setting
/// overflow_idx to the vector index the overflow was at (or 0 for a scalar).
fn intAdd(sema: *Sema, lhs: Value, rhs: Value, ty: Type, overflow_idx: *?usize) !Value {
var overflow: usize = undefined;
return sema.intAddInner(lhs, rhs, ty, &overflow) catch |err| switch (err) {
error.Overflow => {
const is_vec = ty.isVector(sema.mod);
overflow_idx.* = if (is_vec) overflow else 0;
const safe_ty = if (is_vec) try sema.mod.vectorType(.{
.len = ty.vectorLen(sema.mod),
.child = .comptime_int_type,
}) else Type.comptime_int;
return sema.intAddInner(lhs, rhs, safe_ty, undefined) catch |err1| switch (err1) {
error.Overflow => unreachable,
else => |e| return e,
};
},
else => |e| return e,
};
}
fn intAddInner(sema: *Sema, lhs: Value, rhs: Value, ty: Type, overflow_idx: *usize) !Value {
const mod = sema.mod;
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try sema.arena.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
const val = sema.intAddScalar(lhs_elem, rhs_elem, scalar_ty) catch |err| switch (err) {
error.Overflow => {
overflow_idx.* = i;
return error.Overflow;
},
else => |e| return e,
};
scalar.* = val.toIntern();
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return sema.intAddScalar(lhs, rhs, ty);
}
fn intAddScalar(sema: *Sema, lhs: Value, rhs: Value, scalar_ty: Type) !Value {
const mod = sema.mod;
if (scalar_ty.toIntern() != .comptime_int_type) {
const res = try sema.intAddWithOverflowScalar(lhs, rhs, scalar_ty);
if (res.overflow_bit.compareAllWithZero(.neq, mod)) return error.Overflow;
return res.wrapped_result;
}
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = try lhs.toBigIntAdvanced(&lhs_space, mod, sema);
const rhs_bigint = try rhs.toBigIntAdvanced(&rhs_space, mod, sema);
const limbs = try sema.arena.alloc(
std.math.big.Limb,
@max(lhs_bigint.limbs.len, rhs_bigint.limbs.len) + 1,
);
var result_bigint = std.math.big.int.Mutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.add(lhs_bigint, rhs_bigint);
return mod.intValue_big(scalar_ty, result_bigint.toConst());
}
/// Supports both floats and ints; handles undefined.
fn numberAddWrapScalar(
sema: *Sema,
lhs: Value,
rhs: Value,
ty: Type,
) !Value {
const mod = sema.mod;
if (lhs.isUndef(mod) or rhs.isUndef(mod)) return mod.undefValue(ty);
if (ty.zigTypeTag(mod) == .ComptimeInt) {
return sema.intAdd(lhs, rhs, ty, undefined);
}
if (ty.isAnyFloat()) {
return Value.floatAdd(lhs, rhs, ty, sema.arena, mod);
}
const overflow_result = try sema.intAddWithOverflow(lhs, rhs, ty);
return overflow_result.wrapped_result;
}
/// If the value overflowed the type, returns a comptime_int (or vector thereof) instead, setting
/// overflow_idx to the vector index the overflow was at (or 0 for a scalar).
fn intSub(sema: *Sema, lhs: Value, rhs: Value, ty: Type, overflow_idx: *?usize) !Value {
var overflow: usize = undefined;
return sema.intSubInner(lhs, rhs, ty, &overflow) catch |err| switch (err) {
error.Overflow => {
const is_vec = ty.isVector(sema.mod);
overflow_idx.* = if (is_vec) overflow else 0;
const safe_ty = if (is_vec) try sema.mod.vectorType(.{
.len = ty.vectorLen(sema.mod),
.child = .comptime_int_type,
}) else Type.comptime_int;
return sema.intSubInner(lhs, rhs, safe_ty, undefined) catch |err1| switch (err1) {
error.Overflow => unreachable,
else => |e| return e,
};
},
else => |e| return e,
};
}
fn intSubInner(sema: *Sema, lhs: Value, rhs: Value, ty: Type, overflow_idx: *usize) !Value {
const mod = sema.mod;
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try sema.arena.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(sema.mod, i);
const rhs_elem = try rhs.elemValue(sema.mod, i);
const val = sema.intSubScalar(lhs_elem, rhs_elem, scalar_ty) catch |err| switch (err) {
error.Overflow => {
overflow_idx.* = i;
return error.Overflow;
},
else => |e| return e,
};
scalar.* = val.toIntern();
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return sema.intSubScalar(lhs, rhs, ty);
}
fn intSubScalar(sema: *Sema, lhs: Value, rhs: Value, scalar_ty: Type) !Value {
const mod = sema.mod;
if (scalar_ty.toIntern() != .comptime_int_type) {
const res = try sema.intSubWithOverflowScalar(lhs, rhs, scalar_ty);
if (res.overflow_bit.compareAllWithZero(.neq, mod)) return error.Overflow;
return res.wrapped_result;
}
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = try lhs.toBigIntAdvanced(&lhs_space, mod, sema);
const rhs_bigint = try rhs.toBigIntAdvanced(&rhs_space, mod, sema);
const limbs = try sema.arena.alloc(
std.math.big.Limb,
@max(lhs_bigint.limbs.len, rhs_bigint.limbs.len) + 1,
);
var result_bigint = std.math.big.int.Mutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.sub(lhs_bigint, rhs_bigint);
return mod.intValue_big(scalar_ty, result_bigint.toConst());
}
/// Supports both floats and ints; handles undefined.
fn numberSubWrapScalar(
sema: *Sema,
lhs: Value,
rhs: Value,
ty: Type,
) !Value {
const mod = sema.mod;
if (lhs.isUndef(mod) or rhs.isUndef(mod)) return mod.undefValue(ty);
if (ty.zigTypeTag(mod) == .ComptimeInt) {
return sema.intSub(lhs, rhs, ty, undefined);
}
if (ty.isAnyFloat()) {
return Value.floatSub(lhs, rhs, ty, sema.arena, mod);
}
const overflow_result = try sema.intSubWithOverflow(lhs, rhs, ty);
return overflow_result.wrapped_result;
}
fn intSubWithOverflow(
sema: *Sema,
lhs: Value,
rhs: Value,
ty: Type,
) !Value.OverflowArithmeticResult {
const mod = sema.mod;
if (ty.zigTypeTag(mod) == .Vector) {
const vec_len = ty.vectorLen(mod);
const overflowed_data = try sema.arena.alloc(InternPool.Index, vec_len);
const result_data = try sema.arena.alloc(InternPool.Index, vec_len);
const scalar_ty = ty.scalarType(mod);
for (overflowed_data, result_data, 0..) |*of, *scalar, i| {
const lhs_elem = try lhs.elemValue(sema.mod, i);
const rhs_elem = try rhs.elemValue(sema.mod, i);
const of_math_result = try sema.intSubWithOverflowScalar(lhs_elem, rhs_elem, scalar_ty);
of.* = of_math_result.overflow_bit.toIntern();
scalar.* = of_math_result.wrapped_result.toIntern();
}
return Value.OverflowArithmeticResult{
.overflow_bit = Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = (try mod.vectorType(.{ .len = vec_len, .child = .u1_type })).toIntern(),
.storage = .{ .elems = overflowed_data },
} }))),
.wrapped_result = Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }))),
};
}
return sema.intSubWithOverflowScalar(lhs, rhs, ty);
}
fn intSubWithOverflowScalar(
sema: *Sema,
lhs: Value,
rhs: Value,
ty: Type,
) !Value.OverflowArithmeticResult {
const mod = sema.mod;
const info = ty.intInfo(mod);
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = try lhs.toBigIntAdvanced(&lhs_space, mod, sema);
const rhs_bigint = try rhs.toBigIntAdvanced(&rhs_space, mod, sema);
const limbs = try sema.arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits),
);
var result_bigint = std.math.big.int.Mutable{ .limbs = limbs, .positive = undefined, .len = undefined };
const overflowed = result_bigint.subWrap(lhs_bigint, rhs_bigint, info.signedness, info.bits);
const wrapped_result = try mod.intValue_big(ty, result_bigint.toConst());
return Value.OverflowArithmeticResult{
.overflow_bit = try mod.intValue(Type.u1, @intFromBool(overflowed)),
.wrapped_result = wrapped_result,
};
}
const IntFromFloatMode = enum { exact, truncate };
fn intFromFloat(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
val: Value,
float_ty: Type,
int_ty: Type,
mode: IntFromFloatMode,
) CompileError!Value {
const mod = sema.mod;
if (float_ty.zigTypeTag(mod) == .Vector) {
const result_data = try sema.arena.alloc(InternPool.Index, float_ty.vectorLen(mod));
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(sema.mod, i);
scalar.* = (try sema.intFromFloatScalar(block, src, elem_val, int_ty.scalarType(mod), mode)).toIntern();
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = int_ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return sema.intFromFloatScalar(block, src, val, int_ty, mode);
}
// float is expected to be finite and non-NaN
fn float128IntPartToBigInt(
arena: Allocator,
float: f128,
) !std.math.big.int.Managed {
const is_negative = std.math.signbit(float);
const floored = @floor(@abs(float));
var rational = try std.math.big.Rational.init(arena);
defer rational.q.deinit();
rational.setFloat(f128, floored) catch |err| switch (err) {
error.NonFiniteFloat => unreachable,
error.OutOfMemory => return error.OutOfMemory,
};
// The float is reduced in rational.setFloat, so we assert that denominator is equal to one
const big_one = std.math.big.int.Const{ .limbs = &.{1}, .positive = true };
assert(rational.q.toConst().eqlAbs(big_one));
if (is_negative) {
rational.negate();
}
return rational.p;
}
fn intFromFloatScalar(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
val: Value,
int_ty: Type,
mode: IntFromFloatMode,
) CompileError!Value {
const mod = sema.mod;
if (val.isUndef(mod)) return sema.failWithUseOfUndef(block, src);
if (mode == .exact and val.floatHasFraction(mod)) return sema.fail(
block,
src,
"fractional component prevents float value '{}' from coercion to type '{}'",
.{ val.fmtValue(mod), int_ty.fmt(mod) },
);
const float = val.toFloat(f128, mod);
if (std.math.isNan(float)) {
return sema.fail(block, src, "float value NaN cannot be stored in integer type '{}'", .{
int_ty.fmt(sema.mod),
});
}
if (std.math.isInf(float)) {
return sema.fail(block, src, "float value Inf cannot be stored in integer type '{}'", .{
int_ty.fmt(sema.mod),
});
}
var big_int = try float128IntPartToBigInt(sema.arena, float);
defer big_int.deinit();
const cti_result = try mod.intValue_big(Type.comptime_int, big_int.toConst());
if (!(try sema.intFitsInType(cti_result, int_ty, null))) {
return sema.fail(block, src, "float value '{}' cannot be stored in integer type '{}'", .{
val.fmtValue(sema.mod), int_ty.fmt(sema.mod),
});
}
return mod.getCoerced(cti_result, int_ty);
}
/// Asserts the value is an integer, and the destination type is ComptimeInt or Int.
/// Vectors are also accepted. Vector results are reduced with AND.
///
/// If provided, `vector_index` reports the first element that failed the range check.
fn intFitsInType(
sema: *Sema,
val: Value,
ty: Type,
vector_index: ?*usize,
) CompileError!bool {
const mod = sema.mod;
if (ty.toIntern() == .comptime_int_type) return true;
const info = ty.intInfo(mod);
switch (val.toIntern()) {
.zero_usize, .zero_u8 => return true,
else => switch (mod.intern_pool.indexToKey(val.toIntern())) {
.undef => return true,
.variable, .extern_func, .func, .ptr => {
const target = mod.getTarget();
const ptr_bits = target.ptrBitWidth();
return switch (info.signedness) {
.signed => info.bits > ptr_bits,
.unsigned => info.bits >= ptr_bits,
};
},
.int => |int| switch (int.storage) {
.u64, .i64, .big_int => {
var buffer: InternPool.Key.Int.Storage.BigIntSpace = undefined;
const big_int = int.storage.toBigInt(&buffer);
return big_int.fitsInTwosComp(info.signedness, info.bits);
},
.lazy_align => |lazy_ty| {
const max_needed_bits = @as(u16, 16) + @intFromBool(info.signedness == .signed);
// If it is u16 or bigger we know the alignment fits without resolving it.
if (info.bits >= max_needed_bits) return true;
const x = try sema.typeAbiAlignment(Type.fromInterned(lazy_ty));
if (x == .none) return true;
const actual_needed_bits = @as(usize, x.toLog2Units()) + 1 + @intFromBool(info.signedness == .signed);
return info.bits >= actual_needed_bits;
},
.lazy_size => |lazy_ty| {
const max_needed_bits = @as(u16, 64) + @intFromBool(info.signedness == .signed);
// If it is u64 or bigger we know the size fits without resolving it.
if (info.bits >= max_needed_bits) return true;
const x = try sema.typeAbiSize(Type.fromInterned(lazy_ty));
if (x == 0) return true;
const actual_needed_bits = std.math.log2(x) + 1 + @intFromBool(info.signedness == .signed);
return info.bits >= actual_needed_bits;
},
},
.aggregate => |aggregate| {
assert(ty.zigTypeTag(mod) == .Vector);
return switch (aggregate.storage) {
.bytes => |bytes| for (bytes, 0..) |byte, i| {
if (byte == 0) continue;
const actual_needed_bits = std.math.log2(byte) + 1 + @intFromBool(info.signedness == .signed);
if (info.bits >= actual_needed_bits) continue;
if (vector_index) |vi| vi.* = i;
break false;
} else true,
.elems, .repeated_elem => for (switch (aggregate.storage) {
.bytes => unreachable,
.elems => |elems| elems,
.repeated_elem => |elem| @as(*const [1]InternPool.Index, &elem),
}, 0..) |elem, i| {
if (try sema.intFitsInType(Value.fromInterned(elem), ty.scalarType(mod), null)) continue;
if (vector_index) |vi| vi.* = i;
break false;
} else true,
};
},
else => unreachable,
},
}
}
fn intInRange(sema: *Sema, tag_ty: Type, int_val: Value, end: usize) !bool {
const mod = sema.mod;
if (!(try int_val.compareAllWithZeroAdvanced(.gte, sema))) return false;
const end_val = try mod.intValue(tag_ty, end);
if (!(try sema.compareAll(int_val, .lt, end_val, tag_ty))) return false;
return true;
}
/// Asserts the type is an enum.
fn enumHasInt(sema: *Sema, ty: Type, int: Value) CompileError!bool {
const mod = sema.mod;
const enum_type = mod.intern_pool.loadEnumType(ty.toIntern());
assert(enum_type.tag_mode != .nonexhaustive);
// The `tagValueIndex` function call below relies on the type being the integer tag type.
// `getCoerced` assumes the value will fit the new type.
if (!(try sema.intFitsInType(int, Type.fromInterned(enum_type.tag_ty), null))) return false;
const int_coerced = try mod.getCoerced(int, Type.fromInterned(enum_type.tag_ty));
return enum_type.tagValueIndex(&mod.intern_pool, int_coerced.toIntern()) != null;
}
fn intAddWithOverflow(
sema: *Sema,
lhs: Value,
rhs: Value,
ty: Type,
) !Value.OverflowArithmeticResult {
const mod = sema.mod;
if (ty.zigTypeTag(mod) == .Vector) {
const vec_len = ty.vectorLen(mod);
const overflowed_data = try sema.arena.alloc(InternPool.Index, vec_len);
const result_data = try sema.arena.alloc(InternPool.Index, vec_len);
const scalar_ty = ty.scalarType(mod);
for (overflowed_data, result_data, 0..) |*of, *scalar, i| {
const lhs_elem = try lhs.elemValue(sema.mod, i);
const rhs_elem = try rhs.elemValue(sema.mod, i);
const of_math_result = try sema.intAddWithOverflowScalar(lhs_elem, rhs_elem, scalar_ty);
of.* = of_math_result.overflow_bit.toIntern();
scalar.* = of_math_result.wrapped_result.toIntern();
}
return Value.OverflowArithmeticResult{
.overflow_bit = Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = (try mod.vectorType(.{ .len = vec_len, .child = .u1_type })).toIntern(),
.storage = .{ .elems = overflowed_data },
} }))),
.wrapped_result = Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }))),
};
}
return sema.intAddWithOverflowScalar(lhs, rhs, ty);
}
fn intAddWithOverflowScalar(
sema: *Sema,
lhs: Value,
rhs: Value,
ty: Type,
) !Value.OverflowArithmeticResult {
const mod = sema.mod;
const info = ty.intInfo(mod);
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = try lhs.toBigIntAdvanced(&lhs_space, mod, sema);
const rhs_bigint = try rhs.toBigIntAdvanced(&rhs_space, mod, sema);
const limbs = try sema.arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits),
);
var result_bigint = std.math.big.int.Mutable{ .limbs = limbs, .positive = undefined, .len = undefined };
const overflowed = result_bigint.addWrap(lhs_bigint, rhs_bigint, info.signedness, info.bits);
const result = try mod.intValue_big(ty, result_bigint.toConst());
return Value.OverflowArithmeticResult{
.overflow_bit = try mod.intValue(Type.u1, @intFromBool(overflowed)),
.wrapped_result = result,
};
}
/// Asserts the values are comparable. Both operands have type `ty`.
/// For vectors, returns true if the comparison is true for ALL elements.
///
/// Note that `!compareAll(.eq, ...) != compareAll(.neq, ...)`
fn compareAll(
sema: *Sema,
lhs: Value,
op: std.math.CompareOperator,
rhs: Value,
ty: Type,
) CompileError!bool {
const mod = sema.mod;
if (ty.zigTypeTag(mod) == .Vector) {
var i: usize = 0;
while (i < ty.vectorLen(mod)) : (i += 1) {
const lhs_elem = try lhs.elemValue(sema.mod, i);
const rhs_elem = try rhs.elemValue(sema.mod, i);
if (!(try sema.compareScalar(lhs_elem, op, rhs_elem, ty.scalarType(mod)))) {
return false;
}
}
return true;
}
return sema.compareScalar(lhs, op, rhs, ty);
}
/// Asserts the values are comparable. Both operands have type `ty`.
fn compareScalar(
sema: *Sema,
lhs: Value,
op: std.math.CompareOperator,
rhs: Value,
ty: Type,
) CompileError!bool {
const mod = sema.mod;
const coerced_lhs = try mod.getCoerced(lhs, ty);
const coerced_rhs = try mod.getCoerced(rhs, ty);
switch (op) {
.eq => return sema.valuesEqual(coerced_lhs, coerced_rhs, ty),
.neq => return !(try sema.valuesEqual(coerced_lhs, coerced_rhs, ty)),
else => return Value.compareHeteroAdvanced(coerced_lhs, op, coerced_rhs, mod, sema),
}
}
fn valuesEqual(
sema: *Sema,
lhs: Value,
rhs: Value,
ty: Type,
) CompileError!bool {
return lhs.eql(rhs, ty, sema.mod);
}
/// Asserts the values are comparable vectors of type `ty`.
fn compareVector(
sema: *Sema,
lhs: Value,
op: std.math.CompareOperator,
rhs: Value,
ty: Type,
) !Value {
const mod = sema.mod;
assert(ty.zigTypeTag(mod) == .Vector);
const result_data = try sema.arena.alloc(InternPool.Index, ty.vectorLen(mod));
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(sema.mod, i);
const rhs_elem = try rhs.elemValue(sema.mod, i);
const res_bool = try sema.compareScalar(lhs_elem, op, rhs_elem, ty.scalarType(mod));
scalar.* = Value.makeBool(res_bool).toIntern();
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = (try mod.vectorType(.{ .len = ty.vectorLen(mod), .child = .bool_type })).toIntern(),
.storage = .{ .elems = result_data },
} })));
}
/// Returns the type of a pointer to an element.
/// Asserts that the type is a pointer, and that the element type is indexable.
/// For *[N]T, return *T
/// For [*]T, returns *T
/// For []T, returns *T
/// Handles const-ness and address spaces in particular.
/// This code is duplicated in `analyzePtrArithmetic`.
fn elemPtrType(sema: *Sema, ptr_ty: Type, offset: ?usize) !Type {
const mod = sema.mod;
const ptr_info = ptr_ty.ptrInfo(mod);
const elem_ty = ptr_ty.elemType2(mod);
const is_allowzero = ptr_info.flags.is_allowzero and (offset orelse 0) == 0;
const parent_ty = ptr_ty.childType(mod);
const VI = InternPool.Key.PtrType.VectorIndex;
const vector_info: struct {
host_size: u16 = 0,
alignment: Alignment = .none,
vector_index: VI = .none,
} = if (parent_ty.isVector(mod) and ptr_info.flags.size == .One) blk: {
const elem_bits = elem_ty.bitSize(mod);
if (elem_bits == 0) break :blk .{};
const is_packed = elem_bits < 8 or !std.math.isPowerOfTwo(elem_bits);
if (!is_packed) break :blk .{};
break :blk .{
.host_size = @intCast(parent_ty.arrayLen(mod)),
.alignment = parent_ty.abiAlignment(mod),
.vector_index = if (offset) |some| @enumFromInt(some) else .runtime,
};
} else .{};
const alignment: Alignment = a: {
// Calculate the new pointer alignment.
if (ptr_info.flags.alignment == .none) {
// In case of an ABI-aligned pointer, any pointer arithmetic
// maintains the same ABI-alignedness.
break :a vector_info.alignment;
}
// If the addend is not a comptime-known value we can still count on
// it being a multiple of the type size.
const elem_size = try sema.typeAbiSize(elem_ty);
const addend = if (offset) |off| elem_size * off else elem_size;
// The resulting pointer is aligned to the lcd between the offset (an
// arbitrary number) and the alignment factor (always a power of two,
// non zero).
const new_align: Alignment = @enumFromInt(@min(
@ctz(addend),
ptr_info.flags.alignment.toLog2Units(),
));
assert(new_align != .none);
break :a new_align;
};
return sema.ptrType(.{
.child = elem_ty.toIntern(),
.flags = .{
.alignment = alignment,
.is_const = ptr_info.flags.is_const,
.is_volatile = ptr_info.flags.is_volatile,
.is_allowzero = is_allowzero,
.address_space = ptr_info.flags.address_space,
.vector_index = vector_info.vector_index,
},
.packed_offset = .{
.host_size = vector_info.host_size,
.bit_offset = 0,
},
});
}
/// Merge lhs with rhs.
/// Asserts that lhs and rhs are both error sets and are resolved.
fn errorSetMerge(sema: *Sema, lhs: Type, rhs: Type) !Type {
const mod = sema.mod;
const ip = &mod.intern_pool;
const arena = sema.arena;
const lhs_names = lhs.errorSetNames(mod);
const rhs_names = rhs.errorSetNames(mod);
var names: InferredErrorSet.NameMap = .{};
try names.ensureUnusedCapacity(arena, lhs_names.len);
for (0..lhs_names.len) |lhs_index| {
names.putAssumeCapacityNoClobber(lhs_names.get(ip)[lhs_index], {});
}
for (0..rhs_names.len) |rhs_index| {
try names.put(arena, rhs_names.get(ip)[rhs_index], {});
}
return mod.errorSetFromUnsortedNames(names.keys());
}
/// Avoids crashing the compiler when asking if inferred allocations are noreturn.
fn isNoReturn(sema: *Sema, ref: Air.Inst.Ref) bool {
if (ref == .unreachable_value) return true;
if (ref.toIndex()) |inst| switch (sema.air_instructions.items(.tag)[@intFromEnum(inst)]) {
.inferred_alloc, .inferred_alloc_comptime => return false,
else => {},
};
return sema.typeOf(ref).isNoReturn(sema.mod);
}
/// Avoids crashing the compiler when asking if inferred allocations are known to be a certain zig type.
fn isKnownZigType(sema: *Sema, ref: Air.Inst.Ref, tag: std.builtin.TypeId) bool {
if (ref.toIndex()) |inst| switch (sema.air_instructions.items(.tag)[@intFromEnum(inst)]) {
.inferred_alloc, .inferred_alloc_comptime => return false,
else => {},
};
return sema.typeOf(ref).zigTypeTag(sema.mod) == tag;
}
fn ptrType(sema: *Sema, info: InternPool.Key.PtrType) CompileError!Type {
if (info.flags.alignment != .none) {
_ = try sema.typeAbiAlignment(Type.fromInterned(info.child));
}
return sema.mod.ptrType(info);
}
pub fn declareDependency(sema: *Sema, dependee: InternPool.Dependee) !void {
if (!sema.mod.comp.debug_incremental) return;
// Avoid creating dependencies on ourselves. This situation can arise when we analyze the fields
// of a type and they use `@This()`. This dependency would be unnecessary, and in fact would
// just result in over-analysis since `Zcu.findOutdatedToAnalyze` would never be able to resolve
// the loop.
if (sema.owner_func_index == .none and dependee == .decl_val and dependee.decl_val == sema.owner_decl_index) {
return;
}
const depender = InternPool.Depender.wrap(
if (sema.owner_func_index != .none)
.{ .func = sema.owner_func_index }
else
.{ .decl = sema.owner_decl_index },
);
try sema.mod.intern_pool.addDependency(sema.gpa, depender, dependee);
}
fn isComptimeMutablePtr(sema: *Sema, val: Value) bool {
return switch (sema.mod.intern_pool.indexToKey(val.toIntern())) {
.slice => |slice| sema.isComptimeMutablePtr(Value.fromInterned(slice.ptr)),
.ptr => |ptr| switch (ptr.addr) {
.anon_decl, .decl, .int => false,
.comptime_field => true,
.comptime_alloc => |alloc_index| !sema.getComptimeAlloc(alloc_index).is_const,
.eu_payload, .opt_payload => |base| sema.isComptimeMutablePtr(Value.fromInterned(base)),
.elem, .field => |bi| sema.isComptimeMutablePtr(Value.fromInterned(bi.base)),
},
else => false,
};
}
fn checkRuntimeValue(sema: *Sema, ptr: Air.Inst.Ref) bool {
const val = ptr.toInterned() orelse return true;
return !Value.fromInterned(val).canMutateComptimeVarState(sema.mod);
}
fn validateRuntimeValue(sema: *Sema, block: *Block, val_src: LazySrcLoc, val: Air.Inst.Ref) CompileError!void {
if (sema.checkRuntimeValue(val)) return;
return sema.failWithOwnedErrorMsg(block, msg: {
const msg = try sema.errMsg(block, val_src, "runtime value contains reference to comptime var", .{});
errdefer msg.destroy(sema.gpa);
try sema.errNote(block, val_src, msg, "comptime var pointers are not available at runtime", .{});
break :msg msg;
});
}
/// Returns true if any value contained in `val` is undefined.
fn anyUndef(sema: *Sema, block: *Block, src: LazySrcLoc, val: Value) !bool {
const mod = sema.mod;
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.undef => true,
.simple_value => |v| v == .undefined,
.slice => {
// If the slice contents are runtime-known, reification will fail later on with a
// specific error message.
const arr = try sema.maybeDerefSliceAsArray(block, src, val) orelse return false;
return sema.anyUndef(block, src, arr);
},
.aggregate => |aggregate| for (0..aggregate.storage.values().len) |i| {
const elem = mod.intern_pool.indexToKey(val.toIntern()).aggregate.storage.values()[i];
if (try sema.anyUndef(block, src, Value.fromInterned(elem))) break true;
} else false,
else => false,
};
}
/// Asserts that `slice_val` is a slice of `u8`.
fn sliceToIpString(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
slice_val: Value,
reason: NeededComptimeReason,
) CompileError!InternPool.NullTerminatedString {
const zcu = sema.mod;
const slice_ty = slice_val.typeOf(zcu);
assert(slice_ty.isSlice(zcu));
assert(slice_ty.childType(zcu).toIntern() == .u8_type);
const array_val = try sema.derefSliceAsArray(block, src, slice_val, reason);
const array_ty = array_val.typeOf(zcu);
return array_val.toIpString(array_ty, zcu);
}
/// Given a slice value, attempts to dereference it into a comptime-known array.
/// Emits a compile error if the contents of the slice are not comptime-known.
/// Asserts that `slice_val` is a slice.
fn derefSliceAsArray(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
slice_val: Value,
reason: NeededComptimeReason,
) CompileError!Value {
return try sema.maybeDerefSliceAsArray(block, src, slice_val) orelse {
return sema.failWithNeededComptime(block, src, reason);
};
}
/// Given a slice value, attempts to dereference it into a comptime-known array.
/// Returns `null` if the contents of the slice are not comptime-known.
/// Asserts that `slice_val` is a slice.
fn maybeDerefSliceAsArray(
sema: *Sema,
block: *Block,
src: LazySrcLoc,
slice_val: Value,
) CompileError!?Value {
const zcu = sema.mod;
const ip = &zcu.intern_pool;
assert(slice_val.typeOf(zcu).isSlice(zcu));
const slice = switch (ip.indexToKey(slice_val.toIntern())) {
.undef => return sema.failWithUseOfUndef(block, src),
.slice => |slice| slice,
else => unreachable,
};
const elem_ty = Type.fromInterned(slice.ty).childType(zcu);
const len = try Value.fromInterned(slice.len).toUnsignedIntAdvanced(sema);
const array_ty = try zcu.arrayType(.{
.child = elem_ty.toIntern(),
.len = len,
});
const ptr_ty = try sema.ptrType(p: {
var p = Type.fromInterned(slice.ty).ptrInfo(zcu);
p.flags.size = .One;
p.child = array_ty.toIntern();
p.sentinel = .none;
break :p p;
});
const casted_ptr = try zcu.getCoerced(Value.fromInterned(slice.ptr), ptr_ty);
return sema.pointerDeref(block, src, casted_ptr, ptr_ty);
}