zig/src/link/Elf.zig

6487 lines
234 KiB
Zig

base: link.File,
image_base: u64,
emit_relocs: bool,
z_nodelete: bool,
z_notext: bool,
z_defs: bool,
z_origin: bool,
z_nocopyreloc: bool,
z_now: bool,
z_relro: bool,
/// TODO make this non optional and resolve the default in open()
z_common_page_size: ?u64,
/// TODO make this non optional and resolve the default in open()
z_max_page_size: ?u64,
lib_dirs: []const []const u8,
hash_style: HashStyle,
compress_debug_sections: CompressDebugSections,
symbol_wrap_set: std.StringArrayHashMapUnmanaged(void),
sort_section: ?SortSection,
soname: ?[]const u8,
bind_global_refs_locally: bool,
linker_script: ?[]const u8,
version_script: ?[]const u8,
allow_undefined_version: bool,
enable_new_dtags: ?bool,
print_icf_sections: bool,
print_map: bool,
entry_name: ?[]const u8,
ptr_width: PtrWidth,
/// If this is not null, an object file is created by LLVM and emitted to zcu_object_sub_path.
llvm_object: ?*LlvmObject = null,
/// A list of all input files.
/// Index of each input file also encodes the priority or precedence of one input file
/// over another.
files: std.MultiArrayList(File.Entry) = .{},
/// Long-lived list of all file descriptors.
/// We store them globally rather than per actual File so that we can re-use
/// one file handle per every object file within an archive.
file_handles: std.ArrayListUnmanaged(File.Handle) = .{},
zig_object_index: ?File.Index = null,
linker_defined_index: ?File.Index = null,
objects: std.ArrayListUnmanaged(File.Index) = .{},
shared_objects: std.ArrayListUnmanaged(File.Index) = .{},
/// Stored in native-endian format, depending on target endianness needs to be bswapped on read/write.
/// Same order as in the file.
shdrs: std.ArrayListUnmanaged(elf.Elf64_Shdr) = .{},
/// Given index to a section, pulls index of containing phdr if any.
phdr_to_shdr_table: std.AutoHashMapUnmanaged(u32, u32) = .{},
/// File offset into the shdr table.
shdr_table_offset: ?u64 = null,
/// Table of lists of atoms per output section.
/// This table is not used to track incrementally generated atoms.
output_sections: std.AutoArrayHashMapUnmanaged(u32, std.ArrayListUnmanaged(Atom.Index)) = .{},
output_rela_sections: std.AutoArrayHashMapUnmanaged(u32, RelaSection) = .{},
/// Stored in native-endian format, depending on target endianness needs to be bswapped on read/write.
/// Same order as in the file.
phdrs: std.ArrayListUnmanaged(elf.Elf64_Phdr) = .{},
/// Tracked loadable segments during incremental linking.
/// The index into the program headers of a PT_LOAD program header with Read and Execute flags
phdr_zig_load_re_index: ?u16 = null,
/// The index into the program headers of the global offset table.
/// It needs PT_LOAD and Read flags.
phdr_zig_got_index: ?u16 = null,
/// The index into the program headers of a PT_LOAD program header with Read flag
phdr_zig_load_ro_index: ?u16 = null,
/// The index into the program headers of a PT_LOAD program header with Write flag
phdr_zig_load_rw_index: ?u16 = null,
/// The index into the program headers of a PT_LOAD program header with zerofill data.
phdr_zig_load_zerofill_index: ?u16 = null,
/// Special program headers
/// PT_PHDR
phdr_table_index: ?u16 = null,
/// PT_LOAD for PHDR table
/// We add this special load segment to ensure the EHDR and PHDR table are always
/// loaded into memory.
phdr_table_load_index: ?u16 = null,
/// PT_INTERP
phdr_interp_index: ?u16 = null,
/// PT_DYNAMIC
phdr_dynamic_index: ?u16 = null,
/// PT_GNU_EH_FRAME
phdr_gnu_eh_frame_index: ?u16 = null,
/// PT_GNU_STACK
phdr_gnu_stack_index: ?u16 = null,
/// PT_TLS
/// TODO I think ELF permits multiple TLS segments but for now, assume one per file.
phdr_tls_index: ?u16 = null,
entry_index: ?Symbol.Index = null,
page_size: u32,
default_sym_version: elf.Elf64_Versym,
/// .shstrtab buffer
shstrtab: std.ArrayListUnmanaged(u8) = .{},
/// .symtab buffer
symtab: std.ArrayListUnmanaged(elf.Elf64_Sym) = .{},
/// .strtab buffer
strtab: std.ArrayListUnmanaged(u8) = .{},
/// Dynamic symbol table. Only populated and emitted when linking dynamically.
dynsym: DynsymSection = .{},
/// .dynstrtab buffer
dynstrtab: std.ArrayListUnmanaged(u8) = .{},
/// Version symbol table. Only populated and emitted when linking dynamically.
versym: std.ArrayListUnmanaged(elf.Elf64_Versym) = .{},
/// .verneed section
verneed: VerneedSection = .{},
/// .got section
got: GotSection = .{},
/// .rela.dyn section
rela_dyn: std.ArrayListUnmanaged(elf.Elf64_Rela) = .{},
/// .dynamic section
dynamic: DynamicSection = .{},
/// .hash section
hash: HashSection = .{},
/// .gnu.hash section
gnu_hash: GnuHashSection = .{},
/// .plt section
plt: PltSection = .{},
/// .got.plt section
got_plt: GotPltSection = .{},
/// .plt.got section
plt_got: PltGotSection = .{},
/// .copyrel section
copy_rel: CopyRelSection = .{},
/// .rela.plt section
rela_plt: std.ArrayListUnmanaged(elf.Elf64_Rela) = .{},
/// .got.zig section
zig_got: ZigGotSection = .{},
/// SHT_GROUP sections
/// Applies only to a relocatable.
comdat_group_sections: std.ArrayListUnmanaged(ComdatGroupSection) = .{},
/// Tracked section headers with incremental updates to Zig object.
/// .rela.* sections are only used when emitting a relocatable object file.
zig_text_section_index: ?u32 = null,
zig_data_rel_ro_section_index: ?u32 = null,
zig_data_section_index: ?u32 = null,
zig_bss_section_index: ?u32 = null,
zig_got_section_index: ?u32 = null,
debug_info_section_index: ?u32 = null,
debug_abbrev_section_index: ?u32 = null,
debug_str_section_index: ?u32 = null,
debug_aranges_section_index: ?u32 = null,
debug_line_section_index: ?u32 = null,
copy_rel_section_index: ?u32 = null,
dynamic_section_index: ?u32 = null,
dynstrtab_section_index: ?u32 = null,
dynsymtab_section_index: ?u32 = null,
eh_frame_section_index: ?u32 = null,
eh_frame_rela_section_index: ?u32 = null,
eh_frame_hdr_section_index: ?u32 = null,
hash_section_index: ?u32 = null,
gnu_hash_section_index: ?u32 = null,
got_section_index: ?u32 = null,
got_plt_section_index: ?u32 = null,
interp_section_index: ?u32 = null,
plt_section_index: ?u32 = null,
plt_got_section_index: ?u32 = null,
rela_dyn_section_index: ?u32 = null,
rela_plt_section_index: ?u32 = null,
versym_section_index: ?u32 = null,
verneed_section_index: ?u32 = null,
shstrtab_section_index: ?u32 = null,
strtab_section_index: ?u32 = null,
symtab_section_index: ?u32 = null,
// Linker-defined symbols
dynamic_index: ?Symbol.Index = null,
ehdr_start_index: ?Symbol.Index = null,
init_array_start_index: ?Symbol.Index = null,
init_array_end_index: ?Symbol.Index = null,
fini_array_start_index: ?Symbol.Index = null,
fini_array_end_index: ?Symbol.Index = null,
preinit_array_start_index: ?Symbol.Index = null,
preinit_array_end_index: ?Symbol.Index = null,
got_index: ?Symbol.Index = null,
plt_index: ?Symbol.Index = null,
end_index: ?Symbol.Index = null,
gnu_eh_frame_hdr_index: ?Symbol.Index = null,
dso_handle_index: ?Symbol.Index = null,
rela_iplt_start_index: ?Symbol.Index = null,
rela_iplt_end_index: ?Symbol.Index = null,
global_pointer_index: ?Symbol.Index = null,
start_stop_indexes: std.ArrayListUnmanaged(u32) = .{},
/// An array of symbols parsed across all input files.
symbols: std.ArrayListUnmanaged(Symbol) = .{},
symbols_extra: std.ArrayListUnmanaged(u32) = .{},
symbols_free_list: std.ArrayListUnmanaged(Symbol.Index) = .{},
resolver: std.AutoArrayHashMapUnmanaged(u32, Symbol.Index) = .{},
has_text_reloc: bool = false,
num_ifunc_dynrelocs: usize = 0,
/// List of atoms that are owned directly by the linker.
atoms: std.ArrayListUnmanaged(Atom) = .{},
atoms_extra: std.ArrayListUnmanaged(u32) = .{},
/// List of range extension thunks.
thunks: std.ArrayListUnmanaged(Thunk) = .{},
/// List of output merge sections with deduped contents.
merge_sections: std.ArrayListUnmanaged(MergeSection) = .{},
/// List of output merge subsections.
/// Each subsection is akin to Atom but belongs to a MergeSection.
merge_subsections: std.ArrayListUnmanaged(MergeSubsection) = .{},
/// List of input merge sections as parsed from input relocatables.
merge_input_sections: std.ArrayListUnmanaged(InputMergeSection) = .{},
/// Table of last atom index in a section and matching atom free list if any.
last_atom_and_free_list_table: LastAtomAndFreeListTable = .{},
comdat_groups: std.ArrayListUnmanaged(ComdatGroup) = .{},
comdat_groups_owners: std.ArrayListUnmanaged(ComdatGroupOwner) = .{},
comdat_groups_table: std.AutoHashMapUnmanaged(u32, ComdatGroupOwner.Index) = .{},
/// Global string table used to provide quick access to global symbol resolvers
/// such as `resolver` and `comdat_groups_table`.
strings: StringTable = .{},
/// When allocating, the ideal_capacity is calculated by
/// actual_capacity + (actual_capacity / ideal_factor)
const ideal_factor = 3;
/// In order for a slice of bytes to be considered eligible to keep metadata pointing at
/// it as a possible place to put new symbols, it must have enough room for this many bytes
/// (plus extra for reserved capacity).
const minimum_atom_size = 64;
pub const min_text_capacity = padToIdeal(minimum_atom_size);
pub const PtrWidth = enum { p32, p64 };
pub const HashStyle = enum { sysv, gnu, both };
pub const CompressDebugSections = enum { none, zlib, zstd };
pub const SortSection = enum { name, alignment };
pub fn createEmpty(
arena: Allocator,
comp: *Compilation,
emit: Compilation.Emit,
options: link.File.OpenOptions,
) !*Elf {
const target = comp.root_mod.resolved_target.result;
assert(target.ofmt == .elf);
const use_lld = build_options.have_llvm and comp.config.use_lld;
const use_llvm = comp.config.use_llvm;
const opt_zcu = comp.module;
const output_mode = comp.config.output_mode;
const link_mode = comp.config.link_mode;
const optimize_mode = comp.root_mod.optimize_mode;
const is_native_os = comp.root_mod.resolved_target.is_native_os;
const ptr_width: PtrWidth = switch (target.ptrBitWidth()) {
0...32 => .p32,
33...64 => .p64,
else => return error.UnsupportedELFArchitecture,
};
const page_size: u32 = switch (target.cpu.arch) {
.aarch64, .powerpc64le => 0x10000,
.sparc64 => 0x2000,
else => 0x1000,
};
const is_dyn_lib = output_mode == .Lib and link_mode == .dynamic;
const default_sym_version: elf.Elf64_Versym = if (is_dyn_lib or comp.config.rdynamic)
elf.VER_NDX_GLOBAL
else
elf.VER_NDX_LOCAL;
// If using LLD to link, this code should produce an object file so that it
// can be passed to LLD.
// If using LLVM to generate the object file for the zig compilation unit,
// we need a place to put the object file so that it can be subsequently
// handled.
const zcu_object_sub_path = if (!use_lld and !use_llvm)
null
else
try std.fmt.allocPrint(arena, "{s}.o", .{emit.sub_path});
const self = try arena.create(Elf);
self.* = .{
.base = .{
.tag = .elf,
.comp = comp,
.emit = emit,
.zcu_object_sub_path = zcu_object_sub_path,
.gc_sections = options.gc_sections orelse (optimize_mode != .Debug and output_mode != .Obj),
.print_gc_sections = options.print_gc_sections,
.stack_size = options.stack_size orelse 16777216,
.allow_shlib_undefined = options.allow_shlib_undefined orelse !is_native_os,
.file = null,
.disable_lld_caching = options.disable_lld_caching,
.build_id = options.build_id,
.rpath_list = options.rpath_list,
},
.ptr_width = ptr_width,
.page_size = page_size,
.default_sym_version = default_sym_version,
.entry_name = switch (options.entry) {
.disabled => null,
.default => if (output_mode != .Exe) null else defaultEntrySymbolName(target.cpu.arch),
.enabled => defaultEntrySymbolName(target.cpu.arch),
.named => |name| name,
},
.image_base = b: {
if (is_dyn_lib) break :b 0;
if (output_mode == .Exe and comp.config.pie) break :b 0;
break :b options.image_base orelse switch (ptr_width) {
.p32 => 0x10000,
.p64 => 0x1000000,
};
},
.emit_relocs = options.emit_relocs,
.z_nodelete = options.z_nodelete,
.z_notext = options.z_notext,
.z_defs = options.z_defs,
.z_origin = options.z_origin,
.z_nocopyreloc = options.z_nocopyreloc,
.z_now = options.z_now,
.z_relro = options.z_relro,
.z_common_page_size = options.z_common_page_size,
.z_max_page_size = options.z_max_page_size,
.lib_dirs = options.lib_dirs,
.hash_style = options.hash_style,
.compress_debug_sections = options.compress_debug_sections,
.symbol_wrap_set = options.symbol_wrap_set,
.sort_section = options.sort_section,
.soname = options.soname,
.bind_global_refs_locally = options.bind_global_refs_locally,
.linker_script = options.linker_script,
.version_script = options.version_script,
.allow_undefined_version = options.allow_undefined_version,
.enable_new_dtags = options.enable_new_dtags,
.print_icf_sections = options.print_icf_sections,
.print_map = options.print_map,
};
if (use_llvm and comp.config.have_zcu) {
self.llvm_object = try LlvmObject.create(arena, comp);
}
errdefer self.base.destroy();
if (use_lld and (use_llvm or !comp.config.have_zcu)) {
// LLVM emits the object file (if any); LLD links it into the final product.
return self;
}
const is_obj = output_mode == .Obj;
const is_obj_or_ar = is_obj or (output_mode == .Lib and link_mode == .static);
// What path should this ELF linker code output to?
// If using LLD to link, this code should produce an object file so that it
// can be passed to LLD.
const sub_path = if (use_lld) zcu_object_sub_path.? else emit.sub_path;
self.base.file = try emit.directory.handle.createFile(sub_path, .{
.truncate = true,
.read = true,
.mode = link.File.determineMode(use_lld, output_mode, link_mode),
});
const gpa = comp.gpa;
// Index 0 is always a null symbol.
try self.symbols.append(gpa, .{});
// Index 0 is always a null symbol.
try self.symbols_extra.append(gpa, 0);
// Allocate atom index 0 to null atom
try self.atoms.append(gpa, .{});
try self.atoms_extra.append(gpa, 0);
// Append null file at index 0
try self.files.append(gpa, .null);
// Append null byte to string tables
try self.shstrtab.append(gpa, 0);
try self.strtab.append(gpa, 0);
// There must always be a null shdr in index 0
_ = try self.addSection(.{ .name = "" });
// Append null symbol in output symtab
try self.symtab.append(gpa, null_sym);
// Append null input merge section.
try self.merge_input_sections.append(gpa, .{});
if (!is_obj_or_ar) {
try self.dynstrtab.append(gpa, 0);
// Initialize PT_PHDR program header
const p_align: u16 = switch (self.ptr_width) {
.p32 => @alignOf(elf.Elf32_Phdr),
.p64 => @alignOf(elf.Elf64_Phdr),
};
const ehsize: u64 = switch (self.ptr_width) {
.p32 => @sizeOf(elf.Elf32_Ehdr),
.p64 => @sizeOf(elf.Elf64_Ehdr),
};
const phsize: u64 = switch (self.ptr_width) {
.p32 => @sizeOf(elf.Elf32_Phdr),
.p64 => @sizeOf(elf.Elf64_Phdr),
};
const max_nphdrs = comptime getMaxNumberOfPhdrs();
const reserved: u64 = mem.alignForward(u64, padToIdeal(max_nphdrs * phsize), self.page_size);
self.phdr_table_index = try self.addPhdr(.{
.type = elf.PT_PHDR,
.flags = elf.PF_R,
.@"align" = p_align,
.addr = self.image_base + ehsize,
.offset = ehsize,
.filesz = reserved,
.memsz = reserved,
});
self.phdr_table_load_index = try self.addPhdr(.{
.type = elf.PT_LOAD,
.flags = elf.PF_R,
.@"align" = self.page_size,
.addr = self.image_base,
.offset = 0,
.filesz = reserved + ehsize,
.memsz = reserved + ehsize,
});
}
if (opt_zcu) |zcu| {
if (!use_llvm) {
const index: File.Index = @intCast(try self.files.addOne(gpa));
self.files.set(index, .{ .zig_object = .{
.index = index,
.path = try std.fmt.allocPrint(arena, "{s}.o", .{fs.path.stem(
zcu.main_mod.root_src_path,
)}),
} });
self.zig_object_index = index;
try self.zigObjectPtr().?.init(self);
try self.initMetadata(.{
.symbol_count_hint = options.symbol_count_hint,
.program_code_size_hint = options.program_code_size_hint,
});
}
}
return self;
}
pub fn open(
arena: Allocator,
comp: *Compilation,
emit: Compilation.Emit,
options: link.File.OpenOptions,
) !*Elf {
// TODO: restore saved linker state, don't truncate the file, and
// participate in incremental compilation.
return createEmpty(arena, comp, emit, options);
}
pub fn deinit(self: *Elf) void {
const gpa = self.base.comp.gpa;
if (self.llvm_object) |llvm_object| llvm_object.deinit();
for (self.file_handles.items) |fh| {
fh.close();
}
self.file_handles.deinit(gpa);
for (self.files.items(.tags), self.files.items(.data)) |tag, *data| switch (tag) {
.null => {},
.zig_object => data.zig_object.deinit(gpa),
.linker_defined => data.linker_defined.deinit(gpa),
.object => data.object.deinit(gpa),
.shared_object => data.shared_object.deinit(gpa),
};
self.files.deinit(gpa);
self.objects.deinit(gpa);
self.shared_objects.deinit(gpa);
self.shdrs.deinit(gpa);
self.phdr_to_shdr_table.deinit(gpa);
self.phdrs.deinit(gpa);
for (self.output_sections.values()) |*list| {
list.deinit(gpa);
}
self.output_sections.deinit(gpa);
for (self.output_rela_sections.values()) |*sec| {
sec.atom_list.deinit(gpa);
}
self.output_rela_sections.deinit(gpa);
self.shstrtab.deinit(gpa);
self.symtab.deinit(gpa);
self.strtab.deinit(gpa);
self.symbols.deinit(gpa);
self.symbols_extra.deinit(gpa);
self.symbols_free_list.deinit(gpa);
self.resolver.deinit(gpa);
self.start_stop_indexes.deinit(gpa);
self.atoms.deinit(gpa);
self.atoms_extra.deinit(gpa);
for (self.thunks.items) |*th| {
th.deinit(gpa);
}
self.thunks.deinit(gpa);
for (self.merge_sections.items) |*sect| {
sect.deinit(gpa);
}
self.merge_sections.deinit(gpa);
self.merge_subsections.deinit(gpa);
for (self.merge_input_sections.items) |*sect| {
sect.deinit(gpa);
}
self.merge_input_sections.deinit(gpa);
for (self.last_atom_and_free_list_table.values()) |*value| {
value.free_list.deinit(gpa);
}
self.last_atom_and_free_list_table.deinit(gpa);
self.comdat_groups.deinit(gpa);
self.comdat_groups_owners.deinit(gpa);
self.comdat_groups_table.deinit(gpa);
self.strings.deinit(gpa);
self.got.deinit(gpa);
self.plt.deinit(gpa);
self.plt_got.deinit(gpa);
self.dynsym.deinit(gpa);
self.dynstrtab.deinit(gpa);
self.dynamic.deinit(gpa);
self.hash.deinit(gpa);
self.versym.deinit(gpa);
self.verneed.deinit(gpa);
self.copy_rel.deinit(gpa);
self.rela_dyn.deinit(gpa);
self.rela_plt.deinit(gpa);
self.zig_got.deinit(gpa);
self.comdat_group_sections.deinit(gpa);
}
pub fn getDeclVAddr(self: *Elf, _: Zcu.PerThread, decl_index: InternPool.DeclIndex, reloc_info: link.File.RelocInfo) !u64 {
assert(self.llvm_object == null);
return self.zigObjectPtr().?.getDeclVAddr(self, decl_index, reloc_info);
}
pub fn lowerAnonDecl(
self: *Elf,
pt: Zcu.PerThread,
decl_val: InternPool.Index,
explicit_alignment: InternPool.Alignment,
src_loc: Module.LazySrcLoc,
) !codegen.Result {
return self.zigObjectPtr().?.lowerAnonDecl(self, pt, decl_val, explicit_alignment, src_loc);
}
pub fn getAnonDeclVAddr(self: *Elf, decl_val: InternPool.Index, reloc_info: link.File.RelocInfo) !u64 {
assert(self.llvm_object == null);
return self.zigObjectPtr().?.getAnonDeclVAddr(self, decl_val, reloc_info);
}
/// Returns end pos of collision, if any.
fn detectAllocCollision(self: *Elf, start: u64, size: u64) ?u64 {
const small_ptr = self.ptr_width == .p32;
const ehdr_size: u64 = if (small_ptr) @sizeOf(elf.Elf32_Ehdr) else @sizeOf(elf.Elf64_Ehdr);
if (start < ehdr_size)
return ehdr_size;
const end = start + padToIdeal(size);
if (self.shdr_table_offset) |off| {
const shdr_size: u64 = if (small_ptr) @sizeOf(elf.Elf32_Shdr) else @sizeOf(elf.Elf64_Shdr);
const tight_size = self.shdrs.items.len * shdr_size;
const increased_size = padToIdeal(tight_size);
const test_end = off +| increased_size;
if (end > off and start < test_end) {
return test_end;
}
}
for (self.shdrs.items) |shdr| {
if (shdr.sh_type == elf.SHT_NOBITS) continue;
const increased_size = padToIdeal(shdr.sh_size);
const test_end = shdr.sh_offset +| increased_size;
if (end > shdr.sh_offset and start < test_end) {
return test_end;
}
}
for (self.phdrs.items) |phdr| {
if (phdr.p_type != elf.PT_LOAD) continue;
const increased_size = padToIdeal(phdr.p_filesz);
const test_end = phdr.p_offset +| increased_size;
if (end > phdr.p_offset and start < test_end) {
return test_end;
}
}
return null;
}
pub fn allocatedSize(self: *Elf, start: u64) u64 {
if (start == 0) return 0;
var min_pos: u64 = std.math.maxInt(u64);
if (self.shdr_table_offset) |off| {
if (off > start and off < min_pos) min_pos = off;
}
for (self.shdrs.items) |section| {
if (section.sh_offset <= start) continue;
if (section.sh_offset < min_pos) min_pos = section.sh_offset;
}
for (self.phdrs.items) |phdr| {
if (phdr.p_offset <= start) continue;
if (phdr.p_offset < min_pos) min_pos = phdr.p_offset;
}
return min_pos - start;
}
fn allocatedVirtualSize(self: *Elf, start: u64) u64 {
if (start == 0) return 0;
var min_pos: u64 = std.math.maxInt(u64);
for (self.phdrs.items) |phdr| {
if (phdr.p_vaddr <= start) continue;
if (phdr.p_vaddr < min_pos) min_pos = phdr.p_vaddr;
}
return min_pos - start;
}
pub fn findFreeSpace(self: *Elf, object_size: u64, min_alignment: u64) u64 {
var start: u64 = 0;
while (self.detectAllocCollision(start, object_size)) |item_end| {
start = mem.alignForward(u64, item_end, min_alignment);
}
return start;
}
pub const InitMetadataOptions = struct {
symbol_count_hint: u64,
program_code_size_hint: u64,
};
/// TODO move to ZigObject
pub fn initMetadata(self: *Elf, options: InitMetadataOptions) !void {
const gpa = self.base.comp.gpa;
const ptr_size = self.ptrWidthBytes();
const target = self.base.comp.root_mod.resolved_target.result;
const ptr_bit_width = target.ptrBitWidth();
const zig_object = self.zigObjectPtr().?;
const fillSection = struct {
fn fillSection(elf_file: *Elf, shdr: *elf.Elf64_Shdr, size: u64, phndx: ?u16) void {
if (elf_file.base.isRelocatable()) {
const off = elf_file.findFreeSpace(size, shdr.sh_addralign);
shdr.sh_offset = off;
shdr.sh_size = size;
} else {
const phdr = elf_file.phdrs.items[phndx.?];
shdr.sh_addr = phdr.p_vaddr;
shdr.sh_offset = phdr.p_offset;
shdr.sh_size = phdr.p_memsz;
}
}
}.fillSection;
comptime assert(number_of_zig_segments == 5);
if (!self.base.isRelocatable()) {
if (self.phdr_zig_load_re_index == null) {
const filesz = options.program_code_size_hint;
const off = self.findFreeSpace(filesz, self.page_size);
self.phdr_zig_load_re_index = try self.addPhdr(.{
.type = elf.PT_LOAD,
.offset = off,
.filesz = filesz,
.addr = if (ptr_bit_width >= 32) 0x8000000 else 0x8000,
.memsz = filesz,
.@"align" = self.page_size,
.flags = elf.PF_X | elf.PF_R | elf.PF_W,
});
}
if (self.phdr_zig_got_index == null) {
const alignment = self.page_size;
const filesz = @as(u64, ptr_size) * options.symbol_count_hint;
const off = self.findFreeSpace(filesz, alignment);
self.phdr_zig_got_index = try self.addPhdr(.{
.type = elf.PT_LOAD,
.offset = off,
.filesz = filesz,
.addr = if (ptr_bit_width >= 32) 0x4000000 else 0x4000,
.memsz = filesz,
.@"align" = alignment,
.flags = elf.PF_R | elf.PF_W,
});
}
if (self.phdr_zig_load_ro_index == null) {
const alignment = self.page_size;
const filesz: u64 = 1024;
const off = self.findFreeSpace(filesz, alignment);
self.phdr_zig_load_ro_index = try self.addPhdr(.{
.type = elf.PT_LOAD,
.offset = off,
.filesz = filesz,
.addr = if (ptr_bit_width >= 32) 0xc000000 else 0xa000,
.memsz = filesz,
.@"align" = alignment,
.flags = elf.PF_R | elf.PF_W,
});
}
if (self.phdr_zig_load_rw_index == null) {
const alignment = self.page_size;
const filesz: u64 = 1024;
const off = self.findFreeSpace(filesz, alignment);
self.phdr_zig_load_rw_index = try self.addPhdr(.{
.type = elf.PT_LOAD,
.offset = off,
.filesz = filesz,
.addr = if (ptr_bit_width >= 32) 0x10000000 else 0xc000,
.memsz = filesz,
.@"align" = alignment,
.flags = elf.PF_R | elf.PF_W,
});
}
if (self.phdr_zig_load_zerofill_index == null) {
const alignment = self.page_size;
self.phdr_zig_load_zerofill_index = try self.addPhdr(.{
.type = elf.PT_LOAD,
.addr = if (ptr_bit_width >= 32) 0x14000000 else 0xf000,
.memsz = 1024,
.@"align" = alignment,
.flags = elf.PF_R | elf.PF_W,
});
}
}
if (self.zig_text_section_index == null) {
self.zig_text_section_index = try self.addSection(.{
.name = ".text.zig",
.type = elf.SHT_PROGBITS,
.flags = elf.SHF_ALLOC | elf.SHF_EXECINSTR,
.addralign = 1,
.offset = std.math.maxInt(u64),
});
const shdr = &self.shdrs.items[self.zig_text_section_index.?];
fillSection(self, shdr, options.program_code_size_hint, self.phdr_zig_load_re_index);
if (self.base.isRelocatable()) {
const rela_shndx = try self.addRelaShdr(".rela.text.zig", self.zig_text_section_index.?);
try self.output_rela_sections.putNoClobber(gpa, self.zig_text_section_index.?, .{
.shndx = rela_shndx,
});
} else {
try self.phdr_to_shdr_table.putNoClobber(
gpa,
self.zig_text_section_index.?,
self.phdr_zig_load_re_index.?,
);
}
try self.output_sections.putNoClobber(gpa, self.zig_text_section_index.?, .{});
try self.last_atom_and_free_list_table.putNoClobber(gpa, self.zig_text_section_index.?, .{});
}
if (self.zig_got_section_index == null and !self.base.isRelocatable()) {
self.zig_got_section_index = try self.addSection(.{
.name = ".got.zig",
.type = elf.SHT_PROGBITS,
.addralign = ptr_size,
.flags = elf.SHF_ALLOC | elf.SHF_WRITE,
.offset = std.math.maxInt(u64),
});
const shdr = &self.shdrs.items[self.zig_got_section_index.?];
const phndx = self.phdr_zig_got_index.?;
const phdr = self.phdrs.items[phndx];
shdr.sh_addr = phdr.p_vaddr;
shdr.sh_offset = phdr.p_offset;
shdr.sh_size = phdr.p_memsz;
try self.phdr_to_shdr_table.putNoClobber(
gpa,
self.zig_got_section_index.?,
self.phdr_zig_got_index.?,
);
}
if (self.zig_data_rel_ro_section_index == null) {
self.zig_data_rel_ro_section_index = try self.addSection(.{
.name = ".data.rel.ro.zig",
.type = elf.SHT_PROGBITS,
.addralign = 1,
.flags = elf.SHF_ALLOC | elf.SHF_WRITE,
.offset = std.math.maxInt(u64),
});
const shdr = &self.shdrs.items[self.zig_data_rel_ro_section_index.?];
fillSection(self, shdr, 1024, self.phdr_zig_load_ro_index);
if (self.base.isRelocatable()) {
const rela_shndx = try self.addRelaShdr(
".rela.data.rel.ro.zig",
self.zig_data_rel_ro_section_index.?,
);
try self.output_rela_sections.putNoClobber(gpa, self.zig_data_rel_ro_section_index.?, .{
.shndx = rela_shndx,
});
} else {
try self.phdr_to_shdr_table.putNoClobber(
gpa,
self.zig_data_rel_ro_section_index.?,
self.phdr_zig_load_ro_index.?,
);
}
try self.output_sections.putNoClobber(gpa, self.zig_data_rel_ro_section_index.?, .{});
try self.last_atom_and_free_list_table.putNoClobber(gpa, self.zig_data_rel_ro_section_index.?, .{});
}
if (self.zig_data_section_index == null) {
self.zig_data_section_index = try self.addSection(.{
.name = ".data.zig",
.type = elf.SHT_PROGBITS,
.addralign = ptr_size,
.flags = elf.SHF_ALLOC | elf.SHF_WRITE,
.offset = std.math.maxInt(u64),
});
const shdr = &self.shdrs.items[self.zig_data_section_index.?];
fillSection(self, shdr, 1024, self.phdr_zig_load_rw_index);
if (self.base.isRelocatable()) {
const rela_shndx = try self.addRelaShdr(
".rela.data.zig",
self.zig_data_section_index.?,
);
try self.output_rela_sections.putNoClobber(gpa, self.zig_data_section_index.?, .{
.shndx = rela_shndx,
});
} else {
try self.phdr_to_shdr_table.putNoClobber(
gpa,
self.zig_data_section_index.?,
self.phdr_zig_load_rw_index.?,
);
}
try self.output_sections.putNoClobber(gpa, self.zig_data_section_index.?, .{});
try self.last_atom_and_free_list_table.putNoClobber(gpa, self.zig_data_section_index.?, .{});
}
if (self.zig_bss_section_index == null) {
self.zig_bss_section_index = try self.addSection(.{
.name = ".bss.zig",
.type = elf.SHT_NOBITS,
.addralign = ptr_size,
.flags = elf.SHF_ALLOC | elf.SHF_WRITE,
.offset = 0,
});
const shdr = &self.shdrs.items[self.zig_bss_section_index.?];
if (self.phdr_zig_load_zerofill_index) |phndx| {
const phdr = self.phdrs.items[phndx];
shdr.sh_addr = phdr.p_vaddr;
shdr.sh_size = phdr.p_memsz;
try self.phdr_to_shdr_table.putNoClobber(gpa, self.zig_bss_section_index.?, phndx);
} else {
shdr.sh_size = 1024;
}
try self.output_sections.putNoClobber(gpa, self.zig_bss_section_index.?, .{});
try self.last_atom_and_free_list_table.putNoClobber(gpa, self.zig_bss_section_index.?, .{});
}
if (zig_object.dwarf) |*dw| {
if (self.debug_str_section_index == null) {
assert(dw.strtab.buffer.items.len == 0);
try dw.strtab.buffer.append(gpa, 0);
self.debug_str_section_index = try self.addSection(.{
.name = ".debug_str",
.flags = elf.SHF_MERGE | elf.SHF_STRINGS,
.entsize = 1,
.type = elf.SHT_PROGBITS,
.addralign = 1,
.offset = std.math.maxInt(u64),
});
const shdr = &self.shdrs.items[self.debug_str_section_index.?];
const size = @as(u64, @intCast(dw.strtab.buffer.items.len));
const off = self.findFreeSpace(size, 1);
shdr.sh_offset = off;
shdr.sh_size = size;
zig_object.debug_strtab_dirty = true;
try self.output_sections.putNoClobber(gpa, self.debug_str_section_index.?, .{});
}
if (self.debug_info_section_index == null) {
self.debug_info_section_index = try self.addSection(.{
.name = ".debug_info",
.type = elf.SHT_PROGBITS,
.addralign = 1,
.offset = std.math.maxInt(u64),
});
const shdr = &self.shdrs.items[self.debug_info_section_index.?];
const size: u64 = 200;
const off = self.findFreeSpace(size, 1);
shdr.sh_offset = off;
shdr.sh_size = size;
zig_object.debug_info_header_dirty = true;
try self.output_sections.putNoClobber(gpa, self.debug_info_section_index.?, .{});
}
if (self.debug_abbrev_section_index == null) {
self.debug_abbrev_section_index = try self.addSection(.{
.name = ".debug_abbrev",
.type = elf.SHT_PROGBITS,
.addralign = 1,
.offset = std.math.maxInt(u64),
});
const shdr = &self.shdrs.items[self.debug_abbrev_section_index.?];
const size: u64 = 128;
const off = self.findFreeSpace(size, 1);
shdr.sh_offset = off;
shdr.sh_size = size;
zig_object.debug_abbrev_section_dirty = true;
try self.output_sections.putNoClobber(gpa, self.debug_abbrev_section_index.?, .{});
}
if (self.debug_aranges_section_index == null) {
self.debug_aranges_section_index = try self.addSection(.{
.name = ".debug_aranges",
.type = elf.SHT_PROGBITS,
.addralign = 16,
.offset = std.math.maxInt(u64),
});
const shdr = &self.shdrs.items[self.debug_aranges_section_index.?];
const size: u64 = 160;
const off = self.findFreeSpace(size, 16);
shdr.sh_offset = off;
shdr.sh_size = size;
zig_object.debug_aranges_section_dirty = true;
try self.output_sections.putNoClobber(gpa, self.debug_aranges_section_index.?, .{});
}
if (self.debug_line_section_index == null) {
self.debug_line_section_index = try self.addSection(.{
.name = ".debug_line",
.type = elf.SHT_PROGBITS,
.addralign = 1,
.offset = std.math.maxInt(u64),
});
const shdr = &self.shdrs.items[self.debug_line_section_index.?];
const size: u64 = 250;
const off = self.findFreeSpace(size, 1);
shdr.sh_offset = off;
shdr.sh_size = size;
zig_object.debug_line_header_dirty = true;
try self.output_sections.putNoClobber(gpa, self.debug_line_section_index.?, .{});
}
}
// We need to find current max assumed file offset, and actually write to file to make it a reality.
var end_pos: u64 = 0;
for (self.shdrs.items) |shdr| {
if (shdr.sh_offset == std.math.maxInt(u64)) continue;
end_pos = @max(end_pos, shdr.sh_offset + shdr.sh_size);
}
try self.base.file.?.pwriteAll(&[1]u8{0}, end_pos);
}
pub fn growAllocSection(self: *Elf, shdr_index: u32, needed_size: u64) !void {
const shdr = &self.shdrs.items[shdr_index];
const maybe_phdr = if (self.phdr_to_shdr_table.get(shdr_index)) |phndx| &self.phdrs.items[phndx] else null;
const is_zerofill = shdr.sh_type == elf.SHT_NOBITS;
if (needed_size > self.allocatedSize(shdr.sh_offset) and !is_zerofill) {
const existing_size = shdr.sh_size;
shdr.sh_size = 0;
// Must move the entire section.
const alignment = if (maybe_phdr) |phdr| phdr.p_align else shdr.sh_addralign;
const new_offset = self.findFreeSpace(needed_size, alignment);
log.debug("new '{s}' file offset 0x{x} to 0x{x}", .{
self.getShString(shdr.sh_name),
new_offset,
new_offset + existing_size,
});
const amt = try self.base.file.?.copyRangeAll(shdr.sh_offset, self.base.file.?, new_offset, existing_size);
// TODO figure out what to about this error condition - how to communicate it up.
if (amt != existing_size) return error.InputOutput;
shdr.sh_offset = new_offset;
if (maybe_phdr) |phdr| phdr.p_offset = new_offset;
}
shdr.sh_size = needed_size;
if (!is_zerofill) {
if (maybe_phdr) |phdr| phdr.p_filesz = needed_size;
}
if (maybe_phdr) |phdr| {
const mem_capacity = self.allocatedVirtualSize(phdr.p_vaddr);
if (needed_size > mem_capacity) {
var err = try self.addErrorWithNotes(2);
try err.addMsg(self, "fatal linker error: cannot expand load segment phdr({d}) in virtual memory", .{
self.phdr_to_shdr_table.get(shdr_index).?,
});
try err.addNote(self, "TODO: emit relocations to memory locations in self-hosted backends", .{});
try err.addNote(self, "as a workaround, try increasing pre-allocated virtual memory of each segment", .{});
}
phdr.p_memsz = needed_size;
}
self.markDirty(shdr_index);
}
pub fn growNonAllocSection(
self: *Elf,
shdr_index: u32,
needed_size: u64,
min_alignment: u32,
requires_file_copy: bool,
) !void {
const shdr = &self.shdrs.items[shdr_index];
if (needed_size > self.allocatedSize(shdr.sh_offset)) {
const existing_size = shdr.sh_size;
shdr.sh_size = 0;
// Move all the symbols to a new file location.
const new_offset = self.findFreeSpace(needed_size, min_alignment);
log.debug("new '{s}' file offset 0x{x} to 0x{x}", .{
self.getShString(shdr.sh_name),
new_offset,
new_offset + existing_size,
});
if (requires_file_copy) {
const amt = try self.base.file.?.copyRangeAll(
shdr.sh_offset,
self.base.file.?,
new_offset,
existing_size,
);
if (amt != existing_size) return error.InputOutput;
}
shdr.sh_offset = new_offset;
}
shdr.sh_size = needed_size;
self.markDirty(shdr_index);
}
pub fn markDirty(self: *Elf, shdr_index: u32) void {
const zig_object = self.zigObjectPtr().?;
if (zig_object.dwarf) |_| {
if (self.debug_info_section_index.? == shdr_index) {
zig_object.debug_info_header_dirty = true;
} else if (self.debug_line_section_index.? == shdr_index) {
zig_object.debug_line_header_dirty = true;
} else if (self.debug_abbrev_section_index.? == shdr_index) {
zig_object.debug_abbrev_section_dirty = true;
} else if (self.debug_str_section_index.? == shdr_index) {
zig_object.debug_strtab_dirty = true;
} else if (self.debug_aranges_section_index.? == shdr_index) {
zig_object.debug_aranges_section_dirty = true;
}
}
}
pub fn flush(self: *Elf, arena: Allocator, tid: Zcu.PerThread.Id, prog_node: std.Progress.Node) link.File.FlushError!void {
const use_lld = build_options.have_llvm and self.base.comp.config.use_lld;
if (use_lld) {
return self.linkWithLLD(arena, tid, prog_node);
}
try self.flushModule(arena, tid, prog_node);
}
pub fn flushModule(self: *Elf, arena: Allocator, tid: Zcu.PerThread.Id, prog_node: std.Progress.Node) link.File.FlushError!void {
const tracy = trace(@src());
defer tracy.end();
const comp = self.base.comp;
const gpa = comp.gpa;
if (self.llvm_object) |llvm_object| {
try self.base.emitLlvmObject(arena, llvm_object, prog_node);
const use_lld = build_options.have_llvm and comp.config.use_lld;
if (use_lld) return;
}
const sub_prog_node = prog_node.start("ELF Flush", 0);
defer sub_prog_node.end();
const target = comp.root_mod.resolved_target.result;
const link_mode = comp.config.link_mode;
const directory = self.base.emit.directory; // Just an alias to make it shorter to type.
const full_out_path = try directory.join(arena, &[_][]const u8{self.base.emit.sub_path});
const module_obj_path: ?[]const u8 = if (self.base.zcu_object_sub_path) |path| blk: {
if (fs.path.dirname(full_out_path)) |dirname| {
break :blk try fs.path.join(arena, &.{ dirname, path });
} else {
break :blk path;
}
} else null;
// --verbose-link
if (comp.verbose_link) try self.dumpArgv(comp);
if (self.zigObjectPtr()) |zig_object| try zig_object.flushModule(self, tid);
if (self.base.isStaticLib()) return relocatable.flushStaticLib(self, comp, module_obj_path);
if (self.base.isObject()) return relocatable.flushObject(self, comp, module_obj_path);
const csu = try CsuObjects.init(arena, comp);
const compiler_rt_path: ?[]const u8 = blk: {
if (comp.compiler_rt_lib) |x| break :blk x.full_object_path;
if (comp.compiler_rt_obj) |x| break :blk x.full_object_path;
break :blk null;
};
// Here we will parse input positional and library files (if referenced).
// This will roughly match in any linker backend we support.
var positionals = std.ArrayList(Compilation.LinkObject).init(arena);
// csu prelude
if (csu.crt0) |v| try positionals.append(.{ .path = v });
if (csu.crti) |v| try positionals.append(.{ .path = v });
if (csu.crtbegin) |v| try positionals.append(.{ .path = v });
try positionals.ensureUnusedCapacity(comp.objects.len);
positionals.appendSliceAssumeCapacity(comp.objects);
// This is a set of object files emitted by clang in a single `build-exe` invocation.
// For instance, the implicit `a.o` as compiled by `zig build-exe a.c` will end up
// in this set.
for (comp.c_object_table.keys()) |key| {
try positionals.append(.{ .path = key.status.success.object_path });
}
if (module_obj_path) |path| try positionals.append(.{ .path = path });
// rpaths
var rpath_table = std.StringArrayHashMap(void).init(gpa);
defer rpath_table.deinit();
for (self.base.rpath_list) |rpath| {
_ = try rpath_table.put(rpath, {});
}
// TSAN
if (comp.config.any_sanitize_thread) {
try positionals.append(.{ .path = comp.tsan_lib.?.full_object_path });
}
// libc
if (!comp.skip_linker_dependencies and !comp.config.link_libc) {
if (comp.libc_static_lib) |lib| {
try positionals.append(.{ .path = lib.full_object_path });
}
}
for (positionals.items) |obj| {
self.parsePositional(obj.path, obj.must_link) catch |err| switch (err) {
error.MalformedObject, error.MalformedArchive, error.InvalidCpuArch => continue, // already reported
else => |e| try self.reportParseError(
obj.path,
"unexpected error: parsing input file failed with error {s}",
.{@errorName(e)},
),
};
}
var system_libs = std.ArrayList(SystemLib).init(arena);
try system_libs.ensureUnusedCapacity(comp.system_libs.values().len);
for (comp.system_libs.values()) |lib_info| {
system_libs.appendAssumeCapacity(.{ .needed = lib_info.needed, .path = lib_info.path.? });
}
// libc++ dep
if (comp.config.link_libcpp) {
try system_libs.ensureUnusedCapacity(2);
system_libs.appendAssumeCapacity(.{ .path = comp.libcxxabi_static_lib.?.full_object_path });
system_libs.appendAssumeCapacity(.{ .path = comp.libcxx_static_lib.?.full_object_path });
}
// libunwind dep
if (comp.config.link_libunwind) {
try system_libs.append(.{ .path = comp.libunwind_static_lib.?.full_object_path });
}
// libc dep
comp.link_error_flags.missing_libc = false;
if (comp.config.link_libc) {
if (comp.libc_installation) |lc| {
const flags = target_util.libcFullLinkFlags(target);
try system_libs.ensureUnusedCapacity(flags.len);
var test_path = std.ArrayList(u8).init(arena);
var checked_paths = std.ArrayList([]const u8).init(arena);
for (flags) |flag| {
checked_paths.clearRetainingCapacity();
const lib_name = flag["-l".len..];
success: {
if (!self.base.isStatic()) {
if (try self.accessLibPath(arena, &test_path, &checked_paths, lc.crt_dir.?, lib_name, .dynamic))
break :success;
}
if (try self.accessLibPath(arena, &test_path, &checked_paths, lc.crt_dir.?, lib_name, .static))
break :success;
try self.reportMissingLibraryError(
checked_paths.items,
"missing system library: '{s}' was not found",
.{lib_name},
);
continue;
}
const resolved_path = try arena.dupe(u8, test_path.items);
system_libs.appendAssumeCapacity(.{ .path = resolved_path });
}
} else if (target.isGnuLibC()) {
try system_libs.ensureUnusedCapacity(glibc.libs.len + 1);
for (glibc.libs) |lib| {
const lib_path = try std.fmt.allocPrint(arena, "{s}{c}lib{s}.so.{d}", .{
comp.glibc_so_files.?.dir_path, fs.path.sep, lib.name, lib.sover,
});
system_libs.appendAssumeCapacity(.{ .path = lib_path });
}
system_libs.appendAssumeCapacity(.{
.path = try comp.get_libc_crt_file(arena, "libc_nonshared.a"),
});
} else if (target.isMusl()) {
const path = try comp.get_libc_crt_file(arena, switch (link_mode) {
.static => "libc.a",
.dynamic => "libc.so",
});
try system_libs.append(.{ .path = path });
} else {
comp.link_error_flags.missing_libc = true;
}
}
for (system_libs.items) |lib| {
self.parseLibrary(lib, false) catch |err| switch (err) {
error.MalformedObject, error.MalformedArchive, error.InvalidCpuArch => continue, // already reported
else => |e| try self.reportParseError(
lib.path,
"unexpected error: parsing library failed with error {s}",
.{@errorName(e)},
),
};
}
// Finally, as the last input objects we add compiler_rt and CSU postlude (if any).
positionals.clearRetainingCapacity();
// compiler-rt. Since compiler_rt exports symbols like `memset`, it needs
// to be after the shared libraries, so they are picked up from the shared
// libraries, not libcompiler_rt.
if (compiler_rt_path) |path| try positionals.append(.{ .path = path });
// csu postlude
if (csu.crtend) |v| try positionals.append(.{ .path = v });
if (csu.crtn) |v| try positionals.append(.{ .path = v });
for (positionals.items) |obj| {
self.parsePositional(obj.path, obj.must_link) catch |err| switch (err) {
error.MalformedObject, error.MalformedArchive, error.InvalidCpuArch => continue, // already reported
else => |e| try self.reportParseError(
obj.path,
"unexpected error: parsing input file failed with error {s}",
.{@errorName(e)},
),
};
}
if (comp.link_errors.items.len > 0) return error.FlushFailure;
// Dedup shared objects
{
var seen_dsos = std.StringHashMap(void).init(gpa);
defer seen_dsos.deinit();
try seen_dsos.ensureTotalCapacity(@as(u32, @intCast(self.shared_objects.items.len)));
var i: usize = 0;
while (i < self.shared_objects.items.len) {
const index = self.shared_objects.items[i];
const shared_object = self.file(index).?.shared_object;
const soname = shared_object.soname();
const gop = seen_dsos.getOrPutAssumeCapacity(soname);
if (gop.found_existing) {
_ = self.shared_objects.orderedRemove(i);
} else i += 1;
}
}
// If we haven't already, create a linker-generated input file comprising of
// linker-defined synthetic symbols only such as `_DYNAMIC`, etc.
if (self.linker_defined_index == null) {
const index = @as(File.Index, @intCast(try self.files.addOne(gpa)));
self.files.set(index, .{ .linker_defined = .{ .index = index } });
self.linker_defined_index = index;
}
// Now, we are ready to resolve the symbols across all input files.
// We will first resolve the files in the ZigObject, next in the parsed
// input Object files.
// Any qualifing unresolved symbol will be upgraded to an absolute, weak
// symbol for potential resolution at load-time.
self.resolveSymbols();
self.markEhFrameAtomsDead();
try self.resolveMergeSections();
try self.convertCommonSymbols();
self.markImportsExports();
// Look for entry address in objects if not set by the incremental compiler.
if (self.entry_index == null) {
if (self.entry_name) |name| {
self.entry_index = self.globalByName(name);
}
}
if (self.base.gc_sections) {
try gc.gcAtoms(self);
if (self.base.print_gc_sections) {
try gc.dumpPrunedAtoms(self);
}
}
self.checkDuplicates() catch |err| switch (err) {
error.HasDuplicates => return error.FlushFailure,
else => |e| return e,
};
try self.addCommentString();
try self.finalizeMergeSections();
try self.initOutputSections();
try self.initMergeSections();
try self.addLinkerDefinedSymbols();
self.claimUnresolved();
// Scan and create missing synthetic entries such as GOT indirection.
try self.scanRelocs();
// Generate and emit synthetic sections.
try self.initSyntheticSections();
try self.initSpecialPhdrs();
try self.sortShdrs();
for (self.objects.items) |index| {
try self.file(index).?.object.addAtomsToOutputSections(self);
}
try self.sortInitFini();
try self.setDynamicSection(rpath_table.keys());
self.sortDynamicSymtab();
try self.setHashSections();
try self.setVersionSymtab();
try self.updateMergeSectionSizes();
try self.updateSectionSizes();
try self.allocatePhdrTable();
try self.allocateAllocSections();
try self.sortPhdrs();
try self.allocateNonAllocSections();
self.allocateSpecialPhdrs();
self.allocateLinkerDefinedSymbols();
// Dump the state for easy debugging.
// State can be dumped via `--debug-log link_state`.
if (build_options.enable_logging) {
state_log.debug("{}", .{self.dumpState()});
}
// Beyond this point, everything has been allocated a virtual address and we can resolve
// the relocations, and commit objects to file.
if (self.zigObjectPtr()) |zig_object| {
var has_reloc_errors = false;
for (zig_object.atoms.items) |atom_index| {
const atom_ptr = self.atom(atom_index) orelse continue;
if (!atom_ptr.flags.alive) continue;
const out_shndx = atom_ptr.outputShndx() orelse continue;
const shdr = &self.shdrs.items[out_shndx];
if (shdr.sh_type == elf.SHT_NOBITS) continue;
const code = try zig_object.codeAlloc(self, atom_index);
defer gpa.free(code);
const file_offset = shdr.sh_offset + @as(u64, @intCast(atom_ptr.value));
atom_ptr.resolveRelocsAlloc(self, code) catch |err| switch (err) {
error.RelocFailure, error.RelaxFailure => has_reloc_errors = true,
error.UnsupportedCpuArch => {
try self.reportUnsupportedCpuArch();
return error.FlushFailure;
},
else => |e| return e,
};
try self.base.file.?.pwriteAll(code, file_offset);
}
if (has_reloc_errors) return error.FlushFailure;
}
try self.writePhdrTable();
try self.writeShdrTable();
try self.writeAtoms();
try self.writeMergeSections();
self.writeSyntheticSections() catch |err| switch (err) {
error.RelocFailure => return error.FlushFailure,
error.UnsupportedCpuArch => {
try self.reportUnsupportedCpuArch();
return error.FlushFailure;
},
else => |e| return e,
};
if (self.entry_index == null and self.base.isExe()) {
log.debug("flushing. no_entry_point_found = true", .{});
comp.link_error_flags.no_entry_point_found = true;
} else {
log.debug("flushing. no_entry_point_found = false", .{});
comp.link_error_flags.no_entry_point_found = false;
try self.writeElfHeader();
}
if (comp.link_errors.items.len > 0) return error.FlushFailure;
}
/// --verbose-link output
fn dumpArgv(self: *Elf, comp: *Compilation) !void {
const gpa = self.base.comp.gpa;
var arena_allocator = std.heap.ArenaAllocator.init(gpa);
defer arena_allocator.deinit();
const arena = arena_allocator.allocator();
const target = self.base.comp.root_mod.resolved_target.result;
const link_mode = self.base.comp.config.link_mode;
const directory = self.base.emit.directory; // Just an alias to make it shorter to type.
const full_out_path = try directory.join(arena, &[_][]const u8{self.base.emit.sub_path});
const module_obj_path: ?[]const u8 = if (self.base.zcu_object_sub_path) |path| blk: {
if (fs.path.dirname(full_out_path)) |dirname| {
break :blk try fs.path.join(arena, &.{ dirname, path });
} else {
break :blk path;
}
} else null;
const csu = try CsuObjects.init(arena, comp);
const compiler_rt_path: ?[]const u8 = blk: {
if (comp.compiler_rt_lib) |x| break :blk x.full_object_path;
if (comp.compiler_rt_obj) |x| break :blk x.full_object_path;
break :blk null;
};
var argv = std.ArrayList([]const u8).init(arena);
try argv.append("zig");
if (self.base.isStaticLib()) {
try argv.append("ar");
} else {
try argv.append("ld");
}
if (self.base.isObject()) {
try argv.append("-r");
}
try argv.append("-o");
try argv.append(full_out_path);
if (self.base.isRelocatable()) {
for (comp.objects) |obj| {
try argv.append(obj.path);
}
for (comp.c_object_table.keys()) |key| {
try argv.append(key.status.success.object_path);
}
if (module_obj_path) |p| {
try argv.append(p);
}
} else {
if (!self.base.isStatic()) {
if (target.dynamic_linker.get()) |path| {
try argv.append("-dynamic-linker");
try argv.append(path);
}
}
if (self.base.isDynLib()) {
if (self.soname) |name| {
try argv.append("-soname");
try argv.append(name);
}
}
if (self.entry_name) |name| {
try argv.appendSlice(&.{ "--entry", name });
}
for (self.base.rpath_list) |rpath| {
try argv.append("-rpath");
try argv.append(rpath);
}
try argv.appendSlice(&.{
"-z",
try std.fmt.allocPrint(arena, "stack-size={d}", .{self.base.stack_size}),
});
try argv.append(try std.fmt.allocPrint(arena, "--image-base={d}", .{self.image_base}));
if (self.base.gc_sections) {
try argv.append("--gc-sections");
}
if (self.base.print_gc_sections) {
try argv.append("--print-gc-sections");
}
if (comp.link_eh_frame_hdr) {
try argv.append("--eh-frame-hdr");
}
if (comp.config.rdynamic) {
try argv.append("--export-dynamic");
}
if (self.z_notext) {
try argv.append("-z");
try argv.append("notext");
}
if (self.z_nocopyreloc) {
try argv.append("-z");
try argv.append("nocopyreloc");
}
if (self.z_now) {
try argv.append("-z");
try argv.append("now");
}
if (self.base.isStatic()) {
try argv.append("-static");
} else if (self.isEffectivelyDynLib()) {
try argv.append("-shared");
}
if (comp.config.pie and self.base.isExe()) {
try argv.append("-pie");
}
if (comp.config.debug_format == .strip) {
try argv.append("-s");
}
// csu prelude
if (csu.crt0) |v| try argv.append(v);
if (csu.crti) |v| try argv.append(v);
if (csu.crtbegin) |v| try argv.append(v);
for (self.lib_dirs) |lib_dir| {
try argv.append("-L");
try argv.append(lib_dir);
}
if (comp.config.link_libc) {
if (self.base.comp.libc_installation) |libc_installation| {
try argv.append("-L");
try argv.append(libc_installation.crt_dir.?);
}
}
var whole_archive = false;
for (comp.objects) |obj| {
if (obj.must_link and !whole_archive) {
try argv.append("-whole-archive");
whole_archive = true;
} else if (!obj.must_link and whole_archive) {
try argv.append("-no-whole-archive");
whole_archive = false;
}
if (obj.loption) {
assert(obj.path[0] == ':');
try argv.append("-l");
}
try argv.append(obj.path);
}
if (whole_archive) {
try argv.append("-no-whole-archive");
whole_archive = false;
}
for (comp.c_object_table.keys()) |key| {
try argv.append(key.status.success.object_path);
}
if (module_obj_path) |p| {
try argv.append(p);
}
if (comp.config.any_sanitize_thread) {
try argv.append(comp.tsan_lib.?.full_object_path);
}
// libc
if (!comp.skip_linker_dependencies and !comp.config.link_libc) {
if (comp.libc_static_lib) |lib| {
try argv.append(lib.full_object_path);
}
}
// Shared libraries.
// Worst-case, we need an --as-needed argument for every lib, as well
// as one before and one after.
try argv.ensureUnusedCapacity(self.base.comp.system_libs.keys().len * 2 + 2);
argv.appendAssumeCapacity("--as-needed");
var as_needed = true;
for (self.base.comp.system_libs.values()) |lib_info| {
const lib_as_needed = !lib_info.needed;
switch ((@as(u2, @intFromBool(lib_as_needed)) << 1) | @intFromBool(as_needed)) {
0b00, 0b11 => {},
0b01 => {
argv.appendAssumeCapacity("--no-as-needed");
as_needed = false;
},
0b10 => {
argv.appendAssumeCapacity("--as-needed");
as_needed = true;
},
}
argv.appendAssumeCapacity(lib_info.path.?);
}
if (!as_needed) {
argv.appendAssumeCapacity("--as-needed");
as_needed = true;
}
// libc++ dep
if (comp.config.link_libcpp) {
try argv.append(comp.libcxxabi_static_lib.?.full_object_path);
try argv.append(comp.libcxx_static_lib.?.full_object_path);
}
// libunwind dep
if (comp.config.link_libunwind) {
try argv.append(comp.libunwind_static_lib.?.full_object_path);
}
// libc dep
if (comp.config.link_libc) {
if (self.base.comp.libc_installation != null) {
const needs_grouping = link_mode == .static;
if (needs_grouping) try argv.append("--start-group");
try argv.appendSlice(target_util.libcFullLinkFlags(target));
if (needs_grouping) try argv.append("--end-group");
} else if (target.isGnuLibC()) {
for (glibc.libs) |lib| {
const lib_path = try std.fmt.allocPrint(arena, "{s}{c}lib{s}.so.{d}", .{
comp.glibc_so_files.?.dir_path, fs.path.sep, lib.name, lib.sover,
});
try argv.append(lib_path);
}
try argv.append(try comp.get_libc_crt_file(arena, "libc_nonshared.a"));
} else if (target.isMusl()) {
try argv.append(try comp.get_libc_crt_file(arena, switch (link_mode) {
.static => "libc.a",
.dynamic => "libc.so",
}));
}
}
// compiler-rt
if (compiler_rt_path) |p| {
try argv.append(p);
}
// crt postlude
if (csu.crtend) |v| try argv.append(v);
if (csu.crtn) |v| try argv.append(v);
}
Compilation.dump_argv(argv.items);
}
pub const ParseError = error{
MalformedObject,
MalformedArchive,
InvalidCpuArch,
OutOfMemory,
Overflow,
InputOutput,
EndOfStream,
FileSystem,
NotSupported,
InvalidCharacter,
UnknownFileType,
} || LdScript.Error || fs.Dir.AccessError || fs.File.SeekError || fs.File.OpenError || fs.File.ReadError;
pub fn parsePositional(self: *Elf, path: []const u8, must_link: bool) ParseError!void {
const tracy = trace(@src());
defer tracy.end();
if (try Object.isObject(path)) {
try self.parseObject(path);
} else {
try self.parseLibrary(.{ .path = path }, must_link);
}
}
fn parseLibrary(self: *Elf, lib: SystemLib, must_link: bool) ParseError!void {
const tracy = trace(@src());
defer tracy.end();
if (try Archive.isArchive(lib.path)) {
try self.parseArchive(lib.path, must_link);
} else if (try SharedObject.isSharedObject(lib.path)) {
try self.parseSharedObject(lib);
} else {
try self.parseLdScript(lib);
}
}
fn parseObject(self: *Elf, path: []const u8) ParseError!void {
const tracy = trace(@src());
defer tracy.end();
const gpa = self.base.comp.gpa;
const handle = try fs.cwd().openFile(path, .{});
const fh = try self.addFileHandle(handle);
const index = @as(File.Index, @intCast(try self.files.addOne(gpa)));
self.files.set(index, .{ .object = .{
.path = try gpa.dupe(u8, path),
.file_handle = fh,
.index = index,
} });
try self.objects.append(gpa, index);
const object = self.file(index).?.object;
try object.parse(self);
}
fn parseArchive(self: *Elf, path: []const u8, must_link: bool) ParseError!void {
const tracy = trace(@src());
defer tracy.end();
const gpa = self.base.comp.gpa;
const handle = try fs.cwd().openFile(path, .{});
const fh = try self.addFileHandle(handle);
var archive = Archive{};
defer archive.deinit(gpa);
try archive.parse(self, path, fh);
const objects = try archive.objects.toOwnedSlice(gpa);
defer gpa.free(objects);
for (objects) |extracted| {
const index = @as(File.Index, @intCast(try self.files.addOne(gpa)));
self.files.set(index, .{ .object = extracted });
const object = &self.files.items(.data)[index].object;
object.index = index;
object.alive = must_link;
try object.parse(self);
try self.objects.append(gpa, index);
}
}
fn parseSharedObject(self: *Elf, lib: SystemLib) ParseError!void {
const tracy = trace(@src());
defer tracy.end();
const gpa = self.base.comp.gpa;
const handle = try fs.cwd().openFile(lib.path, .{});
defer handle.close();
const index = @as(File.Index, @intCast(try self.files.addOne(gpa)));
self.files.set(index, .{ .shared_object = .{
.path = try gpa.dupe(u8, lib.path),
.index = index,
.needed = lib.needed,
.alive = lib.needed,
} });
try self.shared_objects.append(gpa, index);
const shared_object = self.file(index).?.shared_object;
try shared_object.parse(self, handle);
}
fn parseLdScript(self: *Elf, lib: SystemLib) ParseError!void {
const tracy = trace(@src());
defer tracy.end();
const gpa = self.base.comp.gpa;
const in_file = try fs.cwd().openFile(lib.path, .{});
defer in_file.close();
const data = try in_file.readToEndAlloc(gpa, std.math.maxInt(u32));
defer gpa.free(data);
var script = LdScript{ .path = lib.path };
defer script.deinit(gpa);
try script.parse(data, self);
var arena_allocator = std.heap.ArenaAllocator.init(gpa);
defer arena_allocator.deinit();
const arena = arena_allocator.allocator();
var test_path = std.ArrayList(u8).init(arena);
var checked_paths = std.ArrayList([]const u8).init(arena);
for (script.args.items) |scr_obj| {
checked_paths.clearRetainingCapacity();
success: {
if (mem.startsWith(u8, scr_obj.path, "-l")) {
const lib_name = scr_obj.path["-l".len..];
// TODO I think technically we should re-use the mechanism used by the frontend here.
// Maybe we should hoist search-strategy all the way here?
for (self.lib_dirs) |lib_dir| {
if (!self.base.isStatic()) {
if (try self.accessLibPath(arena, &test_path, &checked_paths, lib_dir, lib_name, .dynamic))
break :success;
}
if (try self.accessLibPath(arena, &test_path, &checked_paths, lib_dir, lib_name, .static))
break :success;
}
} else {
var buffer: [fs.max_path_bytes]u8 = undefined;
if (fs.realpath(scr_obj.path, &buffer)) |path| {
test_path.clearRetainingCapacity();
try test_path.writer().writeAll(path);
break :success;
} else |_| {}
try checked_paths.append(try arena.dupe(u8, scr_obj.path));
for (self.lib_dirs) |lib_dir| {
if (try self.accessLibPath(arena, &test_path, &checked_paths, lib_dir, scr_obj.path, null))
break :success;
}
}
try self.reportMissingLibraryError(
checked_paths.items,
"missing library dependency: GNU ld script '{s}' requires '{s}', but file not found",
.{
lib.path,
scr_obj.path,
},
);
continue;
}
const full_path = test_path.items;
self.parseLibrary(.{
.needed = scr_obj.needed,
.path = full_path,
}, false) catch |err| switch (err) {
error.MalformedObject, error.MalformedArchive, error.InvalidCpuArch => continue, // already reported
else => |e| try self.reportParseError(
full_path,
"unexpected error: parsing library failed with error {s}",
.{@errorName(e)},
),
};
}
}
fn accessLibPath(
self: *Elf,
arena: Allocator,
test_path: *std.ArrayList(u8),
checked_paths: ?*std.ArrayList([]const u8),
lib_dir_path: []const u8,
lib_name: []const u8,
link_mode: ?std.builtin.LinkMode,
) !bool {
const sep = fs.path.sep_str;
const target = self.base.comp.root_mod.resolved_target.result;
test_path.clearRetainingCapacity();
const prefix = if (link_mode != null) "lib" else "";
const suffix = if (link_mode) |mode| switch (mode) {
.static => target.staticLibSuffix(),
.dynamic => target.dynamicLibSuffix(),
} else "";
try test_path.writer().print("{s}" ++ sep ++ "{s}{s}{s}", .{
lib_dir_path,
prefix,
lib_name,
suffix,
});
if (checked_paths) |cpaths| {
try cpaths.append(try arena.dupe(u8, test_path.items));
}
fs.cwd().access(test_path.items, .{}) catch |err| switch (err) {
error.FileNotFound => return false,
else => |e| return e,
};
return true;
}
/// When resolving symbols, we approach the problem similarly to `mold`.
/// 1. Resolve symbols across all objects (including those preemptively extracted archives).
/// 2. Resolve symbols across all shared objects.
/// 3. Mark live objects (see `Elf.markLive`)
/// 4. Reset state of all resolved globals since we will redo this bit on the pruned set.
/// 5. Remove references to dead objects/shared objects
/// 6. Re-run symbol resolution on pruned objects and shared objects sets.
pub fn resolveSymbols(self: *Elf) void {
// Resolve symbols in the ZigObject. For now, we assume that it's always live.
if (self.zigObjectPtr()) |zig_object| zig_object.asFile().resolveSymbols(self);
// Resolve symbols on the set of all objects and shared objects (even if some are unneeded).
for (self.objects.items) |index| self.file(index).?.resolveSymbols(self);
for (self.shared_objects.items) |index| self.file(index).?.resolveSymbols(self);
// Mark live objects.
self.markLive();
// Reset state of all globals after marking live objects.
if (self.zigObjectPtr()) |zig_object| zig_object.asFile().resetGlobals(self);
for (self.objects.items) |index| self.file(index).?.resetGlobals(self);
for (self.shared_objects.items) |index| self.file(index).?.resetGlobals(self);
// Prune dead objects and shared objects.
var i: usize = 0;
while (i < self.objects.items.len) {
const index = self.objects.items[i];
if (!self.file(index).?.isAlive()) {
_ = self.objects.orderedRemove(i);
} else i += 1;
}
i = 0;
while (i < self.shared_objects.items.len) {
const index = self.shared_objects.items[i];
if (!self.file(index).?.isAlive()) {
_ = self.shared_objects.orderedRemove(i);
} else i += 1;
}
// Dedup comdat groups.
for (self.objects.items) |index| {
const object = self.file(index).?.object;
for (object.comdat_groups.items) |cg_index| {
const cg = self.comdatGroup(cg_index);
const cg_owner = self.comdatGroupOwner(cg.owner);
const owner_file_index = if (self.file(cg_owner.file)) |file_ptr|
file_ptr.object.index
else
std.math.maxInt(File.Index);
cg_owner.file = @min(owner_file_index, index);
}
}
for (self.objects.items) |index| {
const object = self.file(index).?.object;
for (object.comdat_groups.items) |cg_index| {
const cg = self.comdatGroup(cg_index);
const cg_owner = self.comdatGroupOwner(cg.owner);
if (cg_owner.file != index) {
for (cg.comdatGroupMembers(self)) |shndx| {
const atom_index = object.atoms.items[shndx];
if (self.atom(atom_index)) |atom_ptr| {
atom_ptr.flags.alive = false;
atom_ptr.markFdesDead(self);
}
}
}
}
}
// Re-resolve the symbols.
if (self.zigObjectPtr()) |zig_object| zig_object.resolveSymbols(self);
for (self.objects.items) |index| self.file(index).?.resolveSymbols(self);
for (self.shared_objects.items) |index| self.file(index).?.resolveSymbols(self);
}
/// Traverses all objects and shared objects marking any object referenced by
/// a live object/shared object as alive itself.
/// This routine will prune unneeded objects extracted from archives and
/// unneeded shared objects.
fn markLive(self: *Elf) void {
if (self.zigObjectPtr()) |zig_object| zig_object.asFile().markLive(self);
for (self.objects.items) |index| {
const file_ptr = self.file(index).?;
if (file_ptr.isAlive()) file_ptr.markLive(self);
}
for (self.shared_objects.items) |index| {
const file_ptr = self.file(index).?;
if (file_ptr.isAlive()) file_ptr.markLive(self);
}
}
pub fn markEhFrameAtomsDead(self: *Elf) void {
for (self.objects.items) |index| {
const file_ptr = self.file(index).?;
if (!file_ptr.isAlive()) continue;
file_ptr.object.markEhFrameAtomsDead(self);
}
}
fn convertCommonSymbols(self: *Elf) !void {
for (self.objects.items) |index| {
try self.file(index).?.object.convertCommonSymbols(self);
}
}
fn markImportsExports(self: *Elf) void {
const mark = struct {
fn mark(elf_file: *Elf, file_index: File.Index) void {
for (elf_file.file(file_index).?.globals()) |global_index| {
const global = elf_file.symbol(global_index);
if (global.version_index == elf.VER_NDX_LOCAL) continue;
const file_ptr = global.file(elf_file) orelse continue;
const vis = @as(elf.STV, @enumFromInt(global.elfSym(elf_file).st_other));
if (vis == .HIDDEN) continue;
if (file_ptr == .shared_object and !global.isAbs(elf_file)) {
global.flags.import = true;
continue;
}
if (file_ptr.index() == file_index) {
global.flags.@"export" = true;
if (elf_file.isEffectivelyDynLib() and vis != .PROTECTED) {
global.flags.import = true;
}
}
}
}
}.mark;
if (!self.isEffectivelyDynLib()) {
for (self.shared_objects.items) |index| {
for (self.file(index).?.globals()) |global_index| {
const global = self.symbol(global_index);
const file_ptr = global.file(self) orelse continue;
const vis = @as(elf.STV, @enumFromInt(global.elfSym(self).st_other));
if (file_ptr != .shared_object and vis != .HIDDEN) global.flags.@"export" = true;
}
}
}
if (self.zig_object_index) |index| {
mark(self, index);
}
for (self.objects.items) |index| {
mark(self, index);
}
}
fn claimUnresolved(self: *Elf) void {
if (self.zigObjectPtr()) |zig_object| {
zig_object.claimUnresolved(self);
}
for (self.objects.items) |index| {
self.file(index).?.object.claimUnresolved(self);
}
}
/// In scanRelocs we will go over all live atoms and scan their relocs.
/// This will help us work out what synthetics to emit, GOT indirection, etc.
/// This is also the point where we will report undefined symbols for any
/// alloc sections.
fn scanRelocs(self: *Elf) !void {
const gpa = self.base.comp.gpa;
var undefs = std.AutoHashMap(Symbol.Index, std.ArrayList(Atom.Index)).init(gpa);
defer {
var it = undefs.iterator();
while (it.next()) |entry| {
entry.value_ptr.deinit();
}
undefs.deinit();
}
var objects = try std.ArrayList(File.Index).initCapacity(gpa, self.objects.items.len + 1);
defer objects.deinit();
if (self.zigObjectPtr()) |zo| objects.appendAssumeCapacity(zo.index);
objects.appendSliceAssumeCapacity(self.objects.items);
var has_reloc_errors = false;
for (objects.items) |index| {
self.file(index).?.scanRelocs(self, &undefs) catch |err| switch (err) {
error.RelaxFailure => unreachable,
error.UnsupportedCpuArch => {
try self.reportUnsupportedCpuArch();
return error.FlushFailure;
},
error.RelocFailure => has_reloc_errors = true,
else => |e| return e,
};
}
try self.reportUndefinedSymbols(&undefs);
if (has_reloc_errors) return error.FlushFailure;
for (self.symbols.items, 0..) |*sym, i| {
const index = @as(u32, @intCast(i));
if (!sym.isLocal(self) and !sym.flags.has_dynamic) {
log.debug("'{s}' is non-local", .{sym.name(self)});
try self.dynsym.addSymbol(index, self);
}
if (sym.flags.needs_got) {
log.debug("'{s}' needs GOT", .{sym.name(self)});
_ = try self.got.addGotSymbol(index, self);
}
if (sym.flags.needs_plt) {
if (sym.flags.is_canonical) {
log.debug("'{s}' needs CPLT", .{sym.name(self)});
sym.flags.@"export" = true;
try self.plt.addSymbol(index, self);
} else if (sym.flags.needs_got) {
log.debug("'{s}' needs PLTGOT", .{sym.name(self)});
try self.plt_got.addSymbol(index, self);
} else {
log.debug("'{s}' needs PLT", .{sym.name(self)});
try self.plt.addSymbol(index, self);
}
}
if (sym.flags.needs_copy_rel and !sym.flags.has_copy_rel) {
log.debug("'{s}' needs COPYREL", .{sym.name(self)});
try self.copy_rel.addSymbol(index, self);
}
if (sym.flags.needs_tlsgd) {
log.debug("'{s}' needs TLSGD", .{sym.name(self)});
try self.got.addTlsGdSymbol(index, self);
}
if (sym.flags.needs_gottp) {
log.debug("'{s}' needs GOTTP", .{sym.name(self)});
try self.got.addGotTpSymbol(index, self);
}
if (sym.flags.needs_tlsdesc) {
log.debug("'{s}' needs TLSDESC", .{sym.name(self)});
try self.got.addTlsDescSymbol(index, self);
}
}
if (self.got.flags.needs_tlsld) {
log.debug("program needs TLSLD", .{});
try self.got.addTlsLdSymbol(self);
}
}
fn linkWithLLD(self: *Elf, arena: Allocator, tid: Zcu.PerThread.Id, prog_node: std.Progress.Node) !void {
dev.check(.lld_linker);
const tracy = trace(@src());
defer tracy.end();
const comp = self.base.comp;
const gpa = comp.gpa;
const directory = self.base.emit.directory; // Just an alias to make it shorter to type.
const full_out_path = try directory.join(arena, &[_][]const u8{self.base.emit.sub_path});
// If there is no Zig code to compile, then we should skip flushing the output file because it
// will not be part of the linker line anyway.
const module_obj_path: ?[]const u8 = if (comp.module != null) blk: {
try self.flushModule(arena, tid, prog_node);
if (fs.path.dirname(full_out_path)) |dirname| {
break :blk try fs.path.join(arena, &.{ dirname, self.base.zcu_object_sub_path.? });
} else {
break :blk self.base.zcu_object_sub_path.?;
}
} else null;
const sub_prog_node = prog_node.start("LLD Link", 0);
defer sub_prog_node.end();
const output_mode = comp.config.output_mode;
const is_obj = output_mode == .Obj;
const is_lib = output_mode == .Lib;
const link_mode = comp.config.link_mode;
const is_dyn_lib = link_mode == .dynamic and is_lib;
const is_exe_or_dyn_lib = is_dyn_lib or output_mode == .Exe;
const have_dynamic_linker = comp.config.link_libc and
link_mode == .dynamic and is_exe_or_dyn_lib;
const target = comp.root_mod.resolved_target.result;
const compiler_rt_path: ?[]const u8 = blk: {
if (comp.compiler_rt_lib) |x| break :blk x.full_object_path;
if (comp.compiler_rt_obj) |x| break :blk x.full_object_path;
break :blk null;
};
// Here we want to determine whether we can save time by not invoking LLD when the
// output is unchanged. None of the linker options or the object files that are being
// linked are in the hash that namespaces the directory we are outputting to. Therefore,
// we must hash those now, and the resulting digest will form the "id" of the linking
// job we are about to perform.
// After a successful link, we store the id in the metadata of a symlink named "lld.id" in
// the artifact directory. So, now, we check if this symlink exists, and if it matches
// our digest. If so, we can skip linking. Otherwise, we proceed with invoking LLD.
const id_symlink_basename = "lld.id";
var man: Cache.Manifest = undefined;
defer if (!self.base.disable_lld_caching) man.deinit();
var digest: [Cache.hex_digest_len]u8 = undefined;
if (!self.base.disable_lld_caching) {
man = comp.cache_parent.obtain();
// We are about to obtain this lock, so here we give other processes a chance first.
self.base.releaseLock();
comptime assert(Compilation.link_hash_implementation_version == 13);
try man.addOptionalFile(self.linker_script);
try man.addOptionalFile(self.version_script);
man.hash.add(self.allow_undefined_version);
man.hash.addOptional(self.enable_new_dtags);
for (comp.objects) |obj| {
_ = try man.addFile(obj.path, null);
man.hash.add(obj.must_link);
man.hash.add(obj.loption);
}
for (comp.c_object_table.keys()) |key| {
_ = try man.addFile(key.status.success.object_path, null);
}
try man.addOptionalFile(module_obj_path);
try man.addOptionalFile(compiler_rt_path);
// We can skip hashing libc and libc++ components that we are in charge of building from Zig
// installation sources because they are always a product of the compiler version + target information.
man.hash.addOptionalBytes(self.entry_name);
man.hash.add(self.image_base);
man.hash.add(self.base.gc_sections);
man.hash.addOptional(self.sort_section);
man.hash.add(comp.link_eh_frame_hdr);
man.hash.add(self.emit_relocs);
man.hash.add(comp.config.rdynamic);
man.hash.addListOfBytes(self.lib_dirs);
man.hash.addListOfBytes(self.base.rpath_list);
if (output_mode == .Exe) {
man.hash.add(self.base.stack_size);
man.hash.add(self.base.build_id);
}
man.hash.addListOfBytes(self.symbol_wrap_set.keys());
man.hash.add(comp.skip_linker_dependencies);
man.hash.add(self.z_nodelete);
man.hash.add(self.z_notext);
man.hash.add(self.z_defs);
man.hash.add(self.z_origin);
man.hash.add(self.z_nocopyreloc);
man.hash.add(self.z_now);
man.hash.add(self.z_relro);
man.hash.add(self.z_common_page_size orelse 0);
man.hash.add(self.z_max_page_size orelse 0);
man.hash.add(self.hash_style);
// strip does not need to go into the linker hash because it is part of the hash namespace
if (comp.config.link_libc) {
man.hash.add(comp.libc_installation != null);
if (comp.libc_installation) |libc_installation| {
man.hash.addBytes(libc_installation.crt_dir.?);
}
if (have_dynamic_linker) {
man.hash.addOptionalBytes(target.dynamic_linker.get());
}
}
man.hash.addOptionalBytes(self.soname);
man.hash.addOptional(comp.version);
try link.hashAddSystemLibs(&man, comp.system_libs);
man.hash.addListOfBytes(comp.force_undefined_symbols.keys());
man.hash.add(self.base.allow_shlib_undefined);
man.hash.add(self.bind_global_refs_locally);
man.hash.add(self.compress_debug_sections);
man.hash.add(comp.config.any_sanitize_thread);
man.hash.addOptionalBytes(comp.sysroot);
// We don't actually care whether it's a cache hit or miss; we just need the digest and the lock.
_ = try man.hit();
digest = man.final();
var prev_digest_buf: [digest.len]u8 = undefined;
const prev_digest: []u8 = Cache.readSmallFile(
directory.handle,
id_symlink_basename,
&prev_digest_buf,
) catch |err| blk: {
log.debug("ELF LLD new_digest={s} error: {s}", .{ std.fmt.fmtSliceHexLower(&digest), @errorName(err) });
// Handle this as a cache miss.
break :blk prev_digest_buf[0..0];
};
if (mem.eql(u8, prev_digest, &digest)) {
log.debug("ELF LLD digest={s} match - skipping invocation", .{std.fmt.fmtSliceHexLower(&digest)});
// Hot diggity dog! The output binary is already there.
self.base.lock = man.toOwnedLock();
return;
}
log.debug("ELF LLD prev_digest={s} new_digest={s}", .{ std.fmt.fmtSliceHexLower(prev_digest), std.fmt.fmtSliceHexLower(&digest) });
// We are about to change the output file to be different, so we invalidate the build hash now.
directory.handle.deleteFile(id_symlink_basename) catch |err| switch (err) {
error.FileNotFound => {},
else => |e| return e,
};
}
// Due to a deficiency in LLD, we need to special-case BPF to a simple file
// copy when generating relocatables. Normally, we would expect `lld -r` to work.
// However, because LLD wants to resolve BPF relocations which it shouldn't, it fails
// before even generating the relocatable.
if (output_mode == .Obj and
(comp.config.lto or target.isBpfFreestanding()))
{
// In this case we must do a simple file copy
// here. TODO: think carefully about how we can avoid this redundant operation when doing
// build-obj. See also the corresponding TODO in linkAsArchive.
const the_object_path = blk: {
if (comp.objects.len != 0)
break :blk comp.objects[0].path;
if (comp.c_object_table.count() != 0)
break :blk comp.c_object_table.keys()[0].status.success.object_path;
if (module_obj_path) |p|
break :blk p;
// TODO I think this is unreachable. Audit this situation when solving the above TODO
// regarding eliding redundant object -> object transformations.
return error.NoObjectsToLink;
};
// This can happen when using --enable-cache and using the stage1 backend. In this case
// we can skip the file copy.
if (!mem.eql(u8, the_object_path, full_out_path)) {
try fs.cwd().copyFile(the_object_path, fs.cwd(), full_out_path, .{});
}
} else {
// Create an LLD command line and invoke it.
var argv = std.ArrayList([]const u8).init(gpa);
defer argv.deinit();
// We will invoke ourselves as a child process to gain access to LLD.
// This is necessary because LLD does not behave properly as a library -
// it calls exit() and does not reset all global data between invocations.
const linker_command = "ld.lld";
try argv.appendSlice(&[_][]const u8{ comp.self_exe_path.?, linker_command });
if (is_obj) {
try argv.append("-r");
}
try argv.append("--error-limit=0");
if (comp.sysroot) |sysroot| {
try argv.append(try std.fmt.allocPrint(arena, "--sysroot={s}", .{sysroot}));
}
if (comp.config.lto) {
switch (comp.root_mod.optimize_mode) {
.Debug => {},
.ReleaseSmall => try argv.append("--lto-O2"),
.ReleaseFast, .ReleaseSafe => try argv.append("--lto-O3"),
}
}
switch (comp.root_mod.optimize_mode) {
.Debug => {},
.ReleaseSmall => try argv.append("-O2"),
.ReleaseFast, .ReleaseSafe => try argv.append("-O3"),
}
if (self.entry_name) |name| {
try argv.appendSlice(&.{ "--entry", name });
}
for (comp.force_undefined_symbols.keys()) |sym| {
try argv.append("-u");
try argv.append(sym);
}
switch (self.hash_style) {
.gnu => try argv.append("--hash-style=gnu"),
.sysv => try argv.append("--hash-style=sysv"),
.both => {}, // this is the default
}
if (output_mode == .Exe) {
try argv.appendSlice(&.{
"-z",
try std.fmt.allocPrint(arena, "stack-size={d}", .{self.base.stack_size}),
});
switch (self.base.build_id) {
.none => {},
.fast, .uuid, .sha1, .md5 => {
try argv.append(try std.fmt.allocPrint(arena, "--build-id={s}", .{
@tagName(self.base.build_id),
}));
},
.hexstring => |hs| {
try argv.append(try std.fmt.allocPrint(arena, "--build-id=0x{s}", .{
std.fmt.fmtSliceHexLower(hs.toSlice()),
}));
},
}
}
try argv.append(try std.fmt.allocPrint(arena, "--image-base={d}", .{self.image_base}));
if (self.linker_script) |linker_script| {
try argv.append("-T");
try argv.append(linker_script);
}
if (self.sort_section) |how| {
const arg = try std.fmt.allocPrint(arena, "--sort-section={s}", .{@tagName(how)});
try argv.append(arg);
}
if (self.base.gc_sections) {
try argv.append("--gc-sections");
}
if (self.base.print_gc_sections) {
try argv.append("--print-gc-sections");
}
if (self.print_icf_sections) {
try argv.append("--print-icf-sections");
}
if (self.print_map) {
try argv.append("--print-map");
}
if (comp.link_eh_frame_hdr) {
try argv.append("--eh-frame-hdr");
}
if (self.emit_relocs) {
try argv.append("--emit-relocs");
}
if (comp.config.rdynamic) {
try argv.append("--export-dynamic");
}
if (comp.config.debug_format == .strip) {
try argv.append("-s");
}
if (self.z_nodelete) {
try argv.append("-z");
try argv.append("nodelete");
}
if (self.z_notext) {
try argv.append("-z");
try argv.append("notext");
}
if (self.z_defs) {
try argv.append("-z");
try argv.append("defs");
}
if (self.z_origin) {
try argv.append("-z");
try argv.append("origin");
}
if (self.z_nocopyreloc) {
try argv.append("-z");
try argv.append("nocopyreloc");
}
if (self.z_now) {
// LLD defaults to -zlazy
try argv.append("-znow");
}
if (!self.z_relro) {
// LLD defaults to -zrelro
try argv.append("-znorelro");
}
if (self.z_common_page_size) |size| {
try argv.append("-z");
try argv.append(try std.fmt.allocPrint(arena, "common-page-size={d}", .{size}));
}
if (self.z_max_page_size) |size| {
try argv.append("-z");
try argv.append(try std.fmt.allocPrint(arena, "max-page-size={d}", .{size}));
}
if (getLDMOption(target)) |ldm| {
// Any target ELF will use the freebsd osabi if suffixed with "_fbsd".
const arg = if (target.os.tag == .freebsd)
try std.fmt.allocPrint(arena, "{s}_fbsd", .{ldm})
else
ldm;
try argv.append("-m");
try argv.append(arg);
}
if (link_mode == .static) {
if (target.cpu.arch.isArmOrThumb()) {
try argv.append("-Bstatic");
} else {
try argv.append("-static");
}
} else if (switch (target.os.tag) {
else => is_dyn_lib,
.haiku => is_exe_or_dyn_lib,
}) {
try argv.append("-shared");
}
if (comp.config.pie and output_mode == .Exe) {
try argv.append("-pie");
}
if (is_exe_or_dyn_lib and target.os.tag == .netbsd) {
// Add options to produce shared objects with only 2 PT_LOAD segments.
// NetBSD expects 2 PT_LOAD segments in a shared object, otherwise
// ld.elf_so fails loading dynamic libraries with "not found" error.
// See https://github.com/ziglang/zig/issues/9109 .
try argv.append("--no-rosegment");
try argv.append("-znorelro");
}
try argv.append("-o");
try argv.append(full_out_path);
// csu prelude
const csu = try CsuObjects.init(arena, comp);
if (csu.crt0) |v| try argv.append(v);
if (csu.crti) |v| try argv.append(v);
if (csu.crtbegin) |v| try argv.append(v);
// rpaths
var rpath_table = std.StringHashMap(void).init(gpa);
defer rpath_table.deinit();
for (self.base.rpath_list) |rpath| {
if ((try rpath_table.fetchPut(rpath, {})) == null) {
try argv.append("-rpath");
try argv.append(rpath);
}
}
for (self.symbol_wrap_set.keys()) |symbol_name| {
try argv.appendSlice(&.{ "-wrap", symbol_name });
}
for (self.lib_dirs) |lib_dir| {
try argv.append("-L");
try argv.append(lib_dir);
}
if (comp.config.link_libc) {
if (comp.libc_installation) |libc_installation| {
try argv.append("-L");
try argv.append(libc_installation.crt_dir.?);
}
if (have_dynamic_linker) {
if (target.dynamic_linker.get()) |dynamic_linker| {
try argv.append("-dynamic-linker");
try argv.append(dynamic_linker);
}
}
}
if (is_dyn_lib) {
if (self.soname) |soname| {
try argv.append("-soname");
try argv.append(soname);
}
if (self.version_script) |version_script| {
try argv.append("-version-script");
try argv.append(version_script);
}
if (self.allow_undefined_version) {
try argv.append("--undefined-version");
} else {
try argv.append("--no-undefined-version");
}
if (self.enable_new_dtags) |enable_new_dtags| {
if (enable_new_dtags) {
try argv.append("--enable-new-dtags");
} else {
try argv.append("--disable-new-dtags");
}
}
}
// Positional arguments to the linker such as object files.
var whole_archive = false;
for (comp.objects) |obj| {
if (obj.must_link and !whole_archive) {
try argv.append("-whole-archive");
whole_archive = true;
} else if (!obj.must_link and whole_archive) {
try argv.append("-no-whole-archive");
whole_archive = false;
}
if (obj.loption) {
assert(obj.path[0] == ':');
try argv.append("-l");
}
try argv.append(obj.path);
}
if (whole_archive) {
try argv.append("-no-whole-archive");
whole_archive = false;
}
for (comp.c_object_table.keys()) |key| {
try argv.append(key.status.success.object_path);
}
if (module_obj_path) |p| {
try argv.append(p);
}
if (comp.config.any_sanitize_thread) {
try argv.append(comp.tsan_lib.?.full_object_path);
}
// libc
if (is_exe_or_dyn_lib and
!comp.skip_linker_dependencies and
!comp.config.link_libc)
{
if (comp.libc_static_lib) |lib| {
try argv.append(lib.full_object_path);
}
}
// Shared libraries.
if (is_exe_or_dyn_lib) {
const system_libs = comp.system_libs.keys();
const system_libs_values = comp.system_libs.values();
// Worst-case, we need an --as-needed argument for every lib, as well
// as one before and one after.
try argv.ensureUnusedCapacity(system_libs.len * 2 + 2);
argv.appendAssumeCapacity("--as-needed");
var as_needed = true;
for (system_libs_values) |lib_info| {
const lib_as_needed = !lib_info.needed;
switch ((@as(u2, @intFromBool(lib_as_needed)) << 1) | @intFromBool(as_needed)) {
0b00, 0b11 => {},
0b01 => {
argv.appendAssumeCapacity("--no-as-needed");
as_needed = false;
},
0b10 => {
argv.appendAssumeCapacity("--as-needed");
as_needed = true;
},
}
// By this time, we depend on these libs being dynamically linked
// libraries and not static libraries (the check for that needs to be earlier),
// but they could be full paths to .so files, in which case we
// want to avoid prepending "-l".
argv.appendAssumeCapacity(lib_info.path.?);
}
if (!as_needed) {
argv.appendAssumeCapacity("--as-needed");
as_needed = true;
}
// libc++ dep
if (comp.config.link_libcpp) {
try argv.append(comp.libcxxabi_static_lib.?.full_object_path);
try argv.append(comp.libcxx_static_lib.?.full_object_path);
}
// libunwind dep
if (comp.config.link_libunwind) {
try argv.append(comp.libunwind_static_lib.?.full_object_path);
}
// libc dep
comp.link_error_flags.missing_libc = false;
if (comp.config.link_libc) {
if (comp.libc_installation != null) {
const needs_grouping = link_mode == .static;
if (needs_grouping) try argv.append("--start-group");
try argv.appendSlice(target_util.libcFullLinkFlags(target));
if (needs_grouping) try argv.append("--end-group");
} else if (target.isGnuLibC()) {
for (glibc.libs) |lib| {
const lib_path = try std.fmt.allocPrint(arena, "{s}{c}lib{s}.so.{d}", .{
comp.glibc_so_files.?.dir_path, fs.path.sep, lib.name, lib.sover,
});
try argv.append(lib_path);
}
try argv.append(try comp.get_libc_crt_file(arena, "libc_nonshared.a"));
} else if (target.isMusl()) {
try argv.append(try comp.get_libc_crt_file(arena, switch (link_mode) {
.static => "libc.a",
.dynamic => "libc.so",
}));
} else {
comp.link_error_flags.missing_libc = true;
}
}
}
// compiler-rt. Since compiler_rt exports symbols like `memset`, it needs
// to be after the shared libraries, so they are picked up from the shared
// libraries, not libcompiler_rt.
if (compiler_rt_path) |p| {
try argv.append(p);
}
// crt postlude
if (csu.crtend) |v| try argv.append(v);
if (csu.crtn) |v| try argv.append(v);
if (self.base.allow_shlib_undefined) {
try argv.append("--allow-shlib-undefined");
}
switch (self.compress_debug_sections) {
.none => {},
.zlib => try argv.append("--compress-debug-sections=zlib"),
.zstd => try argv.append("--compress-debug-sections=zstd"),
}
if (self.bind_global_refs_locally) {
try argv.append("-Bsymbolic");
}
try link.spawnLld(comp, arena, argv.items);
}
if (!self.base.disable_lld_caching) {
// Update the file with the digest. If it fails we can continue; it only
// means that the next invocation will have an unnecessary cache miss.
Cache.writeSmallFile(directory.handle, id_symlink_basename, &digest) catch |err| {
log.warn("failed to save linking hash digest file: {s}", .{@errorName(err)});
};
// Again failure here only means an unnecessary cache miss.
man.writeManifest() catch |err| {
log.warn("failed to write cache manifest when linking: {s}", .{@errorName(err)});
};
// We hang on to this lock so that the output file path can be used without
// other processes clobbering it.
self.base.lock = man.toOwnedLock();
}
}
fn writeDwarfAddrAssumeCapacity(self: *Elf, buf: *std.ArrayList(u8), addr: u64) void {
const target = self.base.comp.root_mod.resolved_target.result;
const target_endian = target.cpu.arch.endian();
switch (self.ptr_width) {
.p32 => mem.writeInt(u32, buf.addManyAsArrayAssumeCapacity(4), @as(u32, @intCast(addr)), target_endian),
.p64 => mem.writeInt(u64, buf.addManyAsArrayAssumeCapacity(8), addr, target_endian),
}
}
pub fn writeShdrTable(self: *Elf) !void {
const gpa = self.base.comp.gpa;
const target = self.base.comp.root_mod.resolved_target.result;
const target_endian = target.cpu.arch.endian();
const foreign_endian = target_endian != builtin.cpu.arch.endian();
const shsize: u64 = switch (self.ptr_width) {
.p32 => @sizeOf(elf.Elf32_Shdr),
.p64 => @sizeOf(elf.Elf64_Shdr),
};
const shalign: u16 = switch (self.ptr_width) {
.p32 => @alignOf(elf.Elf32_Shdr),
.p64 => @alignOf(elf.Elf64_Shdr),
};
const shoff = self.shdr_table_offset orelse 0;
const needed_size = self.shdrs.items.len * shsize;
if (needed_size > self.allocatedSize(shoff)) {
self.shdr_table_offset = null;
self.shdr_table_offset = self.findFreeSpace(needed_size, shalign);
}
log.debug("writing section headers from 0x{x} to 0x{x}", .{
self.shdr_table_offset.?,
self.shdr_table_offset.? + needed_size,
});
switch (self.ptr_width) {
.p32 => {
const buf = try gpa.alloc(elf.Elf32_Shdr, self.shdrs.items.len);
defer gpa.free(buf);
for (buf, 0..) |*shdr, i| {
assert(self.shdrs.items[i].sh_offset != math.maxInt(u64));
shdr.* = shdrTo32(self.shdrs.items[i]);
if (foreign_endian) {
mem.byteSwapAllFields(elf.Elf32_Shdr, shdr);
}
}
try self.base.file.?.pwriteAll(mem.sliceAsBytes(buf), self.shdr_table_offset.?);
},
.p64 => {
const buf = try gpa.alloc(elf.Elf64_Shdr, self.shdrs.items.len);
defer gpa.free(buf);
for (buf, 0..) |*shdr, i| {
assert(self.shdrs.items[i].sh_offset != math.maxInt(u64));
shdr.* = self.shdrs.items[i];
if (foreign_endian) {
mem.byteSwapAllFields(elf.Elf64_Shdr, shdr);
}
}
try self.base.file.?.pwriteAll(mem.sliceAsBytes(buf), self.shdr_table_offset.?);
},
}
}
fn writePhdrTable(self: *Elf) !void {
const gpa = self.base.comp.gpa;
const target = self.base.comp.root_mod.resolved_target.result;
const target_endian = target.cpu.arch.endian();
const foreign_endian = target_endian != builtin.cpu.arch.endian();
const phdr_table = &self.phdrs.items[self.phdr_table_index.?];
log.debug("writing program headers from 0x{x} to 0x{x}", .{
phdr_table.p_offset,
phdr_table.p_offset + phdr_table.p_filesz,
});
switch (self.ptr_width) {
.p32 => {
const buf = try gpa.alloc(elf.Elf32_Phdr, self.phdrs.items.len);
defer gpa.free(buf);
for (buf, 0..) |*phdr, i| {
phdr.* = phdrTo32(self.phdrs.items[i]);
if (foreign_endian) {
mem.byteSwapAllFields(elf.Elf32_Phdr, phdr);
}
}
try self.base.file.?.pwriteAll(mem.sliceAsBytes(buf), phdr_table.p_offset);
},
.p64 => {
const buf = try gpa.alloc(elf.Elf64_Phdr, self.phdrs.items.len);
defer gpa.free(buf);
for (buf, 0..) |*phdr, i| {
phdr.* = self.phdrs.items[i];
if (foreign_endian) {
mem.byteSwapAllFields(elf.Elf64_Phdr, phdr);
}
}
try self.base.file.?.pwriteAll(mem.sliceAsBytes(buf), phdr_table.p_offset);
},
}
}
pub fn writeElfHeader(self: *Elf) !void {
const comp = self.base.comp;
if (comp.link_errors.items.len > 0) return; // We had errors, so skip flushing to render the output unusable
var hdr_buf: [@sizeOf(elf.Elf64_Ehdr)]u8 = undefined;
var index: usize = 0;
hdr_buf[0..4].* = elf.MAGIC.*;
index += 4;
hdr_buf[index] = switch (self.ptr_width) {
.p32 => elf.ELFCLASS32,
.p64 => elf.ELFCLASS64,
};
index += 1;
const target = comp.root_mod.resolved_target.result;
const endian = target.cpu.arch.endian();
hdr_buf[index] = switch (endian) {
.little => elf.ELFDATA2LSB,
.big => elf.ELFDATA2MSB,
};
index += 1;
hdr_buf[index] = 1; // ELF version
index += 1;
// OS ABI, often set to 0 regardless of target platform
// ABI Version, possibly used by glibc but not by static executables
// padding
@memset(hdr_buf[index..][0..9], 0);
index += 9;
assert(index == 16);
const output_mode = comp.config.output_mode;
const link_mode = comp.config.link_mode;
const elf_type: elf.ET = switch (output_mode) {
.Exe => if (comp.config.pie or target.os.tag == .haiku) .DYN else .EXEC,
.Obj => .REL,
.Lib => switch (link_mode) {
.static => @as(elf.ET, .REL),
.dynamic => .DYN,
},
};
mem.writeInt(u16, hdr_buf[index..][0..2], @intFromEnum(elf_type), endian);
index += 2;
const machine = target.cpu.arch.toElfMachine();
mem.writeInt(u16, hdr_buf[index..][0..2], @intFromEnum(machine), endian);
index += 2;
// ELF Version, again
mem.writeInt(u32, hdr_buf[index..][0..4], 1, endian);
index += 4;
const e_entry = if (self.entry_index) |entry_index|
@as(u64, @intCast(self.symbol(entry_index).address(.{}, self)))
else
0;
const phdr_table_offset = if (self.phdr_table_index) |phndx| self.phdrs.items[phndx].p_offset else 0;
switch (self.ptr_width) {
.p32 => {
mem.writeInt(u32, hdr_buf[index..][0..4], @as(u32, @intCast(e_entry)), endian);
index += 4;
// e_phoff
mem.writeInt(u32, hdr_buf[index..][0..4], @as(u32, @intCast(phdr_table_offset)), endian);
index += 4;
// e_shoff
mem.writeInt(u32, hdr_buf[index..][0..4], @as(u32, @intCast(self.shdr_table_offset.?)), endian);
index += 4;
},
.p64 => {
// e_entry
mem.writeInt(u64, hdr_buf[index..][0..8], e_entry, endian);
index += 8;
// e_phoff
mem.writeInt(u64, hdr_buf[index..][0..8], phdr_table_offset, endian);
index += 8;
// e_shoff
mem.writeInt(u64, hdr_buf[index..][0..8], self.shdr_table_offset.?, endian);
index += 8;
},
}
const e_flags = 0;
mem.writeInt(u32, hdr_buf[index..][0..4], e_flags, endian);
index += 4;
const e_ehsize: u16 = switch (self.ptr_width) {
.p32 => @sizeOf(elf.Elf32_Ehdr),
.p64 => @sizeOf(elf.Elf64_Ehdr),
};
mem.writeInt(u16, hdr_buf[index..][0..2], e_ehsize, endian);
index += 2;
const e_phentsize: u16 = switch (self.ptr_width) {
.p32 => @sizeOf(elf.Elf32_Phdr),
.p64 => @sizeOf(elf.Elf64_Phdr),
};
mem.writeInt(u16, hdr_buf[index..][0..2], e_phentsize, endian);
index += 2;
const e_phnum = @as(u16, @intCast(self.phdrs.items.len));
mem.writeInt(u16, hdr_buf[index..][0..2], e_phnum, endian);
index += 2;
const e_shentsize: u16 = switch (self.ptr_width) {
.p32 => @sizeOf(elf.Elf32_Shdr),
.p64 => @sizeOf(elf.Elf64_Shdr),
};
mem.writeInt(u16, hdr_buf[index..][0..2], e_shentsize, endian);
index += 2;
const e_shnum = @as(u16, @intCast(self.shdrs.items.len));
mem.writeInt(u16, hdr_buf[index..][0..2], e_shnum, endian);
index += 2;
mem.writeInt(u16, hdr_buf[index..][0..2], @intCast(self.shstrtab_section_index.?), endian);
index += 2;
assert(index == e_ehsize);
try self.base.file.?.pwriteAll(hdr_buf[0..index], 0);
}
pub fn freeDecl(self: *Elf, decl_index: InternPool.DeclIndex) void {
if (self.llvm_object) |llvm_object| return llvm_object.freeDecl(decl_index);
return self.zigObjectPtr().?.freeDecl(self, decl_index);
}
pub fn updateFunc(self: *Elf, pt: Zcu.PerThread, func_index: InternPool.Index, air: Air, liveness: Liveness) !void {
if (build_options.skip_non_native and builtin.object_format != .elf) {
@panic("Attempted to compile for object format that was disabled by build configuration");
}
if (self.llvm_object) |llvm_object| return llvm_object.updateFunc(pt, func_index, air, liveness);
return self.zigObjectPtr().?.updateFunc(self, pt, func_index, air, liveness);
}
pub fn updateDecl(
self: *Elf,
pt: Zcu.PerThread,
decl_index: InternPool.DeclIndex,
) link.File.UpdateDeclError!void {
if (build_options.skip_non_native and builtin.object_format != .elf) {
@panic("Attempted to compile for object format that was disabled by build configuration");
}
if (self.llvm_object) |llvm_object| return llvm_object.updateDecl(pt, decl_index);
return self.zigObjectPtr().?.updateDecl(self, pt, decl_index);
}
pub fn lowerUnnamedConst(self: *Elf, pt: Zcu.PerThread, val: Value, decl_index: InternPool.DeclIndex) !u32 {
return self.zigObjectPtr().?.lowerUnnamedConst(self, pt, val, decl_index);
}
pub fn updateExports(
self: *Elf,
pt: Zcu.PerThread,
exported: Module.Exported,
export_indices: []const u32,
) link.File.UpdateExportsError!void {
if (build_options.skip_non_native and builtin.object_format != .elf) {
@panic("Attempted to compile for object format that was disabled by build configuration");
}
if (self.llvm_object) |llvm_object| return llvm_object.updateExports(pt, exported, export_indices);
return self.zigObjectPtr().?.updateExports(self, pt, exported, export_indices);
}
pub fn updateDeclLineNumber(self: *Elf, pt: Zcu.PerThread, decl_index: InternPool.DeclIndex) !void {
if (self.llvm_object) |_| return;
return self.zigObjectPtr().?.updateDeclLineNumber(pt, decl_index);
}
pub fn deleteExport(
self: *Elf,
exported: Zcu.Exported,
name: InternPool.NullTerminatedString,
) void {
if (self.llvm_object) |_| return;
return self.zigObjectPtr().?.deleteExport(self, exported, name);
}
fn addLinkerDefinedSymbols(self: *Elf) !void {
const comp = self.base.comp;
const gpa = comp.gpa;
const linker_defined_index = self.linker_defined_index orelse return;
const linker_defined = self.file(linker_defined_index).?.linker_defined;
self.dynamic_index = try linker_defined.addGlobal("_DYNAMIC", self);
self.ehdr_start_index = try linker_defined.addGlobal("__ehdr_start", self);
self.init_array_start_index = try linker_defined.addGlobal("__init_array_start", self);
self.init_array_end_index = try linker_defined.addGlobal("__init_array_end", self);
self.fini_array_start_index = try linker_defined.addGlobal("__fini_array_start", self);
self.fini_array_end_index = try linker_defined.addGlobal("__fini_array_end", self);
self.preinit_array_start_index = try linker_defined.addGlobal("__preinit_array_start", self);
self.preinit_array_end_index = try linker_defined.addGlobal("__preinit_array_end", self);
self.got_index = try linker_defined.addGlobal("_GLOBAL_OFFSET_TABLE_", self);
self.plt_index = try linker_defined.addGlobal("_PROCEDURE_LINKAGE_TABLE_", self);
self.end_index = try linker_defined.addGlobal("_end", self);
if (comp.link_eh_frame_hdr) {
self.gnu_eh_frame_hdr_index = try linker_defined.addGlobal("__GNU_EH_FRAME_HDR", self);
}
if (self.globalByName("__dso_handle")) |index| {
if (self.symbol(index).file(self) == null)
self.dso_handle_index = try linker_defined.addGlobal("__dso_handle", self);
}
self.rela_iplt_start_index = try linker_defined.addGlobal("__rela_iplt_start", self);
self.rela_iplt_end_index = try linker_defined.addGlobal("__rela_iplt_end", self);
for (self.shdrs.items) |shdr| {
if (self.getStartStopBasename(shdr)) |name| {
try self.start_stop_indexes.ensureUnusedCapacity(gpa, 2);
const start = try std.fmt.allocPrintZ(gpa, "__start_{s}", .{name});
defer gpa.free(start);
const stop = try std.fmt.allocPrintZ(gpa, "__stop_{s}", .{name});
defer gpa.free(stop);
self.start_stop_indexes.appendAssumeCapacity(try linker_defined.addGlobal(start, self));
self.start_stop_indexes.appendAssumeCapacity(try linker_defined.addGlobal(stop, self));
}
}
if (self.getTarget().cpu.arch == .riscv64 and self.isEffectivelyDynLib()) {
self.global_pointer_index = try linker_defined.addGlobal("__global_pointer$", self);
}
linker_defined.resolveSymbols(self);
}
fn allocateLinkerDefinedSymbols(self: *Elf) void {
const comp = self.base.comp;
const link_mode = comp.config.link_mode;
// _DYNAMIC
if (self.dynamic_section_index) |shndx| {
const shdr = &self.shdrs.items[shndx];
const symbol_ptr = self.symbol(self.dynamic_index.?);
symbol_ptr.value = @intCast(shdr.sh_addr);
symbol_ptr.output_section_index = shndx;
}
// __ehdr_start
{
const symbol_ptr = self.symbol(self.ehdr_start_index.?);
symbol_ptr.value = @intCast(self.image_base);
symbol_ptr.output_section_index = 1;
}
// __init_array_start, __init_array_end
if (self.sectionByName(".init_array")) |shndx| {
const start_sym = self.symbol(self.init_array_start_index.?);
const end_sym = self.symbol(self.init_array_end_index.?);
const shdr = &self.shdrs.items[shndx];
start_sym.output_section_index = shndx;
start_sym.value = @intCast(shdr.sh_addr);
end_sym.output_section_index = shndx;
end_sym.value = @intCast(shdr.sh_addr + shdr.sh_size);
}
// __fini_array_start, __fini_array_end
if (self.sectionByName(".fini_array")) |shndx| {
const start_sym = self.symbol(self.fini_array_start_index.?);
const end_sym = self.symbol(self.fini_array_end_index.?);
const shdr = &self.shdrs.items[shndx];
start_sym.output_section_index = shndx;
start_sym.value = @intCast(shdr.sh_addr);
end_sym.output_section_index = shndx;
end_sym.value = @intCast(shdr.sh_addr + shdr.sh_size);
}
// __preinit_array_start, __preinit_array_end
if (self.sectionByName(".preinit_array")) |shndx| {
const start_sym = self.symbol(self.preinit_array_start_index.?);
const end_sym = self.symbol(self.preinit_array_end_index.?);
const shdr = &self.shdrs.items[shndx];
start_sym.output_section_index = shndx;
start_sym.value = @intCast(shdr.sh_addr);
end_sym.output_section_index = shndx;
end_sym.value = @intCast(shdr.sh_addr + shdr.sh_size);
}
// _GLOBAL_OFFSET_TABLE_
if (self.getTarget().cpu.arch == .x86_64) {
if (self.got_plt_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
const sym = self.symbol(self.got_index.?);
sym.value = @intCast(shdr.sh_addr);
sym.output_section_index = shndx;
}
} else {
if (self.got_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
const sym = self.symbol(self.got_index.?);
sym.value = @intCast(shdr.sh_addr);
sym.output_section_index = shndx;
}
}
// _PROCEDURE_LINKAGE_TABLE_
if (self.plt_section_index) |shndx| {
const shdr = &self.shdrs.items[shndx];
const symbol_ptr = self.symbol(self.plt_index.?);
symbol_ptr.value = @intCast(shdr.sh_addr);
symbol_ptr.output_section_index = shndx;
}
// __dso_handle
if (self.dso_handle_index) |index| {
const shdr = &self.shdrs.items[1];
const symbol_ptr = self.symbol(index);
symbol_ptr.value = @intCast(shdr.sh_addr);
symbol_ptr.output_section_index = 0;
}
// __GNU_EH_FRAME_HDR
if (self.eh_frame_hdr_section_index) |shndx| {
const shdr = &self.shdrs.items[shndx];
const symbol_ptr = self.symbol(self.gnu_eh_frame_hdr_index.?);
symbol_ptr.value = @intCast(shdr.sh_addr);
symbol_ptr.output_section_index = shndx;
}
// __rela_iplt_start, __rela_iplt_end
if (self.rela_dyn_section_index) |shndx| blk: {
if (link_mode != .static or comp.config.pie) break :blk;
const shdr = &self.shdrs.items[shndx];
const end_addr = shdr.sh_addr + shdr.sh_size;
const start_addr = end_addr - self.calcNumIRelativeRelocs() * @sizeOf(elf.Elf64_Rela);
const start_sym = self.symbol(self.rela_iplt_start_index.?);
const end_sym = self.symbol(self.rela_iplt_end_index.?);
start_sym.value = @intCast(start_addr);
start_sym.output_section_index = shndx;
end_sym.value = @intCast(end_addr);
end_sym.output_section_index = shndx;
}
// _end
{
const end_symbol = self.symbol(self.end_index.?);
for (self.shdrs.items, 0..) |shdr, shndx| {
if (shdr.sh_flags & elf.SHF_ALLOC != 0) {
end_symbol.value = @intCast(shdr.sh_addr + shdr.sh_size);
end_symbol.output_section_index = @intCast(shndx);
}
}
}
// __start_*, __stop_*
{
var index: usize = 0;
while (index < self.start_stop_indexes.items.len) : (index += 2) {
const start = self.symbol(self.start_stop_indexes.items[index]);
const name = start.name(self);
const stop = self.symbol(self.start_stop_indexes.items[index + 1]);
const shndx = self.sectionByName(name["__start_".len..]).?;
const shdr = &self.shdrs.items[shndx];
start.value = @intCast(shdr.sh_addr);
start.output_section_index = shndx;
stop.value = @intCast(shdr.sh_addr + shdr.sh_size);
stop.output_section_index = shndx;
}
}
// __global_pointer$
if (self.global_pointer_index) |index| {
const sym = self.symbol(index);
if (self.sectionByName(".sdata")) |shndx| {
const shdr = self.shdrs.items[shndx];
sym.value = @intCast(shdr.sh_addr + 0x800);
sym.output_section_index = shndx;
} else {
sym.value = 0;
sym.output_section_index = 0;
}
}
}
fn checkDuplicates(self: *Elf) !void {
const gpa = self.base.comp.gpa;
var dupes = std.AutoArrayHashMap(Symbol.Index, std.ArrayListUnmanaged(File.Index)).init(gpa);
defer {
for (dupes.values()) |*list| {
list.deinit(gpa);
}
dupes.deinit();
}
if (self.zigObjectPtr()) |zig_object| {
try zig_object.checkDuplicates(&dupes, self);
}
for (self.objects.items) |index| {
try self.file(index).?.object.checkDuplicates(&dupes, self);
}
try self.reportDuplicates(dupes);
}
pub fn addCommentString(self: *Elf) !void {
const msec_index = try self.getOrCreateMergeSection(".comment", elf.SHF_MERGE | elf.SHF_STRINGS, elf.SHT_PROGBITS);
const msec = self.mergeSection(msec_index);
const res = try msec.insertZ(self.base.comp.gpa, "zig " ++ builtin.zig_version_string);
if (res.found_existing) return;
const msub_index = try self.addMergeSubsection();
const msub = self.mergeSubsection(msub_index);
msub.merge_section_index = msec_index;
msub.string_index = res.key.pos;
msub.alignment = .@"1";
msub.size = res.key.len;
msub.entsize = 1;
msub.alive = true;
res.sub.* = msub_index;
}
pub fn resolveMergeSections(self: *Elf) !void {
const tracy = trace(@src());
defer tracy.end();
var has_errors = false;
for (self.objects.items) |index| {
const file_ptr = self.file(index).?;
if (!file_ptr.isAlive()) continue;
file_ptr.object.initMergeSections(self) catch |err| switch (err) {
error.MalformedObject => has_errors = true,
else => |e| return e,
};
}
if (has_errors) return error.FlushFailure;
for (self.objects.items) |index| {
const file_ptr = self.file(index).?;
if (!file_ptr.isAlive()) continue;
file_ptr.object.resolveMergeSubsections(self) catch |err| switch (err) {
error.MalformedObject => has_errors = true,
else => |e| return e,
};
}
if (has_errors) return error.FlushFailure;
}
pub fn finalizeMergeSections(self: *Elf) !void {
for (self.merge_sections.items) |*msec| {
try msec.finalize(self);
}
}
pub fn updateMergeSectionSizes(self: *Elf) !void {
for (self.merge_sections.items) |*msec| {
const shdr = &self.shdrs.items[msec.output_section_index];
for (msec.subsections.items) |msub_index| {
const msub = self.mergeSubsection(msub_index);
assert(msub.alive);
const offset = msub.alignment.forward(shdr.sh_size);
const padding = offset - shdr.sh_size;
msub.value = @intCast(offset);
shdr.sh_size += padding + msub.size;
shdr.sh_addralign = @max(shdr.sh_addralign, msub.alignment.toByteUnits() orelse 1);
}
}
}
pub fn writeMergeSections(self: *Elf) !void {
const gpa = self.base.comp.gpa;
var buffer = std.ArrayList(u8).init(gpa);
defer buffer.deinit();
for (self.merge_sections.items) |msec| {
const shdr = self.shdrs.items[msec.output_section_index];
const size = math.cast(usize, shdr.sh_size) orelse return error.Overflow;
try buffer.ensureTotalCapacity(size);
buffer.appendNTimesAssumeCapacity(0, size);
for (msec.subsections.items) |msub_index| {
const msub = self.mergeSubsection(msub_index);
assert(msub.alive);
const string = msub.getString(self);
const off = math.cast(usize, msub.value) orelse return error.Overflow;
@memcpy(buffer.items[off..][0..string.len], string);
}
try self.base.file.?.pwriteAll(buffer.items, shdr.sh_offset);
buffer.clearRetainingCapacity();
}
}
fn initOutputSections(self: *Elf) !void {
for (self.objects.items) |index| {
try self.file(index).?.object.initOutputSections(self);
}
}
pub fn initMergeSections(self: *Elf) !void {
for (self.merge_sections.items) |*msec| {
if (msec.subsections.items.len == 0) continue;
const name = msec.name(self);
const shndx = self.sectionByName(name) orelse try self.addSection(.{
.name = name,
.type = msec.type,
.flags = msec.flags,
});
msec.output_section_index = shndx;
var entsize = self.mergeSubsection(msec.subsections.items[0]).entsize;
for (msec.subsections.items) |index| {
const msub = self.mergeSubsection(index);
entsize = @min(entsize, msub.entsize);
}
const shdr = &self.shdrs.items[shndx];
shdr.sh_entsize = entsize;
}
}
fn initSyntheticSections(self: *Elf) !void {
const comp = self.base.comp;
const target = comp.root_mod.resolved_target.result;
const ptr_size = self.ptrWidthBytes();
const needs_eh_frame = for (self.objects.items) |index| {
if (self.file(index).?.object.cies.items.len > 0) break true;
} else false;
if (needs_eh_frame) {
self.eh_frame_section_index = try self.addSection(.{
.name = ".eh_frame",
.type = elf.SHT_PROGBITS,
.flags = elf.SHF_ALLOC,
.addralign = ptr_size,
.offset = std.math.maxInt(u64),
});
if (comp.link_eh_frame_hdr) {
self.eh_frame_hdr_section_index = try self.addSection(.{
.name = ".eh_frame_hdr",
.type = elf.SHT_PROGBITS,
.flags = elf.SHF_ALLOC,
.addralign = 4,
.offset = std.math.maxInt(u64),
});
}
}
if (self.got.entries.items.len > 0) {
self.got_section_index = try self.addSection(.{
.name = ".got",
.type = elf.SHT_PROGBITS,
.flags = elf.SHF_ALLOC | elf.SHF_WRITE,
.addralign = ptr_size,
.offset = std.math.maxInt(u64),
});
}
self.got_plt_section_index = try self.addSection(.{
.name = ".got.plt",
.type = elf.SHT_PROGBITS,
.flags = elf.SHF_ALLOC | elf.SHF_WRITE,
.addralign = @alignOf(u64),
.offset = std.math.maxInt(u64),
});
const needs_rela_dyn = blk: {
if (self.got.flags.needs_rela or self.got.flags.needs_tlsld or
self.zig_got.flags.needs_rela or self.copy_rel.symbols.items.len > 0) break :blk true;
if (self.zigObjectPtr()) |zig_object| {
if (zig_object.num_dynrelocs > 0) break :blk true;
}
for (self.objects.items) |index| {
if (self.file(index).?.object.num_dynrelocs > 0) break :blk true;
}
break :blk false;
};
if (needs_rela_dyn) {
self.rela_dyn_section_index = try self.addSection(.{
.name = ".rela.dyn",
.type = elf.SHT_RELA,
.flags = elf.SHF_ALLOC,
.addralign = @alignOf(elf.Elf64_Rela),
.entsize = @sizeOf(elf.Elf64_Rela),
.offset = std.math.maxInt(u64),
});
}
if (self.plt.symbols.items.len > 0) {
self.plt_section_index = try self.addSection(.{
.name = ".plt",
.type = elf.SHT_PROGBITS,
.flags = elf.SHF_ALLOC | elf.SHF_EXECINSTR,
.addralign = 16,
.offset = std.math.maxInt(u64),
});
self.rela_plt_section_index = try self.addSection(.{
.name = ".rela.plt",
.type = elf.SHT_RELA,
.flags = elf.SHF_ALLOC,
.addralign = @alignOf(elf.Elf64_Rela),
.entsize = @sizeOf(elf.Elf64_Rela),
.offset = std.math.maxInt(u64),
});
}
if (self.plt_got.symbols.items.len > 0) {
self.plt_got_section_index = try self.addSection(.{
.name = ".plt.got",
.type = elf.SHT_PROGBITS,
.flags = elf.SHF_ALLOC | elf.SHF_EXECINSTR,
.addralign = 16,
.offset = std.math.maxInt(u64),
});
}
if (self.copy_rel.symbols.items.len > 0) {
self.copy_rel_section_index = try self.addSection(.{
.name = ".copyrel",
.type = elf.SHT_NOBITS,
.flags = elf.SHF_ALLOC | elf.SHF_WRITE,
.offset = std.math.maxInt(u64),
});
}
const needs_interp = blk: {
// On Ubuntu with musl-gcc, we get a weird combo of options looking like this:
// -dynamic-linker=<path> -static
// In this case, if we do generate .interp section and segment, we will get
// a segfault in the dynamic linker trying to load a binary that is static
// and doesn't contain .dynamic section.
if (self.base.isStatic() and !comp.config.pie) break :blk false;
break :blk target.dynamic_linker.get() != null;
};
if (needs_interp) {
self.interp_section_index = try self.addSection(.{
.name = ".interp",
.type = elf.SHT_PROGBITS,
.flags = elf.SHF_ALLOC,
.addralign = 1,
.offset = std.math.maxInt(u64),
});
}
if (self.isEffectivelyDynLib() or self.shared_objects.items.len > 0 or comp.config.pie) {
self.dynstrtab_section_index = try self.addSection(.{
.name = ".dynstr",
.flags = elf.SHF_ALLOC,
.type = elf.SHT_STRTAB,
.entsize = 1,
.addralign = 1,
.offset = std.math.maxInt(u64),
});
self.dynamic_section_index = try self.addSection(.{
.name = ".dynamic",
.flags = elf.SHF_ALLOC | elf.SHF_WRITE,
.type = elf.SHT_DYNAMIC,
.entsize = @sizeOf(elf.Elf64_Dyn),
.addralign = @alignOf(elf.Elf64_Dyn),
.offset = std.math.maxInt(u64),
});
self.dynsymtab_section_index = try self.addSection(.{
.name = ".dynsym",
.flags = elf.SHF_ALLOC,
.type = elf.SHT_DYNSYM,
.addralign = @alignOf(elf.Elf64_Sym),
.entsize = @sizeOf(elf.Elf64_Sym),
.info = 1,
.offset = std.math.maxInt(u64),
});
self.hash_section_index = try self.addSection(.{
.name = ".hash",
.flags = elf.SHF_ALLOC,
.type = elf.SHT_HASH,
.addralign = 4,
.entsize = 4,
.offset = std.math.maxInt(u64),
});
self.gnu_hash_section_index = try self.addSection(.{
.name = ".gnu.hash",
.flags = elf.SHF_ALLOC,
.type = elf.SHT_GNU_HASH,
.addralign = 8,
.offset = std.math.maxInt(u64),
});
const needs_versions = for (self.dynsym.entries.items) |entry| {
const sym = self.symbol(entry.symbol_index);
if (sym.flags.import and sym.version_index & elf.VERSYM_VERSION > elf.VER_NDX_GLOBAL) break true;
} else false;
if (needs_versions) {
self.versym_section_index = try self.addSection(.{
.name = ".gnu.version",
.flags = elf.SHF_ALLOC,
.type = elf.SHT_GNU_VERSYM,
.addralign = @alignOf(elf.Elf64_Versym),
.entsize = @sizeOf(elf.Elf64_Versym),
.offset = std.math.maxInt(u64),
});
self.verneed_section_index = try self.addSection(.{
.name = ".gnu.version_r",
.flags = elf.SHF_ALLOC,
.type = elf.SHT_GNU_VERNEED,
.addralign = @alignOf(elf.Elf64_Verneed),
.offset = std.math.maxInt(u64),
});
}
}
try self.initSymtab();
try self.initShStrtab();
}
pub fn initSymtab(self: *Elf) !void {
const small_ptr = switch (self.ptr_width) {
.p32 => true,
.p64 => false,
};
if (self.symtab_section_index == null) {
self.symtab_section_index = try self.addSection(.{
.name = ".symtab",
.type = elf.SHT_SYMTAB,
.addralign = if (small_ptr) @alignOf(elf.Elf32_Sym) else @alignOf(elf.Elf64_Sym),
.entsize = if (small_ptr) @sizeOf(elf.Elf32_Sym) else @sizeOf(elf.Elf64_Sym),
.offset = std.math.maxInt(u64),
});
}
if (self.strtab_section_index == null) {
self.strtab_section_index = try self.addSection(.{
.name = ".strtab",
.type = elf.SHT_STRTAB,
.entsize = 1,
.addralign = 1,
.offset = std.math.maxInt(u64),
});
}
}
pub fn initShStrtab(self: *Elf) !void {
if (self.shstrtab_section_index == null) {
self.shstrtab_section_index = try self.addSection(.{
.name = ".shstrtab",
.type = elf.SHT_STRTAB,
.entsize = 1,
.addralign = 1,
.offset = std.math.maxInt(u64),
});
}
}
fn initSpecialPhdrs(self: *Elf) !void {
comptime assert(max_number_of_special_phdrs == 5);
if (self.interp_section_index != null) {
self.phdr_interp_index = try self.addPhdr(.{
.type = elf.PT_INTERP,
.flags = elf.PF_R,
.@"align" = 1,
});
}
if (self.dynamic_section_index != null) {
self.phdr_dynamic_index = try self.addPhdr(.{
.type = elf.PT_DYNAMIC,
.flags = elf.PF_R | elf.PF_W,
});
}
if (self.eh_frame_hdr_section_index != null) {
self.phdr_gnu_eh_frame_index = try self.addPhdr(.{
.type = elf.PT_GNU_EH_FRAME,
.flags = elf.PF_R,
});
}
self.phdr_gnu_stack_index = try self.addPhdr(.{
.type = elf.PT_GNU_STACK,
.flags = elf.PF_W | elf.PF_R,
.memsz = self.base.stack_size,
.@"align" = 1,
});
const has_tls = for (self.shdrs.items) |shdr| {
if (shdr.sh_flags & elf.SHF_TLS != 0) break true;
} else false;
if (has_tls) {
self.phdr_tls_index = try self.addPhdr(.{
.type = elf.PT_TLS,
.flags = elf.PF_R,
.@"align" = 1,
});
}
}
/// We need to sort constructors/destuctors in the following sections:
/// * .init_array
/// * .fini_array
/// * .preinit_array
/// * .ctors
/// * .dtors
/// The prority of inclusion is defined as part of the input section's name. For example, .init_array.10000.
/// If no priority value has been specified,
/// * for .init_array, .fini_array and .preinit_array, we automatically assign that section max value of maxInt(i32)
/// and push it to the back of the queue,
/// * for .ctors and .dtors, we automatically assign that section min value of -1
/// and push it to the front of the queue,
/// crtbegin and ctrend are assigned minInt(i32) and maxInt(i32) respectively.
/// Ties are broken by the file prority which corresponds to the inclusion of input sections in this output section
/// we are about to sort.
fn sortInitFini(self: *Elf) !void {
const gpa = self.base.comp.gpa;
const Entry = struct {
priority: i32,
atom_index: Atom.Index,
pub fn lessThan(ctx: *Elf, lhs: @This(), rhs: @This()) bool {
if (lhs.priority == rhs.priority) {
return ctx.atom(lhs.atom_index).?.priority(ctx) < ctx.atom(rhs.atom_index).?.priority(ctx);
}
return lhs.priority < rhs.priority;
}
};
for (self.shdrs.items, 0..) |shdr, shndx| {
if (shdr.sh_flags & elf.SHF_ALLOC == 0) continue;
var is_init_fini = false;
var is_ctor_dtor = false;
switch (shdr.sh_type) {
elf.SHT_PREINIT_ARRAY,
elf.SHT_INIT_ARRAY,
elf.SHT_FINI_ARRAY,
=> is_init_fini = true,
else => {
const name = self.getShString(shdr.sh_name);
is_ctor_dtor = mem.indexOf(u8, name, ".ctors") != null or mem.indexOf(u8, name, ".dtors") != null;
},
}
if (!is_init_fini and !is_ctor_dtor) continue;
const atom_list = self.output_sections.getPtr(@intCast(shndx)).?;
if (atom_list.items.len == 0) continue;
var entries = std.ArrayList(Entry).init(gpa);
try entries.ensureTotalCapacityPrecise(atom_list.items.len);
defer entries.deinit();
for (atom_list.items) |atom_index| {
const atom_ptr = self.atom(atom_index).?;
const object = atom_ptr.file(self).?.object;
const priority = blk: {
if (is_ctor_dtor) {
if (mem.indexOf(u8, object.path, "crtbegin") != null) break :blk std.math.minInt(i32);
if (mem.indexOf(u8, object.path, "crtend") != null) break :blk std.math.maxInt(i32);
}
const default: i32 = if (is_ctor_dtor) -1 else std.math.maxInt(i32);
const name = atom_ptr.name(self);
var it = mem.splitBackwardsScalar(u8, name, '.');
const priority = std.fmt.parseUnsigned(u16, it.first(), 10) catch default;
break :blk priority;
};
entries.appendAssumeCapacity(.{ .priority = priority, .atom_index = atom_index });
}
mem.sort(Entry, entries.items, self, Entry.lessThan);
atom_list.clearRetainingCapacity();
for (entries.items) |entry| {
atom_list.appendAssumeCapacity(entry.atom_index);
}
}
}
fn setDynamicSection(self: *Elf, rpaths: []const []const u8) !void {
if (self.dynamic_section_index == null) return;
for (self.shared_objects.items) |index| {
const shared_object = self.file(index).?.shared_object;
if (!shared_object.alive) continue;
try self.dynamic.addNeeded(shared_object, self);
}
if (self.isEffectivelyDynLib()) {
if (self.soname) |soname| {
try self.dynamic.setSoname(soname, self);
}
}
try self.dynamic.setRpath(rpaths, self);
}
fn sortDynamicSymtab(self: *Elf) void {
if (self.gnu_hash_section_index == null) return;
self.dynsym.sort(self);
}
fn setVersionSymtab(self: *Elf) !void {
const gpa = self.base.comp.gpa;
if (self.versym_section_index == null) return;
try self.versym.resize(gpa, self.dynsym.count());
self.versym.items[0] = elf.VER_NDX_LOCAL;
for (self.dynsym.entries.items, 1..) |entry, i| {
const sym = self.symbol(entry.symbol_index);
self.versym.items[i] = sym.version_index;
}
if (self.verneed_section_index) |shndx| {
try self.verneed.generate(self);
const shdr = &self.shdrs.items[shndx];
shdr.sh_info = @as(u32, @intCast(self.verneed.verneed.items.len));
}
}
fn setHashSections(self: *Elf) !void {
if (self.hash_section_index != null) {
try self.hash.generate(self);
}
if (self.gnu_hash_section_index != null) {
try self.gnu_hash.calcSize(self);
}
}
fn phdrRank(phdr: elf.Elf64_Phdr) u8 {
switch (phdr.p_type) {
elf.PT_NULL => return 0,
elf.PT_PHDR => return 1,
elf.PT_INTERP => return 2,
elf.PT_LOAD => return 3,
elf.PT_DYNAMIC, elf.PT_TLS => return 4,
elf.PT_GNU_EH_FRAME => return 5,
elf.PT_GNU_STACK => return 6,
else => return 7,
}
}
fn sortPhdrs(self: *Elf) error{OutOfMemory}!void {
const Entry = struct {
phndx: u16,
pub fn lessThan(elf_file: *Elf, lhs: @This(), rhs: @This()) bool {
const lhs_phdr = elf_file.phdrs.items[lhs.phndx];
const rhs_phdr = elf_file.phdrs.items[rhs.phndx];
const lhs_rank = phdrRank(lhs_phdr);
const rhs_rank = phdrRank(rhs_phdr);
if (lhs_rank == rhs_rank) return lhs_phdr.p_vaddr < rhs_phdr.p_vaddr;
return lhs_rank < rhs_rank;
}
};
const gpa = self.base.comp.gpa;
var entries = try std.ArrayList(Entry).initCapacity(gpa, self.phdrs.items.len);
defer entries.deinit();
for (0..self.phdrs.items.len) |phndx| {
entries.appendAssumeCapacity(.{ .phndx = @as(u16, @intCast(phndx)) });
}
mem.sort(Entry, entries.items, self, Entry.lessThan);
const backlinks = try gpa.alloc(u16, entries.items.len);
defer gpa.free(backlinks);
for (entries.items, 0..) |entry, i| {
backlinks[entry.phndx] = @as(u16, @intCast(i));
}
const slice = try self.phdrs.toOwnedSlice(gpa);
defer gpa.free(slice);
try self.phdrs.ensureTotalCapacityPrecise(gpa, slice.len);
for (entries.items) |sorted| {
self.phdrs.appendAssumeCapacity(slice[sorted.phndx]);
}
for (&[_]*?u16{
&self.phdr_zig_load_re_index,
&self.phdr_zig_got_index,
&self.phdr_zig_load_ro_index,
&self.phdr_zig_load_zerofill_index,
&self.phdr_table_index,
&self.phdr_table_load_index,
&self.phdr_interp_index,
&self.phdr_dynamic_index,
&self.phdr_gnu_eh_frame_index,
&self.phdr_tls_index,
}) |maybe_index| {
if (maybe_index.*) |*index| {
index.* = backlinks[index.*];
}
}
{
var it = self.phdr_to_shdr_table.iterator();
while (it.next()) |entry| {
entry.value_ptr.* = backlinks[entry.value_ptr.*];
}
}
}
fn shdrRank(self: *Elf, shndx: u32) u8 {
const shdr = self.shdrs.items[shndx];
const name = self.getShString(shdr.sh_name);
const flags = shdr.sh_flags;
switch (shdr.sh_type) {
elf.SHT_NULL => return 0,
elf.SHT_DYNSYM => return 2,
elf.SHT_HASH => return 3,
elf.SHT_GNU_HASH => return 3,
elf.SHT_GNU_VERSYM => return 4,
elf.SHT_GNU_VERDEF => return 4,
elf.SHT_GNU_VERNEED => return 4,
elf.SHT_PREINIT_ARRAY,
elf.SHT_INIT_ARRAY,
elf.SHT_FINI_ARRAY,
=> return 0xf2,
elf.SHT_DYNAMIC => return 0xf3,
elf.SHT_RELA, elf.SHT_GROUP => return 0xf,
elf.SHT_PROGBITS => if (flags & elf.SHF_ALLOC != 0) {
if (flags & elf.SHF_EXECINSTR != 0) {
return 0xf1;
} else if (flags & elf.SHF_WRITE != 0) {
return if (flags & elf.SHF_TLS != 0) 0xf4 else 0xf6;
} else if (mem.eql(u8, name, ".interp")) {
return 1;
} else {
return 0xf0;
}
} else {
if (mem.startsWith(u8, name, ".debug")) {
return 0xf8;
} else {
return 0xf9;
}
},
elf.SHT_NOBITS => return if (flags & elf.SHF_TLS != 0) 0xf5 else 0xf7,
elf.SHT_SYMTAB => return 0xfa,
elf.SHT_STRTAB => return if (mem.eql(u8, name, ".dynstr")) 0x4 else 0xfb,
else => return 0xff,
}
}
pub fn sortShdrs(self: *Elf) !void {
const Entry = struct {
shndx: u32,
pub fn lessThan(elf_file: *Elf, lhs: @This(), rhs: @This()) bool {
return elf_file.shdrRank(lhs.shndx) < elf_file.shdrRank(rhs.shndx);
}
};
const gpa = self.base.comp.gpa;
var entries = try std.ArrayList(Entry).initCapacity(gpa, self.shdrs.items.len);
defer entries.deinit();
for (0..self.shdrs.items.len) |shndx| {
entries.appendAssumeCapacity(.{ .shndx = @intCast(shndx) });
}
mem.sort(Entry, entries.items, self, Entry.lessThan);
const backlinks = try gpa.alloc(u32, entries.items.len);
defer gpa.free(backlinks);
for (entries.items, 0..) |entry, i| {
backlinks[entry.shndx] = @intCast(i);
}
const slice = try self.shdrs.toOwnedSlice(gpa);
defer gpa.free(slice);
try self.shdrs.ensureTotalCapacityPrecise(gpa, slice.len);
for (entries.items) |sorted| {
self.shdrs.appendAssumeCapacity(slice[sorted.shndx]);
}
try self.resetShdrIndexes(backlinks);
}
fn resetShdrIndexes(self: *Elf, backlinks: []const u32) !void {
const gpa = self.base.comp.gpa;
for (&[_]*?u32{
&self.eh_frame_section_index,
&self.eh_frame_rela_section_index,
&self.eh_frame_hdr_section_index,
&self.got_section_index,
&self.symtab_section_index,
&self.strtab_section_index,
&self.shstrtab_section_index,
&self.interp_section_index,
&self.dynamic_section_index,
&self.dynsymtab_section_index,
&self.dynstrtab_section_index,
&self.hash_section_index,
&self.gnu_hash_section_index,
&self.plt_section_index,
&self.got_plt_section_index,
&self.plt_got_section_index,
&self.rela_dyn_section_index,
&self.rela_plt_section_index,
&self.copy_rel_section_index,
&self.versym_section_index,
&self.verneed_section_index,
&self.zig_text_section_index,
&self.zig_got_section_index,
&self.zig_data_rel_ro_section_index,
&self.zig_data_section_index,
&self.zig_bss_section_index,
&self.debug_str_section_index,
&self.debug_info_section_index,
&self.debug_abbrev_section_index,
&self.debug_aranges_section_index,
&self.debug_line_section_index,
}) |maybe_index| {
if (maybe_index.*) |*index| {
index.* = backlinks[index.*];
}
}
if (self.symtab_section_index) |index| {
const shdr = &self.shdrs.items[index];
shdr.sh_link = self.strtab_section_index.?;
}
if (self.dynamic_section_index) |index| {
const shdr = &self.shdrs.items[index];
shdr.sh_link = self.dynstrtab_section_index.?;
}
if (self.dynsymtab_section_index) |index| {
const shdr = &self.shdrs.items[index];
shdr.sh_link = self.dynstrtab_section_index.?;
}
if (self.hash_section_index) |index| {
const shdr = &self.shdrs.items[index];
shdr.sh_link = self.dynsymtab_section_index.?;
}
if (self.gnu_hash_section_index) |index| {
const shdr = &self.shdrs.items[index];
shdr.sh_link = self.dynsymtab_section_index.?;
}
if (self.versym_section_index) |index| {
const shdr = &self.shdrs.items[index];
shdr.sh_link = self.dynsymtab_section_index.?;
}
if (self.verneed_section_index) |index| {
const shdr = &self.shdrs.items[index];
shdr.sh_link = self.dynstrtab_section_index.?;
}
if (self.rela_dyn_section_index) |index| {
const shdr = &self.shdrs.items[index];
shdr.sh_link = self.dynsymtab_section_index orelse 0;
}
if (self.rela_plt_section_index) |index| {
const shdr = &self.shdrs.items[index];
shdr.sh_link = self.dynsymtab_section_index.?;
shdr.sh_info = self.plt_section_index.?;
}
if (self.eh_frame_rela_section_index) |index| {
const shdr = &self.shdrs.items[index];
shdr.sh_link = self.symtab_section_index.?;
shdr.sh_info = self.eh_frame_section_index.?;
}
{
var output_sections = try self.output_sections.clone(gpa);
defer output_sections.deinit(gpa);
self.output_sections.clearRetainingCapacity();
var it = output_sections.iterator();
while (it.next()) |entry| {
const shndx = entry.key_ptr.*;
const meta = entry.value_ptr.*;
self.output_sections.putAssumeCapacityNoClobber(backlinks[shndx], meta);
}
}
for (self.merge_sections.items) |*msec| {
msec.output_section_index = backlinks[msec.output_section_index];
}
{
var output_rela_sections = try self.output_rela_sections.clone(gpa);
defer output_rela_sections.deinit(gpa);
self.output_rela_sections.clearRetainingCapacity();
var it = output_rela_sections.iterator();
while (it.next()) |entry| {
const shndx = entry.key_ptr.*;
var meta = entry.value_ptr.*;
meta.shndx = backlinks[meta.shndx];
self.output_rela_sections.putAssumeCapacityNoClobber(backlinks[shndx], meta);
}
}
{
var last_atom_and_free_list_table = try self.last_atom_and_free_list_table.clone(gpa);
defer last_atom_and_free_list_table.deinit(gpa);
self.last_atom_and_free_list_table.clearRetainingCapacity();
var it = last_atom_and_free_list_table.iterator();
while (it.next()) |entry| {
const shndx = entry.key_ptr.*;
const meta = entry.value_ptr.*;
self.last_atom_and_free_list_table.putAssumeCapacityNoClobber(backlinks[shndx], meta);
}
}
{
var phdr_to_shdr_table = try self.phdr_to_shdr_table.clone(gpa);
defer phdr_to_shdr_table.deinit(gpa);
self.phdr_to_shdr_table.clearRetainingCapacity();
var it = phdr_to_shdr_table.iterator();
while (it.next()) |entry| {
const shndx = entry.key_ptr.*;
const phndx = entry.value_ptr.*;
self.phdr_to_shdr_table.putAssumeCapacityNoClobber(backlinks[shndx], phndx);
}
}
if (self.zigObjectPtr()) |zig_object| {
for (zig_object.atoms.items) |atom_index| {
const atom_ptr = self.atom(atom_index) orelse continue;
atom_ptr.output_section_index = backlinks[atom_ptr.output_section_index];
}
for (zig_object.locals()) |local_index| {
const local = self.symbol(local_index);
local.output_section_index = backlinks[local.output_section_index];
}
for (zig_object.globals()) |global_index| {
const global = self.symbol(global_index);
const atom_ptr = global.atom(self) orelse continue;
if (!atom_ptr.flags.alive) continue;
// TODO claim unresolved for objects
if (global.file(self).?.index() != zig_object.index) continue;
const out_shndx = global.outputShndx() orelse continue;
global.output_section_index = backlinks[out_shndx];
}
}
for (self.output_rela_sections.keys(), self.output_rela_sections.values()) |shndx, sec| {
const shdr = &self.shdrs.items[sec.shndx];
shdr.sh_link = self.symtab_section_index.?;
shdr.sh_info = shndx;
}
for (self.comdat_group_sections.items) |*cg| {
cg.shndx = backlinks[cg.shndx];
}
}
fn updateSectionSizes(self: *Elf) !void {
const target = self.base.comp.root_mod.resolved_target.result;
for (self.output_sections.keys(), self.output_sections.values()) |shndx, atom_list| {
const shdr = &self.shdrs.items[shndx];
if (atom_list.items.len == 0) continue;
if (self.requiresThunks() and shdr.sh_flags & elf.SHF_EXECINSTR != 0) continue;
for (atom_list.items) |atom_index| {
const atom_ptr = self.atom(atom_index) orelse continue;
if (!atom_ptr.flags.alive) continue;
const offset = atom_ptr.alignment.forward(shdr.sh_size);
const padding = offset - shdr.sh_size;
atom_ptr.value = @intCast(offset);
shdr.sh_size += padding + atom_ptr.size;
shdr.sh_addralign = @max(shdr.sh_addralign, atom_ptr.alignment.toByteUnits() orelse 1);
}
}
if (self.requiresThunks()) {
for (self.output_sections.keys(), self.output_sections.values()) |shndx, atom_list| {
const shdr = self.shdrs.items[shndx];
if (shdr.sh_flags & elf.SHF_EXECINSTR == 0) continue;
if (atom_list.items.len == 0) continue;
// Create jump/branch range extenders if needed.
try thunks.createThunks(shndx, self);
}
}
if (self.eh_frame_section_index) |index| {
self.shdrs.items[index].sh_size = try eh_frame.calcEhFrameSize(self);
}
if (self.eh_frame_hdr_section_index) |index| {
self.shdrs.items[index].sh_size = eh_frame.calcEhFrameHdrSize(self);
}
if (self.got_section_index) |index| {
self.shdrs.items[index].sh_size = self.got.size(self);
}
if (self.plt_section_index) |index| {
self.shdrs.items[index].sh_size = self.plt.size(self);
}
if (self.got_plt_section_index) |index| {
self.shdrs.items[index].sh_size = self.got_plt.size(self);
}
if (self.plt_got_section_index) |index| {
self.shdrs.items[index].sh_size = self.plt_got.size(self);
}
if (self.rela_dyn_section_index) |shndx| {
var num = self.got.numRela(self) + self.copy_rel.numRela() + self.zig_got.numRela();
if (self.zigObjectPtr()) |zig_object| {
num += zig_object.num_dynrelocs;
}
for (self.objects.items) |index| {
num += self.file(index).?.object.num_dynrelocs;
}
self.shdrs.items[shndx].sh_size = num * @sizeOf(elf.Elf64_Rela);
}
if (self.rela_plt_section_index) |index| {
self.shdrs.items[index].sh_size = self.plt.numRela() * @sizeOf(elf.Elf64_Rela);
}
if (self.copy_rel_section_index) |index| {
try self.copy_rel.updateSectionSize(index, self);
}
if (self.interp_section_index) |index| {
self.shdrs.items[index].sh_size = target.dynamic_linker.get().?.len + 1;
}
if (self.hash_section_index) |index| {
self.shdrs.items[index].sh_size = self.hash.size();
}
if (self.gnu_hash_section_index) |index| {
self.shdrs.items[index].sh_size = self.gnu_hash.size();
}
if (self.dynamic_section_index) |index| {
self.shdrs.items[index].sh_size = self.dynamic.size(self);
}
if (self.dynsymtab_section_index) |index| {
self.shdrs.items[index].sh_size = self.dynsym.size();
}
if (self.dynstrtab_section_index) |index| {
self.shdrs.items[index].sh_size = self.dynstrtab.items.len;
}
if (self.versym_section_index) |index| {
self.shdrs.items[index].sh_size = self.versym.items.len * @sizeOf(elf.Elf64_Versym);
}
if (self.verneed_section_index) |index| {
self.shdrs.items[index].sh_size = self.verneed.size();
}
try self.updateSymtabSize();
self.updateShStrtabSize();
}
pub fn updateShStrtabSize(self: *Elf) void {
if (self.shstrtab_section_index) |index| {
self.shdrs.items[index].sh_size = self.shstrtab.items.len;
}
}
fn shdrToPhdrFlags(sh_flags: u64) u32 {
const write = sh_flags & elf.SHF_WRITE != 0;
const exec = sh_flags & elf.SHF_EXECINSTR != 0;
var out_flags: u32 = elf.PF_R;
if (write) out_flags |= elf.PF_W;
if (exec) out_flags |= elf.PF_X;
return out_flags;
}
/// Returns maximum number of program headers that may be emitted by the linker.
/// (This is an upper bound so that we can reserve enough space for the header and progam header
/// table without running out of space and being forced to move things around.)
fn getMaxNumberOfPhdrs() u64 {
// First, assume we compile Zig's source incrementally, this gives us:
var num: u64 = number_of_zig_segments;
// Next, the estimated maximum number of segments the linker can emit for input sections are:
num += max_number_of_object_segments;
// Next, any other non-loadable program headers, including TLS, DYNAMIC, GNU_STACK, GNU_EH_FRAME, INTERP:
num += max_number_of_special_phdrs;
// Finally, PHDR program header and corresponding read-only load segment:
num += 2;
return num;
}
/// Calculates how many segments (PT_LOAD progam headers) are required
/// to cover the set of sections.
/// We permit a maximum of 3**2 number of segments.
fn calcNumberOfSegments(self: *Elf) usize {
var covers: [9]bool = [_]bool{false} ** 9;
for (self.shdrs.items, 0..) |shdr, shndx| {
if (shdr.sh_type == elf.SHT_NULL) continue;
if (shdr.sh_flags & elf.SHF_ALLOC == 0) continue;
if (self.isZigSection(@intCast(shndx))) continue;
const flags = shdrToPhdrFlags(shdr.sh_flags);
covers[flags - 1] = true;
}
var count: usize = 0;
for (covers) |cover| {
if (cover) count += 1;
}
return count;
}
/// Allocates PHDR table in virtual memory and in file.
fn allocatePhdrTable(self: *Elf) error{OutOfMemory}!void {
const new_load_segments = self.calcNumberOfSegments();
const phdr_table = &self.phdrs.items[self.phdr_table_index.?];
const phdr_table_load = &self.phdrs.items[self.phdr_table_load_index.?];
const ehsize: u64 = switch (self.ptr_width) {
.p32 => @sizeOf(elf.Elf32_Ehdr),
.p64 => @sizeOf(elf.Elf64_Ehdr),
};
const phsize: u64 = switch (self.ptr_width) {
.p32 => @sizeOf(elf.Elf32_Phdr),
.p64 => @sizeOf(elf.Elf64_Phdr),
};
const needed_size = (self.phdrs.items.len + new_load_segments) * phsize;
const available_space = self.allocatedSize(phdr_table.p_offset);
if (needed_size > available_space) {
// In this case, we have two options:
// 1. increase the available padding for EHDR + PHDR table so that we don't overflow it
// (revisit getMaxNumberOfPhdrs())
// 2. shift everything in file to free more space for EHDR + PHDR table
// TODO verify `getMaxNumberOfPhdrs()` is accurate and convert this into no-op
var err = try self.addErrorWithNotes(1);
try err.addMsg(self, "fatal linker error: not enough space reserved for EHDR and PHDR table", .{});
try err.addNote(self, "required 0x{x}, available 0x{x}", .{ needed_size, available_space });
}
phdr_table_load.p_filesz = needed_size + ehsize;
phdr_table_load.p_memsz = needed_size + ehsize;
phdr_table.p_filesz = needed_size;
phdr_table.p_memsz = needed_size;
}
/// Allocates alloc sections and creates load segments for sections
/// extracted from input object files.
pub fn allocateAllocSections(self: *Elf) error{OutOfMemory}!void {
// We use this struct to track maximum alignment of all TLS sections.
// According to https://github.com/rui314/mold/commit/bd46edf3f0fe9e1a787ea453c4657d535622e61f in mold,
// in-file offsets have to be aligned against the start of TLS program header.
// If that's not ensured, then in a multi-threaded context, TLS variables across a shared object
// boundary may not get correctly loaded at an aligned address.
const Align = struct {
tls_start_align: u64 = 1,
first_tls_index: ?usize = null,
fn isFirstTlsShdr(this: @This(), other: usize) bool {
if (this.first_tls_index) |index| return index == other;
return false;
}
fn @"align"(this: @This(), index: usize, sh_addralign: u64, addr: u64) u64 {
const alignment = if (this.isFirstTlsShdr(index)) this.tls_start_align else sh_addralign;
return mem.alignForward(u64, addr, alignment);
}
};
var alignment = Align{};
for (self.shdrs.items, 0..) |shdr, i| {
if (shdr.sh_type == elf.SHT_NULL) continue;
if (shdr.sh_flags & elf.SHF_TLS == 0) continue;
if (alignment.first_tls_index == null) alignment.first_tls_index = i;
alignment.tls_start_align = @max(alignment.tls_start_align, shdr.sh_addralign);
}
// Next, calculate segment covers by scanning all alloc sections.
// If a section matches segment flags with the preceeding section,
// we put it in the same segment. Otherwise, we create a new cover.
// This algorithm is simple but suboptimal in terms of space re-use:
// normally we would also take into account any gaps in allocated
// virtual and file offsets. However, the simple one will do for one
// as we are more interested in quick turnaround and compatibility
// with `findFreeSpace` mechanics than anything else.
const Cover = std.ArrayList(u32);
const gpa = self.base.comp.gpa;
var covers: [max_number_of_object_segments]Cover = undefined;
for (&covers) |*cover| {
cover.* = Cover.init(gpa);
}
defer for (&covers) |*cover| {
cover.deinit();
};
for (self.shdrs.items, 0..) |shdr, shndx| {
if (shdr.sh_type == elf.SHT_NULL) continue;
if (shdr.sh_flags & elf.SHF_ALLOC == 0) continue;
if (self.isZigSection(@intCast(shndx))) continue;
const flags = shdrToPhdrFlags(shdr.sh_flags);
try covers[flags - 1].append(@intCast(shndx));
}
// Now we can proceed with allocating the sections in virtual memory.
// As the base address we take the end address of the PHDR table.
// When allocating we first find the largest required alignment
// of any section that is contained in a cover and use it to align
// the start address of the segement (and first section).
const phdr_table = &self.phdrs.items[self.phdr_table_load_index.?];
var addr = phdr_table.p_vaddr + phdr_table.p_memsz;
for (covers) |cover| {
if (cover.items.len == 0) continue;
var @"align": u64 = self.page_size;
for (cover.items) |shndx| {
const shdr = self.shdrs.items[shndx];
if (shdr.sh_type == elf.SHT_NOBITS and shdr.sh_flags & elf.SHF_TLS != 0) continue;
@"align" = @max(@"align", shdr.sh_addralign);
}
addr = mem.alignForward(u64, addr, @"align");
var memsz: u64 = 0;
var filesz: u64 = 0;
var i: usize = 0;
while (i < cover.items.len) : (i += 1) {
const shndx = cover.items[i];
const shdr = &self.shdrs.items[shndx];
if (shdr.sh_type == elf.SHT_NOBITS and shdr.sh_flags & elf.SHF_TLS != 0) {
// .tbss is a little special as it's used only by the loader meaning it doesn't
// need to be actually mmap'ed at runtime. We still need to correctly increment
// the addresses of every TLS zerofill section tho. Thus, we hack it so that
// we increment the start address like normal, however, after we are done,
// the next ALLOC section will get its start address allocated within the same
// range as the .tbss sections. We will get something like this:
//
// ...
// .tbss 0x10
// .tcommon 0x20
// .data 0x10
// ...
var tbss_addr = addr;
while (i < cover.items.len and
self.shdrs.items[cover.items[i]].sh_type == elf.SHT_NOBITS and
self.shdrs.items[cover.items[i]].sh_flags & elf.SHF_TLS != 0) : (i += 1)
{
const tbss_shndx = cover.items[i];
const tbss_shdr = &self.shdrs.items[tbss_shndx];
tbss_addr = alignment.@"align"(tbss_shndx, tbss_shdr.sh_addralign, tbss_addr);
tbss_shdr.sh_addr = tbss_addr;
tbss_addr += tbss_shdr.sh_size;
}
i -= 1;
continue;
}
const next = alignment.@"align"(shndx, shdr.sh_addralign, addr);
const padding = next - addr;
addr = next;
shdr.sh_addr = addr;
if (shdr.sh_type != elf.SHT_NOBITS) {
filesz += padding + shdr.sh_size;
}
memsz += padding + shdr.sh_size;
addr += shdr.sh_size;
}
const first = self.shdrs.items[cover.items[0]];
var off = self.findFreeSpace(filesz, @"align");
const phndx = try self.addPhdr(.{
.type = elf.PT_LOAD,
.offset = off,
.addr = first.sh_addr,
.memsz = memsz,
.filesz = filesz,
.@"align" = @"align",
.flags = shdrToPhdrFlags(first.sh_flags),
});
for (cover.items) |shndx| {
const shdr = &self.shdrs.items[shndx];
if (shdr.sh_type == elf.SHT_NOBITS) {
shdr.sh_offset = 0;
continue;
}
off = alignment.@"align"(shndx, shdr.sh_addralign, off);
shdr.sh_offset = off;
off += shdr.sh_size;
try self.phdr_to_shdr_table.putNoClobber(gpa, shndx, phndx);
}
addr = mem.alignForward(u64, addr, self.page_size);
}
}
/// Allocates non-alloc sections (debug info, symtabs, etc.).
pub fn allocateNonAllocSections(self: *Elf) !void {
for (self.shdrs.items, 0..) |*shdr, shndx| {
if (shdr.sh_type == elf.SHT_NULL) continue;
if (shdr.sh_flags & elf.SHF_ALLOC != 0) continue;
const needed_size = shdr.sh_size;
if (needed_size > self.allocatedSize(shdr.sh_offset)) {
shdr.sh_size = 0;
const new_offset = self.findFreeSpace(needed_size, shdr.sh_addralign);
if (self.isDebugSection(@intCast(shndx))) {
log.debug("moving {s} from 0x{x} to 0x{x}", .{
self.getShString(shdr.sh_name),
shdr.sh_offset,
new_offset,
});
const zig_object = self.zigObjectPtr().?;
const existing_size = blk: {
if (shndx == self.debug_info_section_index.?)
break :blk zig_object.debug_info_section_zig_size;
if (shndx == self.debug_abbrev_section_index.?)
break :blk zig_object.debug_abbrev_section_zig_size;
if (shndx == self.debug_str_section_index.?)
break :blk zig_object.debug_str_section_zig_size;
if (shndx == self.debug_aranges_section_index.?)
break :blk zig_object.debug_aranges_section_zig_size;
if (shndx == self.debug_line_section_index.?)
break :blk zig_object.debug_line_section_zig_size;
unreachable;
};
const amt = try self.base.file.?.copyRangeAll(
shdr.sh_offset,
self.base.file.?,
new_offset,
existing_size,
);
if (amt != existing_size) return error.InputOutput;
}
shdr.sh_offset = new_offset;
shdr.sh_size = needed_size;
}
}
}
fn allocateSpecialPhdrs(self: *Elf) void {
for (&[_]struct { ?u16, ?u32 }{
.{ self.phdr_interp_index, self.interp_section_index },
.{ self.phdr_dynamic_index, self.dynamic_section_index },
.{ self.phdr_gnu_eh_frame_index, self.eh_frame_hdr_section_index },
}) |pair| {
if (pair[0]) |index| {
const shdr = self.shdrs.items[pair[1].?];
const phdr = &self.phdrs.items[index];
phdr.p_align = shdr.sh_addralign;
phdr.p_offset = shdr.sh_offset;
phdr.p_vaddr = shdr.sh_addr;
phdr.p_paddr = shdr.sh_addr;
phdr.p_filesz = shdr.sh_size;
phdr.p_memsz = shdr.sh_size;
}
}
// Set the TLS segment boundaries.
// We assume TLS sections are laid out contiguously and that there is
// a single TLS segment.
if (self.phdr_tls_index) |index| {
const slice = self.shdrs.items;
const phdr = &self.phdrs.items[index];
var shndx: u32 = 0;
while (shndx < slice.len) {
const shdr = slice[shndx];
if (shdr.sh_flags & elf.SHF_TLS == 0) {
shndx += 1;
continue;
}
phdr.p_offset = shdr.sh_offset;
phdr.p_vaddr = shdr.sh_addr;
phdr.p_paddr = shdr.sh_addr;
phdr.p_align = shdr.sh_addralign;
shndx += 1;
phdr.p_align = @max(phdr.p_align, shdr.sh_addralign);
if (shdr.sh_type != elf.SHT_NOBITS) {
phdr.p_filesz = shdr.sh_offset + shdr.sh_size - phdr.p_offset;
}
phdr.p_memsz = shdr.sh_addr + shdr.sh_size - phdr.p_vaddr;
while (shndx < slice.len) : (shndx += 1) {
const next = slice[shndx];
if (next.sh_flags & elf.SHF_TLS == 0) break;
phdr.p_align = @max(phdr.p_align, next.sh_addralign);
if (next.sh_type != elf.SHT_NOBITS) {
phdr.p_filesz = next.sh_offset + next.sh_size - phdr.p_offset;
}
phdr.p_memsz = next.sh_addr + next.sh_size - phdr.p_vaddr;
}
}
}
}
fn writeAtoms(self: *Elf) !void {
const gpa = self.base.comp.gpa;
var undefs = std.AutoHashMap(Symbol.Index, std.ArrayList(Atom.Index)).init(gpa);
defer {
var it = undefs.iterator();
while (it.next()) |entry| {
entry.value_ptr.deinit();
}
undefs.deinit();
}
var has_reloc_errors = false;
// TODO iterate over `output_sections` directly
for (self.shdrs.items, 0..) |shdr, shndx| {
if (shdr.sh_type == elf.SHT_NULL) continue;
if (shdr.sh_type == elf.SHT_NOBITS) continue;
const atom_list = self.output_sections.get(@intCast(shndx)) orelse continue;
if (atom_list.items.len == 0) continue;
log.debug("writing atoms in '{s}' section", .{self.getShString(shdr.sh_name)});
// TODO really, really handle debug section separately
const base_offset = if (self.isDebugSection(@intCast(shndx))) blk: {
const zig_object = self.zigObjectPtr().?;
if (shndx == self.debug_info_section_index.?)
break :blk zig_object.debug_info_section_zig_size;
if (shndx == self.debug_abbrev_section_index.?)
break :blk zig_object.debug_abbrev_section_zig_size;
if (shndx == self.debug_str_section_index.?)
break :blk zig_object.debug_str_section_zig_size;
if (shndx == self.debug_aranges_section_index.?)
break :blk zig_object.debug_aranges_section_zig_size;
if (shndx == self.debug_line_section_index.?)
break :blk zig_object.debug_line_section_zig_size;
unreachable;
} else 0;
const sh_offset = shdr.sh_offset + base_offset;
const sh_size = math.cast(usize, shdr.sh_size - base_offset) orelse return error.Overflow;
const buffer = try gpa.alloc(u8, sh_size);
defer gpa.free(buffer);
const padding_byte: u8 = if (shdr.sh_type == elf.SHT_PROGBITS and
shdr.sh_flags & elf.SHF_EXECINSTR != 0 and self.getTarget().cpu.arch == .x86_64)
0xcc // int3
else
0;
@memset(buffer, padding_byte);
for (atom_list.items) |atom_index| {
const atom_ptr = self.atom(atom_index).?;
assert(atom_ptr.flags.alive);
const offset = math.cast(usize, atom_ptr.value - @as(i64, @intCast(base_offset))) orelse
return error.Overflow;
const size = math.cast(usize, atom_ptr.size) orelse return error.Overflow;
log.debug("writing atom({d}) at 0x{x}", .{ atom_index, sh_offset + offset });
// TODO decompress directly into provided buffer
const out_code = buffer[offset..][0..size];
const in_code = switch (atom_ptr.file(self).?) {
.object => |x| try x.codeDecompressAlloc(self, atom_index),
.zig_object => |x| try x.codeAlloc(self, atom_index),
else => unreachable,
};
defer gpa.free(in_code);
@memcpy(out_code, in_code);
const res = if (shdr.sh_flags & elf.SHF_ALLOC == 0)
atom_ptr.resolveRelocsNonAlloc(self, out_code, &undefs)
else
atom_ptr.resolveRelocsAlloc(self, out_code);
_ = res catch |err| switch (err) {
error.UnsupportedCpuArch => {
try self.reportUnsupportedCpuArch();
return error.FlushFailure;
},
error.RelocFailure, error.RelaxFailure => has_reloc_errors = true,
else => |e| return e,
};
}
try self.base.file.?.pwriteAll(buffer, sh_offset);
}
if (self.requiresThunks()) {
var buffer = std.ArrayList(u8).init(gpa);
defer buffer.deinit();
for (self.thunks.items) |th| {
const thunk_size = th.size(self);
try buffer.ensureUnusedCapacity(thunk_size);
const shdr = self.shdrs.items[th.output_section_index];
const offset = @as(u64, @intCast(th.value)) + shdr.sh_offset;
try th.write(self, buffer.writer());
assert(buffer.items.len == thunk_size);
try self.base.file.?.pwriteAll(buffer.items, offset);
buffer.clearRetainingCapacity();
}
}
try self.reportUndefinedSymbols(&undefs);
if (has_reloc_errors) return error.FlushFailure;
}
pub fn updateSymtabSize(self: *Elf) !void {
var nlocals: u32 = 0;
var nglobals: u32 = 0;
var strsize: u32 = 0;
const gpa = self.base.comp.gpa;
var files = std.ArrayList(File.Index).init(gpa);
defer files.deinit();
try files.ensureTotalCapacityPrecise(self.objects.items.len + self.shared_objects.items.len + 2);
if (self.zig_object_index) |index| files.appendAssumeCapacity(index);
for (self.objects.items) |index| files.appendAssumeCapacity(index);
for (self.shared_objects.items) |index| files.appendAssumeCapacity(index);
if (self.linker_defined_index) |index| files.appendAssumeCapacity(index);
// Section symbols
for (self.output_sections.keys()) |_| {
nlocals += 1;
}
if (self.eh_frame_section_index) |_| {
nlocals += 1;
}
nlocals += @intCast(self.merge_sections.items.len);
if (self.requiresThunks()) for (self.thunks.items) |*th| {
th.output_symtab_ctx.ilocal = nlocals + 1;
th.calcSymtabSize(self);
nlocals += th.output_symtab_ctx.nlocals;
strsize += th.output_symtab_ctx.strsize;
};
for (files.items) |index| {
const file_ptr = self.file(index).?;
const ctx = switch (file_ptr) {
inline else => |x| &x.output_symtab_ctx,
};
ctx.ilocal = nlocals + 1;
ctx.iglobal = nglobals + 1;
try file_ptr.updateSymtabSize(self);
nlocals += ctx.nlocals;
nglobals += ctx.nglobals;
strsize += ctx.strsize;
}
if (self.zig_got_section_index) |_| {
self.zig_got.output_symtab_ctx.ilocal = nlocals + 1;
self.zig_got.updateSymtabSize(self);
nlocals += self.zig_got.output_symtab_ctx.nlocals;
strsize += self.zig_got.output_symtab_ctx.strsize;
}
if (self.got_section_index) |_| {
self.got.output_symtab_ctx.ilocal = nlocals + 1;
self.got.updateSymtabSize(self);
nlocals += self.got.output_symtab_ctx.nlocals;
strsize += self.got.output_symtab_ctx.strsize;
}
if (self.plt_section_index) |_| {
self.plt.output_symtab_ctx.ilocal = nlocals + 1;
self.plt.updateSymtabSize(self);
nlocals += self.plt.output_symtab_ctx.nlocals;
strsize += self.plt.output_symtab_ctx.strsize;
}
if (self.plt_got_section_index) |_| {
self.plt_got.output_symtab_ctx.ilocal = nlocals + 1;
self.plt_got.updateSymtabSize(self);
nlocals += self.plt_got.output_symtab_ctx.nlocals;
strsize += self.plt_got.output_symtab_ctx.strsize;
}
for (files.items) |index| {
const file_ptr = self.file(index).?;
const ctx = switch (file_ptr) {
inline else => |x| &x.output_symtab_ctx,
};
ctx.iglobal += nlocals;
}
const symtab_shdr = &self.shdrs.items[self.symtab_section_index.?];
symtab_shdr.sh_info = nlocals + 1;
symtab_shdr.sh_link = self.strtab_section_index.?;
const sym_size: u64 = switch (self.ptr_width) {
.p32 => @sizeOf(elf.Elf32_Sym),
.p64 => @sizeOf(elf.Elf64_Sym),
};
const needed_size = (nlocals + nglobals + 1) * sym_size;
symtab_shdr.sh_size = needed_size;
const strtab = &self.shdrs.items[self.strtab_section_index.?];
strtab.sh_size = strsize + 1;
}
fn writeSyntheticSections(self: *Elf) !void {
const target = self.base.comp.root_mod.resolved_target.result;
const gpa = self.base.comp.gpa;
if (self.interp_section_index) |shndx| {
var buffer: [256]u8 = undefined;
const interp = target.dynamic_linker.get().?;
@memcpy(buffer[0..interp.len], interp);
buffer[interp.len] = 0;
const contents = buffer[0 .. interp.len + 1];
const shdr = self.shdrs.items[shndx];
assert(shdr.sh_size == contents.len);
try self.base.file.?.pwriteAll(contents, shdr.sh_offset);
}
if (self.hash_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
try self.base.file.?.pwriteAll(self.hash.buffer.items, shdr.sh_offset);
}
if (self.gnu_hash_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
var buffer = try std.ArrayList(u8).initCapacity(gpa, self.gnu_hash.size());
defer buffer.deinit();
try self.gnu_hash.write(self, buffer.writer());
try self.base.file.?.pwriteAll(buffer.items, shdr.sh_offset);
}
if (self.versym_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
try self.base.file.?.pwriteAll(mem.sliceAsBytes(self.versym.items), shdr.sh_offset);
}
if (self.verneed_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
var buffer = try std.ArrayList(u8).initCapacity(gpa, self.verneed.size());
defer buffer.deinit();
try self.verneed.write(buffer.writer());
try self.base.file.?.pwriteAll(buffer.items, shdr.sh_offset);
}
if (self.dynamic_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
var buffer = try std.ArrayList(u8).initCapacity(gpa, self.dynamic.size(self));
defer buffer.deinit();
try self.dynamic.write(self, buffer.writer());
try self.base.file.?.pwriteAll(buffer.items, shdr.sh_offset);
}
if (self.dynsymtab_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
var buffer = try std.ArrayList(u8).initCapacity(gpa, self.dynsym.size());
defer buffer.deinit();
try self.dynsym.write(self, buffer.writer());
try self.base.file.?.pwriteAll(buffer.items, shdr.sh_offset);
}
if (self.dynstrtab_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
try self.base.file.?.pwriteAll(self.dynstrtab.items, shdr.sh_offset);
}
if (self.eh_frame_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
const sh_size = math.cast(usize, shdr.sh_size) orelse return error.Overflow;
var buffer = try std.ArrayList(u8).initCapacity(gpa, sh_size);
defer buffer.deinit();
try eh_frame.writeEhFrame(self, buffer.writer());
try self.base.file.?.pwriteAll(buffer.items, shdr.sh_offset);
}
if (self.eh_frame_hdr_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
const sh_size = math.cast(usize, shdr.sh_size) orelse return error.Overflow;
var buffer = try std.ArrayList(u8).initCapacity(gpa, sh_size);
defer buffer.deinit();
try eh_frame.writeEhFrameHdr(self, buffer.writer());
try self.base.file.?.pwriteAll(buffer.items, shdr.sh_offset);
}
if (self.got_section_index) |index| {
const shdr = self.shdrs.items[index];
var buffer = try std.ArrayList(u8).initCapacity(gpa, self.got.size(self));
defer buffer.deinit();
try self.got.write(self, buffer.writer());
try self.base.file.?.pwriteAll(buffer.items, shdr.sh_offset);
}
if (self.rela_dyn_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
try self.got.addRela(self);
try self.copy_rel.addRela(self);
try self.zig_got.addRela(self);
self.sortRelaDyn();
try self.base.file.?.pwriteAll(mem.sliceAsBytes(self.rela_dyn.items), shdr.sh_offset);
}
if (self.plt_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
var buffer = try std.ArrayList(u8).initCapacity(gpa, self.plt.size(self));
defer buffer.deinit();
try self.plt.write(self, buffer.writer());
try self.base.file.?.pwriteAll(buffer.items, shdr.sh_offset);
}
if (self.got_plt_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
var buffer = try std.ArrayList(u8).initCapacity(gpa, self.got_plt.size(self));
defer buffer.deinit();
try self.got_plt.write(self, buffer.writer());
try self.base.file.?.pwriteAll(buffer.items, shdr.sh_offset);
}
if (self.plt_got_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
var buffer = try std.ArrayList(u8).initCapacity(gpa, self.plt_got.size(self));
defer buffer.deinit();
try self.plt_got.write(self, buffer.writer());
try self.base.file.?.pwriteAll(buffer.items, shdr.sh_offset);
}
if (self.rela_plt_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
try self.plt.addRela(self);
try self.base.file.?.pwriteAll(mem.sliceAsBytes(self.rela_plt.items), shdr.sh_offset);
}
try self.writeSymtab();
try self.writeShStrtab();
}
pub fn writeShStrtab(self: *Elf) !void {
if (self.shstrtab_section_index) |index| {
const shdr = self.shdrs.items[index];
log.debug("writing .shstrtab from 0x{x} to 0x{x}", .{ shdr.sh_offset, shdr.sh_offset + shdr.sh_size });
try self.base.file.?.pwriteAll(self.shstrtab.items, shdr.sh_offset);
}
}
pub fn writeSymtab(self: *Elf) !void {
const target = self.base.comp.root_mod.resolved_target.result;
const gpa = self.base.comp.gpa;
const symtab_shdr = self.shdrs.items[self.symtab_section_index.?];
const strtab_shdr = self.shdrs.items[self.strtab_section_index.?];
const sym_size: u64 = switch (self.ptr_width) {
.p32 => @sizeOf(elf.Elf32_Sym),
.p64 => @sizeOf(elf.Elf64_Sym),
};
const nsyms = math.cast(usize, @divExact(symtab_shdr.sh_size, sym_size)) orelse return error.Overflow;
log.debug("writing {d} symbols in .symtab from 0x{x} to 0x{x}", .{
nsyms,
symtab_shdr.sh_offset,
symtab_shdr.sh_offset + symtab_shdr.sh_size,
});
log.debug("writing .strtab from 0x{x} to 0x{x}", .{
strtab_shdr.sh_offset,
strtab_shdr.sh_offset + strtab_shdr.sh_size,
});
try self.symtab.resize(gpa, nsyms);
const needed_strtab_size = math.cast(usize, strtab_shdr.sh_size - 1) orelse return error.Overflow;
try self.strtab.ensureUnusedCapacity(gpa, needed_strtab_size);
self.writeSectionSymbols();
if (self.requiresThunks()) for (self.thunks.items) |th| {
th.writeSymtab(self);
};
if (self.zigObjectPtr()) |zig_object| {
zig_object.asFile().writeSymtab(self);
}
for (self.objects.items) |index| {
const file_ptr = self.file(index).?;
file_ptr.writeSymtab(self);
}
for (self.shared_objects.items) |index| {
const file_ptr = self.file(index).?;
file_ptr.writeSymtab(self);
}
if (self.linker_defined_index) |index| {
const file_ptr = self.file(index).?;
file_ptr.writeSymtab(self);
}
if (self.zig_got_section_index) |_| {
self.zig_got.writeSymtab(self);
}
if (self.got_section_index) |_| {
self.got.writeSymtab(self);
}
if (self.plt_section_index) |_| {
self.plt.writeSymtab(self);
}
if (self.plt_got_section_index) |_| {
self.plt_got.writeSymtab(self);
}
const foreign_endian = target.cpu.arch.endian() != builtin.cpu.arch.endian();
switch (self.ptr_width) {
.p32 => {
const buf = try gpa.alloc(elf.Elf32_Sym, self.symtab.items.len);
defer gpa.free(buf);
for (buf, self.symtab.items) |*out, sym| {
out.* = .{
.st_name = sym.st_name,
.st_info = sym.st_info,
.st_other = sym.st_other,
.st_shndx = sym.st_shndx,
.st_value = @as(u32, @intCast(sym.st_value)),
.st_size = @as(u32, @intCast(sym.st_size)),
};
if (foreign_endian) mem.byteSwapAllFields(elf.Elf32_Sym, out);
}
try self.base.file.?.pwriteAll(mem.sliceAsBytes(buf), symtab_shdr.sh_offset);
},
.p64 => {
if (foreign_endian) {
for (self.symtab.items) |*sym| mem.byteSwapAllFields(elf.Elf64_Sym, sym);
}
try self.base.file.?.pwriteAll(mem.sliceAsBytes(self.symtab.items), symtab_shdr.sh_offset);
},
}
try self.base.file.?.pwriteAll(self.strtab.items, strtab_shdr.sh_offset);
}
fn writeSectionSymbols(self: *Elf) void {
var ilocal: u32 = 1;
for (self.output_sections.keys()) |shndx| {
const shdr = self.shdrs.items[shndx];
const out_sym = &self.symtab.items[ilocal];
out_sym.* = .{
.st_name = 0,
.st_value = shdr.sh_addr,
.st_info = elf.STT_SECTION,
.st_shndx = @intCast(shndx),
.st_size = 0,
.st_other = 0,
};
ilocal += 1;
}
if (self.eh_frame_section_index) |shndx| {
const shdr = self.shdrs.items[shndx];
const out_sym = &self.symtab.items[ilocal];
out_sym.* = .{
.st_name = 0,
.st_value = shdr.sh_addr,
.st_info = elf.STT_SECTION,
.st_shndx = @intCast(shndx),
.st_size = 0,
.st_other = 0,
};
ilocal += 1;
}
for (self.merge_sections.items) |msec| {
const shdr = self.shdrs.items[msec.output_section_index];
const out_sym = &self.symtab.items[ilocal];
out_sym.* = .{
.st_name = 0,
.st_value = shdr.sh_addr,
.st_info = elf.STT_SECTION,
.st_shndx = @intCast(msec.output_section_index),
.st_size = 0,
.st_other = 0,
};
ilocal += 1;
}
}
pub fn sectionSymbolOutputSymtabIndex(self: Elf, shndx: u32) u32 {
if (self.eh_frame_section_index) |index| {
if (index == shndx) return @intCast(self.output_sections.keys().len + 1);
}
const base: usize = if (self.eh_frame_section_index == null) 0 else 1;
for (self.merge_sections.items, 0..) |msec, index| {
if (msec.output_section_index == shndx) return @intCast(self.output_sections.keys().len + 1 + index + base);
}
return @intCast(self.output_sections.getIndex(shndx).? + 1);
}
/// Always 4 or 8 depending on whether this is 32-bit ELF or 64-bit ELF.
pub fn ptrWidthBytes(self: Elf) u8 {
return switch (self.ptr_width) {
.p32 => 4,
.p64 => 8,
};
}
/// Does not necessarily match `ptrWidthBytes` for example can be 2 bytes
/// in a 32-bit ELF file.
pub fn archPtrWidthBytes(self: Elf) u8 {
const target = self.base.comp.root_mod.resolved_target.result;
return @intCast(@divExact(target.ptrBitWidth(), 8));
}
fn phdrTo32(phdr: elf.Elf64_Phdr) elf.Elf32_Phdr {
return .{
.p_type = phdr.p_type,
.p_flags = phdr.p_flags,
.p_offset = @as(u32, @intCast(phdr.p_offset)),
.p_vaddr = @as(u32, @intCast(phdr.p_vaddr)),
.p_paddr = @as(u32, @intCast(phdr.p_paddr)),
.p_filesz = @as(u32, @intCast(phdr.p_filesz)),
.p_memsz = @as(u32, @intCast(phdr.p_memsz)),
.p_align = @as(u32, @intCast(phdr.p_align)),
};
}
fn shdrTo32(shdr: elf.Elf64_Shdr) elf.Elf32_Shdr {
return .{
.sh_name = shdr.sh_name,
.sh_type = shdr.sh_type,
.sh_flags = @as(u32, @intCast(shdr.sh_flags)),
.sh_addr = @as(u32, @intCast(shdr.sh_addr)),
.sh_offset = @as(u32, @intCast(shdr.sh_offset)),
.sh_size = @as(u32, @intCast(shdr.sh_size)),
.sh_link = shdr.sh_link,
.sh_info = shdr.sh_info,
.sh_addralign = @as(u32, @intCast(shdr.sh_addralign)),
.sh_entsize = @as(u32, @intCast(shdr.sh_entsize)),
};
}
fn getLDMOption(target: std.Target) ?[]const u8 {
switch (target.cpu.arch) {
.x86 => return "elf_i386",
.aarch64 => return "aarch64linux",
.aarch64_be => return "aarch64linuxb",
.arm, .thumb => return "armelf_linux_eabi",
.armeb, .thumbeb => return "armelfb_linux_eabi",
.powerpc => return "elf32ppclinux",
.powerpc64 => return "elf64ppc",
.powerpc64le => return "elf64lppc",
.sparc, .sparcel => return "elf32_sparc",
.sparc64 => return "elf64_sparc",
.mips => return "elf32btsmip",
.mipsel => return "elf32ltsmip",
.mips64 => {
if (target.abi == .gnuabin32) {
return "elf32btsmipn32";
} else {
return "elf64btsmip";
}
},
.mips64el => {
if (target.abi == .gnuabin32) {
return "elf32ltsmipn32";
} else {
return "elf64ltsmip";
}
},
.s390x => return "elf64_s390",
.x86_64 => {
if (target.abi == .gnux32) {
return "elf32_x86_64";
} else {
return "elf_x86_64";
}
},
.riscv32 => return "elf32lriscv",
.riscv64 => return "elf64lriscv",
else => return null,
}
}
pub fn padToIdeal(actual_size: anytype) @TypeOf(actual_size) {
return actual_size +| (actual_size / ideal_factor);
}
// Provide a blueprint of csu (c-runtime startup) objects for supported
// link modes.
//
// This is for cross-mode targets only. For host-mode targets the system
// compiler can be probed to produce a robust blueprint.
//
// Targets requiring a libc for which zig does not bundle a libc are
// host-mode targets. Unfortunately, host-mode probes are not yet
// implemented. For now the data is hard-coded here. Such targets are
// { freebsd, netbsd, openbsd, dragonfly }.
const CsuObjects = struct {
crt0: ?[]const u8 = null,
crti: ?[]const u8 = null,
crtbegin: ?[]const u8 = null,
crtend: ?[]const u8 = null,
crtn: ?[]const u8 = null,
const InitArgs = struct {};
fn init(arena: Allocator, comp: *const Compilation) !CsuObjects {
// crt objects are only required for libc.
if (!comp.config.link_libc) return .{};
var result: CsuObjects = .{};
// Flatten crt cases.
const mode: enum {
dynamic_lib,
dynamic_exe,
dynamic_pie,
static_exe,
static_pie,
} = switch (comp.config.output_mode) {
.Obj => return CsuObjects{},
.Lib => switch (comp.config.link_mode) {
.dynamic => .dynamic_lib,
.static => return CsuObjects{},
},
.Exe => switch (comp.config.link_mode) {
.dynamic => if (comp.config.pie) .dynamic_pie else .dynamic_exe,
.static => if (comp.config.pie) .static_pie else .static_exe,
},
};
const target = comp.root_mod.resolved_target.result;
if (target.isAndroid()) {
switch (mode) {
// zig fmt: off
.dynamic_lib => result.set( null, null, "crtbegin_so.o", "crtend_so.o", null ),
.dynamic_exe,
.dynamic_pie => result.set( null, null, "crtbegin_dynamic.o", "crtend_android.o", null ),
.static_exe,
.static_pie => result.set( null, null, "crtbegin_static.o", "crtend_android.o", null ),
// zig fmt: on
}
} else {
switch (target.os.tag) {
.linux => {
switch (mode) {
// zig fmt: off
.dynamic_lib => result.set( null, "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ),
.dynamic_exe => result.set( "crt1.o", "crti.o", "crtbegin.o", "crtend.o", "crtn.o" ),
.dynamic_pie => result.set( "Scrt1.o", "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ),
.static_exe => result.set( "crt1.o", "crti.o", "crtbeginT.o", "crtend.o", "crtn.o" ),
.static_pie => result.set( "rcrt1.o", "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ),
// zig fmt: on
}
if (comp.libc_installation) |_| {
// hosted-glibc provides crtbegin/end objects in platform/compiler-specific dirs
// and they are not known at comptime. For now null-out crtbegin/end objects;
// there is no feature loss, zig has never linked those objects in before.
result.crtbegin = null;
result.crtend = null;
} else {
// Bundled glibc only has Scrt1.o .
if (result.crt0 != null and target.isGnuLibC()) result.crt0 = "Scrt1.o";
}
},
.dragonfly => switch (mode) {
// zig fmt: off
.dynamic_lib => result.set( null, "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ),
.dynamic_exe => result.set( "crt1.o", "crti.o", "crtbegin.o", "crtend.o", "crtn.o" ),
.dynamic_pie => result.set( "Scrt1.o", "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ),
.static_exe => result.set( "crt1.o", "crti.o", "crtbegin.o", "crtend.o", "crtn.o" ),
.static_pie => result.set( "Scrt1.o", "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ),
// zig fmt: on
},
.freebsd => switch (mode) {
// zig fmt: off
.dynamic_lib => result.set( null, "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ),
.dynamic_exe => result.set( "crt1.o", "crti.o", "crtbegin.o", "crtend.o", "crtn.o" ),
.dynamic_pie => result.set( "Scrt1.o", "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ),
.static_exe => result.set( "crt1.o", "crti.o", "crtbeginT.o", "crtend.o", "crtn.o" ),
.static_pie => result.set( "Scrt1.o", "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ),
// zig fmt: on
},
.netbsd => switch (mode) {
// zig fmt: off
.dynamic_lib => result.set( null, "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ),
.dynamic_exe => result.set( "crt0.o", "crti.o", "crtbegin.o", "crtend.o", "crtn.o" ),
.dynamic_pie => result.set( "crt0.o", "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ),
.static_exe => result.set( "crt0.o", "crti.o", "crtbeginT.o", "crtend.o", "crtn.o" ),
.static_pie => result.set( "crt0.o", "crti.o", "crtbeginT.o", "crtendS.o", "crtn.o" ),
// zig fmt: on
},
.openbsd => switch (mode) {
// zig fmt: off
.dynamic_lib => result.set( null, null, "crtbeginS.o", "crtendS.o", null ),
.dynamic_exe,
.dynamic_pie => result.set( "crt0.o", null, "crtbegin.o", "crtend.o", null ),
.static_exe,
.static_pie => result.set( "rcrt0.o", null, "crtbegin.o", "crtend.o", null ),
// zig fmt: on
},
.haiku => switch (mode) {
// zig fmt: off
.dynamic_lib => result.set( null, "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ),
.dynamic_exe => result.set( "start_dyn.o", "crti.o", "crtbegin.o", "crtend.o", "crtn.o" ),
.dynamic_pie => result.set( "start_dyn.o", "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ),
.static_exe => result.set( "start_dyn.o", "crti.o", "crtbegin.o", "crtend.o", "crtn.o" ),
.static_pie => result.set( "start_dyn.o", "crti.o", "crtbeginS.o", "crtendS.o", "crtn.o" ),
// zig fmt: on
},
.solaris, .illumos => switch (mode) {
// zig fmt: off
.dynamic_lib => result.set( null, "crti.o", null, null, "crtn.o" ),
.dynamic_exe,
.dynamic_pie => result.set( "crt1.o", "crti.o", null, null, "crtn.o" ),
.static_exe,
.static_pie => result.set( null, null, null, null, null ),
// zig fmt: on
},
else => {},
}
}
// Convert each object to a full pathname.
if (comp.libc_installation) |lci| {
const crt_dir_path = lci.crt_dir orelse return error.LibCInstallationMissingCRTDir;
switch (target.os.tag) {
.dragonfly => {
if (result.crt0) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ crt_dir_path, obj.* });
if (result.crti) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ crt_dir_path, obj.* });
if (result.crtn) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ crt_dir_path, obj.* });
var gccv: []const u8 = undefined;
if (target.os.version_range.semver.isAtLeast(.{ .major = 5, .minor = 4, .patch = 0 }) orelse true) {
gccv = "gcc80";
} else {
gccv = "gcc54";
}
if (result.crtbegin) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ crt_dir_path, gccv, obj.* });
if (result.crtend) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ crt_dir_path, gccv, obj.* });
},
.haiku => {
const gcc_dir_path = lci.gcc_dir orelse return error.LibCInstallationMissingCRTDir;
if (result.crt0) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ crt_dir_path, obj.* });
if (result.crti) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ crt_dir_path, obj.* });
if (result.crtn) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ crt_dir_path, obj.* });
if (result.crtbegin) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ gcc_dir_path, obj.* });
if (result.crtend) |*obj| obj.* = try fs.path.join(arena, &[_][]const u8{ gcc_dir_path, obj.* });
},
else => {
inline for (std.meta.fields(@TypeOf(result))) |f| {
if (@field(result, f.name)) |*obj| {
obj.* = try fs.path.join(arena, &[_][]const u8{ crt_dir_path, obj.* });
}
}
},
}
} else {
inline for (std.meta.fields(@TypeOf(result))) |f| {
if (@field(result, f.name)) |*obj| {
if (comp.crt_files.get(obj.*)) |crtf| {
obj.* = crtf.full_object_path;
} else {
@field(result, f.name) = null;
}
}
}
}
return result;
}
fn set(
self: *CsuObjects,
crt0: ?[]const u8,
crti: ?[]const u8,
crtbegin: ?[]const u8,
crtend: ?[]const u8,
crtn: ?[]const u8,
) void {
self.crt0 = crt0;
self.crti = crti;
self.crtbegin = crtbegin;
self.crtend = crtend;
self.crtn = crtn;
}
};
/// If a target compiles other output modes as dynamic libraries,
/// this function returns true for those too.
pub fn isEffectivelyDynLib(self: Elf) bool {
if (self.base.isDynLib()) return true;
return switch (self.getTarget().os.tag) {
.haiku => self.base.isExe(),
else => false,
};
}
pub fn isZigSection(self: Elf, shndx: u32) bool {
inline for (&[_]?u32{
self.zig_text_section_index,
self.zig_data_rel_ro_section_index,
self.zig_data_section_index,
self.zig_bss_section_index,
self.zig_got_section_index,
}) |maybe_index| {
if (maybe_index) |index| {
if (index == shndx) return true;
}
}
return false;
}
pub fn isDebugSection(self: Elf, shndx: u32) bool {
inline for (&[_]?u32{
self.debug_info_section_index,
self.debug_abbrev_section_index,
self.debug_str_section_index,
self.debug_aranges_section_index,
self.debug_line_section_index,
}) |maybe_index| {
if (maybe_index) |index| {
if (index == shndx) return true;
}
}
return false;
}
fn addPhdr(self: *Elf, opts: struct {
type: u32 = 0,
flags: u32 = 0,
@"align": u64 = 0,
offset: u64 = 0,
addr: u64 = 0,
filesz: u64 = 0,
memsz: u64 = 0,
}) error{OutOfMemory}!u16 {
const gpa = self.base.comp.gpa;
const index = @as(u16, @intCast(self.phdrs.items.len));
try self.phdrs.append(gpa, .{
.p_type = opts.type,
.p_flags = opts.flags,
.p_offset = opts.offset,
.p_vaddr = opts.addr,
.p_paddr = opts.addr,
.p_filesz = opts.filesz,
.p_memsz = opts.memsz,
.p_align = opts.@"align",
});
return index;
}
pub fn addRelaShdr(self: *Elf, name: [:0]const u8, shndx: u32) !u32 {
const entsize: u64 = switch (self.ptr_width) {
.p32 => @sizeOf(elf.Elf32_Rela),
.p64 => @sizeOf(elf.Elf64_Rela),
};
const addralign: u64 = switch (self.ptr_width) {
.p32 => @alignOf(elf.Elf32_Rela),
.p64 => @alignOf(elf.Elf64_Rela),
};
return self.addSection(.{
.name = name,
.type = elf.SHT_RELA,
.flags = elf.SHF_INFO_LINK,
.entsize = entsize,
.info = shndx,
.addralign = addralign,
.offset = std.math.maxInt(u64),
});
}
pub const AddSectionOpts = struct {
name: [:0]const u8,
type: u32 = elf.SHT_NULL,
flags: u64 = 0,
link: u32 = 0,
info: u32 = 0,
addralign: u64 = 0,
entsize: u64 = 0,
offset: u64 = 0,
};
pub fn addSection(self: *Elf, opts: AddSectionOpts) !u32 {
const gpa = self.base.comp.gpa;
const index = @as(u32, @intCast(self.shdrs.items.len));
const shdr = try self.shdrs.addOne(gpa);
shdr.* = .{
.sh_name = try self.insertShString(opts.name),
.sh_type = opts.type,
.sh_flags = opts.flags,
.sh_addr = 0,
.sh_offset = opts.offset,
.sh_size = 0,
.sh_link = opts.link,
.sh_info = opts.info,
.sh_addralign = opts.addralign,
.sh_entsize = opts.entsize,
};
return index;
}
pub fn sectionByName(self: *Elf, name: [:0]const u8) ?u32 {
for (self.shdrs.items, 0..) |*shdr, i| {
const this_name = self.getShString(shdr.sh_name);
if (mem.eql(u8, this_name, name)) return @intCast(i);
} else return null;
}
const RelaDyn = struct {
offset: u64,
sym: u64 = 0,
type: u32,
addend: i64 = 0,
};
pub fn addRelaDyn(self: *Elf, opts: RelaDyn) !void {
try self.rela_dyn.ensureUnusedCapacity(self.base.alloctor, 1);
self.addRelaDynAssumeCapacity(opts);
}
pub fn addRelaDynAssumeCapacity(self: *Elf, opts: RelaDyn) void {
self.rela_dyn.appendAssumeCapacity(.{
.r_offset = opts.offset,
.r_info = (opts.sym << 32) | opts.type,
.r_addend = opts.addend,
});
}
fn sortRelaDyn(self: *Elf) void {
const Sort = struct {
fn rank(rel: elf.Elf64_Rela, ctx: *Elf) u2 {
const cpu_arch = ctx.getTarget().cpu.arch;
const r_type = rel.r_type();
const r_kind = relocation.decode(r_type, cpu_arch).?;
return switch (r_kind) {
.rel => 0,
.irel => 2,
else => 1,
};
}
pub fn lessThan(ctx: *Elf, lhs: elf.Elf64_Rela, rhs: elf.Elf64_Rela) bool {
if (rank(lhs, ctx) == rank(rhs, ctx)) {
if (lhs.r_sym() == rhs.r_sym()) return lhs.r_offset < rhs.r_offset;
return lhs.r_sym() < rhs.r_sym();
}
return rank(lhs, ctx) < rank(rhs, ctx);
}
};
mem.sort(elf.Elf64_Rela, self.rela_dyn.items, self, Sort.lessThan);
}
fn calcNumIRelativeRelocs(self: *Elf) usize {
var count: usize = self.num_ifunc_dynrelocs;
for (self.got.entries.items) |entry| {
if (entry.tag != .got) continue;
const sym = self.symbol(entry.symbol_index);
if (sym.isIFunc(self)) count += 1;
}
return count;
}
pub fn isCIdentifier(name: []const u8) bool {
if (name.len == 0) return false;
const first_c = name[0];
if (!std.ascii.isAlphabetic(first_c) and first_c != '_') return false;
for (name[1..]) |c| {
if (!std.ascii.isAlphanumeric(c) and c != '_') return false;
}
return true;
}
fn getStartStopBasename(self: *Elf, shdr: elf.Elf64_Shdr) ?[]const u8 {
const name = self.getShString(shdr.sh_name);
if (shdr.sh_flags & elf.SHF_ALLOC != 0 and name.len > 0) {
if (isCIdentifier(name)) return name;
}
return null;
}
pub fn atom(self: *Elf, atom_index: Atom.Index) ?*Atom {
if (atom_index == 0) return null;
assert(atom_index < self.atoms.items.len);
return &self.atoms.items[atom_index];
}
pub fn addAtom(self: *Elf) !Atom.Index {
const gpa = self.base.comp.gpa;
const index = @as(Atom.Index, @intCast(self.atoms.items.len));
const atom_ptr = try self.atoms.addOne(gpa);
atom_ptr.* = .{ .atom_index = index };
return index;
}
pub fn addAtomExtra(self: *Elf, extra: Atom.Extra) !u32 {
const fields = @typeInfo(Atom.Extra).Struct.fields;
try self.atoms_extra.ensureUnusedCapacity(self.base.comp.gpa, fields.len);
return self.addAtomExtraAssumeCapacity(extra);
}
pub fn addAtomExtraAssumeCapacity(self: *Elf, extra: Atom.Extra) u32 {
const index = @as(u32, @intCast(self.atoms_extra.items.len));
const fields = @typeInfo(Atom.Extra).Struct.fields;
inline for (fields) |field| {
self.atoms_extra.appendAssumeCapacity(switch (field.type) {
u32 => @field(extra, field.name),
else => @compileError("bad field type"),
});
}
return index;
}
pub fn atomExtra(self: *Elf, index: u32) ?Atom.Extra {
if (index == 0) return null;
const fields = @typeInfo(Atom.Extra).Struct.fields;
var i: usize = index;
var result: Atom.Extra = undefined;
inline for (fields) |field| {
@field(result, field.name) = switch (field.type) {
u32 => self.atoms_extra.items[i],
else => @compileError("bad field type"),
};
i += 1;
}
return result;
}
pub fn setAtomExtra(self: *Elf, index: u32, extra: Atom.Extra) void {
assert(index > 0);
const fields = @typeInfo(Atom.Extra).Struct.fields;
inline for (fields, 0..) |field, i| {
self.atoms_extra.items[index + i] = switch (field.type) {
u32 => @field(extra, field.name),
else => @compileError("bad field type"),
};
}
}
pub fn addThunk(self: *Elf) !Thunk.Index {
const index = @as(Thunk.Index, @intCast(self.thunks.items.len));
const th = try self.thunks.addOne(self.base.comp.gpa);
th.* = .{};
return index;
}
pub fn thunk(self: *Elf, index: Thunk.Index) *Thunk {
assert(index < self.thunks.items.len);
return &self.thunks.items[index];
}
pub fn file(self: *Elf, index: File.Index) ?File {
const tag = self.files.items(.tags)[index];
return switch (tag) {
.null => null,
.linker_defined => .{ .linker_defined = &self.files.items(.data)[index].linker_defined },
.zig_object => .{ .zig_object = &self.files.items(.data)[index].zig_object },
.object => .{ .object = &self.files.items(.data)[index].object },
.shared_object => .{ .shared_object = &self.files.items(.data)[index].shared_object },
};
}
pub fn addFileHandle(self: *Elf, handle: fs.File) !File.HandleIndex {
const gpa = self.base.comp.gpa;
const index: File.HandleIndex = @intCast(self.file_handles.items.len);
const fh = try self.file_handles.addOne(gpa);
fh.* = handle;
return index;
}
pub fn fileHandle(self: Elf, index: File.HandleIndex) File.Handle {
assert(index < self.file_handles.items.len);
return self.file_handles.items[index];
}
/// Returns pointer-to-symbol described at sym_index.
pub fn symbol(self: *Elf, sym_index: Symbol.Index) *Symbol {
return &self.symbols.items[sym_index];
}
pub fn addSymbol(self: *Elf) !Symbol.Index {
const gpa = self.base.comp.gpa;
try self.symbols.ensureUnusedCapacity(gpa, 1);
const index = blk: {
if (self.symbols_free_list.popOrNull()) |index| {
log.debug(" (reusing symbol index {d})", .{index});
break :blk index;
} else {
log.debug(" (allocating symbol index {d})", .{self.symbols.items.len});
const index: Symbol.Index = @intCast(self.symbols.items.len);
_ = self.symbols.addOneAssumeCapacity();
break :blk index;
}
};
self.symbols.items[index] = .{};
return index;
}
pub fn addSymbolExtra(self: *Elf, extra: Symbol.Extra) !u32 {
const gpa = self.base.comp.gpa;
const fields = @typeInfo(Symbol.Extra).Struct.fields;
try self.symbols_extra.ensureUnusedCapacity(gpa, fields.len);
return self.addSymbolExtraAssumeCapacity(extra);
}
pub fn addSymbolExtraAssumeCapacity(self: *Elf, extra: Symbol.Extra) u32 {
const index = @as(u32, @intCast(self.symbols_extra.items.len));
const fields = @typeInfo(Symbol.Extra).Struct.fields;
inline for (fields) |field| {
self.symbols_extra.appendAssumeCapacity(switch (field.type) {
u32 => @field(extra, field.name),
else => @compileError("bad field type"),
});
}
return index;
}
pub fn symbolExtra(self: *Elf, index: u32) ?Symbol.Extra {
if (index == 0) return null;
const fields = @typeInfo(Symbol.Extra).Struct.fields;
var i: usize = index;
var result: Symbol.Extra = undefined;
inline for (fields) |field| {
@field(result, field.name) = switch (field.type) {
u32 => self.symbols_extra.items[i],
else => @compileError("bad field type"),
};
i += 1;
}
return result;
}
pub fn setSymbolExtra(self: *Elf, index: u32, extra: Symbol.Extra) void {
assert(index > 0);
const fields = @typeInfo(Symbol.Extra).Struct.fields;
inline for (fields, 0..) |field, i| {
self.symbols_extra.items[index + i] = switch (field.type) {
u32 => @field(extra, field.name),
else => @compileError("bad field type"),
};
}
}
const GetOrPutGlobalResult = struct {
found_existing: bool,
index: Symbol.Index,
};
pub fn getOrPutGlobal(self: *Elf, name: []const u8) !GetOrPutGlobalResult {
const gpa = self.base.comp.gpa;
const name_off = try self.strings.insert(gpa, name);
const gop = try self.resolver.getOrPut(gpa, name_off);
if (!gop.found_existing) {
const index = try self.addSymbol();
log.debug("added symbol '{s}' at index {d}", .{ name, index });
const global = self.symbol(index);
global.name_offset = name_off;
global.flags.global = true;
gop.value_ptr.* = index;
}
return .{
.found_existing = gop.found_existing,
.index = gop.value_ptr.*,
};
}
pub fn globalByName(self: *Elf, name: []const u8) ?Symbol.Index {
const name_off = self.strings.getOffset(name) orelse return null;
return self.resolver.get(name_off);
}
pub fn getGlobalSymbol(self: *Elf, name: []const u8, lib_name: ?[]const u8) !u32 {
return self.zigObjectPtr().?.getGlobalSymbol(self, name, lib_name);
}
pub fn zigObjectPtr(self: *Elf) ?*ZigObject {
const index = self.zig_object_index orelse return null;
return self.file(index).?.zig_object;
}
const GetOrCreateComdatGroupOwnerResult = struct {
found_existing: bool,
index: ComdatGroupOwner.Index,
};
pub fn getOrCreateComdatGroupOwner(self: *Elf, name: [:0]const u8) !GetOrCreateComdatGroupOwnerResult {
const gpa = self.base.comp.gpa;
const off = try self.strings.insert(gpa, name);
const gop = try self.comdat_groups_table.getOrPut(gpa, off);
if (!gop.found_existing) {
const index: ComdatGroupOwner.Index = @intCast(self.comdat_groups_owners.items.len);
const owner = try self.comdat_groups_owners.addOne(gpa);
owner.* = .{};
gop.value_ptr.* = index;
}
return .{
.found_existing = gop.found_existing,
.index = gop.value_ptr.*,
};
}
pub fn addComdatGroup(self: *Elf) !ComdatGroup.Index {
const gpa = self.base.comp.gpa;
const index = @as(ComdatGroup.Index, @intCast(self.comdat_groups.items.len));
_ = try self.comdat_groups.addOne(gpa);
return index;
}
pub fn comdatGroup(self: *Elf, index: ComdatGroup.Index) *ComdatGroup {
assert(index < self.comdat_groups.items.len);
return &self.comdat_groups.items[index];
}
pub fn comdatGroupOwner(self: *Elf, index: ComdatGroupOwner.Index) *ComdatGroupOwner {
assert(index < self.comdat_groups_owners.items.len);
return &self.comdat_groups_owners.items[index];
}
pub fn addInputMergeSection(self: *Elf) !InputMergeSection.Index {
const index: InputMergeSection.Index = @intCast(self.merge_input_sections.items.len);
const msec = try self.merge_input_sections.addOne(self.base.comp.gpa);
msec.* = .{};
return index;
}
pub fn inputMergeSection(self: *Elf, index: InputMergeSection.Index) ?*InputMergeSection {
if (index == 0) return null;
return &self.merge_input_sections.items[index];
}
pub fn addMergeSubsection(self: *Elf) !MergeSubsection.Index {
const index: MergeSubsection.Index = @intCast(self.merge_subsections.items.len);
const msec = try self.merge_subsections.addOne(self.base.comp.gpa);
msec.* = .{};
return index;
}
pub fn mergeSubsection(self: *Elf, index: MergeSubsection.Index) *MergeSubsection {
assert(index < self.merge_subsections.items.len);
return &self.merge_subsections.items[index];
}
pub fn getOrCreateMergeSection(self: *Elf, name: []const u8, flags: u64, @"type": u32) !MergeSection.Index {
const gpa = self.base.comp.gpa;
const out_name = name: {
if (self.base.isRelocatable()) break :name name;
if (mem.eql(u8, name, ".rodata") or mem.startsWith(u8, name, ".rodata"))
break :name if (flags & elf.SHF_STRINGS != 0) ".rodata.str" else ".rodata.cst";
break :name name;
};
const out_off = try self.strings.insert(gpa, out_name);
const out_flags = flags & ~@as(u64, elf.SHF_COMPRESSED | elf.SHF_GROUP);
for (self.merge_sections.items, 0..) |msec, index| {
if (msec.name_offset == out_off) return @intCast(index);
}
const index = @as(MergeSection.Index, @intCast(self.merge_sections.items.len));
const msec = try self.merge_sections.addOne(gpa);
msec.* = .{
.name_offset = out_off,
.flags = out_flags,
.type = @"type",
};
return index;
}
pub fn mergeSection(self: *Elf, index: MergeSection.Index) *MergeSection {
assert(index < self.merge_sections.items.len);
return &self.merge_sections.items[index];
}
pub fn gotAddress(self: *Elf) i64 {
const shndx = blk: {
if (self.getTarget().cpu.arch == .x86_64 and self.got_plt_section_index != null)
break :blk self.got_plt_section_index.?;
break :blk if (self.got_section_index) |shndx| shndx else null;
};
return if (shndx) |index| @intCast(self.shdrs.items[index].sh_addr) else 0;
}
pub fn tpAddress(self: *Elf) i64 {
const index = self.phdr_tls_index orelse return 0;
const phdr = self.phdrs.items[index];
const addr = switch (self.getTarget().cpu.arch) {
.x86_64 => mem.alignForward(u64, phdr.p_vaddr + phdr.p_memsz, phdr.p_align),
.aarch64 => mem.alignBackward(u64, phdr.p_vaddr - 16, phdr.p_align),
.riscv64 => phdr.p_vaddr,
else => |arch| std.debug.panic("TODO implement getTpAddress for {s}", .{@tagName(arch)}),
};
return @intCast(addr);
}
pub fn dtpAddress(self: *Elf) i64 {
const index = self.phdr_tls_index orelse return 0;
const phdr = self.phdrs.items[index];
return @intCast(phdr.p_vaddr);
}
pub fn tlsAddress(self: *Elf) i64 {
const index = self.phdr_tls_index orelse return 0;
const phdr = self.phdrs.items[index];
return @intCast(phdr.p_vaddr);
}
const ErrorWithNotes = struct {
/// Allocated index in comp.link_errors array.
index: usize,
/// Next available note slot.
note_slot: usize = 0,
pub fn addMsg(
err: ErrorWithNotes,
elf_file: *Elf,
comptime format: []const u8,
args: anytype,
) error{OutOfMemory}!void {
const comp = elf_file.base.comp;
const gpa = comp.gpa;
const err_msg = &comp.link_errors.items[err.index];
err_msg.msg = try std.fmt.allocPrint(gpa, format, args);
}
pub fn addNote(
err: *ErrorWithNotes,
elf_file: *Elf,
comptime format: []const u8,
args: anytype,
) error{OutOfMemory}!void {
const comp = elf_file.base.comp;
const gpa = comp.gpa;
const err_msg = &comp.link_errors.items[err.index];
assert(err.note_slot < err_msg.notes.len);
err_msg.notes[err.note_slot] = .{ .msg = try std.fmt.allocPrint(gpa, format, args) };
err.note_slot += 1;
}
};
pub fn addErrorWithNotes(self: *Elf, note_count: usize) error{OutOfMemory}!ErrorWithNotes {
const comp = self.base.comp;
const gpa = comp.gpa;
try comp.link_errors.ensureUnusedCapacity(gpa, 1);
return self.addErrorWithNotesAssumeCapacity(note_count);
}
fn addErrorWithNotesAssumeCapacity(self: *Elf, note_count: usize) error{OutOfMemory}!ErrorWithNotes {
const comp = self.base.comp;
const gpa = comp.gpa;
const index = comp.link_errors.items.len;
const err = comp.link_errors.addOneAssumeCapacity();
err.* = .{ .msg = undefined, .notes = try gpa.alloc(link.File.ErrorMsg, note_count) };
return .{ .index = index };
}
pub fn getShString(self: Elf, off: u32) [:0]const u8 {
assert(off < self.shstrtab.items.len);
return mem.sliceTo(@as([*:0]const u8, @ptrCast(self.shstrtab.items.ptr + off)), 0);
}
pub fn insertShString(self: *Elf, name: [:0]const u8) error{OutOfMemory}!u32 {
const gpa = self.base.comp.gpa;
const off = @as(u32, @intCast(self.shstrtab.items.len));
try self.shstrtab.ensureUnusedCapacity(gpa, name.len + 1);
self.shstrtab.writer(gpa).print("{s}\x00", .{name}) catch unreachable;
return off;
}
pub fn getDynString(self: Elf, off: u32) [:0]const u8 {
assert(off < self.dynstrtab.items.len);
return mem.sliceTo(@as([*:0]const u8, @ptrCast(self.dynstrtab.items.ptr + off)), 0);
}
pub fn insertDynString(self: *Elf, name: []const u8) error{OutOfMemory}!u32 {
const gpa = self.base.comp.gpa;
const off = @as(u32, @intCast(self.dynstrtab.items.len));
try self.dynstrtab.ensureUnusedCapacity(gpa, name.len + 1);
self.dynstrtab.writer(gpa).print("{s}\x00", .{name}) catch unreachable;
return off;
}
fn reportUndefinedSymbols(self: *Elf, undefs: anytype) !void {
const comp = self.base.comp;
const gpa = comp.gpa;
const max_notes = 4;
try comp.link_errors.ensureUnusedCapacity(gpa, undefs.count());
var it = undefs.iterator();
while (it.next()) |entry| {
const undef_index = entry.key_ptr.*;
const atoms = entry.value_ptr.*.items;
const natoms = @min(atoms.len, max_notes);
const nnotes = natoms + @intFromBool(atoms.len > max_notes);
var err = try self.addErrorWithNotesAssumeCapacity(nnotes);
try err.addMsg(self, "undefined symbol: {s}", .{self.symbol(undef_index).name(self)});
for (atoms[0..natoms]) |atom_index| {
const atom_ptr = self.atom(atom_index).?;
const file_ptr = self.file(atom_ptr.file_index).?;
try err.addNote(self, "referenced by {s}:{s}", .{ file_ptr.fmtPath(), atom_ptr.name(self) });
}
if (atoms.len > max_notes) {
const remaining = atoms.len - max_notes;
try err.addNote(self, "referenced {d} more times", .{remaining});
}
}
}
fn reportDuplicates(self: *Elf, dupes: anytype) error{ HasDuplicates, OutOfMemory }!void {
const max_notes = 3;
var has_dupes = false;
var it = dupes.iterator();
while (it.next()) |entry| {
const sym = self.symbol(entry.key_ptr.*);
const notes = entry.value_ptr.*;
const nnotes = @min(notes.items.len, max_notes) + @intFromBool(notes.items.len > max_notes);
var err = try self.addErrorWithNotes(nnotes + 1);
try err.addMsg(self, "duplicate symbol definition: {s}", .{sym.name(self)});
try err.addNote(self, "defined by {}", .{sym.file(self).?.fmtPath()});
var inote: usize = 0;
while (inote < @min(notes.items.len, max_notes)) : (inote += 1) {
const file_ptr = self.file(notes.items[inote]).?;
try err.addNote(self, "defined by {}", .{file_ptr.fmtPath()});
}
if (notes.items.len > max_notes) {
const remaining = notes.items.len - max_notes;
try err.addNote(self, "defined {d} more times", .{remaining});
}
has_dupes = true;
}
if (has_dupes) return error.HasDuplicates;
}
fn reportMissingLibraryError(
self: *Elf,
checked_paths: []const []const u8,
comptime format: []const u8,
args: anytype,
) error{OutOfMemory}!void {
var err = try self.addErrorWithNotes(checked_paths.len);
try err.addMsg(self, format, args);
for (checked_paths) |path| {
try err.addNote(self, "tried {s}", .{path});
}
}
pub fn reportUnsupportedCpuArch(self: *Elf) error{OutOfMemory}!void {
var err = try self.addErrorWithNotes(0);
try err.addMsg(self, "fatal linker error: unsupported CPU architecture {s}", .{
@tagName(self.getTarget().cpu.arch),
});
}
pub fn reportParseError(
self: *Elf,
path: []const u8,
comptime format: []const u8,
args: anytype,
) error{OutOfMemory}!void {
var err = try self.addErrorWithNotes(1);
try err.addMsg(self, format, args);
try err.addNote(self, "while parsing {s}", .{path});
}
pub fn reportParseError2(
self: *Elf,
file_index: File.Index,
comptime format: []const u8,
args: anytype,
) error{OutOfMemory}!void {
var err = try self.addErrorWithNotes(1);
try err.addMsg(self, format, args);
try err.addNote(self, "while parsing {}", .{self.file(file_index).?.fmtPath()});
}
const FormatShdrCtx = struct {
elf_file: *Elf,
shdr: elf.Elf64_Shdr,
};
fn fmtShdr(self: *Elf, shdr: elf.Elf64_Shdr) std.fmt.Formatter(formatShdr) {
return .{ .data = .{
.shdr = shdr,
.elf_file = self,
} };
}
fn formatShdr(
ctx: FormatShdrCtx,
comptime unused_fmt_string: []const u8,
options: std.fmt.FormatOptions,
writer: anytype,
) !void {
_ = options;
_ = unused_fmt_string;
const shdr = ctx.shdr;
try writer.print("{s} : @{x} ({x}) : align({x}) : size({x}) : flags({})", .{
ctx.elf_file.getShString(shdr.sh_name), shdr.sh_offset,
shdr.sh_addr, shdr.sh_addralign,
shdr.sh_size, fmtShdrFlags(shdr.sh_flags),
});
}
pub fn fmtShdrFlags(sh_flags: u64) std.fmt.Formatter(formatShdrFlags) {
return .{ .data = sh_flags };
}
fn formatShdrFlags(
sh_flags: u64,
comptime unused_fmt_string: []const u8,
options: std.fmt.FormatOptions,
writer: anytype,
) !void {
_ = unused_fmt_string;
_ = options;
if (elf.SHF_WRITE & sh_flags != 0) {
try writer.writeAll("W");
}
if (elf.SHF_ALLOC & sh_flags != 0) {
try writer.writeAll("A");
}
if (elf.SHF_EXECINSTR & sh_flags != 0) {
try writer.writeAll("X");
}
if (elf.SHF_MERGE & sh_flags != 0) {
try writer.writeAll("M");
}
if (elf.SHF_STRINGS & sh_flags != 0) {
try writer.writeAll("S");
}
if (elf.SHF_INFO_LINK & sh_flags != 0) {
try writer.writeAll("I");
}
if (elf.SHF_LINK_ORDER & sh_flags != 0) {
try writer.writeAll("L");
}
if (elf.SHF_EXCLUDE & sh_flags != 0) {
try writer.writeAll("E");
}
if (elf.SHF_COMPRESSED & sh_flags != 0) {
try writer.writeAll("C");
}
if (elf.SHF_GROUP & sh_flags != 0) {
try writer.writeAll("G");
}
if (elf.SHF_OS_NONCONFORMING & sh_flags != 0) {
try writer.writeAll("O");
}
if (elf.SHF_TLS & sh_flags != 0) {
try writer.writeAll("T");
}
if (elf.SHF_X86_64_LARGE & sh_flags != 0) {
try writer.writeAll("l");
}
if (elf.SHF_MIPS_ADDR & sh_flags != 0 or elf.SHF_ARM_PURECODE & sh_flags != 0) {
try writer.writeAll("p");
}
}
const FormatPhdrCtx = struct {
elf_file: *Elf,
phdr: elf.Elf64_Phdr,
};
fn fmtPhdr(self: *Elf, phdr: elf.Elf64_Phdr) std.fmt.Formatter(formatPhdr) {
return .{ .data = .{
.phdr = phdr,
.elf_file = self,
} };
}
fn formatPhdr(
ctx: FormatPhdrCtx,
comptime unused_fmt_string: []const u8,
options: std.fmt.FormatOptions,
writer: anytype,
) !void {
_ = options;
_ = unused_fmt_string;
const phdr = ctx.phdr;
const write = phdr.p_flags & elf.PF_W != 0;
const read = phdr.p_flags & elf.PF_R != 0;
const exec = phdr.p_flags & elf.PF_X != 0;
var flags: [3]u8 = [_]u8{'_'} ** 3;
if (exec) flags[0] = 'X';
if (write) flags[1] = 'W';
if (read) flags[2] = 'R';
const p_type = switch (phdr.p_type) {
elf.PT_LOAD => "LOAD",
elf.PT_TLS => "TLS",
elf.PT_GNU_EH_FRAME => "GNU_EH_FRAME",
elf.PT_GNU_STACK => "GNU_STACK",
elf.PT_DYNAMIC => "DYNAMIC",
elf.PT_INTERP => "INTERP",
elf.PT_NULL => "NULL",
elf.PT_PHDR => "PHDR",
elf.PT_NOTE => "NOTE",
else => "UNKNOWN",
};
try writer.print("{s} : {s} : @{x} ({x}) : align({x}) : filesz({x}) : memsz({x})", .{
p_type, flags, phdr.p_offset, phdr.p_vaddr,
phdr.p_align, phdr.p_filesz, phdr.p_memsz,
});
}
pub fn dumpState(self: *Elf) std.fmt.Formatter(fmtDumpState) {
return .{ .data = self };
}
fn fmtDumpState(
self: *Elf,
comptime unused_fmt_string: []const u8,
options: std.fmt.FormatOptions,
writer: anytype,
) !void {
_ = unused_fmt_string;
_ = options;
if (self.zigObjectPtr()) |zig_object| {
try writer.print("zig_object({d}) : {s}\n", .{ zig_object.index, zig_object.path });
try writer.print("{}{}\n", .{
zig_object.fmtAtoms(self),
zig_object.fmtSymtab(self),
});
}
for (self.objects.items) |index| {
const object = self.file(index).?.object;
try writer.print("object({d}) : {}", .{ index, object.fmtPath() });
if (!object.alive) try writer.writeAll(" : [*]");
try writer.writeByte('\n');
try writer.print("{}{}{}{}{}\n", .{
object.fmtAtoms(self),
object.fmtCies(self),
object.fmtFdes(self),
object.fmtSymtab(self),
object.fmtComdatGroups(self),
});
}
for (self.shared_objects.items) |index| {
const shared_object = self.file(index).?.shared_object;
try writer.print("shared_object({d}) : ", .{index});
try writer.print("{s}", .{shared_object.path});
try writer.print(" : needed({})", .{shared_object.needed});
if (!shared_object.alive) try writer.writeAll(" : [*]");
try writer.writeByte('\n');
try writer.print("{}\n", .{shared_object.fmtSymtab(self)});
}
if (self.linker_defined_index) |index| {
const linker_defined = self.file(index).?.linker_defined;
try writer.print("linker_defined({d}) : (linker defined)\n", .{index});
try writer.print("{}\n", .{linker_defined.fmtSymtab(self)});
}
if (self.requiresThunks()) {
try writer.writeAll("thunks\n");
for (self.thunks.items, 0..) |th, index| {
try writer.print("thunk({d}) : {}\n", .{ index, th.fmt(self) });
}
}
try writer.print("{}\n", .{self.zig_got.fmt(self)});
try writer.print("{}\n", .{self.got.fmt(self)});
try writer.print("{}\n", .{self.plt.fmt(self)});
try writer.writeAll("Output COMDAT groups\n");
for (self.comdat_group_sections.items) |cg| {
try writer.print(" shdr({d}) : COMDAT({d})\n", .{ cg.shndx, cg.cg_index });
}
try writer.writeAll("\nOutput merge sections\n");
for (self.merge_sections.items) |msec| {
try writer.print(" shdr({d}) : {}\n", .{ msec.output_section_index, msec.fmt(self) });
}
try writer.writeAll("\nOutput shdrs\n");
for (self.shdrs.items, 0..) |shdr, shndx| {
try writer.print(" shdr({d}) : phdr({?d}) : {}\n", .{
shndx,
self.phdr_to_shdr_table.get(@intCast(shndx)),
self.fmtShdr(shdr),
});
}
try writer.writeAll("\nOutput phdrs\n");
for (self.phdrs.items, 0..) |phdr, phndx| {
try writer.print(" phdr{d} : {}\n", .{ phndx, self.fmtPhdr(phdr) });
}
}
/// Caller owns the memory.
pub fn preadAllAlloc(allocator: Allocator, handle: fs.File, offset: u64, size: u64) ![]u8 {
const buffer = try allocator.alloc(u8, math.cast(usize, size) orelse return error.Overflow);
errdefer allocator.free(buffer);
const amt = try handle.preadAll(buffer, offset);
if (amt != size) return error.InputOutput;
return buffer;
}
/// Binary search
pub fn bsearch(comptime T: type, haystack: []align(1) const T, predicate: anytype) usize {
if (!@hasDecl(@TypeOf(predicate), "predicate"))
@compileError("Predicate is required to define fn predicate(@This(), T) bool");
var min: usize = 0;
var max: usize = haystack.len;
while (min < max) {
const index = (min + max) / 2;
const curr = haystack[index];
if (predicate.predicate(curr)) {
min = index + 1;
} else {
max = index;
}
}
return min;
}
/// Linear search
pub fn lsearch(comptime T: type, haystack: []align(1) const T, predicate: anytype) usize {
if (!@hasDecl(@TypeOf(predicate), "predicate"))
@compileError("Predicate is required to define fn predicate(@This(), T) bool");
var i: usize = 0;
while (i < haystack.len) : (i += 1) {
if (predicate.predicate(haystack[i])) break;
}
return i;
}
pub fn getTarget(self: Elf) std.Target {
return self.base.comp.root_mod.resolved_target.result;
}
fn requiresThunks(self: Elf) bool {
return switch (self.getTarget().cpu.arch) {
.aarch64 => true,
.x86_64, .riscv64 => false,
else => @panic("TODO unimplemented architecture"),
};
}
/// The following three values are only observed at compile-time and used to emit a compile error
/// to remind the programmer to update expected maximum numbers of different program header types
/// so that we reserve enough space for the program header table up-front.
/// Bump these numbers when adding or deleting a Zig specific pre-allocated segment, or adding
/// more special-purpose program headers.
const number_of_zig_segments = 5;
const max_number_of_object_segments = 9;
const max_number_of_special_phdrs = 5;
const default_entry_addr = 0x8000000;
pub const base_tag: link.File.Tag = .elf;
const ComdatGroupOwner = struct {
file: File.Index = 0,
const Index = u32;
};
pub const ComdatGroup = struct {
owner: ComdatGroupOwner.Index,
file: File.Index,
shndx: u32,
members_start: u32,
members_len: u32,
pub fn comdatGroupMembers(cg: ComdatGroup, elf_file: *Elf) []const u32 {
const object = elf_file.file(cg.file).?.object;
return object.comdat_group_data.items[cg.members_start..][0..cg.members_len];
}
pub const Index = u32;
};
pub const SymtabCtx = struct {
ilocal: u32 = 0,
iglobal: u32 = 0,
nlocals: u32 = 0,
nglobals: u32 = 0,
strsize: u32 = 0,
};
pub const null_sym = elf.Elf64_Sym{
.st_name = 0,
.st_info = 0,
.st_other = 0,
.st_shndx = 0,
.st_value = 0,
.st_size = 0,
};
pub const null_shdr = elf.Elf64_Shdr{
.sh_name = 0,
.sh_type = 0,
.sh_flags = 0,
.sh_addr = 0,
.sh_offset = 0,
.sh_size = 0,
.sh_link = 0,
.sh_info = 0,
.sh_addralign = 0,
.sh_entsize = 0,
};
pub const SystemLib = struct {
needed: bool = false,
path: []const u8,
};
const LastAtomAndFreeList = struct {
/// Index of the last allocated atom in this section.
last_atom_index: Atom.Index = 0,
/// A list of atoms that have surplus capacity. This list can have false
/// positives, as functions grow and shrink over time, only sometimes being added
/// or removed from the freelist.
///
/// An atom has surplus capacity when its overcapacity value is greater than
/// padToIdeal(minimum_atom_size). That is, when it has so
/// much extra capacity, that we could fit a small new symbol in it, itself with
/// ideal_capacity or more.
///
/// Ideal capacity is defined by size + (size / ideal_factor)
///
/// Overcapacity is measured by actual_capacity - ideal_capacity. Note that
/// overcapacity can be negative. A simple way to have negative overcapacity is to
/// allocate a fresh text block, which will have ideal capacity, and then grow it
/// by 1 byte. It will then have -1 overcapacity.
free_list: std.ArrayListUnmanaged(Atom.Index) = .{},
};
const LastAtomAndFreeListTable = std.AutoArrayHashMapUnmanaged(u32, LastAtomAndFreeList);
const RelaSection = struct {
shndx: u32,
atom_list: std.ArrayListUnmanaged(Atom.Index) = .{},
};
const RelaSectionTable = std.AutoArrayHashMapUnmanaged(u32, RelaSection);
// TODO: add comptime check we don't clobber any reloc for any ISA
pub const R_ZIG_GOT32: u32 = 0xff00;
pub const R_ZIG_GOTPCREL: u32 = 0xff01;
pub const R_ZIG_GOT_HI20: u32 = 0xff02;
pub const R_ZIG_GOT_LO12: u32 = 0xff03;
fn defaultEntrySymbolName(cpu_arch: std.Target.Cpu.Arch) []const u8 {
return switch (cpu_arch) {
.mips, .mipsel, .mips64, .mips64el => "__start",
else => "_start",
};
}
const std = @import("std");
const build_options = @import("build_options");
const builtin = @import("builtin");
const assert = std.debug.assert;
const elf = std.elf;
const fs = std.fs;
const log = std.log.scoped(.link);
const state_log = std.log.scoped(.link_state);
const math = std.math;
const mem = std.mem;
const codegen = @import("../codegen.zig");
const dev = @import("../dev.zig");
const eh_frame = @import("Elf/eh_frame.zig");
const gc = @import("Elf/gc.zig");
const glibc = @import("../glibc.zig");
const link = @import("../link.zig");
const merge_section = @import("Elf/merge_section.zig");
const musl = @import("../musl.zig");
const relocatable = @import("Elf/relocatable.zig");
const relocation = @import("Elf/relocation.zig");
const target_util = @import("../target.zig");
const thunks = @import("Elf/thunks.zig");
const trace = @import("../tracy.zig").trace;
const synthetic_sections = @import("Elf/synthetic_sections.zig");
const Air = @import("../Air.zig");
const Allocator = std.mem.Allocator;
const Archive = @import("Elf/Archive.zig");
pub const Atom = @import("Elf/Atom.zig");
const Cache = std.Build.Cache;
const Compilation = @import("../Compilation.zig");
const ComdatGroupSection = synthetic_sections.ComdatGroupSection;
const CopyRelSection = synthetic_sections.CopyRelSection;
const DynamicSection = synthetic_sections.DynamicSection;
const DynsymSection = synthetic_sections.DynsymSection;
const Dwarf = @import("Dwarf.zig");
const Elf = @This();
const File = @import("Elf/file.zig").File;
const GnuHashSection = synthetic_sections.GnuHashSection;
const GotSection = synthetic_sections.GotSection;
const GotPltSection = synthetic_sections.GotPltSection;
const HashSection = synthetic_sections.HashSection;
const InputMergeSection = merge_section.InputMergeSection;
const LdScript = @import("Elf/LdScript.zig");
const LinkerDefined = @import("Elf/LinkerDefined.zig");
const Liveness = @import("../Liveness.zig");
const LlvmObject = @import("../codegen/llvm.zig").Object;
const MergeSection = merge_section.MergeSection;
const MergeSubsection = merge_section.MergeSubsection;
const Zcu = @import("../Zcu.zig");
/// Deprecated.
const Module = Zcu;
const Object = @import("Elf/Object.zig");
const InternPool = @import("../InternPool.zig");
const PltSection = synthetic_sections.PltSection;
const PltGotSection = synthetic_sections.PltGotSection;
const SharedObject = @import("Elf/SharedObject.zig");
const Symbol = @import("Elf/Symbol.zig");
const StringTable = @import("StringTable.zig");
const Thunk = thunks.Thunk;
const Value = @import("../Value.zig");
const VerneedSection = synthetic_sections.VerneedSection;
const ZigGotSection = synthetic_sections.ZigGotSection;
const ZigObject = @import("Elf/ZigObject.zig");