zig/src/arch/wasm/CodeGen.zig
mlugg 548a087faf
compiler: split Decl into Nav and Cau
The type `Zcu.Decl` in the compiler is problematic: over time it has
gained many responsibilities. Every source declaration, container type,
generic instantiation, and `@extern` has a `Decl`. The functions of
these `Decl`s are in some cases entirely disjoint.

After careful analysis, I determined that the two main responsibilities
of `Decl` are as follows:
* A `Decl` acts as the "subject" of semantic analysis at comptime. A
  single unit of analysis is either a runtime function body, or a
  `Decl`. It registers incremental dependencies, tracks analysis errors,
  etc.
* A `Decl` acts as a "global variable": a pointer to it is consistent,
  and it may be lowered to a specific symbol by the codegen backend.

This commit eliminates `Decl` and introduces new types to model these
responsibilities: `Cau` (Comptime Analysis Unit) and `Nav` (Named
Addressable Value).

Every source declaration, and every container type requiring resolution
(so *not* including `opaque`), has a `Cau`. For a source declaration,
this `Cau` performs the resolution of its value. (When #131 is
implemented, it is unsolved whether type and value resolution will share
a `Cau` or have two distinct `Cau`s.) For a type, this `Cau` is the
context in which type resolution occurs.

Every non-`comptime` source declaration, every generic instantiation,
and every distinct `extern` has a `Nav`. These are sent to codegen/link:
the backends by definition do not care about `Cau`s.

This commit has some minor technically-breaking changes surrounding
`usingnamespace`. I don't think they'll impact anyone, since the changes
are fixes around semantics which were previously inconsistent (the
behavior changed depending on hashmap iteration order!).

Aside from that, this changeset has no significant user-facing changes.
Instead, it is an internal refactor which makes it easier to correctly
model the responsibilities of different objects, particularly regarding
incremental compilation. The performance impact should be negligible,
but I will take measurements before merging this work into `master`.

Co-authored-by: Jacob Young <jacobly0@users.noreply.github.com>
Co-authored-by: Jakub Konka <kubkon@jakubkonka.com>
2024-08-11 07:29:41 +01:00

7764 lines
308 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const Allocator = std.mem.Allocator;
const ArrayList = std.ArrayList;
const assert = std.debug.assert;
const testing = std.testing;
const leb = std.leb;
const mem = std.mem;
const wasm = std.wasm;
const log = std.log.scoped(.codegen);
const codegen = @import("../../codegen.zig");
const Zcu = @import("../../Zcu.zig");
const InternPool = @import("../../InternPool.zig");
const Decl = Zcu.Decl;
const Type = @import("../../Type.zig");
const Value = @import("../../Value.zig");
const Compilation = @import("../../Compilation.zig");
const link = @import("../../link.zig");
const Air = @import("../../Air.zig");
const Liveness = @import("../../Liveness.zig");
const target_util = @import("../../target.zig");
const Mir = @import("Mir.zig");
const Emit = @import("Emit.zig");
const abi = @import("abi.zig");
const Alignment = InternPool.Alignment;
const errUnionPayloadOffset = codegen.errUnionPayloadOffset;
const errUnionErrorOffset = codegen.errUnionErrorOffset;
/// Wasm Value, created when generating an instruction
const WValue = union(enum) {
/// `WValue` which has been freed and may no longer hold
/// any references.
dead: void,
/// May be referenced but is unused
none: void,
/// The value lives on top of the stack
stack: void,
/// Index of the local
local: struct {
/// Contains the index to the local
value: u32,
/// The amount of instructions referencing this `WValue`
references: u32,
},
/// An immediate 32bit value
imm32: u32,
/// An immediate 64bit value
imm64: u64,
/// Index into the list of simd128 immediates. This `WValue` is
/// only possible in very rare cases, therefore it would be
/// a waste of memory to store the value in a 128 bit integer.
imm128: u32,
/// A constant 32bit float value
float32: f32,
/// A constant 64bit float value
float64: f64,
/// A value that represents a pointer to the data section
/// Note: The value contains the symbol index, rather than the actual address
/// as we use this to perform the relocation.
memory: u32,
/// A value that represents a parent pointer and an offset
/// from that pointer. i.e. when slicing with constant values.
memory_offset: struct {
/// The symbol of the parent pointer
pointer: u32,
/// Offset will be set as addend when relocating
offset: u32,
},
/// Represents a function pointer
/// In wasm function pointers are indexes into a function table,
/// rather than an address in the data section.
function_index: u32,
/// Offset from the bottom of the virtual stack, with the offset
/// pointing to where the value lives.
stack_offset: struct {
/// Contains the actual value of the offset
value: u32,
/// The amount of instructions referencing this `WValue`
references: u32,
},
/// Returns the offset from the bottom of the stack. This is useful when
/// we use the load or store instruction to ensure we retrieve the value
/// from the correct position, rather than the value that lives at the
/// bottom of the stack. For instances where `WValue` is not `stack_value`
/// this will return 0, which allows us to simply call this function for all
/// loads and stores without requiring checks everywhere.
fn offset(value: WValue) u32 {
switch (value) {
.stack_offset => |stack_offset| return stack_offset.value,
.dead => unreachable,
else => return 0,
}
}
/// Promotes a `WValue` to a local when given value is on top of the stack.
/// When encountering a `local` or `stack_offset` this is essentially a no-op.
/// All other tags are illegal.
fn toLocal(value: WValue, gen: *CodeGen, ty: Type) InnerError!WValue {
switch (value) {
.stack => {
const new_local = try gen.allocLocal(ty);
try gen.addLabel(.local_set, new_local.local.value);
return new_local;
},
.local, .stack_offset => return value,
else => unreachable,
}
}
/// Marks a local as no longer being referenced and essentially allows
/// us to re-use it somewhere else within the function.
/// The valtype of the local is deducted by using the index of the given `WValue`.
fn free(value: *WValue, gen: *CodeGen) void {
if (value.* != .local) return;
const local_value = value.local.value;
const reserved = gen.args.len + @intFromBool(gen.return_value != .none);
if (local_value < reserved + 2) return; // reserved locals may never be re-used. Also accounts for 2 stack locals.
const index = local_value - reserved;
const valtype = @as(wasm.Valtype, @enumFromInt(gen.locals.items[index]));
switch (valtype) {
.i32 => gen.free_locals_i32.append(gen.gpa, local_value) catch return, // It's ok to fail any of those, a new local can be allocated instead
.i64 => gen.free_locals_i64.append(gen.gpa, local_value) catch return,
.f32 => gen.free_locals_f32.append(gen.gpa, local_value) catch return,
.f64 => gen.free_locals_f64.append(gen.gpa, local_value) catch return,
.v128 => gen.free_locals_v128.append(gen.gpa, local_value) catch return,
}
log.debug("freed local ({d}) of type {}", .{ local_value, valtype });
value.* = .dead;
}
};
/// Wasm ops, but without input/output/signedness information
/// Used for `buildOpcode`
const Op = enum {
@"unreachable",
nop,
block,
loop,
@"if",
@"else",
end,
br,
br_if,
br_table,
@"return",
call,
call_indirect,
drop,
select,
local_get,
local_set,
local_tee,
global_get,
global_set,
load,
store,
memory_size,
memory_grow,
@"const",
eqz,
eq,
ne,
lt,
gt,
le,
ge,
clz,
ctz,
popcnt,
add,
sub,
mul,
div,
rem,
@"and",
@"or",
xor,
shl,
shr,
rotl,
rotr,
abs,
neg,
ceil,
floor,
trunc,
nearest,
sqrt,
min,
max,
copysign,
wrap,
convert,
demote,
promote,
reinterpret,
extend,
};
/// Contains the settings needed to create an `Opcode` using `buildOpcode`.
///
/// The fields correspond to the opcode name. Here is an example
/// i32_trunc_f32_s
/// ^ ^ ^ ^
/// | | | |
/// valtype1 | | |
/// = .i32 | | |
/// | | |
/// op | |
/// = .trunc | |
/// | |
/// valtype2 |
/// = .f32 |
/// |
/// width |
/// = null |
/// |
/// signed
/// = true
///
/// There can be missing fields, here are some more examples:
/// i64_load8_u
/// --> .{ .valtype1 = .i64, .op = .load, .width = 8, signed = false }
/// i32_mul
/// --> .{ .valtype1 = .i32, .op = .trunc }
/// nop
/// --> .{ .op = .nop }
const OpcodeBuildArguments = struct {
/// First valtype in the opcode (usually represents the type of the output)
valtype1: ?wasm.Valtype = null,
/// The operation (e.g. call, unreachable, div, min, sqrt, etc.)
op: Op,
/// Width of the operation (e.g. 8 for i32_load8_s, 16 for i64_extend16_i32_s)
width: ?u8 = null,
/// Second valtype in the opcode name (usually represents the type of the input)
valtype2: ?wasm.Valtype = null,
/// Signedness of the op
signedness: ?std.builtin.Signedness = null,
};
/// Helper function that builds an Opcode given the arguments needed
fn buildOpcode(args: OpcodeBuildArguments) wasm.Opcode {
switch (args.op) {
.@"unreachable" => return .@"unreachable",
.nop => return .nop,
.block => return .block,
.loop => return .loop,
.@"if" => return .@"if",
.@"else" => return .@"else",
.end => return .end,
.br => return .br,
.br_if => return .br_if,
.br_table => return .br_table,
.@"return" => return .@"return",
.call => return .call,
.call_indirect => return .call_indirect,
.drop => return .drop,
.select => return .select,
.local_get => return .local_get,
.local_set => return .local_set,
.local_tee => return .local_tee,
.global_get => return .global_get,
.global_set => return .global_set,
.load => if (args.width) |width| switch (width) {
8 => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_load8_s else return .i32_load8_u,
.i64 => if (args.signedness.? == .signed) return .i64_load8_s else return .i64_load8_u,
.f32, .f64, .v128 => unreachable,
},
16 => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_load16_s else return .i32_load16_u,
.i64 => if (args.signedness.? == .signed) return .i64_load16_s else return .i64_load16_u,
.f32, .f64, .v128 => unreachable,
},
32 => switch (args.valtype1.?) {
.i64 => if (args.signedness.? == .signed) return .i64_load32_s else return .i64_load32_u,
.i32 => return .i32_load,
.f32 => return .f32_load,
.f64, .v128 => unreachable,
},
64 => switch (args.valtype1.?) {
.i64 => return .i64_load,
.f64 => return .f64_load,
else => unreachable,
},
else => unreachable,
} else switch (args.valtype1.?) {
.i32 => return .i32_load,
.i64 => return .i64_load,
.f32 => return .f32_load,
.f64 => return .f64_load,
.v128 => unreachable, // handled independently
},
.store => if (args.width) |width| {
switch (width) {
8 => switch (args.valtype1.?) {
.i32 => return .i32_store8,
.i64 => return .i64_store8,
.f32, .f64, .v128 => unreachable,
},
16 => switch (args.valtype1.?) {
.i32 => return .i32_store16,
.i64 => return .i64_store16,
.f32, .f64, .v128 => unreachable,
},
32 => switch (args.valtype1.?) {
.i64 => return .i64_store32,
.i32 => return .i32_store,
.f32 => return .f32_store,
.f64, .v128 => unreachable,
},
64 => switch (args.valtype1.?) {
.i64 => return .i64_store,
.f64 => return .f64_store,
else => unreachable,
},
else => unreachable,
}
} else {
switch (args.valtype1.?) {
.i32 => return .i32_store,
.i64 => return .i64_store,
.f32 => return .f32_store,
.f64 => return .f64_store,
.v128 => unreachable, // handled independently
}
},
.memory_size => return .memory_size,
.memory_grow => return .memory_grow,
.@"const" => switch (args.valtype1.?) {
.i32 => return .i32_const,
.i64 => return .i64_const,
.f32 => return .f32_const,
.f64 => return .f64_const,
.v128 => unreachable, // handled independently
},
.eqz => switch (args.valtype1.?) {
.i32 => return .i32_eqz,
.i64 => return .i64_eqz,
.f32, .f64, .v128 => unreachable,
},
.eq => switch (args.valtype1.?) {
.i32 => return .i32_eq,
.i64 => return .i64_eq,
.f32 => return .f32_eq,
.f64 => return .f64_eq,
.v128 => unreachable, // handled independently
},
.ne => switch (args.valtype1.?) {
.i32 => return .i32_ne,
.i64 => return .i64_ne,
.f32 => return .f32_ne,
.f64 => return .f64_ne,
.v128 => unreachable, // handled independently
},
.lt => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_lt_s else return .i32_lt_u,
.i64 => if (args.signedness.? == .signed) return .i64_lt_s else return .i64_lt_u,
.f32 => return .f32_lt,
.f64 => return .f64_lt,
.v128 => unreachable, // handled independently
},
.gt => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_gt_s else return .i32_gt_u,
.i64 => if (args.signedness.? == .signed) return .i64_gt_s else return .i64_gt_u,
.f32 => return .f32_gt,
.f64 => return .f64_gt,
.v128 => unreachable, // handled independently
},
.le => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_le_s else return .i32_le_u,
.i64 => if (args.signedness.? == .signed) return .i64_le_s else return .i64_le_u,
.f32 => return .f32_le,
.f64 => return .f64_le,
.v128 => unreachable, // handled independently
},
.ge => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_ge_s else return .i32_ge_u,
.i64 => if (args.signedness.? == .signed) return .i64_ge_s else return .i64_ge_u,
.f32 => return .f32_ge,
.f64 => return .f64_ge,
.v128 => unreachable, // handled independently
},
.clz => switch (args.valtype1.?) {
.i32 => return .i32_clz,
.i64 => return .i64_clz,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.ctz => switch (args.valtype1.?) {
.i32 => return .i32_ctz,
.i64 => return .i64_ctz,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.popcnt => switch (args.valtype1.?) {
.i32 => return .i32_popcnt,
.i64 => return .i64_popcnt,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.add => switch (args.valtype1.?) {
.i32 => return .i32_add,
.i64 => return .i64_add,
.f32 => return .f32_add,
.f64 => return .f64_add,
.v128 => unreachable, // handled independently
},
.sub => switch (args.valtype1.?) {
.i32 => return .i32_sub,
.i64 => return .i64_sub,
.f32 => return .f32_sub,
.f64 => return .f64_sub,
.v128 => unreachable, // handled independently
},
.mul => switch (args.valtype1.?) {
.i32 => return .i32_mul,
.i64 => return .i64_mul,
.f32 => return .f32_mul,
.f64 => return .f64_mul,
.v128 => unreachable, // handled independently
},
.div => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_div_s else return .i32_div_u,
.i64 => if (args.signedness.? == .signed) return .i64_div_s else return .i64_div_u,
.f32 => return .f32_div,
.f64 => return .f64_div,
.v128 => unreachable, // handled independently
},
.rem => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_rem_s else return .i32_rem_u,
.i64 => if (args.signedness.? == .signed) return .i64_rem_s else return .i64_rem_u,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.@"and" => switch (args.valtype1.?) {
.i32 => return .i32_and,
.i64 => return .i64_and,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.@"or" => switch (args.valtype1.?) {
.i32 => return .i32_or,
.i64 => return .i64_or,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.xor => switch (args.valtype1.?) {
.i32 => return .i32_xor,
.i64 => return .i64_xor,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.shl => switch (args.valtype1.?) {
.i32 => return .i32_shl,
.i64 => return .i64_shl,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.shr => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_shr_s else return .i32_shr_u,
.i64 => if (args.signedness.? == .signed) return .i64_shr_s else return .i64_shr_u,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.rotl => switch (args.valtype1.?) {
.i32 => return .i32_rotl,
.i64 => return .i64_rotl,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.rotr => switch (args.valtype1.?) {
.i32 => return .i32_rotr,
.i64 => return .i64_rotr,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.abs => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_abs,
.f64 => return .f64_abs,
.v128 => unreachable, // handled independently
},
.neg => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_neg,
.f64 => return .f64_neg,
.v128 => unreachable, // handled independently
},
.ceil => switch (args.valtype1.?) {
.i64 => unreachable,
.i32 => return .f32_ceil, // when valtype is f16, we store it in i32.
.f32 => return .f32_ceil,
.f64 => return .f64_ceil,
.v128 => unreachable, // handled independently
},
.floor => switch (args.valtype1.?) {
.i64 => unreachable,
.i32 => return .f32_floor, // when valtype is f16, we store it in i32.
.f32 => return .f32_floor,
.f64 => return .f64_floor,
.v128 => unreachable, // handled independently
},
.trunc => switch (args.valtype1.?) {
.i32 => if (args.valtype2) |valty| switch (valty) {
.i32 => unreachable,
.i64 => unreachable,
.f32 => if (args.signedness.? == .signed) return .i32_trunc_f32_s else return .i32_trunc_f32_u,
.f64 => if (args.signedness.? == .signed) return .i32_trunc_f64_s else return .i32_trunc_f64_u,
.v128 => unreachable, // handled independently
} else return .f32_trunc, // when no valtype2, it's an f16 instead which is stored in an i32.
.i64 => switch (args.valtype2.?) {
.i32 => unreachable,
.i64 => unreachable,
.f32 => if (args.signedness.? == .signed) return .i64_trunc_f32_s else return .i64_trunc_f32_u,
.f64 => if (args.signedness.? == .signed) return .i64_trunc_f64_s else return .i64_trunc_f64_u,
.v128 => unreachable, // handled independently
},
.f32 => return .f32_trunc,
.f64 => return .f64_trunc,
.v128 => unreachable, // handled independently
},
.nearest => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_nearest,
.f64 => return .f64_nearest,
.v128 => unreachable, // handled independently
},
.sqrt => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_sqrt,
.f64 => return .f64_sqrt,
.v128 => unreachable, // handled independently
},
.min => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_min,
.f64 => return .f64_min,
.v128 => unreachable, // handled independently
},
.max => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_max,
.f64 => return .f64_max,
.v128 => unreachable, // handled independently
},
.copysign => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_copysign,
.f64 => return .f64_copysign,
.v128 => unreachable, // handled independently
},
.wrap => switch (args.valtype1.?) {
.i32 => switch (args.valtype2.?) {
.i32 => unreachable,
.i64 => return .i32_wrap_i64,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.i64, .f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.convert => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => switch (args.valtype2.?) {
.i32 => if (args.signedness.? == .signed) return .f32_convert_i32_s else return .f32_convert_i32_u,
.i64 => if (args.signedness.? == .signed) return .f32_convert_i64_s else return .f32_convert_i64_u,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.f64 => switch (args.valtype2.?) {
.i32 => if (args.signedness.? == .signed) return .f64_convert_i32_s else return .f64_convert_i32_u,
.i64 => if (args.signedness.? == .signed) return .f64_convert_i64_s else return .f64_convert_i64_u,
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
.v128 => unreachable, // handled independently
},
.demote => if (args.valtype1.? == .f32 and args.valtype2.? == .f64) return .f32_demote_f64 else unreachable,
.promote => if (args.valtype1.? == .f64 and args.valtype2.? == .f32) return .f64_promote_f32 else unreachable,
.reinterpret => switch (args.valtype1.?) {
.i32 => if (args.valtype2.? == .f32) return .i32_reinterpret_f32 else unreachable,
.i64 => if (args.valtype2.? == .f64) return .i64_reinterpret_f64 else unreachable,
.f32 => if (args.valtype2.? == .i32) return .f32_reinterpret_i32 else unreachable,
.f64 => if (args.valtype2.? == .i64) return .f64_reinterpret_i64 else unreachable,
.v128 => unreachable, // handled independently
},
.extend => switch (args.valtype1.?) {
.i32 => switch (args.width.?) {
8 => if (args.signedness.? == .signed) return .i32_extend8_s else unreachable,
16 => if (args.signedness.? == .signed) return .i32_extend16_s else unreachable,
else => unreachable,
},
.i64 => switch (args.width.?) {
8 => if (args.signedness.? == .signed) return .i64_extend8_s else unreachable,
16 => if (args.signedness.? == .signed) return .i64_extend16_s else unreachable,
32 => if (args.signedness.? == .signed) return .i64_extend32_s else unreachable,
else => unreachable,
},
.f32, .f64 => unreachable,
.v128 => unreachable, // handled independently
},
}
}
test "Wasm - buildOpcode" {
// Make sure buildOpcode is referenced, and test some examples
const i32_const = buildOpcode(.{ .op = .@"const", .valtype1 = .i32 });
const end = buildOpcode(.{ .op = .end });
const local_get = buildOpcode(.{ .op = .local_get });
const i64_extend32_s = buildOpcode(.{ .op = .extend, .valtype1 = .i64, .width = 32, .signedness = .signed });
const f64_reinterpret_i64 = buildOpcode(.{ .op = .reinterpret, .valtype1 = .f64, .valtype2 = .i64 });
try testing.expectEqual(@as(wasm.Opcode, .i32_const), i32_const);
try testing.expectEqual(@as(wasm.Opcode, .end), end);
try testing.expectEqual(@as(wasm.Opcode, .local_get), local_get);
try testing.expectEqual(@as(wasm.Opcode, .i64_extend32_s), i64_extend32_s);
try testing.expectEqual(@as(wasm.Opcode, .f64_reinterpret_i64), f64_reinterpret_i64);
}
/// Hashmap to store generated `WValue` for each `Air.Inst.Ref`
pub const ValueTable = std.AutoArrayHashMapUnmanaged(Air.Inst.Ref, WValue);
const CodeGen = @This();
/// Reference to the function declaration the code
/// section belongs to
owner_nav: InternPool.Nav.Index,
src_loc: Zcu.LazySrcLoc,
/// Current block depth. Used to calculate the relative difference between a break
/// and block
block_depth: u32 = 0,
air: Air,
liveness: Liveness,
gpa: mem.Allocator,
debug_output: codegen.DebugInfoOutput,
func_index: InternPool.Index,
/// Contains a list of current branches.
/// When we return from a branch, the branch will be popped from this list,
/// which means branches can only contain references from within its own branch,
/// or a branch higher (lower index) in the tree.
branches: std.ArrayListUnmanaged(Branch) = .{},
/// Table to save `WValue`'s generated by an `Air.Inst`
// values: ValueTable,
/// Mapping from Air.Inst.Index to block ids
blocks: std.AutoArrayHashMapUnmanaged(Air.Inst.Index, struct {
label: u32,
value: WValue,
}) = .{},
/// `bytes` contains the wasm bytecode belonging to the 'code' section.
code: *ArrayList(u8),
/// The index the next local generated will have
/// NOTE: arguments share the index with locals therefore the first variable
/// will have the index that comes after the last argument's index
local_index: u32 = 0,
/// The index of the current argument.
/// Used to track which argument is being referenced in `airArg`.
arg_index: u32 = 0,
/// If codegen fails, an error messages will be allocated and saved in `err_msg`
err_msg: *Zcu.ErrorMsg,
/// List of all locals' types generated throughout this declaration
/// used to emit locals count at start of 'code' section.
locals: std.ArrayListUnmanaged(u8),
/// List of simd128 immediates. Each value is stored as an array of bytes.
/// This list will only be populated for 128bit-simd values when the target features
/// are enabled also.
simd_immediates: std.ArrayListUnmanaged([16]u8) = .{},
/// The Target we're emitting (used to call intInfo)
target: *const std.Target,
/// Represents the wasm binary file that is being linked.
bin_file: *link.File.Wasm,
pt: Zcu.PerThread,
/// List of MIR Instructions
mir_instructions: std.MultiArrayList(Mir.Inst) = .{},
/// Contains extra data for MIR
mir_extra: std.ArrayListUnmanaged(u32) = .{},
/// When a function is executing, we store the the current stack pointer's value within this local.
/// This value is then used to restore the stack pointer to the original value at the return of the function.
initial_stack_value: WValue = .none,
/// The current stack pointer subtracted with the stack size. From this value, we will calculate
/// all offsets of the stack values.
bottom_stack_value: WValue = .none,
/// Arguments of this function declaration
/// This will be set after `resolveCallingConventionValues`
args: []WValue = &.{},
/// This will only be `.none` if the function returns void, or returns an immediate.
/// When it returns a pointer to the stack, the `.local` tag will be active and must be populated
/// before this function returns its execution to the caller.
return_value: WValue = .none,
/// The size of the stack this function occupies. In the function prologue
/// we will move the stack pointer by this number, forward aligned with the `stack_alignment`.
stack_size: u32 = 0,
/// The stack alignment, which is 16 bytes by default. This is specified by the
/// tool-conventions: https://github.com/WebAssembly/tool-conventions/blob/main/BasicCABI.md
/// and also what the llvm backend will emit.
/// However, local variables or the usage of `@setAlignStack` can overwrite this default.
stack_alignment: Alignment = .@"16",
// For each individual Wasm valtype we store a seperate free list which
// allows us to re-use locals that are no longer used. e.g. a temporary local.
/// A list of indexes which represents a local of valtype `i32`.
/// It is illegal to store a non-i32 valtype in this list.
free_locals_i32: std.ArrayListUnmanaged(u32) = .{},
/// A list of indexes which represents a local of valtype `i64`.
/// It is illegal to store a non-i64 valtype in this list.
free_locals_i64: std.ArrayListUnmanaged(u32) = .{},
/// A list of indexes which represents a local of valtype `f32`.
/// It is illegal to store a non-f32 valtype in this list.
free_locals_f32: std.ArrayListUnmanaged(u32) = .{},
/// A list of indexes which represents a local of valtype `f64`.
/// It is illegal to store a non-f64 valtype in this list.
free_locals_f64: std.ArrayListUnmanaged(u32) = .{},
/// A list of indexes which represents a local of valtype `v127`.
/// It is illegal to store a non-v128 valtype in this list.
free_locals_v128: std.ArrayListUnmanaged(u32) = .{},
/// When in debug mode, this tracks if no `finishAir` was missed.
/// Forgetting to call `finishAir` will cause the result to not be
/// stored in our `values` map and therefore cause bugs.
air_bookkeeping: @TypeOf(bookkeeping_init) = bookkeeping_init,
const bookkeeping_init = if (std.debug.runtime_safety) @as(usize, 0) else {};
const InnerError = error{
OutOfMemory,
/// An error occurred when trying to lower AIR to MIR.
CodegenFail,
/// Compiler implementation could not handle a large integer.
Overflow,
};
pub fn deinit(func: *CodeGen) void {
// in case of an error and we still have branches
for (func.branches.items) |*branch| {
branch.deinit(func.gpa);
}
func.branches.deinit(func.gpa);
func.blocks.deinit(func.gpa);
func.locals.deinit(func.gpa);
func.simd_immediates.deinit(func.gpa);
func.mir_instructions.deinit(func.gpa);
func.mir_extra.deinit(func.gpa);
func.free_locals_i32.deinit(func.gpa);
func.free_locals_i64.deinit(func.gpa);
func.free_locals_f32.deinit(func.gpa);
func.free_locals_f64.deinit(func.gpa);
func.free_locals_v128.deinit(func.gpa);
func.* = undefined;
}
/// Sets `err_msg` on `CodeGen` and returns `error.CodegenFail` which is caught in link/Wasm.zig
fn fail(func: *CodeGen, comptime fmt: []const u8, args: anytype) InnerError {
func.err_msg = try Zcu.ErrorMsg.create(func.gpa, func.src_loc, fmt, args);
return error.CodegenFail;
}
/// Resolves the `WValue` for the given instruction `inst`
/// When the given instruction has a `Value`, it returns a constant instead
fn resolveInst(func: *CodeGen, ref: Air.Inst.Ref) InnerError!WValue {
var branch_index = func.branches.items.len;
while (branch_index > 0) : (branch_index -= 1) {
const branch = func.branches.items[branch_index - 1];
if (branch.values.get(ref)) |value| {
return value;
}
}
// when we did not find an existing instruction, it
// means we must generate it from a constant.
// We always store constants in the most outer branch as they must never
// be removed. The most outer branch is always at index 0.
const gop = try func.branches.items[0].values.getOrPut(func.gpa, ref);
assert(!gop.found_existing);
const pt = func.pt;
const mod = pt.zcu;
const val = (try func.air.value(ref, pt)).?;
const ty = func.typeOf(ref);
if (!ty.hasRuntimeBitsIgnoreComptime(pt) and !ty.isInt(mod) and !ty.isError(mod)) {
gop.value_ptr.* = .none;
return gop.value_ptr.*;
}
// When we need to pass the value by reference (such as a struct), we will
// leverage `generateSymbol` to lower the constant to bytes and emit it
// to the 'rodata' section. We then return the index into the section as `WValue`.
//
// In the other cases, we will simply lower the constant to a value that fits
// into a single local (such as a pointer, integer, bool, etc).
const result: WValue = if (isByRef(ty, pt, func.target.*))
switch (try func.bin_file.lowerUav(pt, val.toIntern(), .none, func.src_loc)) {
.mcv => |mcv| .{ .memory = mcv.load_symbol },
.fail => |err_msg| {
func.err_msg = err_msg;
return error.CodegenFail;
},
}
else
try func.lowerConstant(val, ty);
gop.value_ptr.* = result;
return result;
}
/// NOTE: if result == .stack, it will be stored in .local
fn finishAir(func: *CodeGen, inst: Air.Inst.Index, result: WValue, operands: []const Air.Inst.Ref) InnerError!void {
assert(operands.len <= Liveness.bpi - 1);
var tomb_bits = func.liveness.getTombBits(inst);
for (operands) |operand| {
const dies = @as(u1, @truncate(tomb_bits)) != 0;
tomb_bits >>= 1;
if (!dies) continue;
processDeath(func, operand);
}
// results of `none` can never be referenced.
if (result != .none) {
const trackable_result = if (result != .stack)
result
else
try result.toLocal(func, func.typeOfIndex(inst));
const branch = func.currentBranch();
branch.values.putAssumeCapacityNoClobber(inst.toRef(), trackable_result);
}
if (std.debug.runtime_safety) {
func.air_bookkeeping += 1;
}
}
const Branch = struct {
values: ValueTable = .{},
fn deinit(branch: *Branch, gpa: Allocator) void {
branch.values.deinit(gpa);
branch.* = undefined;
}
};
inline fn currentBranch(func: *CodeGen) *Branch {
return &func.branches.items[func.branches.items.len - 1];
}
const BigTomb = struct {
gen: *CodeGen,
inst: Air.Inst.Index,
lbt: Liveness.BigTomb,
fn feed(bt: *BigTomb, op_ref: Air.Inst.Ref) void {
const dies = bt.lbt.feed();
if (!dies) return;
// This will be a nop for interned constants.
processDeath(bt.gen, op_ref);
}
fn finishAir(bt: *BigTomb, result: WValue) void {
assert(result != .stack);
if (result != .none) {
bt.gen.currentBranch().values.putAssumeCapacityNoClobber(bt.inst.toRef(), result);
}
if (std.debug.runtime_safety) {
bt.gen.air_bookkeeping += 1;
}
}
};
fn iterateBigTomb(func: *CodeGen, inst: Air.Inst.Index, operand_count: usize) !BigTomb {
try func.currentBranch().values.ensureUnusedCapacity(func.gpa, operand_count + 1);
return BigTomb{
.gen = func,
.inst = inst,
.lbt = func.liveness.iterateBigTomb(inst),
};
}
fn processDeath(func: *CodeGen, ref: Air.Inst.Ref) void {
if (ref.toIndex() == null) return;
// Branches are currently only allowed to free locals allocated
// within their own branch.
// TODO: Upon branch consolidation free any locals if needed.
const value = func.currentBranch().values.getPtr(ref) orelse return;
if (value.* != .local) return;
const reserved_indexes = func.args.len + @intFromBool(func.return_value != .none);
if (value.local.value < reserved_indexes) {
return; // function arguments can never be re-used
}
log.debug("Decreasing reference for ref: %{d}, using local '{d}'", .{ @intFromEnum(ref.toIndex().?), value.local.value });
value.local.references -= 1; // if this panics, a call to `reuseOperand` was forgotten by the developer
if (value.local.references == 0) {
value.free(func);
}
}
/// Appends a MIR instruction and returns its index within the list of instructions
fn addInst(func: *CodeGen, inst: Mir.Inst) error{OutOfMemory}!void {
try func.mir_instructions.append(func.gpa, inst);
}
fn addTag(func: *CodeGen, tag: Mir.Inst.Tag) error{OutOfMemory}!void {
try func.addInst(.{ .tag = tag, .data = .{ .tag = {} } });
}
fn addExtended(func: *CodeGen, opcode: wasm.MiscOpcode) error{OutOfMemory}!void {
const extra_index = @as(u32, @intCast(func.mir_extra.items.len));
try func.mir_extra.append(func.gpa, @intFromEnum(opcode));
try func.addInst(.{ .tag = .misc_prefix, .data = .{ .payload = extra_index } });
}
fn addLabel(func: *CodeGen, tag: Mir.Inst.Tag, label: u32) error{OutOfMemory}!void {
try func.addInst(.{ .tag = tag, .data = .{ .label = label } });
}
/// Accepts an unsigned 32bit integer rather than a signed integer to
/// prevent us from having to bitcast multiple times as most values
/// within codegen are represented as unsigned rather than signed.
fn addImm32(func: *CodeGen, imm: u32) error{OutOfMemory}!void {
try func.addInst(.{ .tag = .i32_const, .data = .{ .imm32 = @bitCast(imm) } });
}
/// Accepts an unsigned 64bit integer rather than a signed integer to
/// prevent us from having to bitcast multiple times as most values
/// within codegen are represented as unsigned rather than signed.
fn addImm64(func: *CodeGen, imm: u64) error{OutOfMemory}!void {
const extra_index = try func.addExtra(Mir.Imm64.fromU64(imm));
try func.addInst(.{ .tag = .i64_const, .data = .{ .payload = extra_index } });
}
/// Accepts the index into the list of 128bit-immediates
fn addImm128(func: *CodeGen, index: u32) error{OutOfMemory}!void {
const simd_values = func.simd_immediates.items[index];
const extra_index = @as(u32, @intCast(func.mir_extra.items.len));
// tag + 128bit value
try func.mir_extra.ensureUnusedCapacity(func.gpa, 5);
func.mir_extra.appendAssumeCapacity(std.wasm.simdOpcode(.v128_const));
func.mir_extra.appendSliceAssumeCapacity(@alignCast(mem.bytesAsSlice(u32, &simd_values)));
try func.addInst(.{ .tag = .simd_prefix, .data = .{ .payload = extra_index } });
}
fn addFloat64(func: *CodeGen, float: f64) error{OutOfMemory}!void {
const extra_index = try func.addExtra(Mir.Float64.fromFloat64(float));
try func.addInst(.{ .tag = .f64_const, .data = .{ .payload = extra_index } });
}
/// Inserts an instruction to load/store from/to wasm's linear memory dependent on the given `tag`.
fn addMemArg(func: *CodeGen, tag: Mir.Inst.Tag, mem_arg: Mir.MemArg) error{OutOfMemory}!void {
const extra_index = try func.addExtra(mem_arg);
try func.addInst(.{ .tag = tag, .data = .{ .payload = extra_index } });
}
/// Inserts an instruction from the 'atomics' feature which accesses wasm's linear memory dependent on the
/// given `tag`.
fn addAtomicMemArg(func: *CodeGen, tag: wasm.AtomicsOpcode, mem_arg: Mir.MemArg) error{OutOfMemory}!void {
const extra_index = try func.addExtra(@as(struct { val: u32 }, .{ .val = wasm.atomicsOpcode(tag) }));
_ = try func.addExtra(mem_arg);
try func.addInst(.{ .tag = .atomics_prefix, .data = .{ .payload = extra_index } });
}
/// Helper function to emit atomic mir opcodes.
fn addAtomicTag(func: *CodeGen, tag: wasm.AtomicsOpcode) error{OutOfMemory}!void {
const extra_index = try func.addExtra(@as(struct { val: u32 }, .{ .val = wasm.atomicsOpcode(tag) }));
try func.addInst(.{ .tag = .atomics_prefix, .data = .{ .payload = extra_index } });
}
/// Appends entries to `mir_extra` based on the type of `extra`.
/// Returns the index into `mir_extra`
fn addExtra(func: *CodeGen, extra: anytype) error{OutOfMemory}!u32 {
const fields = std.meta.fields(@TypeOf(extra));
try func.mir_extra.ensureUnusedCapacity(func.gpa, fields.len);
return func.addExtraAssumeCapacity(extra);
}
/// Appends entries to `mir_extra` based on the type of `extra`.
/// Returns the index into `mir_extra`
fn addExtraAssumeCapacity(func: *CodeGen, extra: anytype) error{OutOfMemory}!u32 {
const fields = std.meta.fields(@TypeOf(extra));
const result = @as(u32, @intCast(func.mir_extra.items.len));
inline for (fields) |field| {
func.mir_extra.appendAssumeCapacity(switch (field.type) {
u32 => @field(extra, field.name),
else => |field_type| @compileError("Unsupported field type " ++ @typeName(field_type)),
});
}
return result;
}
/// Using a given `Type`, returns the corresponding valtype for .auto callconv
fn typeToValtype(ty: Type, pt: Zcu.PerThread, target: std.Target) wasm.Valtype {
const mod = pt.zcu;
const ip = &mod.intern_pool;
return switch (ty.zigTypeTag(mod)) {
.Float => switch (ty.floatBits(target)) {
16 => .i32, // stored/loaded as u16
32 => .f32,
64 => .f64,
80, 128 => .i32,
else => unreachable,
},
.Int, .Enum => switch (ty.intInfo(pt.zcu).bits) {
0...32 => .i32,
33...64 => .i64,
else => .i32,
},
.Struct => blk: {
if (pt.zcu.typeToPackedStruct(ty)) |packed_struct| {
const backing_int_ty = Type.fromInterned(packed_struct.backingIntTypeUnordered(ip));
break :blk typeToValtype(backing_int_ty, pt, target);
} else {
break :blk .i32;
}
},
.Vector => switch (determineSimdStoreStrategy(ty, pt, target)) {
.direct => .v128,
.unrolled => .i32,
},
.Union => switch (ty.containerLayout(pt.zcu)) {
.@"packed" => blk: {
const int_ty = pt.intType(.unsigned, @as(u16, @intCast(ty.bitSize(pt)))) catch @panic("out of memory");
break :blk typeToValtype(int_ty, pt, target);
},
else => .i32,
},
else => .i32, // all represented as reference/immediate
};
}
/// Using a given `Type`, returns the byte representation of its wasm value type
fn genValtype(ty: Type, pt: Zcu.PerThread, target: std.Target) u8 {
return wasm.valtype(typeToValtype(ty, pt, target));
}
/// Using a given `Type`, returns the corresponding wasm value type
/// Differently from `genValtype` this also allows `void` to create a block
/// with no return type
fn genBlockType(ty: Type, pt: Zcu.PerThread, target: std.Target) u8 {
return switch (ty.ip_index) {
.void_type, .noreturn_type => wasm.block_empty,
else => genValtype(ty, pt, target),
};
}
/// Writes the bytecode depending on the given `WValue` in `val`
fn emitWValue(func: *CodeGen, value: WValue) InnerError!void {
switch (value) {
.dead => unreachable, // reference to free'd `WValue` (missing reuseOperand?)
.none, .stack => {}, // no-op
.local => |idx| try func.addLabel(.local_get, idx.value),
.imm32 => |val| try func.addImm32(val),
.imm64 => |val| try func.addImm64(val),
.imm128 => |val| try func.addImm128(val),
.float32 => |val| try func.addInst(.{ .tag = .f32_const, .data = .{ .float32 = val } }),
.float64 => |val| try func.addFloat64(val),
.memory => |ptr| {
const extra_index = try func.addExtra(Mir.Memory{ .pointer = ptr, .offset = 0 });
try func.addInst(.{ .tag = .memory_address, .data = .{ .payload = extra_index } });
},
.memory_offset => |mem_off| {
const extra_index = try func.addExtra(Mir.Memory{ .pointer = mem_off.pointer, .offset = mem_off.offset });
try func.addInst(.{ .tag = .memory_address, .data = .{ .payload = extra_index } });
},
.function_index => |index| try func.addLabel(.function_index, index), // write function index and generate relocation
.stack_offset => try func.addLabel(.local_get, func.bottom_stack_value.local.value), // caller must ensure to address the offset
}
}
/// If given a local or stack-offset, increases the reference count by 1.
/// The old `WValue` found at instruction `ref` is then replaced by the
/// modified `WValue` and returned. When given a non-local or non-stack-offset,
/// returns the given `operand` itfunc instead.
fn reuseOperand(func: *CodeGen, ref: Air.Inst.Ref, operand: WValue) WValue {
if (operand != .local and operand != .stack_offset) return operand;
var new_value = operand;
switch (new_value) {
.local => |*local| local.references += 1,
.stack_offset => |*stack_offset| stack_offset.references += 1,
else => unreachable,
}
const old_value = func.getResolvedInst(ref);
old_value.* = new_value;
return new_value;
}
/// From a reference, returns its resolved `WValue`.
/// It's illegal to provide a `Air.Inst.Ref` that hasn't been resolved yet.
fn getResolvedInst(func: *CodeGen, ref: Air.Inst.Ref) *WValue {
var index = func.branches.items.len;
while (index > 0) : (index -= 1) {
const branch = func.branches.items[index - 1];
if (branch.values.getPtr(ref)) |value| {
return value;
}
}
unreachable; // developer-error: This can only be called on resolved instructions. Use `resolveInst` instead.
}
/// Creates one locals for a given `Type`.
/// Returns a corresponding `Wvalue` with `local` as active tag
fn allocLocal(func: *CodeGen, ty: Type) InnerError!WValue {
const pt = func.pt;
const valtype = typeToValtype(ty, pt, func.target.*);
const index_or_null = switch (valtype) {
.i32 => func.free_locals_i32.popOrNull(),
.i64 => func.free_locals_i64.popOrNull(),
.f32 => func.free_locals_f32.popOrNull(),
.f64 => func.free_locals_f64.popOrNull(),
.v128 => func.free_locals_v128.popOrNull(),
};
if (index_or_null) |index| {
log.debug("reusing local ({d}) of type {}", .{ index, valtype });
return .{ .local = .{ .value = index, .references = 1 } };
}
log.debug("new local of type {}", .{valtype});
return func.ensureAllocLocal(ty);
}
/// Ensures a new local will be created. This is useful when it's useful
/// to use a zero-initialized local.
fn ensureAllocLocal(func: *CodeGen, ty: Type) InnerError!WValue {
const pt = func.pt;
try func.locals.append(func.gpa, genValtype(ty, pt, func.target.*));
const initial_index = func.local_index;
func.local_index += 1;
return .{ .local = .{ .value = initial_index, .references = 1 } };
}
/// Generates a `wasm.Type` from a given function type.
/// Memory is owned by the caller.
fn genFunctype(
gpa: Allocator,
cc: std.builtin.CallingConvention,
params: []const InternPool.Index,
return_type: Type,
pt: Zcu.PerThread,
target: std.Target,
) !wasm.Type {
const mod = pt.zcu;
var temp_params = std.ArrayList(wasm.Valtype).init(gpa);
defer temp_params.deinit();
var returns = std.ArrayList(wasm.Valtype).init(gpa);
defer returns.deinit();
if (firstParamSRet(cc, return_type, pt, target)) {
try temp_params.append(.i32); // memory address is always a 32-bit handle
} else if (return_type.hasRuntimeBitsIgnoreComptime(pt)) {
if (cc == .C) {
const res_classes = abi.classifyType(return_type, pt);
assert(res_classes[0] == .direct and res_classes[1] == .none);
const scalar_type = abi.scalarType(return_type, pt);
try returns.append(typeToValtype(scalar_type, pt, target));
} else {
try returns.append(typeToValtype(return_type, pt, target));
}
} else if (return_type.isError(mod)) {
try returns.append(.i32);
}
// param types
for (params) |param_type_ip| {
const param_type = Type.fromInterned(param_type_ip);
if (!param_type.hasRuntimeBitsIgnoreComptime(pt)) continue;
switch (cc) {
.C => {
const param_classes = abi.classifyType(param_type, pt);
if (param_classes[1] == .none) {
if (param_classes[0] == .direct) {
const scalar_type = abi.scalarType(param_type, pt);
try temp_params.append(typeToValtype(scalar_type, pt, target));
} else {
try temp_params.append(typeToValtype(param_type, pt, target));
}
} else {
// i128/f128
try temp_params.append(.i64);
try temp_params.append(.i64);
}
},
else => try temp_params.append(typeToValtype(param_type, pt, target)),
}
}
return wasm.Type{
.params = try temp_params.toOwnedSlice(),
.returns = try returns.toOwnedSlice(),
};
}
pub fn generate(
bin_file: *link.File,
pt: Zcu.PerThread,
src_loc: Zcu.LazySrcLoc,
func_index: InternPool.Index,
air: Air,
liveness: Liveness,
code: *std.ArrayList(u8),
debug_output: codegen.DebugInfoOutput,
) codegen.CodeGenError!codegen.Result {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const func = zcu.funcInfo(func_index);
const file_scope = zcu.navFileScope(func.owner_nav);
const target = &file_scope.mod.resolved_target.result;
var code_gen: CodeGen = .{
.gpa = gpa,
.pt = pt,
.air = air,
.liveness = liveness,
.code = code,
.owner_nav = func.owner_nav,
.src_loc = src_loc,
.err_msg = undefined,
.locals = .{},
.target = target,
.bin_file = bin_file.cast(.wasm).?,
.debug_output = debug_output,
.func_index = func_index,
};
defer code_gen.deinit();
genFunc(&code_gen) catch |err| switch (err) {
error.CodegenFail => return codegen.Result{ .fail = code_gen.err_msg },
else => |e| return e,
};
return codegen.Result.ok;
}
fn genFunc(func: *CodeGen) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ip = &mod.intern_pool;
const fn_ty = mod.navValue(func.owner_nav).typeOf(mod);
const fn_info = mod.typeToFunc(fn_ty).?;
var func_type = try genFunctype(func.gpa, fn_info.cc, fn_info.param_types.get(ip), Type.fromInterned(fn_info.return_type), pt, func.target.*);
defer func_type.deinit(func.gpa);
_ = try func.bin_file.storeNavType(func.owner_nav, func_type);
var cc_result = try func.resolveCallingConventionValues(fn_ty);
defer cc_result.deinit(func.gpa);
func.args = cc_result.args;
func.return_value = cc_result.return_value;
try func.addTag(.dbg_prologue_end);
try func.branches.append(func.gpa, .{});
// clean up outer branch
defer {
var outer_branch = func.branches.pop();
outer_branch.deinit(func.gpa);
assert(func.branches.items.len == 0); // missing branch merge
}
// Generate MIR for function body
try func.genBody(func.air.getMainBody());
// In case we have a return value, but the last instruction is a noreturn (such as a while loop)
// we emit an unreachable instruction to tell the stack validator that part will never be reached.
if (func_type.returns.len != 0 and func.air.instructions.len > 0) {
const inst: Air.Inst.Index = @enumFromInt(func.air.instructions.len - 1);
const last_inst_ty = func.typeOfIndex(inst);
if (!last_inst_ty.hasRuntimeBitsIgnoreComptime(pt) or last_inst_ty.isNoReturn(mod)) {
try func.addTag(.@"unreachable");
}
}
// End of function body
try func.addTag(.end);
try func.addTag(.dbg_epilogue_begin);
// check if we have to initialize and allocate anything into the stack frame.
// If so, create enough stack space and insert the instructions at the front of the list.
if (func.initial_stack_value != .none) {
var prologue = std.ArrayList(Mir.Inst).init(func.gpa);
defer prologue.deinit();
const sp = @intFromEnum(func.bin_file.zigObjectPtr().?.stack_pointer_sym);
// load stack pointer
try prologue.append(.{ .tag = .global_get, .data = .{ .label = sp } });
// store stack pointer so we can restore it when we return from the function
try prologue.append(.{ .tag = .local_tee, .data = .{ .label = func.initial_stack_value.local.value } });
// get the total stack size
const aligned_stack = func.stack_alignment.forward(func.stack_size);
try prologue.append(.{ .tag = .i32_const, .data = .{ .imm32 = @intCast(aligned_stack) } });
// subtract it from the current stack pointer
try prologue.append(.{ .tag = .i32_sub, .data = .{ .tag = {} } });
// Get negative stack alignment
try prologue.append(.{ .tag = .i32_const, .data = .{ .imm32 = @as(i32, @intCast(func.stack_alignment.toByteUnits().?)) * -1 } });
// Bitwise-and the value to get the new stack pointer to ensure the pointers are aligned with the abi alignment
try prologue.append(.{ .tag = .i32_and, .data = .{ .tag = {} } });
// store the current stack pointer as the bottom, which will be used to calculate all stack pointer offsets
try prologue.append(.{ .tag = .local_tee, .data = .{ .label = func.bottom_stack_value.local.value } });
// Store the current stack pointer value into the global stack pointer so other function calls will
// start from this value instead and not overwrite the current stack.
try prologue.append(.{ .tag = .global_set, .data = .{ .label = sp } });
// reserve space and insert all prologue instructions at the front of the instruction list
// We insert them in reserve order as there is no insertSlice in multiArrayList.
try func.mir_instructions.ensureUnusedCapacity(func.gpa, prologue.items.len);
for (prologue.items, 0..) |_, index| {
const inst = prologue.items[prologue.items.len - 1 - index];
func.mir_instructions.insertAssumeCapacity(0, inst);
}
}
var mir: Mir = .{
.instructions = func.mir_instructions.toOwnedSlice(),
.extra = try func.mir_extra.toOwnedSlice(func.gpa),
};
defer mir.deinit(func.gpa);
var emit: Emit = .{
.mir = mir,
.bin_file = func.bin_file,
.code = func.code,
.locals = func.locals.items,
.owner_nav = func.owner_nav,
.dbg_output = func.debug_output,
.prev_di_line = 0,
.prev_di_column = 0,
.prev_di_offset = 0,
};
emit.emitMir() catch |err| switch (err) {
error.EmitFail => {
func.err_msg = emit.error_msg.?;
return error.CodegenFail;
},
else => |e| return e,
};
}
const CallWValues = struct {
args: []WValue,
return_value: WValue,
fn deinit(values: *CallWValues, gpa: Allocator) void {
gpa.free(values.args);
values.* = undefined;
}
};
fn resolveCallingConventionValues(func: *CodeGen, fn_ty: Type) InnerError!CallWValues {
const pt = func.pt;
const mod = pt.zcu;
const ip = &mod.intern_pool;
const fn_info = mod.typeToFunc(fn_ty).?;
const cc = fn_info.cc;
var result: CallWValues = .{
.args = &.{},
.return_value = .none,
};
if (cc == .Naked) return result;
var args = std.ArrayList(WValue).init(func.gpa);
defer args.deinit();
// Check if we store the result as a pointer to the stack rather than
// by value
if (firstParamSRet(fn_info.cc, Type.fromInterned(fn_info.return_type), pt, func.target.*)) {
// the sret arg will be passed as first argument, therefore we
// set the `return_value` before allocating locals for regular args.
result.return_value = .{ .local = .{ .value = func.local_index, .references = 1 } };
func.local_index += 1;
}
switch (cc) {
.Unspecified => {
for (fn_info.param_types.get(ip)) |ty| {
if (!Type.fromInterned(ty).hasRuntimeBitsIgnoreComptime(pt)) {
continue;
}
try args.append(.{ .local = .{ .value = func.local_index, .references = 1 } });
func.local_index += 1;
}
},
.C => {
for (fn_info.param_types.get(ip)) |ty| {
const ty_classes = abi.classifyType(Type.fromInterned(ty), pt);
for (ty_classes) |class| {
if (class == .none) continue;
try args.append(.{ .local = .{ .value = func.local_index, .references = 1 } });
func.local_index += 1;
}
}
},
else => return func.fail("calling convention '{s}' not supported for Wasm", .{@tagName(cc)}),
}
result.args = try args.toOwnedSlice();
return result;
}
fn firstParamSRet(cc: std.builtin.CallingConvention, return_type: Type, pt: Zcu.PerThread, target: std.Target) bool {
switch (cc) {
.Unspecified, .Inline => return isByRef(return_type, pt, target),
.C => {
const ty_classes = abi.classifyType(return_type, pt);
if (ty_classes[0] == .indirect) return true;
if (ty_classes[0] == .direct and ty_classes[1] == .direct) return true;
return false;
},
else => return false,
}
}
/// Lowers a Zig type and its value based on a given calling convention to ensure
/// it matches the ABI.
fn lowerArg(func: *CodeGen, cc: std.builtin.CallingConvention, ty: Type, value: WValue) !void {
if (cc != .C) {
return func.lowerToStack(value);
}
const pt = func.pt;
const mod = pt.zcu;
const ty_classes = abi.classifyType(ty, pt);
assert(ty_classes[0] != .none);
switch (ty.zigTypeTag(mod)) {
.Struct, .Union => {
if (ty_classes[0] == .indirect) {
return func.lowerToStack(value);
}
assert(ty_classes[0] == .direct);
const scalar_type = abi.scalarType(ty, pt);
switch (value) {
.memory,
.memory_offset,
.stack_offset,
=> _ = try func.load(value, scalar_type, 0),
.dead => unreachable,
else => try func.emitWValue(value),
}
},
.Int, .Float => {
if (ty_classes[1] == .none) {
return func.lowerToStack(value);
}
assert(ty_classes[0] == .direct and ty_classes[1] == .direct);
assert(ty.abiSize(pt) == 16);
// in this case we have an integer or float that must be lowered as 2 i64's.
try func.emitWValue(value);
try func.addMemArg(.i64_load, .{ .offset = value.offset(), .alignment = 8 });
try func.emitWValue(value);
try func.addMemArg(.i64_load, .{ .offset = value.offset() + 8, .alignment = 8 });
},
else => return func.lowerToStack(value),
}
}
/// Lowers a `WValue` to the stack. This means when the `value` results in
/// `.stack_offset` we calculate the pointer of this offset and use that.
/// The value is left on the stack, and not stored in any temporary.
fn lowerToStack(func: *CodeGen, value: WValue) !void {
switch (value) {
.stack_offset => |offset| {
try func.emitWValue(value);
if (offset.value > 0) {
switch (func.arch()) {
.wasm32 => {
try func.addImm32(offset.value);
try func.addTag(.i32_add);
},
.wasm64 => {
try func.addImm64(offset.value);
try func.addTag(.i64_add);
},
else => unreachable,
}
}
},
else => try func.emitWValue(value),
}
}
/// Creates a local for the initial stack value
/// Asserts `initial_stack_value` is `.none`
fn initializeStack(func: *CodeGen) !void {
assert(func.initial_stack_value == .none);
// Reserve a local to store the current stack pointer
// We can later use this local to set the stack pointer back to the value
// we have stored here.
func.initial_stack_value = try func.ensureAllocLocal(Type.usize);
// Also reserve a local to store the bottom stack value
func.bottom_stack_value = try func.ensureAllocLocal(Type.usize);
}
/// Reads the stack pointer from `Context.initial_stack_value` and writes it
/// to the global stack pointer variable
fn restoreStackPointer(func: *CodeGen) !void {
// only restore the pointer if it was initialized
if (func.initial_stack_value == .none) return;
// Get the original stack pointer's value
try func.emitWValue(func.initial_stack_value);
// save its value in the global stack pointer
try func.addLabel(.global_set, @intFromEnum(func.bin_file.zigObjectPtr().?.stack_pointer_sym));
}
/// From a given type, will create space on the virtual stack to store the value of such type.
/// This returns a `WValue` with its active tag set to `local`, containing the index to the local
/// that points to the position on the virtual stack. This function should be used instead of
/// moveStack unless a local was already created to store the pointer.
///
/// Asserts Type has codegenbits
fn allocStack(func: *CodeGen, ty: Type) !WValue {
const pt = func.pt;
assert(ty.hasRuntimeBitsIgnoreComptime(pt));
if (func.initial_stack_value == .none) {
try func.initializeStack();
}
const abi_size = std.math.cast(u32, ty.abiSize(pt)) orelse {
return func.fail("Type {} with ABI size of {d} exceeds stack frame size", .{
ty.fmt(pt), ty.abiSize(pt),
});
};
const abi_align = ty.abiAlignment(pt);
func.stack_alignment = func.stack_alignment.max(abi_align);
const offset: u32 = @intCast(abi_align.forward(func.stack_size));
defer func.stack_size = offset + abi_size;
return .{ .stack_offset = .{ .value = offset, .references = 1 } };
}
/// From a given AIR instruction generates a pointer to the stack where
/// the value of its type will live.
/// This is different from allocStack where this will use the pointer's alignment
/// if it is set, to ensure the stack alignment will be set correctly.
fn allocStackPtr(func: *CodeGen, inst: Air.Inst.Index) !WValue {
const pt = func.pt;
const mod = pt.zcu;
const ptr_ty = func.typeOfIndex(inst);
const pointee_ty = ptr_ty.childType(mod);
if (func.initial_stack_value == .none) {
try func.initializeStack();
}
if (!pointee_ty.hasRuntimeBitsIgnoreComptime(pt)) {
return func.allocStack(Type.usize); // create a value containing just the stack pointer.
}
const abi_alignment = ptr_ty.ptrAlignment(pt);
const abi_size = std.math.cast(u32, pointee_ty.abiSize(pt)) orelse {
return func.fail("Type {} with ABI size of {d} exceeds stack frame size", .{
pointee_ty.fmt(pt), pointee_ty.abiSize(pt),
});
};
func.stack_alignment = func.stack_alignment.max(abi_alignment);
const offset: u32 = @intCast(abi_alignment.forward(func.stack_size));
defer func.stack_size = offset + abi_size;
return .{ .stack_offset = .{ .value = offset, .references = 1 } };
}
/// From given zig bitsize, returns the wasm bitsize
fn toWasmBits(bits: u16) ?u16 {
return for ([_]u16{ 32, 64, 128 }) |wasm_bits| {
if (bits <= wasm_bits) return wasm_bits;
} else null;
}
/// Performs a copy of bytes for a given type. Copying all bytes
/// from rhs to lhs.
fn memcpy(func: *CodeGen, dst: WValue, src: WValue, len: WValue) !void {
// When bulk_memory is enabled, we lower it to wasm's memcpy instruction.
// If not, we lower it ourselves manually
if (std.Target.wasm.featureSetHas(func.target.cpu.features, .bulk_memory)) {
try func.lowerToStack(dst);
try func.lowerToStack(src);
try func.emitWValue(len);
try func.addExtended(.memory_copy);
return;
}
// when the length is comptime-known, rather than a runtime value, we can optimize the generated code by having
// the loop during codegen, rather than inserting a runtime loop into the binary.
switch (len) {
.imm32, .imm64 => blk: {
const length = switch (len) {
.imm32 => |val| val,
.imm64 => |val| val,
else => unreachable,
};
// if the size (length) is more than 32 bytes, we use a runtime loop instead to prevent
// binary size bloat.
if (length > 32) break :blk;
var offset: u32 = 0;
const lhs_base = dst.offset();
const rhs_base = src.offset();
while (offset < length) : (offset += 1) {
// get dst's address to store the result
try func.emitWValue(dst);
// load byte from src's address
try func.emitWValue(src);
switch (func.arch()) {
.wasm32 => {
try func.addMemArg(.i32_load8_u, .{ .offset = rhs_base + offset, .alignment = 1 });
try func.addMemArg(.i32_store8, .{ .offset = lhs_base + offset, .alignment = 1 });
},
.wasm64 => {
try func.addMemArg(.i64_load8_u, .{ .offset = rhs_base + offset, .alignment = 1 });
try func.addMemArg(.i64_store8, .{ .offset = lhs_base + offset, .alignment = 1 });
},
else => unreachable,
}
}
return;
},
else => {},
}
// allocate a local for the offset, and set it to 0.
// This to ensure that inside loops we correctly re-set the counter.
var offset = try func.allocLocal(Type.usize); // local for counter
defer offset.free(func);
switch (func.arch()) {
.wasm32 => try func.addImm32(0),
.wasm64 => try func.addImm64(0),
else => unreachable,
}
try func.addLabel(.local_set, offset.local.value);
// outer block to jump to when loop is done
try func.startBlock(.block, wasm.block_empty);
try func.startBlock(.loop, wasm.block_empty);
// loop condition (offset == length -> break)
{
try func.emitWValue(offset);
try func.emitWValue(len);
switch (func.arch()) {
.wasm32 => try func.addTag(.i32_eq),
.wasm64 => try func.addTag(.i64_eq),
else => unreachable,
}
try func.addLabel(.br_if, 1); // jump out of loop into outer block (finished)
}
// get dst ptr
{
try func.emitWValue(dst);
try func.emitWValue(offset);
switch (func.arch()) {
.wasm32 => try func.addTag(.i32_add),
.wasm64 => try func.addTag(.i64_add),
else => unreachable,
}
}
// get src value and also store in dst
{
try func.emitWValue(src);
try func.emitWValue(offset);
switch (func.arch()) {
.wasm32 => {
try func.addTag(.i32_add);
try func.addMemArg(.i32_load8_u, .{ .offset = src.offset(), .alignment = 1 });
try func.addMemArg(.i32_store8, .{ .offset = dst.offset(), .alignment = 1 });
},
.wasm64 => {
try func.addTag(.i64_add);
try func.addMemArg(.i64_load8_u, .{ .offset = src.offset(), .alignment = 1 });
try func.addMemArg(.i64_store8, .{ .offset = dst.offset(), .alignment = 1 });
},
else => unreachable,
}
}
// increment loop counter
{
try func.emitWValue(offset);
switch (func.arch()) {
.wasm32 => {
try func.addImm32(1);
try func.addTag(.i32_add);
},
.wasm64 => {
try func.addImm64(1);
try func.addTag(.i64_add);
},
else => unreachable,
}
try func.addLabel(.local_set, offset.local.value);
try func.addLabel(.br, 0); // jump to start of loop
}
try func.endBlock(); // close off loop block
try func.endBlock(); // close off outer block
}
fn ptrSize(func: *const CodeGen) u16 {
return @divExact(func.target.ptrBitWidth(), 8);
}
fn arch(func: *const CodeGen) std.Target.Cpu.Arch {
return func.target.cpu.arch;
}
/// For a given `Type`, will return true when the type will be passed
/// by reference, rather than by value
fn isByRef(ty: Type, pt: Zcu.PerThread, target: std.Target) bool {
const mod = pt.zcu;
const ip = &mod.intern_pool;
switch (ty.zigTypeTag(mod)) {
.Type,
.ComptimeInt,
.ComptimeFloat,
.EnumLiteral,
.Undefined,
.Null,
.Opaque,
=> unreachable,
.NoReturn,
.Void,
.Bool,
.ErrorSet,
.Fn,
.AnyFrame,
=> return false,
.Array,
.Frame,
=> return ty.hasRuntimeBitsIgnoreComptime(pt),
.Union => {
if (mod.typeToUnion(ty)) |union_obj| {
if (union_obj.flagsUnordered(ip).layout == .@"packed") {
return ty.abiSize(pt) > 8;
}
}
return ty.hasRuntimeBitsIgnoreComptime(pt);
},
.Struct => {
if (mod.typeToPackedStruct(ty)) |packed_struct| {
return isByRef(Type.fromInterned(packed_struct.backingIntTypeUnordered(ip)), pt, target);
}
return ty.hasRuntimeBitsIgnoreComptime(pt);
},
.Vector => return determineSimdStoreStrategy(ty, pt, target) == .unrolled,
.Int => return ty.intInfo(mod).bits > 64,
.Enum => return ty.intInfo(mod).bits > 64,
.Float => return ty.floatBits(target) > 64,
.ErrorUnion => {
const pl_ty = ty.errorUnionPayload(mod);
if (!pl_ty.hasRuntimeBitsIgnoreComptime(pt)) {
return false;
}
return true;
},
.Optional => {
if (ty.isPtrLikeOptional(mod)) return false;
const pl_type = ty.optionalChild(mod);
if (pl_type.zigTypeTag(mod) == .ErrorSet) return false;
return pl_type.hasRuntimeBitsIgnoreComptime(pt);
},
.Pointer => {
// Slices act like struct and will be passed by reference
if (ty.isSlice(mod)) return true;
return false;
},
}
}
const SimdStoreStrategy = enum {
direct,
unrolled,
};
/// For a given vector type, returns the `SimdStoreStrategy`.
/// This means when a given type is 128 bits and either the simd128 or relaxed-simd
/// features are enabled, the function will return `.direct`. This would allow to store
/// it using a instruction, rather than an unrolled version.
fn determineSimdStoreStrategy(ty: Type, pt: Zcu.PerThread, target: std.Target) SimdStoreStrategy {
std.debug.assert(ty.zigTypeTag(pt.zcu) == .Vector);
if (ty.bitSize(pt) != 128) return .unrolled;
const hasFeature = std.Target.wasm.featureSetHas;
const features = target.cpu.features;
if (hasFeature(features, .relaxed_simd) or hasFeature(features, .simd128)) {
return .direct;
}
return .unrolled;
}
/// Creates a new local for a pointer that points to memory with given offset.
/// This can be used to get a pointer to a struct field, error payload, etc.
/// By providing `modify` as action, it will modify the given `ptr_value` instead of making a new
/// local value to store the pointer. This allows for local re-use and improves binary size.
fn buildPointerOffset(func: *CodeGen, ptr_value: WValue, offset: u64, action: enum { modify, new }) InnerError!WValue {
// do not perform arithmetic when offset is 0.
if (offset == 0 and ptr_value.offset() == 0 and action == .modify) return ptr_value;
const result_ptr: WValue = switch (action) {
.new => try func.ensureAllocLocal(Type.usize),
.modify => ptr_value,
};
try func.emitWValue(ptr_value);
if (offset + ptr_value.offset() > 0) {
switch (func.arch()) {
.wasm32 => {
try func.addImm32(@intCast(offset + ptr_value.offset()));
try func.addTag(.i32_add);
},
.wasm64 => {
try func.addImm64(offset + ptr_value.offset());
try func.addTag(.i64_add);
},
else => unreachable,
}
}
try func.addLabel(.local_set, result_ptr.local.value);
return result_ptr;
}
fn genInst(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const air_tags = func.air.instructions.items(.tag);
return switch (air_tags[@intFromEnum(inst)]) {
.inferred_alloc, .inferred_alloc_comptime => unreachable,
.add => func.airBinOp(inst, .add),
.add_sat => func.airSatBinOp(inst, .add),
.add_wrap => func.airWrapBinOp(inst, .add),
.sub => func.airBinOp(inst, .sub),
.sub_sat => func.airSatBinOp(inst, .sub),
.sub_wrap => func.airWrapBinOp(inst, .sub),
.mul => func.airBinOp(inst, .mul),
.mul_sat => func.airSatMul(inst),
.mul_wrap => func.airWrapBinOp(inst, .mul),
.div_float, .div_exact => func.airDiv(inst),
.div_trunc => func.airDivTrunc(inst),
.div_floor => func.airDivFloor(inst),
.bit_and => func.airBinOp(inst, .@"and"),
.bit_or => func.airBinOp(inst, .@"or"),
.bool_and => func.airBinOp(inst, .@"and"),
.bool_or => func.airBinOp(inst, .@"or"),
.rem => func.airRem(inst),
.mod => func.airMod(inst),
.shl => func.airWrapBinOp(inst, .shl),
.shl_exact => func.airBinOp(inst, .shl),
.shl_sat => func.airShlSat(inst),
.shr, .shr_exact => func.airBinOp(inst, .shr),
.xor => func.airBinOp(inst, .xor),
.max => func.airMaxMin(inst, .max),
.min => func.airMaxMin(inst, .min),
.mul_add => func.airMulAdd(inst),
.sqrt => func.airUnaryFloatOp(inst, .sqrt),
.sin => func.airUnaryFloatOp(inst, .sin),
.cos => func.airUnaryFloatOp(inst, .cos),
.tan => func.airUnaryFloatOp(inst, .tan),
.exp => func.airUnaryFloatOp(inst, .exp),
.exp2 => func.airUnaryFloatOp(inst, .exp2),
.log => func.airUnaryFloatOp(inst, .log),
.log2 => func.airUnaryFloatOp(inst, .log2),
.log10 => func.airUnaryFloatOp(inst, .log10),
.floor => func.airUnaryFloatOp(inst, .floor),
.ceil => func.airUnaryFloatOp(inst, .ceil),
.round => func.airUnaryFloatOp(inst, .round),
.trunc_float => func.airUnaryFloatOp(inst, .trunc),
.neg => func.airUnaryFloatOp(inst, .neg),
.abs => func.airAbs(inst),
.add_with_overflow => func.airAddSubWithOverflow(inst, .add),
.sub_with_overflow => func.airAddSubWithOverflow(inst, .sub),
.shl_with_overflow => func.airShlWithOverflow(inst),
.mul_with_overflow => func.airMulWithOverflow(inst),
.clz => func.airClz(inst),
.ctz => func.airCtz(inst),
.cmp_eq => func.airCmp(inst, .eq),
.cmp_gte => func.airCmp(inst, .gte),
.cmp_gt => func.airCmp(inst, .gt),
.cmp_lte => func.airCmp(inst, .lte),
.cmp_lt => func.airCmp(inst, .lt),
.cmp_neq => func.airCmp(inst, .neq),
.cmp_vector => func.airCmpVector(inst),
.cmp_lt_errors_len => func.airCmpLtErrorsLen(inst),
.array_elem_val => func.airArrayElemVal(inst),
.array_to_slice => func.airArrayToSlice(inst),
.alloc => func.airAlloc(inst),
.arg => func.airArg(inst),
.bitcast => func.airBitcast(inst),
.block => func.airBlock(inst),
.trap => func.airTrap(inst),
.breakpoint => func.airBreakpoint(inst),
.br => func.airBr(inst),
.int_from_bool => func.airIntFromBool(inst),
.cond_br => func.airCondBr(inst),
.intcast => func.airIntcast(inst),
.fptrunc => func.airFptrunc(inst),
.fpext => func.airFpext(inst),
.int_from_float => func.airIntFromFloat(inst),
.float_from_int => func.airFloatFromInt(inst),
.get_union_tag => func.airGetUnionTag(inst),
.@"try" => func.airTry(inst),
.try_ptr => func.airTryPtr(inst),
.dbg_stmt => func.airDbgStmt(inst),
.dbg_inline_block => func.airDbgInlineBlock(inst),
.dbg_var_ptr => func.airDbgVar(inst, true),
.dbg_var_val => func.airDbgVar(inst, false),
.call => func.airCall(inst, .auto),
.call_always_tail => func.airCall(inst, .always_tail),
.call_never_tail => func.airCall(inst, .never_tail),
.call_never_inline => func.airCall(inst, .never_inline),
.is_err => func.airIsErr(inst, .i32_ne),
.is_non_err => func.airIsErr(inst, .i32_eq),
.is_null => func.airIsNull(inst, .i32_eq, .value),
.is_non_null => func.airIsNull(inst, .i32_ne, .value),
.is_null_ptr => func.airIsNull(inst, .i32_eq, .ptr),
.is_non_null_ptr => func.airIsNull(inst, .i32_ne, .ptr),
.load => func.airLoad(inst),
.loop => func.airLoop(inst),
.memset => func.airMemset(inst, false),
.memset_safe => func.airMemset(inst, true),
.not => func.airNot(inst),
.optional_payload => func.airOptionalPayload(inst),
.optional_payload_ptr => func.airOptionalPayloadPtr(inst),
.optional_payload_ptr_set => func.airOptionalPayloadPtrSet(inst),
.ptr_add => func.airPtrBinOp(inst, .add),
.ptr_sub => func.airPtrBinOp(inst, .sub),
.ptr_elem_ptr => func.airPtrElemPtr(inst),
.ptr_elem_val => func.airPtrElemVal(inst),
.int_from_ptr => func.airIntFromPtr(inst),
.ret => func.airRet(inst),
.ret_safe => func.airRet(inst), // TODO
.ret_ptr => func.airRetPtr(inst),
.ret_load => func.airRetLoad(inst),
.splat => func.airSplat(inst),
.select => func.airSelect(inst),
.shuffle => func.airShuffle(inst),
.reduce => func.airReduce(inst),
.aggregate_init => func.airAggregateInit(inst),
.union_init => func.airUnionInit(inst),
.prefetch => func.airPrefetch(inst),
.popcount => func.airPopcount(inst),
.byte_swap => func.airByteSwap(inst),
.bit_reverse => func.airBitReverse(inst),
.slice => func.airSlice(inst),
.slice_len => func.airSliceLen(inst),
.slice_elem_val => func.airSliceElemVal(inst),
.slice_elem_ptr => func.airSliceElemPtr(inst),
.slice_ptr => func.airSlicePtr(inst),
.ptr_slice_len_ptr => func.airPtrSliceFieldPtr(inst, func.ptrSize()),
.ptr_slice_ptr_ptr => func.airPtrSliceFieldPtr(inst, 0),
.store => func.airStore(inst, false),
.store_safe => func.airStore(inst, true),
.set_union_tag => func.airSetUnionTag(inst),
.struct_field_ptr => func.airStructFieldPtr(inst),
.struct_field_ptr_index_0 => func.airStructFieldPtrIndex(inst, 0),
.struct_field_ptr_index_1 => func.airStructFieldPtrIndex(inst, 1),
.struct_field_ptr_index_2 => func.airStructFieldPtrIndex(inst, 2),
.struct_field_ptr_index_3 => func.airStructFieldPtrIndex(inst, 3),
.struct_field_val => func.airStructFieldVal(inst),
.field_parent_ptr => func.airFieldParentPtr(inst),
.switch_br => func.airSwitchBr(inst),
.trunc => func.airTrunc(inst),
.unreach => func.airUnreachable(inst),
.wrap_optional => func.airWrapOptional(inst),
.unwrap_errunion_payload => func.airUnwrapErrUnionPayload(inst, false),
.unwrap_errunion_payload_ptr => func.airUnwrapErrUnionPayload(inst, true),
.unwrap_errunion_err => func.airUnwrapErrUnionError(inst, false),
.unwrap_errunion_err_ptr => func.airUnwrapErrUnionError(inst, true),
.wrap_errunion_payload => func.airWrapErrUnionPayload(inst),
.wrap_errunion_err => func.airWrapErrUnionErr(inst),
.errunion_payload_ptr_set => func.airErrUnionPayloadPtrSet(inst),
.error_name => func.airErrorName(inst),
.wasm_memory_size => func.airWasmMemorySize(inst),
.wasm_memory_grow => func.airWasmMemoryGrow(inst),
.memcpy => func.airMemcpy(inst),
.ret_addr => func.airRetAddr(inst),
.tag_name => func.airTagName(inst),
.error_set_has_value => func.airErrorSetHasValue(inst),
.frame_addr => func.airFrameAddress(inst),
.assembly,
.is_err_ptr,
.is_non_err_ptr,
.err_return_trace,
.set_err_return_trace,
.save_err_return_trace_index,
.is_named_enum_value,
.addrspace_cast,
.vector_store_elem,
.c_va_arg,
.c_va_copy,
.c_va_end,
.c_va_start,
=> |tag| return func.fail("TODO: Implement wasm inst: {s}", .{@tagName(tag)}),
.atomic_load => func.airAtomicLoad(inst),
.atomic_store_unordered,
.atomic_store_monotonic,
.atomic_store_release,
.atomic_store_seq_cst,
// in WebAssembly, all atomic instructions are sequentially ordered.
=> func.airAtomicStore(inst),
.atomic_rmw => func.airAtomicRmw(inst),
.cmpxchg_weak => func.airCmpxchg(inst),
.cmpxchg_strong => func.airCmpxchg(inst),
.fence => func.airFence(inst),
.add_optimized,
.sub_optimized,
.mul_optimized,
.div_float_optimized,
.div_trunc_optimized,
.div_floor_optimized,
.div_exact_optimized,
.rem_optimized,
.mod_optimized,
.neg_optimized,
.cmp_lt_optimized,
.cmp_lte_optimized,
.cmp_eq_optimized,
.cmp_gte_optimized,
.cmp_gt_optimized,
.cmp_neq_optimized,
.cmp_vector_optimized,
.reduce_optimized,
.int_from_float_optimized,
=> return func.fail("TODO implement optimized float mode", .{}),
.add_safe,
.sub_safe,
.mul_safe,
=> return func.fail("TODO implement safety_checked_instructions", .{}),
.work_item_id,
.work_group_size,
.work_group_id,
=> unreachable,
};
}
fn genBody(func: *CodeGen, body: []const Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ip = &mod.intern_pool;
for (body) |inst| {
if (func.liveness.isUnused(inst) and !func.air.mustLower(inst, ip)) {
continue;
}
const old_bookkeeping_value = func.air_bookkeeping;
try func.currentBranch().values.ensureUnusedCapacity(func.gpa, Liveness.bpi);
try func.genInst(inst);
if (std.debug.runtime_safety and func.air_bookkeeping < old_bookkeeping_value + 1) {
std.debug.panic("Missing call to `finishAir` in AIR instruction %{d} ('{}')", .{
inst,
func.air.instructions.items(.tag)[@intFromEnum(inst)],
});
}
}
}
fn airRet(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try func.resolveInst(un_op);
const fn_info = mod.typeToFunc(mod.navValue(func.owner_nav).typeOf(mod)).?;
const ret_ty = Type.fromInterned(fn_info.return_type);
// result must be stored in the stack and we return a pointer
// to the stack instead
if (func.return_value != .none) {
try func.store(func.return_value, operand, ret_ty, 0);
} else if (fn_info.cc == .C and ret_ty.hasRuntimeBitsIgnoreComptime(pt)) {
switch (ret_ty.zigTypeTag(mod)) {
// Aggregate types can be lowered as a singular value
.Struct, .Union => {
const scalar_type = abi.scalarType(ret_ty, pt);
try func.emitWValue(operand);
const opcode = buildOpcode(.{
.op = .load,
.width = @as(u8, @intCast(scalar_type.abiSize(pt) * 8)),
.signedness = if (scalar_type.isSignedInt(mod)) .signed else .unsigned,
.valtype1 = typeToValtype(scalar_type, pt, func.target.*),
});
try func.addMemArg(Mir.Inst.Tag.fromOpcode(opcode), .{
.offset = operand.offset(),
.alignment = @intCast(scalar_type.abiAlignment(pt).toByteUnits().?),
});
},
else => try func.emitWValue(operand),
}
} else {
if (!ret_ty.hasRuntimeBitsIgnoreComptime(pt) and ret_ty.isError(mod)) {
try func.addImm32(0);
} else {
try func.emitWValue(operand);
}
}
try func.restoreStackPointer();
try func.addTag(.@"return");
return func.finishAir(inst, .none, &.{un_op});
}
fn airRetPtr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const child_type = func.typeOfIndex(inst).childType(mod);
const result = result: {
if (!child_type.isFnOrHasRuntimeBitsIgnoreComptime(pt)) {
break :result try func.allocStack(Type.usize); // create pointer to void
}
const fn_info = mod.typeToFunc(mod.navValue(func.owner_nav).typeOf(mod)).?;
if (firstParamSRet(fn_info.cc, Type.fromInterned(fn_info.return_type), pt, func.target.*)) {
break :result func.return_value;
}
break :result try func.allocStackPtr(inst);
};
return func.finishAir(inst, result, &.{});
}
fn airRetLoad(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try func.resolveInst(un_op);
const ret_ty = func.typeOf(un_op).childType(mod);
const fn_info = mod.typeToFunc(mod.navValue(func.owner_nav).typeOf(mod)).?;
if (!ret_ty.hasRuntimeBitsIgnoreComptime(pt)) {
if (ret_ty.isError(mod)) {
try func.addImm32(0);
}
} else if (!firstParamSRet(fn_info.cc, Type.fromInterned(fn_info.return_type), pt, func.target.*)) {
// leave on the stack
_ = try func.load(operand, ret_ty, 0);
}
try func.restoreStackPointer();
try func.addTag(.@"return");
return func.finishAir(inst, .none, &.{un_op});
}
fn airCall(func: *CodeGen, inst: Air.Inst.Index, modifier: std.builtin.CallModifier) InnerError!void {
if (modifier == .always_tail) return func.fail("TODO implement tail calls for wasm", .{});
const pl_op = func.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = func.air.extraData(Air.Call, pl_op.payload);
const args = @as([]const Air.Inst.Ref, @ptrCast(func.air.extra[extra.end..][0..extra.data.args_len]));
const ty = func.typeOf(pl_op.operand);
const pt = func.pt;
const mod = pt.zcu;
const ip = &mod.intern_pool;
const fn_ty = switch (ty.zigTypeTag(mod)) {
.Fn => ty,
.Pointer => ty.childType(mod),
else => unreachable,
};
const ret_ty = fn_ty.fnReturnType(mod);
const fn_info = mod.typeToFunc(fn_ty).?;
const first_param_sret = firstParamSRet(fn_info.cc, Type.fromInterned(fn_info.return_type), pt, func.target.*);
const callee: ?InternPool.Nav.Index = blk: {
const func_val = (try func.air.value(pl_op.operand, pt)) orelse break :blk null;
switch (ip.indexToKey(func_val.toIntern())) {
.func => |function| {
_ = try func.bin_file.getOrCreateAtomForNav(pt, function.owner_nav);
break :blk function.owner_nav;
},
.@"extern" => |@"extern"| {
const ext_nav = ip.getNav(@"extern".owner_nav);
const ext_info = mod.typeToFunc(Type.fromInterned(@"extern".ty)).?;
var func_type = try genFunctype(
func.gpa,
ext_info.cc,
ext_info.param_types.get(ip),
Type.fromInterned(ext_info.return_type),
pt,
func.target.*,
);
defer func_type.deinit(func.gpa);
const atom_index = try func.bin_file.getOrCreateAtomForNav(pt, @"extern".owner_nav);
const atom = func.bin_file.getAtomPtr(atom_index);
const type_index = try func.bin_file.storeNavType(@"extern".owner_nav, func_type);
try func.bin_file.addOrUpdateImport(
ext_nav.name.toSlice(ip),
atom.sym_index,
@"extern".lib_name.toSlice(ip),
type_index,
);
break :blk @"extern".owner_nav;
},
.ptr => |ptr| if (ptr.byte_offset == 0) switch (ptr.base_addr) {
.nav => |nav| {
_ = try func.bin_file.getOrCreateAtomForNav(pt, nav);
break :blk nav;
},
else => {},
},
else => {},
}
return func.fail("Expected a function, but instead found '{s}'", .{@tagName(ip.indexToKey(func_val.toIntern()))});
};
const sret: WValue = if (first_param_sret) blk: {
const sret_local = try func.allocStack(ret_ty);
try func.lowerToStack(sret_local);
break :blk sret_local;
} else .none;
for (args) |arg| {
const arg_val = try func.resolveInst(arg);
const arg_ty = func.typeOf(arg);
if (!arg_ty.hasRuntimeBitsIgnoreComptime(pt)) continue;
try func.lowerArg(mod.typeToFunc(fn_ty).?.cc, arg_ty, arg_val);
}
if (callee) |direct| {
const atom_index = func.bin_file.zigObjectPtr().?.navs.get(direct).?.atom;
try func.addLabel(.call, @intFromEnum(func.bin_file.getAtom(atom_index).sym_index));
} else {
// in this case we call a function pointer
// so load its value onto the stack
std.debug.assert(ty.zigTypeTag(mod) == .Pointer);
const operand = try func.resolveInst(pl_op.operand);
try func.emitWValue(operand);
var fn_type = try genFunctype(func.gpa, fn_info.cc, fn_info.param_types.get(ip), Type.fromInterned(fn_info.return_type), pt, func.target.*);
defer fn_type.deinit(func.gpa);
const fn_type_index = try func.bin_file.zigObjectPtr().?.putOrGetFuncType(func.gpa, fn_type);
try func.addLabel(.call_indirect, fn_type_index);
}
const result_value = result_value: {
if (!ret_ty.hasRuntimeBitsIgnoreComptime(pt) and !ret_ty.isError(mod)) {
break :result_value .none;
} else if (ret_ty.isNoReturn(mod)) {
try func.addTag(.@"unreachable");
break :result_value .none;
} else if (first_param_sret) {
break :result_value sret;
// TODO: Make this less fragile and optimize
} else if (mod.typeToFunc(fn_ty).?.cc == .C and ret_ty.zigTypeTag(mod) == .Struct or ret_ty.zigTypeTag(mod) == .Union) {
const result_local = try func.allocLocal(ret_ty);
try func.addLabel(.local_set, result_local.local.value);
const scalar_type = abi.scalarType(ret_ty, pt);
const result = try func.allocStack(scalar_type);
try func.store(result, result_local, scalar_type, 0);
break :result_value result;
} else {
const result_local = try func.allocLocal(ret_ty);
try func.addLabel(.local_set, result_local.local.value);
break :result_value result_local;
}
};
var bt = try func.iterateBigTomb(inst, 1 + args.len);
bt.feed(pl_op.operand);
for (args) |arg| bt.feed(arg);
return bt.finishAir(result_value);
}
fn airAlloc(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const value = try func.allocStackPtr(inst);
return func.finishAir(inst, value, &.{});
}
fn airStore(func: *CodeGen, inst: Air.Inst.Index, safety: bool) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
if (safety) {
// TODO if the value is undef, write 0xaa bytes to dest
} else {
// TODO if the value is undef, don't lower this instruction
}
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try func.resolveInst(bin_op.lhs);
const rhs = try func.resolveInst(bin_op.rhs);
const ptr_ty = func.typeOf(bin_op.lhs);
const ptr_info = ptr_ty.ptrInfo(mod);
const ty = ptr_ty.childType(mod);
if (ptr_info.packed_offset.host_size == 0) {
try func.store(lhs, rhs, ty, 0);
} else {
// at this point we have a non-natural alignment, we must
// load the value, and then shift+or the rhs into the result location.
const int_elem_ty = try pt.intType(.unsigned, ptr_info.packed_offset.host_size * 8);
if (isByRef(int_elem_ty, pt, func.target.*)) {
return func.fail("TODO: airStore for pointers to bitfields with backing type larger than 64bits", .{});
}
var mask = @as(u64, @intCast((@as(u65, 1) << @as(u7, @intCast(ty.bitSize(pt)))) - 1));
mask <<= @as(u6, @intCast(ptr_info.packed_offset.bit_offset));
mask ^= ~@as(u64, 0);
const shift_val: WValue = if (ptr_info.packed_offset.host_size <= 4)
.{ .imm32 = ptr_info.packed_offset.bit_offset }
else
.{ .imm64 = ptr_info.packed_offset.bit_offset };
const mask_val: WValue = if (ptr_info.packed_offset.host_size <= 4)
.{ .imm32 = @as(u32, @truncate(mask)) }
else
.{ .imm64 = mask };
const wrap_mask_val: WValue = if (ptr_info.packed_offset.host_size <= 4)
.{ .imm32 = @truncate(~@as(u64, 0) >> @intCast(64 - ty.bitSize(pt))) }
else
.{ .imm64 = ~@as(u64, 0) >> @intCast(64 - ty.bitSize(pt)) };
try func.emitWValue(lhs);
const loaded = try func.load(lhs, int_elem_ty, 0);
const anded = try func.binOp(loaded, mask_val, int_elem_ty, .@"and");
const extended_value = try func.intcast(rhs, ty, int_elem_ty);
const masked_value = try func.binOp(extended_value, wrap_mask_val, int_elem_ty, .@"and");
const shifted_value = if (ptr_info.packed_offset.bit_offset > 0) shifted: {
break :shifted try func.binOp(masked_value, shift_val, int_elem_ty, .shl);
} else masked_value;
const result = try func.binOp(anded, shifted_value, int_elem_ty, .@"or");
// lhs is still on the stack
try func.store(.stack, result, int_elem_ty, lhs.offset());
}
return func.finishAir(inst, .none, &.{ bin_op.lhs, bin_op.rhs });
}
fn store(func: *CodeGen, lhs: WValue, rhs: WValue, ty: Type, offset: u32) InnerError!void {
assert(!(lhs != .stack and rhs == .stack));
const pt = func.pt;
const mod = pt.zcu;
const abi_size = ty.abiSize(pt);
switch (ty.zigTypeTag(mod)) {
.ErrorUnion => {
const pl_ty = ty.errorUnionPayload(mod);
if (!pl_ty.hasRuntimeBitsIgnoreComptime(pt)) {
return func.store(lhs, rhs, Type.anyerror, 0);
}
const len = @as(u32, @intCast(abi_size));
return func.memcpy(lhs, rhs, .{ .imm32 = len });
},
.Optional => {
if (ty.isPtrLikeOptional(mod)) {
return func.store(lhs, rhs, Type.usize, 0);
}
const pl_ty = ty.optionalChild(mod);
if (!pl_ty.hasRuntimeBitsIgnoreComptime(pt)) {
return func.store(lhs, rhs, Type.u8, 0);
}
if (pl_ty.zigTypeTag(mod) == .ErrorSet) {
return func.store(lhs, rhs, Type.anyerror, 0);
}
const len = @as(u32, @intCast(abi_size));
return func.memcpy(lhs, rhs, .{ .imm32 = len });
},
.Struct, .Array, .Union => if (isByRef(ty, pt, func.target.*)) {
const len = @as(u32, @intCast(abi_size));
return func.memcpy(lhs, rhs, .{ .imm32 = len });
},
.Vector => switch (determineSimdStoreStrategy(ty, pt, func.target.*)) {
.unrolled => {
const len: u32 = @intCast(abi_size);
return func.memcpy(lhs, rhs, .{ .imm32 = len });
},
.direct => {
try func.emitWValue(lhs);
try func.lowerToStack(rhs);
// TODO: Add helper functions for simd opcodes
const extra_index: u32 = @intCast(func.mir_extra.items.len);
// stores as := opcode, offset, alignment (opcode::memarg)
try func.mir_extra.appendSlice(func.gpa, &[_]u32{
std.wasm.simdOpcode(.v128_store),
offset + lhs.offset(),
@intCast(ty.abiAlignment(pt).toByteUnits() orelse 0),
});
return func.addInst(.{ .tag = .simd_prefix, .data = .{ .payload = extra_index } });
},
},
.Pointer => {
if (ty.isSlice(mod)) {
// store pointer first
// lower it to the stack so we do not have to store rhs into a local first
try func.emitWValue(lhs);
const ptr_local = try func.load(rhs, Type.usize, 0);
try func.store(.stack, ptr_local, Type.usize, 0 + lhs.offset());
// retrieve length from rhs, and store that alongside lhs as well
try func.emitWValue(lhs);
const len_local = try func.load(rhs, Type.usize, func.ptrSize());
try func.store(.stack, len_local, Type.usize, func.ptrSize() + lhs.offset());
return;
}
},
.Int, .Enum, .Float => if (abi_size > 8 and abi_size <= 16) {
try func.emitWValue(lhs);
const lsb = try func.load(rhs, Type.u64, 0);
try func.store(.stack, lsb, Type.u64, 0 + lhs.offset());
try func.emitWValue(lhs);
const msb = try func.load(rhs, Type.u64, 8);
try func.store(.stack, msb, Type.u64, 8 + lhs.offset());
return;
} else if (abi_size > 16) {
try func.memcpy(lhs, rhs, .{ .imm32 = @as(u32, @intCast(ty.abiSize(pt))) });
},
else => if (abi_size > 8) {
return func.fail("TODO: `store` for type `{}` with abisize `{d}`", .{
ty.fmt(pt),
abi_size,
});
},
}
try func.emitWValue(lhs);
// In this case we're actually interested in storing the stack position
// into lhs, so we calculate that and emit that instead
try func.lowerToStack(rhs);
const valtype = typeToValtype(ty, pt, func.target.*);
const opcode = buildOpcode(.{
.valtype1 = valtype,
.width = @as(u8, @intCast(abi_size * 8)),
.op = .store,
});
// store rhs value at stack pointer's location in memory
try func.addMemArg(
Mir.Inst.Tag.fromOpcode(opcode),
.{
.offset = offset + lhs.offset(),
.alignment = @intCast(ty.abiAlignment(pt).toByteUnits().?),
},
);
}
fn airLoad(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const ty = ty_op.ty.toType();
const ptr_ty = func.typeOf(ty_op.operand);
const ptr_info = ptr_ty.ptrInfo(mod);
if (!ty.hasRuntimeBitsIgnoreComptime(pt)) return func.finishAir(inst, .none, &.{ty_op.operand});
const result = result: {
if (isByRef(ty, pt, func.target.*)) {
const new_local = try func.allocStack(ty);
try func.store(new_local, operand, ty, 0);
break :result new_local;
}
if (ptr_info.packed_offset.host_size == 0) {
break :result try func.load(operand, ty, 0);
}
// at this point we have a non-natural alignment, we must
// shift the value to obtain the correct bit.
const int_elem_ty = try pt.intType(.unsigned, ptr_info.packed_offset.host_size * 8);
const shift_val: WValue = if (ptr_info.packed_offset.host_size <= 4)
.{ .imm32 = ptr_info.packed_offset.bit_offset }
else if (ptr_info.packed_offset.host_size <= 8)
.{ .imm64 = ptr_info.packed_offset.bit_offset }
else
return func.fail("TODO: airLoad where ptr to bitfield exceeds 64 bits", .{});
const stack_loaded = try func.load(operand, int_elem_ty, 0);
const shifted = try func.binOp(stack_loaded, shift_val, int_elem_ty, .shr);
break :result try func.trunc(shifted, ty, int_elem_ty);
};
return func.finishAir(inst, result, &.{ty_op.operand});
}
/// Loads an operand from the linear memory section.
/// NOTE: Leaves the value on the stack.
fn load(func: *CodeGen, operand: WValue, ty: Type, offset: u32) InnerError!WValue {
const pt = func.pt;
const mod = pt.zcu;
// load local's value from memory by its stack position
try func.emitWValue(operand);
if (ty.zigTypeTag(mod) == .Vector) {
// TODO: Add helper functions for simd opcodes
const extra_index = @as(u32, @intCast(func.mir_extra.items.len));
// stores as := opcode, offset, alignment (opcode::memarg)
try func.mir_extra.appendSlice(func.gpa, &[_]u32{
std.wasm.simdOpcode(.v128_load),
offset + operand.offset(),
@intCast(ty.abiAlignment(pt).toByteUnits().?),
});
try func.addInst(.{ .tag = .simd_prefix, .data = .{ .payload = extra_index } });
return .stack;
}
const abi_size: u8 = @intCast(ty.abiSize(pt));
const opcode = buildOpcode(.{
.valtype1 = typeToValtype(ty, pt, func.target.*),
.width = abi_size * 8,
.op = .load,
.signedness = if (ty.isSignedInt(mod)) .signed else .unsigned,
});
try func.addMemArg(
Mir.Inst.Tag.fromOpcode(opcode),
.{
.offset = offset + operand.offset(),
.alignment = @intCast(ty.abiAlignment(pt).toByteUnits().?),
},
);
return .stack;
}
fn airArg(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const arg_index = func.arg_index;
const arg = func.args[arg_index];
const cc = mod.typeToFunc(mod.navValue(func.owner_nav).typeOf(mod)).?.cc;
const arg_ty = func.typeOfIndex(inst);
if (cc == .C) {
const arg_classes = abi.classifyType(arg_ty, pt);
for (arg_classes) |class| {
if (class != .none) {
func.arg_index += 1;
}
}
// When we have an argument that's passed using more than a single parameter,
// we combine them into a single stack value
if (arg_classes[0] == .direct and arg_classes[1] == .direct) {
if (arg_ty.zigTypeTag(mod) != .Int and arg_ty.zigTypeTag(mod) != .Float) {
return func.fail(
"TODO: Implement C-ABI argument for type '{}'",
.{arg_ty.fmt(pt)},
);
}
const result = try func.allocStack(arg_ty);
try func.store(result, arg, Type.u64, 0);
try func.store(result, func.args[arg_index + 1], Type.u64, 8);
return func.finishAir(inst, result, &.{});
}
} else {
func.arg_index += 1;
}
switch (func.debug_output) {
.dwarf => |dwarf| {
const name_nts = func.air.instructions.items(.data)[@intFromEnum(inst)].arg.name;
if (name_nts != .none) {
const name = func.air.nullTerminatedString(@intFromEnum(name_nts));
try dwarf.genArgDbgInfo(name, arg_ty, func.owner_nav, .{
.wasm_local = arg.local.value,
});
}
},
else => {},
}
return func.finishAir(inst, arg, &.{});
}
fn airBinOp(func: *CodeGen, inst: Air.Inst.Index, op: Op) InnerError!void {
const pt = func.pt;
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try func.resolveInst(bin_op.lhs);
const rhs = try func.resolveInst(bin_op.rhs);
const lhs_ty = func.typeOf(bin_op.lhs);
const rhs_ty = func.typeOf(bin_op.rhs);
// For certain operations, such as shifting, the types are different.
// When converting this to a WebAssembly type, they *must* match to perform
// an operation. For this reason we verify if the WebAssembly type is different, in which
// case we first coerce the operands to the same type before performing the operation.
// For big integers we can ignore this as we will call into compiler-rt which handles this.
const result = switch (op) {
.shr, .shl => result: {
const lhs_wasm_bits = toWasmBits(@intCast(lhs_ty.bitSize(pt))) orelse {
return func.fail("TODO: implement '{s}' for types larger than 128 bits", .{@tagName(op)});
};
const rhs_wasm_bits = toWasmBits(@intCast(rhs_ty.bitSize(pt))).?;
const new_rhs = if (lhs_wasm_bits != rhs_wasm_bits and lhs_wasm_bits != 128)
try (try func.intcast(rhs, rhs_ty, lhs_ty)).toLocal(func, lhs_ty)
else
rhs;
break :result try func.binOp(lhs, new_rhs, lhs_ty, op);
},
else => try func.binOp(lhs, rhs, lhs_ty, op),
};
return func.finishAir(inst, result, &.{ bin_op.lhs, bin_op.rhs });
}
/// Performs a binary operation on the given `WValue`'s
/// NOTE: THis leaves the value on top of the stack.
fn binOp(func: *CodeGen, lhs: WValue, rhs: WValue, ty: Type, op: Op) InnerError!WValue {
const pt = func.pt;
const mod = pt.zcu;
assert(!(lhs != .stack and rhs == .stack));
if (ty.isAnyFloat()) {
const float_op = FloatOp.fromOp(op);
return func.floatOp(float_op, ty, &.{ lhs, rhs });
}
if (isByRef(ty, pt, func.target.*)) {
if (ty.zigTypeTag(mod) == .Int) {
return func.binOpBigInt(lhs, rhs, ty, op);
} else {
return func.fail(
"TODO: Implement binary operation for type: {}",
.{ty.fmt(pt)},
);
}
}
const opcode: wasm.Opcode = buildOpcode(.{
.op = op,
.valtype1 = typeToValtype(ty, pt, func.target.*),
.signedness = if (ty.isSignedInt(mod)) .signed else .unsigned,
});
try func.emitWValue(lhs);
try func.emitWValue(rhs);
try func.addTag(Mir.Inst.Tag.fromOpcode(opcode));
return .stack;
}
fn binOpBigInt(func: *CodeGen, lhs: WValue, rhs: WValue, ty: Type, op: Op) InnerError!WValue {
const pt = func.pt;
const mod = pt.zcu;
const int_info = ty.intInfo(mod);
if (int_info.bits > 128) {
return func.fail("TODO: Implement binary operation for big integers larger than 128 bits", .{});
}
switch (op) {
.mul => return func.callIntrinsic("__multi3", &.{ ty.toIntern(), ty.toIntern() }, ty, &.{ lhs, rhs }),
.div => switch (int_info.signedness) {
.signed => return func.callIntrinsic("__divti3", &.{ ty.toIntern(), ty.toIntern() }, ty, &.{ lhs, rhs }),
.unsigned => return func.callIntrinsic("__udivti3", &.{ ty.toIntern(), ty.toIntern() }, ty, &.{ lhs, rhs }),
},
.rem => switch (int_info.signedness) {
.signed => return func.callIntrinsic("__modti3", &.{ ty.toIntern(), ty.toIntern() }, ty, &.{ lhs, rhs }),
.unsigned => return func.callIntrinsic("__umodti3", &.{ ty.toIntern(), ty.toIntern() }, ty, &.{ lhs, rhs }),
},
.shr => switch (int_info.signedness) {
.signed => return func.callIntrinsic("__ashrti3", &.{ ty.toIntern(), .i32_type }, ty, &.{ lhs, rhs }),
.unsigned => return func.callIntrinsic("__lshrti3", &.{ ty.toIntern(), .i32_type }, ty, &.{ lhs, rhs }),
},
.shl => return func.callIntrinsic("__ashlti3", &.{ ty.toIntern(), .i32_type }, ty, &.{ lhs, rhs }),
.@"and", .@"or", .xor => {
const result = try func.allocStack(ty);
try func.emitWValue(result);
const lhs_lsb = try func.load(lhs, Type.u64, 0);
const rhs_lsb = try func.load(rhs, Type.u64, 0);
const op_lsb = try func.binOp(lhs_lsb, rhs_lsb, Type.u64, op);
try func.store(.stack, op_lsb, Type.u64, result.offset());
try func.emitWValue(result);
const lhs_msb = try func.load(lhs, Type.u64, 8);
const rhs_msb = try func.load(rhs, Type.u64, 8);
const op_msb = try func.binOp(lhs_msb, rhs_msb, Type.u64, op);
try func.store(.stack, op_msb, Type.u64, result.offset() + 8);
return result;
},
.add, .sub => {
const result = try func.allocStack(ty);
var lhs_lsb = try (try func.load(lhs, Type.u64, 0)).toLocal(func, Type.u64);
defer lhs_lsb.free(func);
var rhs_lsb = try (try func.load(rhs, Type.u64, 0)).toLocal(func, Type.u64);
defer rhs_lsb.free(func);
var op_lsb = try (try func.binOp(lhs_lsb, rhs_lsb, Type.u64, op)).toLocal(func, Type.u64);
defer op_lsb.free(func);
const lhs_msb = try func.load(lhs, Type.u64, 8);
const rhs_msb = try func.load(rhs, Type.u64, 8);
const op_msb = try func.binOp(lhs_msb, rhs_msb, Type.u64, op);
const lt = if (op == .add) blk: {
break :blk try func.cmp(op_lsb, rhs_lsb, Type.u64, .lt);
} else if (op == .sub) blk: {
break :blk try func.cmp(lhs_lsb, rhs_lsb, Type.u64, .lt);
} else unreachable;
const tmp = try func.intcast(lt, Type.u32, Type.u64);
var tmp_op = try (try func.binOp(op_msb, tmp, Type.u64, op)).toLocal(func, Type.u64);
defer tmp_op.free(func);
try func.store(result, op_lsb, Type.u64, 0);
try func.store(result, tmp_op, Type.u64, 8);
return result;
},
else => return func.fail("TODO: Implement binary operation for big integers: '{s}'", .{@tagName(op)}),
}
}
const FloatOp = enum {
add,
ceil,
cos,
div,
exp,
exp2,
fabs,
floor,
fma,
fmax,
fmin,
fmod,
log,
log10,
log2,
mul,
neg,
round,
sin,
sqrt,
sub,
tan,
trunc,
pub fn fromOp(op: Op) FloatOp {
return switch (op) {
.add => .add,
.ceil => .ceil,
.div => .div,
.abs => .fabs,
.floor => .floor,
.max => .fmax,
.min => .fmin,
.mul => .mul,
.neg => .neg,
.nearest => .round,
.sqrt => .sqrt,
.sub => .sub,
.trunc => .trunc,
else => unreachable,
};
}
pub fn toOp(float_op: FloatOp) ?Op {
return switch (float_op) {
.add => .add,
.ceil => .ceil,
.div => .div,
.fabs => .abs,
.floor => .floor,
.fmax => .max,
.fmin => .min,
.mul => .mul,
.neg => .neg,
.round => .nearest,
.sqrt => .sqrt,
.sub => .sub,
.trunc => .trunc,
.cos,
.exp,
.exp2,
.fma,
.fmod,
.log,
.log10,
.log2,
.sin,
.tan,
=> null,
};
}
};
fn airAbs(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const ty = func.typeOf(ty_op.operand);
const scalar_ty = ty.scalarType(mod);
switch (scalar_ty.zigTypeTag(mod)) {
.Int => if (ty.zigTypeTag(mod) == .Vector) {
return func.fail("TODO implement airAbs for {}", .{ty.fmt(pt)});
} else {
const int_bits = ty.intInfo(mod).bits;
const wasm_bits = toWasmBits(int_bits) orelse {
return func.fail("TODO: airAbs for signed integers larger than '{d}' bits", .{int_bits});
};
switch (wasm_bits) {
32 => {
try func.emitWValue(operand);
try func.addImm32(31);
try func.addTag(.i32_shr_s);
var tmp = try func.allocLocal(ty);
defer tmp.free(func);
try func.addLabel(.local_tee, tmp.local.value);
try func.emitWValue(operand);
try func.addTag(.i32_xor);
try func.emitWValue(tmp);
try func.addTag(.i32_sub);
return func.finishAir(inst, .stack, &.{ty_op.operand});
},
64 => {
try func.emitWValue(operand);
try func.addImm64(63);
try func.addTag(.i64_shr_s);
var tmp = try func.allocLocal(ty);
defer tmp.free(func);
try func.addLabel(.local_tee, tmp.local.value);
try func.emitWValue(operand);
try func.addTag(.i64_xor);
try func.emitWValue(tmp);
try func.addTag(.i64_sub);
return func.finishAir(inst, .stack, &.{ty_op.operand});
},
128 => {
const mask = try func.allocStack(Type.u128);
try func.emitWValue(mask);
try func.emitWValue(mask);
_ = try func.load(operand, Type.u64, 8);
try func.addImm64(63);
try func.addTag(.i64_shr_s);
var tmp = try func.allocLocal(Type.u64);
defer tmp.free(func);
try func.addLabel(.local_tee, tmp.local.value);
try func.store(.stack, .stack, Type.u64, mask.offset() + 0);
try func.emitWValue(tmp);
try func.store(.stack, .stack, Type.u64, mask.offset() + 8);
const a = try func.binOpBigInt(operand, mask, Type.u128, .xor);
const b = try func.binOpBigInt(a, mask, Type.u128, .sub);
return func.finishAir(inst, b, &.{ty_op.operand});
},
else => unreachable,
}
},
.Float => {
const result = try func.floatOp(.fabs, ty, &.{operand});
return func.finishAir(inst, result, &.{ty_op.operand});
},
else => unreachable,
}
}
fn airUnaryFloatOp(func: *CodeGen, inst: Air.Inst.Index, op: FloatOp) InnerError!void {
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try func.resolveInst(un_op);
const ty = func.typeOf(un_op);
const result = try func.floatOp(op, ty, &.{operand});
return func.finishAir(inst, result, &.{un_op});
}
fn floatOp(func: *CodeGen, float_op: FloatOp, ty: Type, args: []const WValue) InnerError!WValue {
const pt = func.pt;
const mod = pt.zcu;
if (ty.zigTypeTag(mod) == .Vector) {
return func.fail("TODO: Implement floatOps for vectors", .{});
}
const float_bits = ty.floatBits(func.target.*);
if (float_op == .neg) {
return func.floatNeg(ty, args[0]);
}
if (float_bits == 32 or float_bits == 64) {
if (float_op.toOp()) |op| {
for (args) |operand| {
try func.emitWValue(operand);
}
const opcode = buildOpcode(.{ .op = op, .valtype1 = typeToValtype(ty, pt, func.target.*) });
try func.addTag(Mir.Inst.Tag.fromOpcode(opcode));
return .stack;
}
}
var fn_name_buf: [64]u8 = undefined;
const fn_name = switch (float_op) {
.add,
.sub,
.div,
.mul,
=> std.fmt.bufPrint(&fn_name_buf, "__{s}{s}f3", .{
@tagName(float_op), target_util.compilerRtFloatAbbrev(float_bits),
}) catch unreachable,
.ceil,
.cos,
.exp,
.exp2,
.fabs,
.floor,
.fma,
.fmax,
.fmin,
.fmod,
.log,
.log10,
.log2,
.round,
.sin,
.sqrt,
.tan,
.trunc,
=> std.fmt.bufPrint(&fn_name_buf, "{s}{s}{s}", .{
target_util.libcFloatPrefix(float_bits), @tagName(float_op), target_util.libcFloatSuffix(float_bits),
}) catch unreachable,
.neg => unreachable, // handled above
};
// fma requires three operands
var param_types_buffer: [3]InternPool.Index = .{ ty.ip_index, ty.ip_index, ty.ip_index };
const param_types = param_types_buffer[0..args.len];
return func.callIntrinsic(fn_name, param_types, ty, args);
}
/// NOTE: The result value remains on top of the stack.
fn floatNeg(func: *CodeGen, ty: Type, arg: WValue) InnerError!WValue {
const float_bits = ty.floatBits(func.target.*);
switch (float_bits) {
16 => {
try func.emitWValue(arg);
try func.addImm32(0x8000);
try func.addTag(.i32_xor);
return .stack;
},
32, 64 => {
try func.emitWValue(arg);
const val_type: wasm.Valtype = if (float_bits == 32) .f32 else .f64;
const opcode = buildOpcode(.{ .op = .neg, .valtype1 = val_type });
try func.addTag(Mir.Inst.Tag.fromOpcode(opcode));
return .stack;
},
80, 128 => {
const result = try func.allocStack(ty);
try func.emitWValue(result);
try func.emitWValue(arg);
try func.addMemArg(.i64_load, .{ .offset = 0 + arg.offset(), .alignment = 2 });
try func.addMemArg(.i64_store, .{ .offset = 0 + result.offset(), .alignment = 2 });
try func.emitWValue(result);
try func.emitWValue(arg);
try func.addMemArg(.i64_load, .{ .offset = 8 + arg.offset(), .alignment = 2 });
if (float_bits == 80) {
try func.addImm64(0x8000);
try func.addTag(.i64_xor);
try func.addMemArg(.i64_store16, .{ .offset = 8 + result.offset(), .alignment = 2 });
} else {
try func.addImm64(0x8000000000000000);
try func.addTag(.i64_xor);
try func.addMemArg(.i64_store, .{ .offset = 8 + result.offset(), .alignment = 2 });
}
return result;
},
else => unreachable,
}
}
fn airWrapBinOp(func: *CodeGen, inst: Air.Inst.Index, op: Op) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try func.resolveInst(bin_op.lhs);
const rhs = try func.resolveInst(bin_op.rhs);
const lhs_ty = func.typeOf(bin_op.lhs);
const rhs_ty = func.typeOf(bin_op.rhs);
if (lhs_ty.zigTypeTag(mod) == .Vector or rhs_ty.zigTypeTag(mod) == .Vector) {
return func.fail("TODO: Implement wrapping arithmetic for vectors", .{});
}
// For certain operations, such as shifting, the types are different.
// When converting this to a WebAssembly type, they *must* match to perform
// an operation. For this reason we verify if the WebAssembly type is different, in which
// case we first coerce the operands to the same type before performing the operation.
// For big integers we can ignore this as we will call into compiler-rt which handles this.
const result = switch (op) {
.shr, .shl => result: {
const lhs_wasm_bits = toWasmBits(@intCast(lhs_ty.bitSize(pt))) orelse {
return func.fail("TODO: implement '{s}' for types larger than 128 bits", .{@tagName(op)});
};
const rhs_wasm_bits = toWasmBits(@intCast(rhs_ty.bitSize(pt))).?;
const new_rhs = if (lhs_wasm_bits != rhs_wasm_bits and lhs_wasm_bits != 128)
try (try func.intcast(rhs, rhs_ty, lhs_ty)).toLocal(func, lhs_ty)
else
rhs;
break :result try func.wrapBinOp(lhs, new_rhs, lhs_ty, op);
},
else => try func.wrapBinOp(lhs, rhs, lhs_ty, op),
};
return func.finishAir(inst, result, &.{ bin_op.lhs, bin_op.rhs });
}
/// Performs a wrapping binary operation.
/// Asserts rhs is not a stack value when lhs also isn't.
/// NOTE: Leaves the result on the stack when its Type is <= 64 bits
fn wrapBinOp(func: *CodeGen, lhs: WValue, rhs: WValue, ty: Type, op: Op) InnerError!WValue {
const bin_local = try func.binOp(lhs, rhs, ty, op);
return func.wrapOperand(bin_local, ty);
}
/// Wraps an operand based on a given type's bitsize.
/// Asserts `Type` is <= 128 bits.
/// NOTE: When the Type is <= 64 bits, leaves the value on top of the stack, if wrapping was needed.
fn wrapOperand(func: *CodeGen, operand: WValue, ty: Type) InnerError!WValue {
const pt = func.pt;
const mod = pt.zcu;
assert(ty.abiSize(pt) <= 16);
const int_bits: u16 = @intCast(ty.bitSize(pt)); // TODO use ty.intInfo(mod).bits
const wasm_bits = toWasmBits(int_bits) orelse {
return func.fail("TODO: Implement wrapOperand for bitsize '{d}'", .{int_bits});
};
if (wasm_bits == int_bits) return operand;
switch (wasm_bits) {
32 => {
try func.emitWValue(operand);
if (ty.isSignedInt(mod)) {
try func.addImm32(32 - int_bits);
try func.addTag(.i32_shl);
try func.addImm32(32 - int_bits);
try func.addTag(.i32_shr_s);
} else {
try func.addImm32(~@as(u32, 0) >> @intCast(32 - int_bits));
try func.addTag(.i32_and);
}
return .stack;
},
64 => {
try func.emitWValue(operand);
if (ty.isSignedInt(mod)) {
try func.addImm64(64 - int_bits);
try func.addTag(.i64_shl);
try func.addImm64(64 - int_bits);
try func.addTag(.i64_shr_s);
} else {
try func.addImm64(~@as(u64, 0) >> @intCast(64 - int_bits));
try func.addTag(.i64_and);
}
return .stack;
},
128 => {
assert(operand != .stack);
const result = try func.allocStack(ty);
try func.emitWValue(result);
_ = try func.load(operand, Type.u64, 0);
try func.store(.stack, .stack, Type.u64, result.offset());
try func.emitWValue(result);
_ = try func.load(operand, Type.u64, 8);
if (ty.isSignedInt(mod)) {
try func.addImm64(128 - int_bits);
try func.addTag(.i64_shl);
try func.addImm64(128 - int_bits);
try func.addTag(.i64_shr_s);
} else {
try func.addImm64(~@as(u64, 0) >> @intCast(128 - int_bits));
try func.addTag(.i64_and);
}
try func.store(.stack, .stack, Type.u64, result.offset() + 8);
return result;
},
else => unreachable,
}
}
fn lowerPtr(func: *CodeGen, ptr_val: InternPool.Index, prev_offset: u64) InnerError!WValue {
const pt = func.pt;
const zcu = pt.zcu;
const ptr = zcu.intern_pool.indexToKey(ptr_val).ptr;
const offset: u64 = prev_offset + ptr.byte_offset;
return switch (ptr.base_addr) {
.nav => |nav| return func.lowerNavRef(nav, @intCast(offset)),
.uav => |uav| return func.lowerUavRef(uav, @intCast(offset)),
.int => return func.lowerConstant(try pt.intValue(Type.usize, offset), Type.usize),
.eu_payload => return func.fail("Wasm TODO: lower error union payload pointer", .{}),
.opt_payload => |opt_ptr| return func.lowerPtr(opt_ptr, offset),
.field => |field| {
const base_ptr = Value.fromInterned(field.base);
const base_ty = base_ptr.typeOf(zcu).childType(zcu);
const field_off: u64 = switch (base_ty.zigTypeTag(zcu)) {
.Pointer => off: {
assert(base_ty.isSlice(zcu));
break :off switch (field.index) {
Value.slice_ptr_index => 0,
Value.slice_len_index => @divExact(func.target.ptrBitWidth(), 8),
else => unreachable,
};
},
.Struct => switch (base_ty.containerLayout(zcu)) {
.auto => base_ty.structFieldOffset(@intCast(field.index), pt),
.@"extern", .@"packed" => unreachable,
},
.Union => switch (base_ty.containerLayout(zcu)) {
.auto => off: {
// Keep in sync with the `un` case of `generateSymbol`.
const layout = base_ty.unionGetLayout(pt);
if (layout.payload_size == 0) break :off 0;
if (layout.tag_size == 0) break :off 0;
if (layout.tag_align.compare(.gte, layout.payload_align)) {
// Tag first.
break :off layout.tag_size;
} else {
// Payload first.
break :off 0;
}
},
.@"extern", .@"packed" => unreachable,
},
else => unreachable,
};
return func.lowerPtr(field.base, offset + field_off);
},
.arr_elem, .comptime_field, .comptime_alloc => unreachable,
};
}
fn lowerUavRef(
func: *CodeGen,
uav: InternPool.Key.Ptr.BaseAddr.Uav,
offset: u32,
) InnerError!WValue {
const pt = func.pt;
const mod = pt.zcu;
const ty = Type.fromInterned(mod.intern_pool.typeOf(uav.val));
const is_fn_body = ty.zigTypeTag(mod) == .Fn;
if (!is_fn_body and !ty.hasRuntimeBitsIgnoreComptime(pt)) {
return .{ .imm32 = 0xaaaaaaaa };
}
const decl_align = mod.intern_pool.indexToKey(uav.orig_ty).ptr_type.flags.alignment;
const res = try func.bin_file.lowerUav(pt, uav.val, decl_align, func.src_loc);
const target_sym_index = switch (res) {
.mcv => |mcv| mcv.load_symbol,
.fail => |err_msg| {
func.err_msg = err_msg;
return error.CodegenFail;
},
};
if (is_fn_body) {
return .{ .function_index = target_sym_index };
} else if (offset == 0) {
return .{ .memory = target_sym_index };
} else return .{ .memory_offset = .{ .pointer = target_sym_index, .offset = offset } };
}
fn lowerNavRef(func: *CodeGen, nav_index: InternPool.Nav.Index, offset: u32) InnerError!WValue {
const pt = func.pt;
const mod = pt.zcu;
const ip = &mod.intern_pool;
// check if decl is an alias to a function, in which case we
// want to lower the actual decl, rather than the alias itself.
const owner_nav = switch (ip.indexToKey(mod.navValue(nav_index).toIntern())) {
.func => |function| function.owner_nav,
.variable => |variable| variable.owner_nav,
.@"extern" => |@"extern"| @"extern".owner_nav,
else => nav_index,
};
const nav_ty = ip.getNav(owner_nav).typeOf(ip);
if (!ip.isFunctionType(nav_ty) and !Type.fromInterned(nav_ty).hasRuntimeBitsIgnoreComptime(pt)) {
return .{ .imm32 = 0xaaaaaaaa };
}
const atom_index = try func.bin_file.getOrCreateAtomForNav(pt, nav_index);
const atom = func.bin_file.getAtom(atom_index);
const target_sym_index = @intFromEnum(atom.sym_index);
if (ip.isFunctionType(nav_ty)) {
return .{ .function_index = target_sym_index };
} else if (offset == 0) {
return .{ .memory = target_sym_index };
} else return .{ .memory_offset = .{ .pointer = target_sym_index, .offset = offset } };
}
/// Asserts that `isByRef` returns `false` for `ty`.
fn lowerConstant(func: *CodeGen, val: Value, ty: Type) InnerError!WValue {
const pt = func.pt;
const mod = pt.zcu;
assert(!isByRef(ty, pt, func.target.*));
const ip = &mod.intern_pool;
if (val.isUndefDeep(mod)) return func.emitUndefined(ty);
switch (ip.indexToKey(val.ip_index)) {
.int_type,
.ptr_type,
.array_type,
.vector_type,
.opt_type,
.anyframe_type,
.error_union_type,
.simple_type,
.struct_type,
.anon_struct_type,
.union_type,
.opaque_type,
.enum_type,
.func_type,
.error_set_type,
.inferred_error_set_type,
=> unreachable, // types, not values
.undef => unreachable, // handled above
.simple_value => |simple_value| switch (simple_value) {
.undefined,
.void,
.null,
.empty_struct,
.@"unreachable",
.generic_poison,
=> unreachable, // non-runtime values
.false, .true => return .{ .imm32 = switch (simple_value) {
.false => 0,
.true => 1,
else => unreachable,
} },
},
.variable,
.@"extern",
.func,
.enum_literal,
.empty_enum_value,
=> unreachable, // non-runtime values
.int => {
const int_info = ty.intInfo(mod);
switch (int_info.signedness) {
.signed => switch (int_info.bits) {
0...32 => return .{ .imm32 = @bitCast(@as(i32, @intCast(val.toSignedInt(pt)))) },
33...64 => return .{ .imm64 = @bitCast(val.toSignedInt(pt)) },
else => unreachable,
},
.unsigned => switch (int_info.bits) {
0...32 => return .{ .imm32 = @intCast(val.toUnsignedInt(pt)) },
33...64 => return .{ .imm64 = val.toUnsignedInt(pt) },
else => unreachable,
},
}
},
.err => |err| {
const int = try pt.getErrorValue(err.name);
return .{ .imm32 = int };
},
.error_union => |error_union| {
const err_int_ty = try pt.errorIntType();
const err_ty, const err_val = switch (error_union.val) {
.err_name => |err_name| .{
ty.errorUnionSet(mod),
Value.fromInterned(try pt.intern(.{ .err = .{
.ty = ty.errorUnionSet(mod).toIntern(),
.name = err_name,
} })),
},
.payload => .{
err_int_ty,
try pt.intValue(err_int_ty, 0),
},
};
const payload_type = ty.errorUnionPayload(mod);
if (!payload_type.hasRuntimeBitsIgnoreComptime(pt)) {
// We use the error type directly as the type.
return func.lowerConstant(err_val, err_ty);
}
return func.fail("Wasm TODO: lowerConstant error union with non-zero-bit payload type", .{});
},
.enum_tag => |enum_tag| {
const int_tag_ty = ip.typeOf(enum_tag.int);
return func.lowerConstant(Value.fromInterned(enum_tag.int), Type.fromInterned(int_tag_ty));
},
.float => |float| switch (float.storage) {
.f16 => |f16_val| return .{ .imm32 = @as(u16, @bitCast(f16_val)) },
.f32 => |f32_val| return .{ .float32 = f32_val },
.f64 => |f64_val| return .{ .float64 = f64_val },
else => unreachable,
},
.slice => switch (try func.bin_file.lowerUav(pt, val.toIntern(), .none, func.src_loc)) {
.mcv => |mcv| return .{ .memory = mcv.load_symbol },
.fail => |err_msg| {
func.err_msg = err_msg;
return error.CodegenFail;
},
},
.ptr => return func.lowerPtr(val.toIntern(), 0),
.opt => if (ty.optionalReprIsPayload(mod)) {
const pl_ty = ty.optionalChild(mod);
if (val.optionalValue(mod)) |payload| {
return func.lowerConstant(payload, pl_ty);
} else {
return .{ .imm32 = 0 };
}
} else {
return .{ .imm32 = @intFromBool(!val.isNull(mod)) };
},
.aggregate => switch (ip.indexToKey(ty.ip_index)) {
.array_type => return func.fail("Wasm TODO: LowerConstant for {}", .{ty.fmt(pt)}),
.vector_type => {
assert(determineSimdStoreStrategy(ty, pt, func.target.*) == .direct);
var buf: [16]u8 = undefined;
val.writeToMemory(ty, pt, &buf) catch unreachable;
return func.storeSimdImmd(buf);
},
.struct_type => {
const struct_type = ip.loadStructType(ty.toIntern());
// non-packed structs are not handled in this function because they
// are by-ref types.
assert(struct_type.layout == .@"packed");
var buf: [8]u8 = .{0} ** 8; // zero the buffer so we do not read 0xaa as integer
val.writeToPackedMemory(ty, pt, &buf, 0) catch unreachable;
const backing_int_ty = Type.fromInterned(struct_type.backingIntTypeUnordered(ip));
const int_val = try pt.intValue(
backing_int_ty,
mem.readInt(u64, &buf, .little),
);
return func.lowerConstant(int_val, backing_int_ty);
},
else => unreachable,
},
.un => |un| {
// in this case we have a packed union which will not be passed by reference.
const constant_ty = if (un.tag == .none)
try ty.unionBackingType(pt)
else field_ty: {
const union_obj = mod.typeToUnion(ty).?;
const field_index = mod.unionTagFieldIndex(union_obj, Value.fromInterned(un.tag)).?;
break :field_ty Type.fromInterned(union_obj.field_types.get(ip)[field_index]);
};
return func.lowerConstant(Value.fromInterned(un.val), constant_ty);
},
.memoized_call => unreachable,
}
}
/// Stores the value as a 128bit-immediate value by storing it inside
/// the list and returning the index into this list as `WValue`.
fn storeSimdImmd(func: *CodeGen, value: [16]u8) !WValue {
const index = @as(u32, @intCast(func.simd_immediates.items.len));
try func.simd_immediates.append(func.gpa, value);
return .{ .imm128 = index };
}
fn emitUndefined(func: *CodeGen, ty: Type) InnerError!WValue {
const pt = func.pt;
const mod = pt.zcu;
const ip = &mod.intern_pool;
switch (ty.zigTypeTag(mod)) {
.Bool, .ErrorSet => return .{ .imm32 = 0xaaaaaaaa },
.Int, .Enum => switch (ty.intInfo(mod).bits) {
0...32 => return .{ .imm32 = 0xaaaaaaaa },
33...64 => return .{ .imm64 = 0xaaaaaaaaaaaaaaaa },
else => unreachable,
},
.Float => switch (ty.floatBits(func.target.*)) {
16 => return .{ .imm32 = 0xaaaaaaaa },
32 => return .{ .float32 = @as(f32, @bitCast(@as(u32, 0xaaaaaaaa))) },
64 => return .{ .float64 = @as(f64, @bitCast(@as(u64, 0xaaaaaaaaaaaaaaaa))) },
else => unreachable,
},
.Pointer => switch (func.arch()) {
.wasm32 => return .{ .imm32 = 0xaaaaaaaa },
.wasm64 => return .{ .imm64 = 0xaaaaaaaaaaaaaaaa },
else => unreachable,
},
.Optional => {
const pl_ty = ty.optionalChild(mod);
if (ty.optionalReprIsPayload(mod)) {
return func.emitUndefined(pl_ty);
}
return .{ .imm32 = 0xaaaaaaaa };
},
.ErrorUnion => {
return .{ .imm32 = 0xaaaaaaaa };
},
.Struct => {
const packed_struct = mod.typeToPackedStruct(ty).?;
return func.emitUndefined(Type.fromInterned(packed_struct.backingIntTypeUnordered(ip)));
},
else => return func.fail("Wasm TODO: emitUndefined for type: {}\n", .{ty.zigTypeTag(mod)}),
}
}
/// Returns a `Value` as a signed 32 bit value.
/// It's illegal to provide a value with a type that cannot be represented
/// as an integer value.
fn valueAsI32(func: *const CodeGen, val: Value) i32 {
const pt = func.pt;
const mod = pt.zcu;
const ip = &mod.intern_pool;
switch (val.toIntern()) {
.bool_true => return 1,
.bool_false => return 0,
else => return switch (ip.indexToKey(val.ip_index)) {
.enum_tag => |enum_tag| intIndexAsI32(ip, enum_tag.int, pt),
.int => |int| intStorageAsI32(int.storage, pt),
.ptr => |ptr| {
assert(ptr.base_addr == .int);
return @intCast(ptr.byte_offset);
},
.err => |err| @bitCast(ip.getErrorValueIfExists(err.name).?),
else => unreachable,
},
}
}
fn intIndexAsI32(ip: *const InternPool, int: InternPool.Index, pt: Zcu.PerThread) i32 {
return intStorageAsI32(ip.indexToKey(int).int.storage, pt);
}
fn intStorageAsI32(storage: InternPool.Key.Int.Storage, pt: Zcu.PerThread) i32 {
return switch (storage) {
.i64 => |x| @as(i32, @intCast(x)),
.u64 => |x| @as(i32, @bitCast(@as(u32, @intCast(x)))),
.big_int => unreachable,
.lazy_align => |ty| @as(i32, @bitCast(@as(u32, @intCast(Type.fromInterned(ty).abiAlignment(pt).toByteUnits() orelse 0)))),
.lazy_size => |ty| @as(i32, @bitCast(@as(u32, @intCast(Type.fromInterned(ty).abiSize(pt))))),
};
}
fn airBlock(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.Block, ty_pl.payload);
try func.lowerBlock(inst, ty_pl.ty.toType(), @ptrCast(func.air.extra[extra.end..][0..extra.data.body_len]));
}
fn lowerBlock(func: *CodeGen, inst: Air.Inst.Index, block_ty: Type, body: []const Air.Inst.Index) InnerError!void {
const pt = func.pt;
const wasm_block_ty = genBlockType(block_ty, pt, func.target.*);
// if wasm_block_ty is non-empty, we create a register to store the temporary value
const block_result: WValue = if (wasm_block_ty != wasm.block_empty) blk: {
const ty: Type = if (isByRef(block_ty, pt, func.target.*)) Type.u32 else block_ty;
break :blk try func.ensureAllocLocal(ty); // make sure it's a clean local as it may never get overwritten
} else .none;
try func.startBlock(.block, wasm.block_empty);
// Here we set the current block idx, so breaks know the depth to jump
// to when breaking out.
try func.blocks.putNoClobber(func.gpa, inst, .{
.label = func.block_depth,
.value = block_result,
});
try func.genBody(body);
try func.endBlock();
const liveness = func.liveness.getBlock(inst);
try func.currentBranch().values.ensureUnusedCapacity(func.gpa, liveness.deaths.len);
return func.finishAir(inst, block_result, &.{});
}
/// appends a new wasm block to the code section and increases the `block_depth` by 1
fn startBlock(func: *CodeGen, block_tag: wasm.Opcode, valtype: u8) !void {
func.block_depth += 1;
try func.addInst(.{
.tag = Mir.Inst.Tag.fromOpcode(block_tag),
.data = .{ .block_type = valtype },
});
}
/// Ends the current wasm block and decreases the `block_depth` by 1
fn endBlock(func: *CodeGen) !void {
try func.addTag(.end);
func.block_depth -= 1;
}
fn airLoop(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const loop = func.air.extraData(Air.Block, ty_pl.payload);
const body: []const Air.Inst.Index = @ptrCast(func.air.extra[loop.end..][0..loop.data.body_len]);
// result type of loop is always 'noreturn', meaning we can always
// emit the wasm type 'block_empty'.
try func.startBlock(.loop, wasm.block_empty);
try func.genBody(body);
// breaking to the index of a loop block will continue the loop instead
try func.addLabel(.br, 0);
try func.endBlock();
return func.finishAir(inst, .none, &.{});
}
fn airCondBr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pl_op = func.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const condition = try func.resolveInst(pl_op.operand);
const extra = func.air.extraData(Air.CondBr, pl_op.payload);
const then_body: []const Air.Inst.Index = @ptrCast(func.air.extra[extra.end..][0..extra.data.then_body_len]);
const else_body: []const Air.Inst.Index = @ptrCast(func.air.extra[extra.end + then_body.len ..][0..extra.data.else_body_len]);
const liveness_condbr = func.liveness.getCondBr(inst);
// result type is always noreturn, so use `block_empty` as type.
try func.startBlock(.block, wasm.block_empty);
// emit the conditional value
try func.emitWValue(condition);
// we inserted the block in front of the condition
// so now check if condition matches. If not, break outside this block
// and continue with the then codepath
try func.addLabel(.br_if, 0);
try func.branches.ensureUnusedCapacity(func.gpa, 2);
{
func.branches.appendAssumeCapacity(.{});
try func.currentBranch().values.ensureUnusedCapacity(func.gpa, @as(u32, @intCast(liveness_condbr.else_deaths.len)));
defer {
var else_stack = func.branches.pop();
else_stack.deinit(func.gpa);
}
try func.genBody(else_body);
try func.endBlock();
}
// Outer block that matches the condition
{
func.branches.appendAssumeCapacity(.{});
try func.currentBranch().values.ensureUnusedCapacity(func.gpa, @as(u32, @intCast(liveness_condbr.then_deaths.len)));
defer {
var then_stack = func.branches.pop();
then_stack.deinit(func.gpa);
}
try func.genBody(then_body);
}
return func.finishAir(inst, .none, &.{});
}
fn airCmp(func: *CodeGen, inst: Air.Inst.Index, op: std.math.CompareOperator) InnerError!void {
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try func.resolveInst(bin_op.lhs);
const rhs = try func.resolveInst(bin_op.rhs);
const operand_ty = func.typeOf(bin_op.lhs);
const result = try func.cmp(lhs, rhs, operand_ty, op);
return func.finishAir(inst, result, &.{ bin_op.lhs, bin_op.rhs });
}
/// Compares two operands.
/// Asserts rhs is not a stack value when the lhs isn't a stack value either
/// NOTE: This leaves the result on top of the stack, rather than a new local.
fn cmp(func: *CodeGen, lhs: WValue, rhs: WValue, ty: Type, op: std.math.CompareOperator) InnerError!WValue {
assert(!(lhs != .stack and rhs == .stack));
const pt = func.pt;
const mod = pt.zcu;
if (ty.zigTypeTag(mod) == .Optional and !ty.optionalReprIsPayload(mod)) {
const payload_ty = ty.optionalChild(mod);
if (payload_ty.hasRuntimeBitsIgnoreComptime(pt)) {
// When we hit this case, we must check the value of optionals
// that are not pointers. This means first checking against non-null for
// both lhs and rhs, as well as checking the payload are matching of lhs and rhs
return func.cmpOptionals(lhs, rhs, ty, op);
}
} else if (ty.isAnyFloat()) {
return func.cmpFloat(ty, lhs, rhs, op);
} else if (isByRef(ty, pt, func.target.*)) {
return func.cmpBigInt(lhs, rhs, ty, op);
}
const signedness: std.builtin.Signedness = blk: {
// by default we tell the operand type is unsigned (i.e. bools and enum values)
if (ty.zigTypeTag(mod) != .Int) break :blk .unsigned;
// incase of an actual integer, we emit the correct signedness
break :blk ty.intInfo(mod).signedness;
};
// ensure that when we compare pointers, we emit
// the true pointer of a stack value, rather than the stack pointer.
try func.lowerToStack(lhs);
try func.lowerToStack(rhs);
const opcode: wasm.Opcode = buildOpcode(.{
.valtype1 = typeToValtype(ty, pt, func.target.*),
.op = switch (op) {
.lt => .lt,
.lte => .le,
.eq => .eq,
.neq => .ne,
.gte => .ge,
.gt => .gt,
},
.signedness = signedness,
});
try func.addTag(Mir.Inst.Tag.fromOpcode(opcode));
return .stack;
}
/// Compares two floats.
/// NOTE: Leaves the result of the comparison on top of the stack.
fn cmpFloat(func: *CodeGen, ty: Type, lhs: WValue, rhs: WValue, cmp_op: std.math.CompareOperator) InnerError!WValue {
const float_bits = ty.floatBits(func.target.*);
const op: Op = switch (cmp_op) {
.lt => .lt,
.lte => .le,
.eq => .eq,
.neq => .ne,
.gte => .ge,
.gt => .gt,
};
switch (float_bits) {
16 => {
_ = try func.fpext(lhs, Type.f16, Type.f32);
_ = try func.fpext(rhs, Type.f16, Type.f32);
const opcode = buildOpcode(.{ .op = op, .valtype1 = .f32 });
try func.addTag(Mir.Inst.Tag.fromOpcode(opcode));
return .stack;
},
32, 64 => {
try func.emitWValue(lhs);
try func.emitWValue(rhs);
const val_type: wasm.Valtype = if (float_bits == 32) .f32 else .f64;
const opcode = buildOpcode(.{ .op = op, .valtype1 = val_type });
try func.addTag(Mir.Inst.Tag.fromOpcode(opcode));
return .stack;
},
80, 128 => {
var fn_name_buf: [32]u8 = undefined;
const fn_name = std.fmt.bufPrint(&fn_name_buf, "__{s}{s}f2", .{
@tagName(op), target_util.compilerRtFloatAbbrev(float_bits),
}) catch unreachable;
const result = try func.callIntrinsic(fn_name, &.{ ty.ip_index, ty.ip_index }, Type.bool, &.{ lhs, rhs });
return func.cmp(result, .{ .imm32 = 0 }, Type.i32, cmp_op);
},
else => unreachable,
}
}
fn airCmpVector(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
_ = inst;
return func.fail("TODO implement airCmpVector for wasm", .{});
}
fn airCmpLtErrorsLen(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try func.resolveInst(un_op);
const sym_index = try func.bin_file.getGlobalSymbol("__zig_errors_len", null);
const errors_len = .{ .memory = @intFromEnum(sym_index) };
try func.emitWValue(operand);
const pt = func.pt;
const err_int_ty = try pt.errorIntType();
const errors_len_val = try func.load(errors_len, err_int_ty, 0);
const result = try func.cmp(.stack, errors_len_val, err_int_ty, .lt);
return func.finishAir(inst, result, &.{un_op});
}
fn airBr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const br = func.air.instructions.items(.data)[@intFromEnum(inst)].br;
const block = func.blocks.get(br.block_inst).?;
// if operand has codegen bits we should break with a value
if (func.typeOf(br.operand).hasRuntimeBitsIgnoreComptime(pt)) {
const operand = try func.resolveInst(br.operand);
try func.lowerToStack(operand);
if (block.value != .none) {
try func.addLabel(.local_set, block.value.local.value);
}
}
// We map every block to its block index.
// We then determine how far we have to jump to it by subtracting it from current block depth
const idx: u32 = func.block_depth - block.label;
try func.addLabel(.br, idx);
return func.finishAir(inst, .none, &.{br.operand});
}
fn airNot(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const operand_ty = func.typeOf(ty_op.operand);
const pt = func.pt;
const mod = pt.zcu;
const result = result: {
if (operand_ty.zigTypeTag(mod) == .Bool) {
try func.emitWValue(operand);
try func.addTag(.i32_eqz);
const not_tmp = try func.allocLocal(operand_ty);
try func.addLabel(.local_set, not_tmp.local.value);
break :result not_tmp;
} else {
const int_info = operand_ty.intInfo(mod);
const wasm_bits = toWasmBits(int_info.bits) orelse {
return func.fail("TODO: Implement binary NOT for {}", .{operand_ty.fmt(pt)});
};
switch (wasm_bits) {
32 => {
try func.emitWValue(operand);
try func.addImm32(switch (int_info.signedness) {
.unsigned => ~@as(u32, 0) >> @intCast(32 - int_info.bits),
.signed => ~@as(u32, 0),
});
try func.addTag(.i32_xor);
break :result .stack;
},
64 => {
try func.emitWValue(operand);
try func.addImm64(switch (int_info.signedness) {
.unsigned => ~@as(u64, 0) >> @intCast(64 - int_info.bits),
.signed => ~@as(u64, 0),
});
try func.addTag(.i64_xor);
break :result .stack;
},
128 => {
const ptr = try func.allocStack(operand_ty);
try func.emitWValue(ptr);
_ = try func.load(operand, Type.u64, 0);
try func.addImm64(~@as(u64, 0));
try func.addTag(.i64_xor);
try func.store(.stack, .stack, Type.u64, ptr.offset());
try func.emitWValue(ptr);
_ = try func.load(operand, Type.u64, 8);
try func.addImm64(switch (int_info.signedness) {
.unsigned => ~@as(u64, 0) >> @intCast(128 - int_info.bits),
.signed => ~@as(u64, 0),
});
try func.addTag(.i64_xor);
try func.store(.stack, .stack, Type.u64, ptr.offset() + 8);
break :result ptr;
},
else => unreachable,
}
}
};
return func.finishAir(inst, result, &.{ty_op.operand});
}
fn airTrap(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
try func.addTag(.@"unreachable");
return func.finishAir(inst, .none, &.{});
}
fn airBreakpoint(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
// unsupported by wasm itfunc. Can be implemented once we support DWARF
// for wasm
try func.addTag(.@"unreachable");
return func.finishAir(inst, .none, &.{});
}
fn airUnreachable(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
try func.addTag(.@"unreachable");
return func.finishAir(inst, .none, &.{});
}
fn airBitcast(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const wanted_ty = func.typeOfIndex(inst);
const given_ty = func.typeOf(ty_op.operand);
const bit_size = given_ty.bitSize(pt);
const needs_wrapping = (given_ty.isSignedInt(mod) != wanted_ty.isSignedInt(mod)) and
bit_size != 32 and bit_size != 64 and bit_size != 128;
const result = result: {
if (given_ty.isAnyFloat() or wanted_ty.isAnyFloat()) {
break :result try func.bitcast(wanted_ty, given_ty, operand);
}
if (isByRef(given_ty, pt, func.target.*) and !isByRef(wanted_ty, pt, func.target.*)) {
const loaded_memory = try func.load(operand, wanted_ty, 0);
if (needs_wrapping) {
break :result try func.wrapOperand(loaded_memory, wanted_ty);
} else {
break :result loaded_memory;
}
}
if (!isByRef(given_ty, pt, func.target.*) and isByRef(wanted_ty, pt, func.target.*)) {
const stack_memory = try func.allocStack(wanted_ty);
try func.store(stack_memory, operand, given_ty, 0);
if (needs_wrapping) {
break :result try func.wrapOperand(stack_memory, wanted_ty);
} else {
break :result stack_memory;
}
}
if (needs_wrapping) {
break :result try func.wrapOperand(operand, wanted_ty);
}
break :result func.reuseOperand(ty_op.operand, operand);
};
return func.finishAir(inst, result, &.{ty_op.operand});
}
fn bitcast(func: *CodeGen, wanted_ty: Type, given_ty: Type, operand: WValue) InnerError!WValue {
const pt = func.pt;
const mod = pt.zcu;
// if we bitcast a float to or from an integer we must use the 'reinterpret' instruction
if (!(wanted_ty.isAnyFloat() or given_ty.isAnyFloat())) return operand;
if (wanted_ty.ip_index == .f16_type or given_ty.ip_index == .f16_type) return operand;
if (wanted_ty.bitSize(pt) > 64) return operand;
assert((wanted_ty.isInt(mod) and given_ty.isAnyFloat()) or (wanted_ty.isAnyFloat() and given_ty.isInt(mod)));
const opcode = buildOpcode(.{
.op = .reinterpret,
.valtype1 = typeToValtype(wanted_ty, pt, func.target.*),
.valtype2 = typeToValtype(given_ty, pt, func.target.*),
});
try func.emitWValue(operand);
try func.addTag(Mir.Inst.Tag.fromOpcode(opcode));
return .stack;
}
fn airStructFieldPtr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.StructField, ty_pl.payload);
const struct_ptr = try func.resolveInst(extra.data.struct_operand);
const struct_ptr_ty = func.typeOf(extra.data.struct_operand);
const struct_ty = struct_ptr_ty.childType(mod);
const result = try func.structFieldPtr(inst, extra.data.struct_operand, struct_ptr, struct_ptr_ty, struct_ty, extra.data.field_index);
return func.finishAir(inst, result, &.{extra.data.struct_operand});
}
fn airStructFieldPtrIndex(func: *CodeGen, inst: Air.Inst.Index, index: u32) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const struct_ptr = try func.resolveInst(ty_op.operand);
const struct_ptr_ty = func.typeOf(ty_op.operand);
const struct_ty = struct_ptr_ty.childType(mod);
const result = try func.structFieldPtr(inst, ty_op.operand, struct_ptr, struct_ptr_ty, struct_ty, index);
return func.finishAir(inst, result, &.{ty_op.operand});
}
fn structFieldPtr(
func: *CodeGen,
inst: Air.Inst.Index,
ref: Air.Inst.Ref,
struct_ptr: WValue,
struct_ptr_ty: Type,
struct_ty: Type,
index: u32,
) InnerError!WValue {
const pt = func.pt;
const mod = pt.zcu;
const result_ty = func.typeOfIndex(inst);
const struct_ptr_ty_info = struct_ptr_ty.ptrInfo(mod);
const offset = switch (struct_ty.containerLayout(mod)) {
.@"packed" => switch (struct_ty.zigTypeTag(mod)) {
.Struct => offset: {
if (result_ty.ptrInfo(mod).packed_offset.host_size != 0) {
break :offset @as(u32, 0);
}
const struct_type = mod.typeToStruct(struct_ty).?;
break :offset @divExact(pt.structPackedFieldBitOffset(struct_type, index) + struct_ptr_ty_info.packed_offset.bit_offset, 8);
},
.Union => 0,
else => unreachable,
},
else => struct_ty.structFieldOffset(index, pt),
};
// save a load and store when we can simply reuse the operand
if (offset == 0) {
return func.reuseOperand(ref, struct_ptr);
}
switch (struct_ptr) {
.stack_offset => |stack_offset| {
return .{ .stack_offset = .{ .value = stack_offset.value + @as(u32, @intCast(offset)), .references = 1 } };
},
else => return func.buildPointerOffset(struct_ptr, offset, .new),
}
}
fn airStructFieldVal(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ip = &mod.intern_pool;
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const struct_field = func.air.extraData(Air.StructField, ty_pl.payload).data;
const struct_ty = func.typeOf(struct_field.struct_operand);
const operand = try func.resolveInst(struct_field.struct_operand);
const field_index = struct_field.field_index;
const field_ty = struct_ty.structFieldType(field_index, mod);
if (!field_ty.hasRuntimeBitsIgnoreComptime(pt)) return func.finishAir(inst, .none, &.{struct_field.struct_operand});
const result: WValue = switch (struct_ty.containerLayout(mod)) {
.@"packed" => switch (struct_ty.zigTypeTag(mod)) {
.Struct => result: {
const packed_struct = mod.typeToPackedStruct(struct_ty).?;
const offset = pt.structPackedFieldBitOffset(packed_struct, field_index);
const backing_ty = Type.fromInterned(packed_struct.backingIntTypeUnordered(ip));
const wasm_bits = toWasmBits(backing_ty.intInfo(mod).bits) orelse {
return func.fail("TODO: airStructFieldVal for packed structs larger than 128 bits", .{});
};
const const_wvalue: WValue = if (wasm_bits == 32)
.{ .imm32 = offset }
else if (wasm_bits == 64)
.{ .imm64 = offset }
else
return func.fail("TODO: airStructFieldVal for packed structs larger than 64 bits", .{});
// for first field we don't require any shifting
const shifted_value = if (offset == 0)
operand
else
try func.binOp(operand, const_wvalue, backing_ty, .shr);
if (field_ty.zigTypeTag(mod) == .Float) {
const int_type = try pt.intType(.unsigned, @as(u16, @intCast(field_ty.bitSize(pt))));
const truncated = try func.trunc(shifted_value, int_type, backing_ty);
break :result try func.bitcast(field_ty, int_type, truncated);
} else if (field_ty.isPtrAtRuntime(mod) and packed_struct.field_types.len == 1) {
// In this case we do not have to perform any transformations,
// we can simply reuse the operand.
break :result func.reuseOperand(struct_field.struct_operand, operand);
} else if (field_ty.isPtrAtRuntime(mod)) {
const int_type = try pt.intType(.unsigned, @as(u16, @intCast(field_ty.bitSize(pt))));
break :result try func.trunc(shifted_value, int_type, backing_ty);
}
break :result try func.trunc(shifted_value, field_ty, backing_ty);
},
.Union => result: {
if (isByRef(struct_ty, pt, func.target.*)) {
if (!isByRef(field_ty, pt, func.target.*)) {
break :result try func.load(operand, field_ty, 0);
} else {
const new_stack_val = try func.allocStack(field_ty);
try func.store(new_stack_val, operand, field_ty, 0);
break :result new_stack_val;
}
}
const union_int_type = try pt.intType(.unsigned, @as(u16, @intCast(struct_ty.bitSize(pt))));
if (field_ty.zigTypeTag(mod) == .Float) {
const int_type = try pt.intType(.unsigned, @as(u16, @intCast(field_ty.bitSize(pt))));
const truncated = try func.trunc(operand, int_type, union_int_type);
break :result try func.bitcast(field_ty, int_type, truncated);
} else if (field_ty.isPtrAtRuntime(mod)) {
const int_type = try pt.intType(.unsigned, @as(u16, @intCast(field_ty.bitSize(pt))));
break :result try func.trunc(operand, int_type, union_int_type);
}
break :result try func.trunc(operand, field_ty, union_int_type);
},
else => unreachable,
},
else => result: {
const offset = std.math.cast(u32, struct_ty.structFieldOffset(field_index, pt)) orelse {
return func.fail("Field type '{}' too big to fit into stack frame", .{field_ty.fmt(pt)});
};
if (isByRef(field_ty, pt, func.target.*)) {
switch (operand) {
.stack_offset => |stack_offset| {
break :result .{ .stack_offset = .{ .value = stack_offset.value + offset, .references = 1 } };
},
else => break :result try func.buildPointerOffset(operand, offset, .new),
}
}
break :result try func.load(operand, field_ty, offset);
},
};
return func.finishAir(inst, result, &.{struct_field.struct_operand});
}
fn airSwitchBr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
// result type is always 'noreturn'
const blocktype = wasm.block_empty;
const pl_op = func.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const target = try func.resolveInst(pl_op.operand);
const target_ty = func.typeOf(pl_op.operand);
const switch_br = func.air.extraData(Air.SwitchBr, pl_op.payload);
const liveness = try func.liveness.getSwitchBr(func.gpa, inst, switch_br.data.cases_len + 1);
defer func.gpa.free(liveness.deaths);
var extra_index: usize = switch_br.end;
var case_i: u32 = 0;
// a list that maps each value with its value and body based on the order inside the list.
const CaseValue = struct { integer: i32, value: Value };
var case_list = try std.ArrayList(struct {
values: []const CaseValue,
body: []const Air.Inst.Index,
}).initCapacity(func.gpa, switch_br.data.cases_len);
defer for (case_list.items) |case| {
func.gpa.free(case.values);
} else case_list.deinit();
var lowest_maybe: ?i32 = null;
var highest_maybe: ?i32 = null;
while (case_i < switch_br.data.cases_len) : (case_i += 1) {
const case = func.air.extraData(Air.SwitchBr.Case, extra_index);
const items: []const Air.Inst.Ref = @ptrCast(func.air.extra[case.end..][0..case.data.items_len]);
const case_body: []const Air.Inst.Index = @ptrCast(func.air.extra[case.end + items.len ..][0..case.data.body_len]);
extra_index = case.end + items.len + case_body.len;
const values = try func.gpa.alloc(CaseValue, items.len);
errdefer func.gpa.free(values);
for (items, 0..) |ref, i| {
const item_val = (try func.air.value(ref, pt)).?;
const int_val = func.valueAsI32(item_val);
if (lowest_maybe == null or int_val < lowest_maybe.?) {
lowest_maybe = int_val;
}
if (highest_maybe == null or int_val > highest_maybe.?) {
highest_maybe = int_val;
}
values[i] = .{ .integer = int_val, .value = item_val };
}
case_list.appendAssumeCapacity(.{ .values = values, .body = case_body });
try func.startBlock(.block, blocktype);
}
// When highest and lowest are null, we have no cases and can use a jump table
const lowest = lowest_maybe orelse 0;
const highest = highest_maybe orelse 0;
// When the highest and lowest values are seperated by '50',
// we define it as sparse and use an if/else-chain, rather than a jump table.
// When the target is an integer size larger than u32, we have no way to use the value
// as an index, therefore we also use an if/else-chain for those cases.
// TODO: Benchmark this to find a proper value, LLVM seems to draw the line at '40~45'.
const is_sparse = highest - lowest > 50 or target_ty.bitSize(pt) > 32;
const else_body: []const Air.Inst.Index = @ptrCast(func.air.extra[extra_index..][0..switch_br.data.else_body_len]);
const has_else_body = else_body.len != 0;
if (has_else_body) {
try func.startBlock(.block, blocktype);
}
if (!is_sparse) {
// Generate the jump table 'br_table' when the prongs are not sparse.
// The value 'target' represents the index into the table.
// Each index in the table represents a label to the branch
// to jump to.
try func.startBlock(.block, blocktype);
try func.emitWValue(target);
if (lowest < 0) {
// since br_table works using indexes, starting from '0', we must ensure all values
// we put inside, are atleast 0.
try func.addImm32(@bitCast(lowest * -1));
try func.addTag(.i32_add);
} else if (lowest > 0) {
// make the index start from 0 by substracting the lowest value
try func.addImm32(@bitCast(lowest));
try func.addTag(.i32_sub);
}
// Account for default branch so always add '1'
const depth = @as(u32, @intCast(highest - lowest + @intFromBool(has_else_body))) + 1;
const jump_table: Mir.JumpTable = .{ .length = depth };
const table_extra_index = try func.addExtra(jump_table);
try func.addInst(.{ .tag = .br_table, .data = .{ .payload = table_extra_index } });
try func.mir_extra.ensureUnusedCapacity(func.gpa, depth);
var value = lowest;
while (value <= highest) : (value += 1) {
// idx represents the branch we jump to
const idx = blk: {
for (case_list.items, 0..) |case, idx| {
for (case.values) |case_value| {
if (case_value.integer == value) break :blk @as(u32, @intCast(idx));
}
}
// error sets are almost always sparse so we use the default case
// for errors that are not present in any branch. This is fine as this default
// case will never be hit for those cases but we do save runtime cost and size
// by using a jump table for this instead of if-else chains.
break :blk if (has_else_body or target_ty.zigTypeTag(mod) == .ErrorSet) case_i else unreachable;
};
func.mir_extra.appendAssumeCapacity(idx);
} else if (has_else_body) {
func.mir_extra.appendAssumeCapacity(case_i); // default branch
}
try func.endBlock();
}
const signedness: std.builtin.Signedness = blk: {
// by default we tell the operand type is unsigned (i.e. bools and enum values)
if (target_ty.zigTypeTag(mod) != .Int) break :blk .unsigned;
// incase of an actual integer, we emit the correct signedness
break :blk target_ty.intInfo(mod).signedness;
};
try func.branches.ensureUnusedCapacity(func.gpa, case_list.items.len + @intFromBool(has_else_body));
for (case_list.items, 0..) |case, index| {
// when sparse, we use if/else-chain, so emit conditional checks
if (is_sparse) {
// for single value prong we can emit a simple if
if (case.values.len == 1) {
try func.emitWValue(target);
const val = try func.lowerConstant(case.values[0].value, target_ty);
try func.emitWValue(val);
const opcode = buildOpcode(.{
.valtype1 = typeToValtype(target_ty, pt, func.target.*),
.op = .ne, // not equal, because we want to jump out of this block if it does not match the condition.
.signedness = signedness,
});
try func.addTag(Mir.Inst.Tag.fromOpcode(opcode));
try func.addLabel(.br_if, 0);
} else {
// in multi-value prongs we must check if any prongs match the target value.
try func.startBlock(.block, blocktype);
for (case.values) |value| {
try func.emitWValue(target);
const val = try func.lowerConstant(value.value, target_ty);
try func.emitWValue(val);
const opcode = buildOpcode(.{
.valtype1 = typeToValtype(target_ty, pt, func.target.*),
.op = .eq,
.signedness = signedness,
});
try func.addTag(Mir.Inst.Tag.fromOpcode(opcode));
try func.addLabel(.br_if, 0);
}
// value did not match any of the prong values
try func.addLabel(.br, 1);
try func.endBlock();
}
}
func.branches.appendAssumeCapacity(.{});
try func.currentBranch().values.ensureUnusedCapacity(func.gpa, liveness.deaths[index].len);
defer {
var case_branch = func.branches.pop();
case_branch.deinit(func.gpa);
}
try func.genBody(case.body);
try func.endBlock();
}
if (has_else_body) {
func.branches.appendAssumeCapacity(.{});
const else_deaths = liveness.deaths.len - 1;
try func.currentBranch().values.ensureUnusedCapacity(func.gpa, liveness.deaths[else_deaths].len);
defer {
var else_branch = func.branches.pop();
else_branch.deinit(func.gpa);
}
try func.genBody(else_body);
try func.endBlock();
}
return func.finishAir(inst, .none, &.{});
}
fn airIsErr(func: *CodeGen, inst: Air.Inst.Index, opcode: wasm.Opcode) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try func.resolveInst(un_op);
const err_union_ty = func.typeOf(un_op);
const pl_ty = err_union_ty.errorUnionPayload(mod);
const result: WValue = result: {
if (err_union_ty.errorUnionSet(mod).errorSetIsEmpty(mod)) {
switch (opcode) {
.i32_ne => break :result .{ .imm32 = 0 },
.i32_eq => break :result .{ .imm32 = 1 },
else => unreachable,
}
}
try func.emitWValue(operand);
if (pl_ty.hasRuntimeBitsIgnoreComptime(pt)) {
try func.addMemArg(.i32_load16_u, .{
.offset = operand.offset() + @as(u32, @intCast(errUnionErrorOffset(pl_ty, pt))),
.alignment = @intCast(Type.anyerror.abiAlignment(pt).toByteUnits().?),
});
}
// Compare the error value with '0'
try func.addImm32(0);
try func.addTag(Mir.Inst.Tag.fromOpcode(opcode));
break :result .stack;
};
return func.finishAir(inst, result, &.{un_op});
}
fn airUnwrapErrUnionPayload(func: *CodeGen, inst: Air.Inst.Index, op_is_ptr: bool) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const op_ty = func.typeOf(ty_op.operand);
const err_ty = if (op_is_ptr) op_ty.childType(mod) else op_ty;
const payload_ty = err_ty.errorUnionPayload(mod);
const result: WValue = result: {
if (!payload_ty.hasRuntimeBitsIgnoreComptime(pt)) {
if (op_is_ptr) {
break :result func.reuseOperand(ty_op.operand, operand);
}
break :result .none;
}
const pl_offset = @as(u32, @intCast(errUnionPayloadOffset(payload_ty, pt)));
if (op_is_ptr or isByRef(payload_ty, pt, func.target.*)) {
break :result try func.buildPointerOffset(operand, pl_offset, .new);
}
break :result try func.load(operand, payload_ty, pl_offset);
};
return func.finishAir(inst, result, &.{ty_op.operand});
}
fn airUnwrapErrUnionError(func: *CodeGen, inst: Air.Inst.Index, op_is_ptr: bool) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const op_ty = func.typeOf(ty_op.operand);
const err_ty = if (op_is_ptr) op_ty.childType(mod) else op_ty;
const payload_ty = err_ty.errorUnionPayload(mod);
const result: WValue = result: {
if (err_ty.errorUnionSet(mod).errorSetIsEmpty(mod)) {
break :result .{ .imm32 = 0 };
}
if (op_is_ptr or !payload_ty.hasRuntimeBitsIgnoreComptime(pt)) {
break :result func.reuseOperand(ty_op.operand, operand);
}
break :result try func.load(operand, Type.anyerror, @intCast(errUnionErrorOffset(payload_ty, pt)));
};
return func.finishAir(inst, result, &.{ty_op.operand});
}
fn airWrapErrUnionPayload(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const err_ty = func.typeOfIndex(inst);
const pl_ty = func.typeOf(ty_op.operand);
const result = result: {
if (!pl_ty.hasRuntimeBitsIgnoreComptime(pt)) {
break :result func.reuseOperand(ty_op.operand, operand);
}
const err_union = try func.allocStack(err_ty);
const payload_ptr = try func.buildPointerOffset(err_union, @as(u32, @intCast(errUnionPayloadOffset(pl_ty, pt))), .new);
try func.store(payload_ptr, operand, pl_ty, 0);
// ensure we also write '0' to the error part, so any present stack value gets overwritten by it.
try func.emitWValue(err_union);
try func.addImm32(0);
const err_val_offset: u32 = @intCast(errUnionErrorOffset(pl_ty, pt));
try func.addMemArg(.i32_store16, .{
.offset = err_union.offset() + err_val_offset,
.alignment = 2,
});
break :result err_union;
};
return func.finishAir(inst, result, &.{ty_op.operand});
}
fn airWrapErrUnionErr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const err_ty = ty_op.ty.toType();
const pl_ty = err_ty.errorUnionPayload(mod);
const result = result: {
if (!pl_ty.hasRuntimeBitsIgnoreComptime(pt)) {
break :result func.reuseOperand(ty_op.operand, operand);
}
const err_union = try func.allocStack(err_ty);
// store error value
try func.store(err_union, operand, Type.anyerror, @intCast(errUnionErrorOffset(pl_ty, pt)));
// write 'undefined' to the payload
const payload_ptr = try func.buildPointerOffset(err_union, @as(u32, @intCast(errUnionPayloadOffset(pl_ty, pt))), .new);
const len = @as(u32, @intCast(err_ty.errorUnionPayload(mod).abiSize(pt)));
try func.memset(Type.u8, payload_ptr, .{ .imm32 = len }, .{ .imm32 = 0xaa });
break :result err_union;
};
return func.finishAir(inst, result, &.{ty_op.operand});
}
fn airIntcast(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const ty = ty_op.ty.toType();
const operand = try func.resolveInst(ty_op.operand);
const operand_ty = func.typeOf(ty_op.operand);
const pt = func.pt;
const mod = pt.zcu;
if (ty.zigTypeTag(mod) == .Vector or operand_ty.zigTypeTag(mod) == .Vector) {
return func.fail("todo Wasm intcast for vectors", .{});
}
if (ty.abiSize(pt) > 16 or operand_ty.abiSize(pt) > 16) {
return func.fail("todo Wasm intcast for bitsize > 128", .{});
}
const op_bits = toWasmBits(@intCast(operand_ty.bitSize(pt))).?;
const wanted_bits = toWasmBits(@intCast(ty.bitSize(pt))).?;
const result = if (op_bits == wanted_bits)
func.reuseOperand(ty_op.operand, operand)
else
try func.intcast(operand, operand_ty, ty);
return func.finishAir(inst, result, &.{ty_op.operand});
}
/// Upcasts or downcasts an integer based on the given and wanted types,
/// and stores the result in a new operand.
/// Asserts type's bitsize <= 128
/// NOTE: May leave the result on the top of the stack.
fn intcast(func: *CodeGen, operand: WValue, given: Type, wanted: Type) InnerError!WValue {
const pt = func.pt;
const mod = pt.zcu;
const given_bitsize = @as(u16, @intCast(given.bitSize(pt)));
const wanted_bitsize = @as(u16, @intCast(wanted.bitSize(pt)));
assert(given_bitsize <= 128);
assert(wanted_bitsize <= 128);
const op_bits = toWasmBits(given_bitsize).?;
const wanted_bits = toWasmBits(wanted_bitsize).?;
if (op_bits == wanted_bits) {
return operand;
}
if (op_bits == 64 and wanted_bits == 32) {
try func.emitWValue(operand);
try func.addTag(.i32_wrap_i64);
return .stack;
} else if (op_bits == 32 and wanted_bits == 64) {
try func.emitWValue(operand);
try func.addTag(if (wanted.isSignedInt(mod)) .i64_extend_i32_s else .i64_extend_i32_u);
return .stack;
} else if (wanted_bits == 128) {
// for 128bit integers we store the integer in the virtual stack, rather than a local
const stack_ptr = try func.allocStack(wanted);
try func.emitWValue(stack_ptr);
// for 32 bit integers, we first coerce the value into a 64 bit integer before storing it
// meaning less store operations are required.
const lhs = if (op_bits == 32) blk: {
const sign_ty = if (wanted.isSignedInt(mod)) Type.i64 else Type.u64;
break :blk try (try func.intcast(operand, given, sign_ty)).toLocal(func, sign_ty);
} else operand;
// store lsb first
try func.store(.stack, lhs, Type.u64, 0 + stack_ptr.offset());
// For signed integers we shift lsb by 63 (64bit integer - 1 sign bit) and store remaining value
if (wanted.isSignedInt(mod)) {
try func.emitWValue(stack_ptr);
const shr = try func.binOp(lhs, .{ .imm64 = 63 }, Type.i64, .shr);
try func.store(.stack, shr, Type.u64, 8 + stack_ptr.offset());
} else {
// Ensure memory of msb is zero'd
try func.store(stack_ptr, .{ .imm64 = 0 }, Type.u64, 8);
}
return stack_ptr;
} else return func.load(operand, wanted, 0);
}
fn airIsNull(func: *CodeGen, inst: Air.Inst.Index, opcode: wasm.Opcode, op_kind: enum { value, ptr }) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try func.resolveInst(un_op);
const op_ty = func.typeOf(un_op);
const optional_ty = if (op_kind == .ptr) op_ty.childType(mod) else op_ty;
const result = try func.isNull(operand, optional_ty, opcode);
return func.finishAir(inst, result, &.{un_op});
}
/// For a given type and operand, checks if it's considered `null`.
/// NOTE: Leaves the result on the stack
fn isNull(func: *CodeGen, operand: WValue, optional_ty: Type, opcode: wasm.Opcode) InnerError!WValue {
const pt = func.pt;
const mod = pt.zcu;
try func.emitWValue(operand);
const payload_ty = optional_ty.optionalChild(mod);
if (!optional_ty.optionalReprIsPayload(mod)) {
// When payload is zero-bits, we can treat operand as a value, rather than
// a pointer to the stack value
if (payload_ty.hasRuntimeBitsIgnoreComptime(pt)) {
const offset = std.math.cast(u32, payload_ty.abiSize(pt)) orelse {
return func.fail("Optional type {} too big to fit into stack frame", .{optional_ty.fmt(pt)});
};
try func.addMemArg(.i32_load8_u, .{ .offset = operand.offset() + offset, .alignment = 1 });
}
} else if (payload_ty.isSlice(mod)) {
switch (func.arch()) {
.wasm32 => try func.addMemArg(.i32_load, .{ .offset = operand.offset(), .alignment = 4 }),
.wasm64 => try func.addMemArg(.i64_load, .{ .offset = operand.offset(), .alignment = 8 }),
else => unreachable,
}
}
// Compare the null value with '0'
try func.addImm32(0);
try func.addTag(Mir.Inst.Tag.fromOpcode(opcode));
return .stack;
}
fn airOptionalPayload(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const opt_ty = func.typeOf(ty_op.operand);
const payload_ty = func.typeOfIndex(inst);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(pt)) {
return func.finishAir(inst, .none, &.{ty_op.operand});
}
const result = result: {
const operand = try func.resolveInst(ty_op.operand);
if (opt_ty.optionalReprIsPayload(mod)) break :result func.reuseOperand(ty_op.operand, operand);
if (isByRef(payload_ty, pt, func.target.*)) {
break :result try func.buildPointerOffset(operand, 0, .new);
}
break :result try func.load(operand, payload_ty, 0);
};
return func.finishAir(inst, result, &.{ty_op.operand});
}
fn airOptionalPayloadPtr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const opt_ty = func.typeOf(ty_op.operand).childType(mod);
const result = result: {
const payload_ty = opt_ty.optionalChild(mod);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(pt) or opt_ty.optionalReprIsPayload(mod)) {
break :result func.reuseOperand(ty_op.operand, operand);
}
break :result try func.buildPointerOffset(operand, 0, .new);
};
return func.finishAir(inst, result, &.{ty_op.operand});
}
fn airOptionalPayloadPtrSet(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const opt_ty = func.typeOf(ty_op.operand).childType(mod);
const payload_ty = opt_ty.optionalChild(mod);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(pt)) {
return func.fail("TODO: Implement OptionalPayloadPtrSet for optional with zero-sized type {}", .{payload_ty.fmtDebug()});
}
if (opt_ty.optionalReprIsPayload(mod)) {
return func.finishAir(inst, operand, &.{ty_op.operand});
}
const offset = std.math.cast(u32, payload_ty.abiSize(pt)) orelse {
return func.fail("Optional type {} too big to fit into stack frame", .{opt_ty.fmt(pt)});
};
try func.emitWValue(operand);
try func.addImm32(1);
try func.addMemArg(.i32_store8, .{ .offset = operand.offset() + offset, .alignment = 1 });
const result = try func.buildPointerOffset(operand, 0, .new);
return func.finishAir(inst, result, &.{ty_op.operand});
}
fn airWrapOptional(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const payload_ty = func.typeOf(ty_op.operand);
const pt = func.pt;
const mod = pt.zcu;
const result = result: {
if (!payload_ty.hasRuntimeBitsIgnoreComptime(pt)) {
const non_null_bit = try func.allocStack(Type.u1);
try func.emitWValue(non_null_bit);
try func.addImm32(1);
try func.addMemArg(.i32_store8, .{ .offset = non_null_bit.offset(), .alignment = 1 });
break :result non_null_bit;
}
const operand = try func.resolveInst(ty_op.operand);
const op_ty = func.typeOfIndex(inst);
if (op_ty.optionalReprIsPayload(mod)) {
break :result func.reuseOperand(ty_op.operand, operand);
}
const offset = std.math.cast(u32, payload_ty.abiSize(pt)) orelse {
return func.fail("Optional type {} too big to fit into stack frame", .{op_ty.fmt(pt)});
};
// Create optional type, set the non-null bit, and store the operand inside the optional type
const result_ptr = try func.allocStack(op_ty);
try func.emitWValue(result_ptr);
try func.addImm32(1);
try func.addMemArg(.i32_store8, .{ .offset = result_ptr.offset() + offset, .alignment = 1 });
const payload_ptr = try func.buildPointerOffset(result_ptr, 0, .new);
try func.store(payload_ptr, operand, payload_ty, 0);
break :result result_ptr;
};
return func.finishAir(inst, result, &.{ty_op.operand});
}
fn airSlice(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = func.air.extraData(Air.Bin, ty_pl.payload).data;
const lhs = try func.resolveInst(bin_op.lhs);
const rhs = try func.resolveInst(bin_op.rhs);
const slice_ty = func.typeOfIndex(inst);
const slice = try func.allocStack(slice_ty);
try func.store(slice, lhs, Type.usize, 0);
try func.store(slice, rhs, Type.usize, func.ptrSize());
return func.finishAir(inst, slice, &.{ bin_op.lhs, bin_op.rhs });
}
fn airSliceLen(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
return func.finishAir(inst, try func.sliceLen(operand), &.{ty_op.operand});
}
fn airSliceElemVal(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const slice_ty = func.typeOf(bin_op.lhs);
const slice = try func.resolveInst(bin_op.lhs);
const index = try func.resolveInst(bin_op.rhs);
const elem_ty = slice_ty.childType(mod);
const elem_size = elem_ty.abiSize(pt);
// load pointer onto stack
_ = try func.load(slice, Type.usize, 0);
// calculate index into slice
try func.emitWValue(index);
try func.addImm32(@intCast(elem_size));
try func.addTag(.i32_mul);
try func.addTag(.i32_add);
const elem_result = if (isByRef(elem_ty, pt, func.target.*))
.stack
else
try func.load(.stack, elem_ty, 0);
return func.finishAir(inst, elem_result, &.{ bin_op.lhs, bin_op.rhs });
}
fn airSliceElemPtr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = func.air.extraData(Air.Bin, ty_pl.payload).data;
const elem_ty = ty_pl.ty.toType().childType(mod);
const elem_size = elem_ty.abiSize(pt);
const slice = try func.resolveInst(bin_op.lhs);
const index = try func.resolveInst(bin_op.rhs);
_ = try func.load(slice, Type.usize, 0);
// calculate index into slice
try func.emitWValue(index);
try func.addImm32(@intCast(elem_size));
try func.addTag(.i32_mul);
try func.addTag(.i32_add);
return func.finishAir(inst, .stack, &.{ bin_op.lhs, bin_op.rhs });
}
fn airSlicePtr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
return func.finishAir(inst, try func.slicePtr(operand), &.{ty_op.operand});
}
fn slicePtr(func: *CodeGen, operand: WValue) InnerError!WValue {
const ptr = try func.load(operand, Type.usize, 0);
return ptr.toLocal(func, Type.usize);
}
fn sliceLen(func: *CodeGen, operand: WValue) InnerError!WValue {
const len = try func.load(operand, Type.usize, func.ptrSize());
return len.toLocal(func, Type.usize);
}
fn airTrunc(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const wanted_ty: Type = ty_op.ty.toType();
const op_ty = func.typeOf(ty_op.operand);
const pt = func.pt;
const mod = pt.zcu;
if (wanted_ty.zigTypeTag(mod) == .Vector or op_ty.zigTypeTag(mod) == .Vector) {
return func.fail("TODO: trunc for vectors", .{});
}
const result = if (op_ty.bitSize(pt) == wanted_ty.bitSize(pt))
func.reuseOperand(ty_op.operand, operand)
else
try func.trunc(operand, wanted_ty, op_ty);
return func.finishAir(inst, result, &.{ty_op.operand});
}
/// Truncates a given operand to a given type, discarding any overflown bits.
/// NOTE: Resulting value is left on the stack.
fn trunc(func: *CodeGen, operand: WValue, wanted_ty: Type, given_ty: Type) InnerError!WValue {
const pt = func.pt;
const given_bits = @as(u16, @intCast(given_ty.bitSize(pt)));
if (toWasmBits(given_bits) == null) {
return func.fail("TODO: Implement wasm integer truncation for integer bitsize: {d}", .{given_bits});
}
var result = try func.intcast(operand, given_ty, wanted_ty);
const wanted_bits = @as(u16, @intCast(wanted_ty.bitSize(pt)));
const wasm_bits = toWasmBits(wanted_bits).?;
if (wasm_bits != wanted_bits) {
result = try func.wrapOperand(result, wanted_ty);
}
return result;
}
fn airIntFromBool(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try func.resolveInst(un_op);
const result = func.reuseOperand(un_op, operand);
return func.finishAir(inst, result, &.{un_op});
}
fn airArrayToSlice(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const array_ty = func.typeOf(ty_op.operand).childType(mod);
const slice_ty = ty_op.ty.toType();
// create a slice on the stack
const slice_local = try func.allocStack(slice_ty);
// store the array ptr in the slice
if (array_ty.hasRuntimeBitsIgnoreComptime(pt)) {
try func.store(slice_local, operand, Type.usize, 0);
}
// store the length of the array in the slice
const array_len: u32 = @intCast(array_ty.arrayLen(mod));
try func.store(slice_local, .{ .imm32 = array_len }, Type.usize, func.ptrSize());
return func.finishAir(inst, slice_local, &.{ty_op.operand});
}
fn airIntFromPtr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try func.resolveInst(un_op);
const ptr_ty = func.typeOf(un_op);
const result = if (ptr_ty.isSlice(mod))
try func.slicePtr(operand)
else switch (operand) {
// for stack offset, return a pointer to this offset.
.stack_offset => try func.buildPointerOffset(operand, 0, .new),
else => func.reuseOperand(un_op, operand),
};
return func.finishAir(inst, result, &.{un_op});
}
fn airPtrElemVal(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ptr_ty = func.typeOf(bin_op.lhs);
const ptr = try func.resolveInst(bin_op.lhs);
const index = try func.resolveInst(bin_op.rhs);
const elem_ty = ptr_ty.childType(mod);
const elem_size = elem_ty.abiSize(pt);
// load pointer onto the stack
if (ptr_ty.isSlice(mod)) {
_ = try func.load(ptr, Type.usize, 0);
} else {
try func.lowerToStack(ptr);
}
// calculate index into slice
try func.emitWValue(index);
try func.addImm32(@intCast(elem_size));
try func.addTag(.i32_mul);
try func.addTag(.i32_add);
const elem_result = if (isByRef(elem_ty, pt, func.target.*))
.stack
else
try func.load(.stack, elem_ty, 0);
return func.finishAir(inst, elem_result, &.{ bin_op.lhs, bin_op.rhs });
}
fn airPtrElemPtr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = func.air.extraData(Air.Bin, ty_pl.payload).data;
const ptr_ty = func.typeOf(bin_op.lhs);
const elem_ty = ty_pl.ty.toType().childType(mod);
const elem_size = elem_ty.abiSize(pt);
const ptr = try func.resolveInst(bin_op.lhs);
const index = try func.resolveInst(bin_op.rhs);
// load pointer onto the stack
if (ptr_ty.isSlice(mod)) {
_ = try func.load(ptr, Type.usize, 0);
} else {
try func.lowerToStack(ptr);
}
// calculate index into ptr
try func.emitWValue(index);
try func.addImm32(@intCast(elem_size));
try func.addTag(.i32_mul);
try func.addTag(.i32_add);
return func.finishAir(inst, .stack, &.{ bin_op.lhs, bin_op.rhs });
}
fn airPtrBinOp(func: *CodeGen, inst: Air.Inst.Index, op: Op) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = func.air.extraData(Air.Bin, ty_pl.payload).data;
const ptr = try func.resolveInst(bin_op.lhs);
const offset = try func.resolveInst(bin_op.rhs);
const ptr_ty = func.typeOf(bin_op.lhs);
const pointee_ty = switch (ptr_ty.ptrSize(mod)) {
.One => ptr_ty.childType(mod).childType(mod), // ptr to array, so get array element type
else => ptr_ty.childType(mod),
};
const valtype = typeToValtype(Type.usize, pt, func.target.*);
const mul_opcode = buildOpcode(.{ .valtype1 = valtype, .op = .mul });
const bin_opcode = buildOpcode(.{ .valtype1 = valtype, .op = op });
try func.lowerToStack(ptr);
try func.emitWValue(offset);
try func.addImm32(@intCast(pointee_ty.abiSize(pt)));
try func.addTag(Mir.Inst.Tag.fromOpcode(mul_opcode));
try func.addTag(Mir.Inst.Tag.fromOpcode(bin_opcode));
return func.finishAir(inst, .stack, &.{ bin_op.lhs, bin_op.rhs });
}
fn airMemset(func: *CodeGen, inst: Air.Inst.Index, safety: bool) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
if (safety) {
// TODO if the value is undef, write 0xaa bytes to dest
} else {
// TODO if the value is undef, don't lower this instruction
}
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ptr = try func.resolveInst(bin_op.lhs);
const ptr_ty = func.typeOf(bin_op.lhs);
const value = try func.resolveInst(bin_op.rhs);
const len = switch (ptr_ty.ptrSize(mod)) {
.Slice => try func.sliceLen(ptr),
.One => @as(WValue, .{ .imm32 = @as(u32, @intCast(ptr_ty.childType(mod).arrayLen(mod))) }),
.C, .Many => unreachable,
};
const elem_ty = if (ptr_ty.ptrSize(mod) == .One)
ptr_ty.childType(mod).childType(mod)
else
ptr_ty.childType(mod);
const dst_ptr = try func.sliceOrArrayPtr(ptr, ptr_ty);
try func.memset(elem_ty, dst_ptr, len, value);
return func.finishAir(inst, .none, &.{ bin_op.lhs, bin_op.rhs });
}
/// Sets a region of memory at `ptr` to the value of `value`
/// When the user has enabled the bulk_memory feature, we lower
/// this to wasm's memset instruction. When the feature is not present,
/// we implement it manually.
fn memset(func: *CodeGen, elem_ty: Type, ptr: WValue, len: WValue, value: WValue) InnerError!void {
const pt = func.pt;
const abi_size = @as(u32, @intCast(elem_ty.abiSize(pt)));
// When bulk_memory is enabled, we lower it to wasm's memset instruction.
// If not, we lower it ourselves.
if (std.Target.wasm.featureSetHas(func.target.cpu.features, .bulk_memory) and abi_size == 1) {
try func.lowerToStack(ptr);
try func.emitWValue(value);
try func.emitWValue(len);
try func.addExtended(.memory_fill);
return;
}
const final_len: WValue = switch (len) {
.imm32 => |val| .{ .imm32 = val * abi_size },
.imm64 => |val| .{ .imm64 = val * abi_size },
else => if (abi_size != 1) blk: {
const new_len = try func.ensureAllocLocal(Type.usize);
try func.emitWValue(len);
switch (func.arch()) {
.wasm32 => {
try func.emitWValue(.{ .imm32 = abi_size });
try func.addTag(.i32_mul);
},
.wasm64 => {
try func.emitWValue(.{ .imm64 = abi_size });
try func.addTag(.i64_mul);
},
else => unreachable,
}
try func.addLabel(.local_set, new_len.local.value);
break :blk new_len;
} else len,
};
var end_ptr = try func.allocLocal(Type.usize);
defer end_ptr.free(func);
var new_ptr = try func.buildPointerOffset(ptr, 0, .new);
defer new_ptr.free(func);
// get the loop conditional: if current pointer address equals final pointer's address
try func.lowerToStack(ptr);
try func.emitWValue(final_len);
switch (func.arch()) {
.wasm32 => try func.addTag(.i32_add),
.wasm64 => try func.addTag(.i64_add),
else => unreachable,
}
try func.addLabel(.local_set, end_ptr.local.value);
// outer block to jump to when loop is done
try func.startBlock(.block, wasm.block_empty);
try func.startBlock(.loop, wasm.block_empty);
// check for condition for loop end
try func.emitWValue(new_ptr);
try func.emitWValue(end_ptr);
switch (func.arch()) {
.wasm32 => try func.addTag(.i32_eq),
.wasm64 => try func.addTag(.i64_eq),
else => unreachable,
}
try func.addLabel(.br_if, 1); // jump out of loop into outer block (finished)
// store the value at the current position of the pointer
try func.store(new_ptr, value, elem_ty, 0);
// move the pointer to the next element
try func.emitWValue(new_ptr);
switch (func.arch()) {
.wasm32 => {
try func.emitWValue(.{ .imm32 = abi_size });
try func.addTag(.i32_add);
},
.wasm64 => {
try func.emitWValue(.{ .imm64 = abi_size });
try func.addTag(.i64_add);
},
else => unreachable,
}
try func.addLabel(.local_set, new_ptr.local.value);
// end of loop
try func.addLabel(.br, 0); // jump to start of loop
try func.endBlock();
try func.endBlock();
}
fn airArrayElemVal(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const array_ty = func.typeOf(bin_op.lhs);
const array = try func.resolveInst(bin_op.lhs);
const index = try func.resolveInst(bin_op.rhs);
const elem_ty = array_ty.childType(mod);
const elem_size = elem_ty.abiSize(pt);
if (isByRef(array_ty, pt, func.target.*)) {
try func.lowerToStack(array);
try func.emitWValue(index);
try func.addImm32(@intCast(elem_size));
try func.addTag(.i32_mul);
try func.addTag(.i32_add);
} else {
std.debug.assert(array_ty.zigTypeTag(mod) == .Vector);
switch (index) {
inline .imm32, .imm64 => |lane| {
const opcode: wasm.SimdOpcode = switch (elem_ty.bitSize(pt)) {
8 => if (elem_ty.isSignedInt(mod)) .i8x16_extract_lane_s else .i8x16_extract_lane_u,
16 => if (elem_ty.isSignedInt(mod)) .i16x8_extract_lane_s else .i16x8_extract_lane_u,
32 => if (elem_ty.isInt(mod)) .i32x4_extract_lane else .f32x4_extract_lane,
64 => if (elem_ty.isInt(mod)) .i64x2_extract_lane else .f64x2_extract_lane,
else => unreachable,
};
var operands = [_]u32{ std.wasm.simdOpcode(opcode), @as(u8, @intCast(lane)) };
try func.emitWValue(array);
const extra_index = @as(u32, @intCast(func.mir_extra.items.len));
try func.mir_extra.appendSlice(func.gpa, &operands);
try func.addInst(.{ .tag = .simd_prefix, .data = .{ .payload = extra_index } });
return func.finishAir(inst, .stack, &.{ bin_op.lhs, bin_op.rhs });
},
else => {
const stack_vec = try func.allocStack(array_ty);
try func.store(stack_vec, array, array_ty, 0);
// Is a non-unrolled vector (v128)
try func.lowerToStack(stack_vec);
try func.emitWValue(index);
try func.addImm32(@intCast(elem_size));
try func.addTag(.i32_mul);
try func.addTag(.i32_add);
},
}
}
const elem_result = if (isByRef(elem_ty, pt, func.target.*))
.stack
else
try func.load(.stack, elem_ty, 0);
return func.finishAir(inst, elem_result, &.{ bin_op.lhs, bin_op.rhs });
}
fn airIntFromFloat(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const op_ty = func.typeOf(ty_op.operand);
const op_bits = op_ty.floatBits(func.target.*);
const dest_ty = func.typeOfIndex(inst);
const dest_info = dest_ty.intInfo(mod);
if (dest_info.bits > 128) {
return func.fail("TODO: intFromFloat for integers/floats with bitsize {}", .{dest_info.bits});
}
if ((op_bits != 32 and op_bits != 64) or dest_info.bits > 64) {
const dest_bitsize = if (dest_info.bits <= 16) 16 else std.math.ceilPowerOfTwoAssert(u16, dest_info.bits);
var fn_name_buf: [16]u8 = undefined;
const fn_name = std.fmt.bufPrint(&fn_name_buf, "__fix{s}{s}f{s}i", .{
switch (dest_info.signedness) {
.signed => "",
.unsigned => "uns",
},
target_util.compilerRtFloatAbbrev(op_bits),
target_util.compilerRtIntAbbrev(dest_bitsize),
}) catch unreachable;
const result = try func.callIntrinsic(fn_name, &.{op_ty.ip_index}, dest_ty, &.{operand});
return func.finishAir(inst, result, &.{ty_op.operand});
}
try func.emitWValue(operand);
const op = buildOpcode(.{
.op = .trunc,
.valtype1 = typeToValtype(dest_ty, pt, func.target.*),
.valtype2 = typeToValtype(op_ty, pt, func.target.*),
.signedness = dest_info.signedness,
});
try func.addTag(Mir.Inst.Tag.fromOpcode(op));
const result = try func.wrapOperand(.stack, dest_ty);
return func.finishAir(inst, result, &.{ty_op.operand});
}
fn airFloatFromInt(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const op_ty = func.typeOf(ty_op.operand);
const op_info = op_ty.intInfo(mod);
const dest_ty = func.typeOfIndex(inst);
const dest_bits = dest_ty.floatBits(func.target.*);
if (op_info.bits > 128) {
return func.fail("TODO: floatFromInt for integers/floats with bitsize {d} bits", .{op_info.bits});
}
if (op_info.bits > 64 or (dest_bits > 64 or dest_bits < 32)) {
const op_bitsize = if (op_info.bits <= 16) 16 else std.math.ceilPowerOfTwoAssert(u16, op_info.bits);
var fn_name_buf: [16]u8 = undefined;
const fn_name = std.fmt.bufPrint(&fn_name_buf, "__float{s}{s}i{s}f", .{
switch (op_info.signedness) {
.signed => "",
.unsigned => "un",
},
target_util.compilerRtIntAbbrev(op_bitsize),
target_util.compilerRtFloatAbbrev(dest_bits),
}) catch unreachable;
const result = try func.callIntrinsic(fn_name, &.{op_ty.ip_index}, dest_ty, &.{operand});
return func.finishAir(inst, result, &.{ty_op.operand});
}
try func.emitWValue(operand);
const op = buildOpcode(.{
.op = .convert,
.valtype1 = typeToValtype(dest_ty, pt, func.target.*),
.valtype2 = typeToValtype(op_ty, pt, func.target.*),
.signedness = op_info.signedness,
});
try func.addTag(Mir.Inst.Tag.fromOpcode(op));
return func.finishAir(inst, .stack, &.{ty_op.operand});
}
fn airSplat(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const ty = func.typeOfIndex(inst);
const elem_ty = ty.childType(mod);
if (determineSimdStoreStrategy(ty, pt, func.target.*) == .direct) blk: {
switch (operand) {
// when the operand lives in the linear memory section, we can directly
// load and splat the value at once. Meaning we do not first have to load
// the scalar value onto the stack.
.stack_offset, .memory, .memory_offset => {
const opcode = switch (elem_ty.bitSize(pt)) {
8 => std.wasm.simdOpcode(.v128_load8_splat),
16 => std.wasm.simdOpcode(.v128_load16_splat),
32 => std.wasm.simdOpcode(.v128_load32_splat),
64 => std.wasm.simdOpcode(.v128_load64_splat),
else => break :blk, // Cannot make use of simd-instructions
};
try func.emitWValue(operand);
// TODO: Add helper functions for simd opcodes
const extra_index = @as(u32, @intCast(func.mir_extra.items.len));
// stores as := opcode, offset, alignment (opcode::memarg)
try func.mir_extra.appendSlice(func.gpa, &[_]u32{
opcode,
operand.offset(),
@intCast(elem_ty.abiAlignment(pt).toByteUnits().?),
});
try func.addInst(.{ .tag = .simd_prefix, .data = .{ .payload = extra_index } });
return func.finishAir(inst, .stack, &.{ty_op.operand});
},
.local => {
const opcode = switch (elem_ty.bitSize(pt)) {
8 => std.wasm.simdOpcode(.i8x16_splat),
16 => std.wasm.simdOpcode(.i16x8_splat),
32 => if (elem_ty.isInt(mod)) std.wasm.simdOpcode(.i32x4_splat) else std.wasm.simdOpcode(.f32x4_splat),
64 => if (elem_ty.isInt(mod)) std.wasm.simdOpcode(.i64x2_splat) else std.wasm.simdOpcode(.f64x2_splat),
else => break :blk, // Cannot make use of simd-instructions
};
try func.emitWValue(operand);
const extra_index = @as(u32, @intCast(func.mir_extra.items.len));
try func.mir_extra.append(func.gpa, opcode);
try func.addInst(.{ .tag = .simd_prefix, .data = .{ .payload = extra_index } });
return func.finishAir(inst, .stack, &.{ty_op.operand});
},
else => unreachable,
}
}
const elem_size = elem_ty.bitSize(pt);
const vector_len = @as(usize, @intCast(ty.vectorLen(mod)));
if ((!std.math.isPowerOfTwo(elem_size) or elem_size % 8 != 0) and vector_len > 1) {
return func.fail("TODO: WebAssembly `@splat` for arbitrary element bitsize {d}", .{elem_size});
}
const result = try func.allocStack(ty);
const elem_byte_size = @as(u32, @intCast(elem_ty.abiSize(pt)));
var index: usize = 0;
var offset: u32 = 0;
while (index < vector_len) : (index += 1) {
try func.store(result, operand, elem_ty, offset);
offset += elem_byte_size;
}
return func.finishAir(inst, result, &.{ty_op.operand});
}
fn airSelect(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pl_op = func.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const operand = try func.resolveInst(pl_op.operand);
_ = operand;
return func.fail("TODO: Implement wasm airSelect", .{});
}
fn airShuffle(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const inst_ty = func.typeOfIndex(inst);
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.Shuffle, ty_pl.payload).data;
const a = try func.resolveInst(extra.a);
const b = try func.resolveInst(extra.b);
const mask = Value.fromInterned(extra.mask);
const mask_len = extra.mask_len;
const child_ty = inst_ty.childType(mod);
const elem_size = child_ty.abiSize(pt);
// TODO: One of them could be by ref; handle in loop
if (isByRef(func.typeOf(extra.a), pt, func.target.*) or isByRef(inst_ty, pt, func.target.*)) {
const result = try func.allocStack(inst_ty);
for (0..mask_len) |index| {
const value = (try mask.elemValue(pt, index)).toSignedInt(pt);
try func.emitWValue(result);
const loaded = if (value >= 0)
try func.load(a, child_ty, @as(u32, @intCast(@as(i64, @intCast(elem_size)) * value)))
else
try func.load(b, child_ty, @as(u32, @intCast(@as(i64, @intCast(elem_size)) * ~value)));
try func.store(.stack, loaded, child_ty, result.stack_offset.value + @as(u32, @intCast(elem_size)) * @as(u32, @intCast(index)));
}
return func.finishAir(inst, result, &.{ extra.a, extra.b });
} else {
var operands = [_]u32{
std.wasm.simdOpcode(.i8x16_shuffle),
} ++ [1]u32{undefined} ** 4;
var lanes = mem.asBytes(operands[1..]);
for (0..@as(usize, @intCast(mask_len))) |index| {
const mask_elem = (try mask.elemValue(pt, index)).toSignedInt(pt);
const base_index = if (mask_elem >= 0)
@as(u8, @intCast(@as(i64, @intCast(elem_size)) * mask_elem))
else
16 + @as(u8, @intCast(@as(i64, @intCast(elem_size)) * ~mask_elem));
for (0..@as(usize, @intCast(elem_size))) |byte_offset| {
lanes[index * @as(usize, @intCast(elem_size)) + byte_offset] = base_index + @as(u8, @intCast(byte_offset));
}
}
try func.emitWValue(a);
try func.emitWValue(b);
const extra_index = @as(u32, @intCast(func.mir_extra.items.len));
try func.mir_extra.appendSlice(func.gpa, &operands);
try func.addInst(.{ .tag = .simd_prefix, .data = .{ .payload = extra_index } });
return func.finishAir(inst, .stack, &.{ extra.a, extra.b });
}
}
fn airReduce(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const reduce = func.air.instructions.items(.data)[@intFromEnum(inst)].reduce;
const operand = try func.resolveInst(reduce.operand);
_ = operand;
return func.fail("TODO: Implement wasm airReduce", .{});
}
fn airAggregateInit(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ip = &mod.intern_pool;
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const result_ty = func.typeOfIndex(inst);
const len = @as(usize, @intCast(result_ty.arrayLen(mod)));
const elements = @as([]const Air.Inst.Ref, @ptrCast(func.air.extra[ty_pl.payload..][0..len]));
const result: WValue = result_value: {
switch (result_ty.zigTypeTag(mod)) {
.Array => {
const result = try func.allocStack(result_ty);
const elem_ty = result_ty.childType(mod);
const elem_size = @as(u32, @intCast(elem_ty.abiSize(pt)));
const sentinel = if (result_ty.sentinel(mod)) |sent| blk: {
break :blk try func.lowerConstant(sent, elem_ty);
} else null;
// When the element type is by reference, we must copy the entire
// value. It is therefore safer to move the offset pointer and store
// each value individually, instead of using store offsets.
if (isByRef(elem_ty, pt, func.target.*)) {
// copy stack pointer into a temporary local, which is
// moved for each element to store each value in the right position.
const offset = try func.buildPointerOffset(result, 0, .new);
for (elements, 0..) |elem, elem_index| {
const elem_val = try func.resolveInst(elem);
try func.store(offset, elem_val, elem_ty, 0);
if (elem_index < elements.len - 1 and sentinel == null) {
_ = try func.buildPointerOffset(offset, elem_size, .modify);
}
}
if (sentinel) |sent| {
try func.store(offset, sent, elem_ty, 0);
}
} else {
var offset: u32 = 0;
for (elements) |elem| {
const elem_val = try func.resolveInst(elem);
try func.store(result, elem_val, elem_ty, offset);
offset += elem_size;
}
if (sentinel) |sent| {
try func.store(result, sent, elem_ty, offset);
}
}
break :result_value result;
},
.Struct => switch (result_ty.containerLayout(mod)) {
.@"packed" => {
if (isByRef(result_ty, pt, func.target.*)) {
return func.fail("TODO: airAggregateInit for packed structs larger than 64 bits", .{});
}
const packed_struct = mod.typeToPackedStruct(result_ty).?;
const field_types = packed_struct.field_types;
const backing_type = Type.fromInterned(packed_struct.backingIntTypeUnordered(ip));
// ensure the result is zero'd
const result = try func.allocLocal(backing_type);
if (backing_type.bitSize(pt) <= 32)
try func.addImm32(0)
else
try func.addImm64(0);
try func.addLabel(.local_set, result.local.value);
var current_bit: u16 = 0;
for (elements, 0..) |elem, elem_index| {
const field_ty = Type.fromInterned(field_types.get(ip)[elem_index]);
if (!field_ty.hasRuntimeBitsIgnoreComptime(pt)) continue;
const shift_val: WValue = if (backing_type.bitSize(pt) <= 32)
.{ .imm32 = current_bit }
else
.{ .imm64 = current_bit };
const value = try func.resolveInst(elem);
const value_bit_size: u16 = @intCast(field_ty.bitSize(pt));
const int_ty = try pt.intType(.unsigned, value_bit_size);
// load our current result on stack so we can perform all transformations
// using only stack values. Saving the cost of loads and stores.
try func.emitWValue(result);
const bitcasted = try func.bitcast(int_ty, field_ty, value);
const extended_val = try func.intcast(bitcasted, int_ty, backing_type);
// no need to shift any values when the current offset is 0
const shifted = if (current_bit != 0) shifted: {
break :shifted try func.binOp(extended_val, shift_val, backing_type, .shl);
} else extended_val;
// we ignore the result as we keep it on the stack to assign it directly to `result`
_ = try func.binOp(.stack, shifted, backing_type, .@"or");
try func.addLabel(.local_set, result.local.value);
current_bit += value_bit_size;
}
break :result_value result;
},
else => {
const result = try func.allocStack(result_ty);
const offset = try func.buildPointerOffset(result, 0, .new); // pointer to offset
var prev_field_offset: u64 = 0;
for (elements, 0..) |elem, elem_index| {
if (try result_ty.structFieldValueComptime(pt, elem_index) != null) continue;
const elem_ty = result_ty.structFieldType(elem_index, mod);
const field_offset = result_ty.structFieldOffset(elem_index, pt);
_ = try func.buildPointerOffset(offset, @intCast(field_offset - prev_field_offset), .modify);
prev_field_offset = field_offset;
const value = try func.resolveInst(elem);
try func.store(offset, value, elem_ty, 0);
}
break :result_value result;
},
},
.Vector => return func.fail("TODO: Wasm backend: implement airAggregateInit for vectors", .{}),
else => unreachable,
}
};
if (elements.len <= Liveness.bpi - 1) {
var buf = [1]Air.Inst.Ref{.none} ** (Liveness.bpi - 1);
@memcpy(buf[0..elements.len], elements);
return func.finishAir(inst, result, &buf);
}
var bt = try func.iterateBigTomb(inst, elements.len);
for (elements) |arg| bt.feed(arg);
return bt.finishAir(result);
}
fn airUnionInit(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ip = &mod.intern_pool;
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.UnionInit, ty_pl.payload).data;
const result = result: {
const union_ty = func.typeOfIndex(inst);
const layout = union_ty.unionGetLayout(pt);
const union_obj = mod.typeToUnion(union_ty).?;
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[extra.field_index]);
const field_name = union_obj.loadTagType(ip).names.get(ip)[extra.field_index];
const tag_int = blk: {
const tag_ty = union_ty.unionTagTypeHypothetical(mod);
const enum_field_index = tag_ty.enumFieldIndex(field_name, mod).?;
const tag_val = try pt.enumValueFieldIndex(tag_ty, enum_field_index);
break :blk try func.lowerConstant(tag_val, tag_ty);
};
if (layout.payload_size == 0) {
if (layout.tag_size == 0) {
break :result .none;
}
assert(!isByRef(union_ty, pt, func.target.*));
break :result tag_int;
}
if (isByRef(union_ty, pt, func.target.*)) {
const result_ptr = try func.allocStack(union_ty);
const payload = try func.resolveInst(extra.init);
if (layout.tag_align.compare(.gte, layout.payload_align)) {
if (isByRef(field_ty, pt, func.target.*)) {
const payload_ptr = try func.buildPointerOffset(result_ptr, layout.tag_size, .new);
try func.store(payload_ptr, payload, field_ty, 0);
} else {
try func.store(result_ptr, payload, field_ty, @intCast(layout.tag_size));
}
if (layout.tag_size > 0) {
try func.store(result_ptr, tag_int, Type.fromInterned(union_obj.enum_tag_ty), 0);
}
} else {
try func.store(result_ptr, payload, field_ty, 0);
if (layout.tag_size > 0) {
try func.store(
result_ptr,
tag_int,
Type.fromInterned(union_obj.enum_tag_ty),
@intCast(layout.payload_size),
);
}
}
break :result result_ptr;
} else {
const operand = try func.resolveInst(extra.init);
const union_int_type = try pt.intType(.unsigned, @as(u16, @intCast(union_ty.bitSize(pt))));
if (field_ty.zigTypeTag(mod) == .Float) {
const int_type = try pt.intType(.unsigned, @intCast(field_ty.bitSize(pt)));
const bitcasted = try func.bitcast(field_ty, int_type, operand);
break :result try func.trunc(bitcasted, int_type, union_int_type);
} else if (field_ty.isPtrAtRuntime(mod)) {
const int_type = try pt.intType(.unsigned, @intCast(field_ty.bitSize(pt)));
break :result try func.intcast(operand, int_type, union_int_type);
}
break :result try func.intcast(operand, field_ty, union_int_type);
}
};
return func.finishAir(inst, result, &.{extra.init});
}
fn airPrefetch(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const prefetch = func.air.instructions.items(.data)[@intFromEnum(inst)].prefetch;
return func.finishAir(inst, .none, &.{prefetch.ptr});
}
fn airWasmMemorySize(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pl_op = func.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
try func.addLabel(.memory_size, pl_op.payload);
return func.finishAir(inst, .stack, &.{pl_op.operand});
}
fn airWasmMemoryGrow(func: *CodeGen, inst: Air.Inst.Index) !void {
const pl_op = func.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const operand = try func.resolveInst(pl_op.operand);
try func.emitWValue(operand);
try func.addLabel(.memory_grow, pl_op.payload);
return func.finishAir(inst, .stack, &.{pl_op.operand});
}
fn cmpOptionals(func: *CodeGen, lhs: WValue, rhs: WValue, operand_ty: Type, op: std.math.CompareOperator) InnerError!WValue {
const pt = func.pt;
const mod = pt.zcu;
assert(operand_ty.hasRuntimeBitsIgnoreComptime(pt));
assert(op == .eq or op == .neq);
const payload_ty = operand_ty.optionalChild(mod);
// We store the final result in here that will be validated
// if the optional is truly equal.
var result = try func.ensureAllocLocal(Type.i32);
defer result.free(func);
try func.startBlock(.block, wasm.block_empty);
_ = try func.isNull(lhs, operand_ty, .i32_eq);
_ = try func.isNull(rhs, operand_ty, .i32_eq);
try func.addTag(.i32_ne); // inverse so we can exit early
try func.addLabel(.br_if, 0);
_ = try func.load(lhs, payload_ty, 0);
_ = try func.load(rhs, payload_ty, 0);
const opcode = buildOpcode(.{ .op = .ne, .valtype1 = typeToValtype(payload_ty, pt, func.target.*) });
try func.addTag(Mir.Inst.Tag.fromOpcode(opcode));
try func.addLabel(.br_if, 0);
try func.addImm32(1);
try func.addLabel(.local_set, result.local.value);
try func.endBlock();
try func.emitWValue(result);
try func.addImm32(0);
try func.addTag(if (op == .eq) .i32_ne else .i32_eq);
return .stack;
}
/// Compares big integers by checking both its high bits and low bits.
/// NOTE: Leaves the result of the comparison on top of the stack.
/// TODO: Lower this to compiler_rt call when bitsize > 128
fn cmpBigInt(func: *CodeGen, lhs: WValue, rhs: WValue, operand_ty: Type, op: std.math.CompareOperator) InnerError!WValue {
const pt = func.pt;
const mod = pt.zcu;
assert(operand_ty.abiSize(pt) >= 16);
assert(!(lhs != .stack and rhs == .stack));
if (operand_ty.bitSize(pt) > 128) {
return func.fail("TODO: Support cmpBigInt for integer bitsize: '{d}'", .{operand_ty.bitSize(pt)});
}
var lhs_msb = try (try func.load(lhs, Type.u64, 8)).toLocal(func, Type.u64);
defer lhs_msb.free(func);
var rhs_msb = try (try func.load(rhs, Type.u64, 8)).toLocal(func, Type.u64);
defer rhs_msb.free(func);
switch (op) {
.eq, .neq => {
const xor_high = try func.binOp(lhs_msb, rhs_msb, Type.u64, .xor);
const lhs_lsb = try func.load(lhs, Type.u64, 0);
const rhs_lsb = try func.load(rhs, Type.u64, 0);
const xor_low = try func.binOp(lhs_lsb, rhs_lsb, Type.u64, .xor);
const or_result = try func.binOp(xor_high, xor_low, Type.u64, .@"or");
switch (op) {
.eq => return func.cmp(or_result, .{ .imm64 = 0 }, Type.u64, .eq),
.neq => return func.cmp(or_result, .{ .imm64 = 0 }, Type.u64, .neq),
else => unreachable,
}
},
else => {
const ty = if (operand_ty.isSignedInt(mod)) Type.i64 else Type.u64;
// leave those value on top of the stack for '.select'
const lhs_lsb = try func.load(lhs, Type.u64, 0);
const rhs_lsb = try func.load(rhs, Type.u64, 0);
_ = try func.cmp(lhs_lsb, rhs_lsb, Type.u64, op);
_ = try func.cmp(lhs_msb, rhs_msb, ty, op);
_ = try func.cmp(lhs_msb, rhs_msb, ty, .eq);
try func.addTag(.select);
},
}
return .stack;
}
fn airSetUnionTag(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const un_ty = func.typeOf(bin_op.lhs).childType(mod);
const tag_ty = func.typeOf(bin_op.rhs);
const layout = un_ty.unionGetLayout(pt);
if (layout.tag_size == 0) return func.finishAir(inst, .none, &.{ bin_op.lhs, bin_op.rhs });
const union_ptr = try func.resolveInst(bin_op.lhs);
const new_tag = try func.resolveInst(bin_op.rhs);
if (layout.payload_size == 0) {
try func.store(union_ptr, new_tag, tag_ty, 0);
return func.finishAir(inst, .none, &.{ bin_op.lhs, bin_op.rhs });
}
// when the tag alignment is smaller than the payload, the field will be stored
// after the payload.
const offset: u32 = if (layout.tag_align.compare(.lt, layout.payload_align)) blk: {
break :blk @intCast(layout.payload_size);
} else 0;
try func.store(union_ptr, new_tag, tag_ty, offset);
return func.finishAir(inst, .none, &.{ bin_op.lhs, bin_op.rhs });
}
fn airGetUnionTag(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const un_ty = func.typeOf(ty_op.operand);
const tag_ty = func.typeOfIndex(inst);
const layout = un_ty.unionGetLayout(pt);
if (layout.tag_size == 0) return func.finishAir(inst, .none, &.{ty_op.operand});
const operand = try func.resolveInst(ty_op.operand);
// when the tag alignment is smaller than the payload, the field will be stored
// after the payload.
const offset: u32 = if (layout.tag_align.compare(.lt, layout.payload_align))
@intCast(layout.payload_size)
else
0;
const result = try func.load(operand, tag_ty, offset);
return func.finishAir(inst, result, &.{ty_op.operand});
}
fn airFpext(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const dest_ty = func.typeOfIndex(inst);
const operand = try func.resolveInst(ty_op.operand);
const result = try func.fpext(operand, func.typeOf(ty_op.operand), dest_ty);
return func.finishAir(inst, result, &.{ty_op.operand});
}
/// Extends a float from a given `Type` to a larger wanted `Type`
/// NOTE: Leaves the result on the stack
fn fpext(func: *CodeGen, operand: WValue, given: Type, wanted: Type) InnerError!WValue {
const given_bits = given.floatBits(func.target.*);
const wanted_bits = wanted.floatBits(func.target.*);
if (wanted_bits == 64 and given_bits == 32) {
try func.emitWValue(operand);
try func.addTag(.f64_promote_f32);
return .stack;
} else if (given_bits == 16 and wanted_bits <= 64) {
// call __extendhfsf2(f16) f32
const f32_result = try func.callIntrinsic(
"__extendhfsf2",
&.{.f16_type},
Type.f32,
&.{operand},
);
std.debug.assert(f32_result == .stack);
if (wanted_bits == 64) {
try func.addTag(.f64_promote_f32);
}
return .stack;
}
var fn_name_buf: [13]u8 = undefined;
const fn_name = std.fmt.bufPrint(&fn_name_buf, "__extend{s}f{s}f2", .{
target_util.compilerRtFloatAbbrev(given_bits),
target_util.compilerRtFloatAbbrev(wanted_bits),
}) catch unreachable;
return func.callIntrinsic(fn_name, &.{given.ip_index}, wanted, &.{operand});
}
fn airFptrunc(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const dest_ty = func.typeOfIndex(inst);
const operand = try func.resolveInst(ty_op.operand);
const result = try func.fptrunc(operand, func.typeOf(ty_op.operand), dest_ty);
return func.finishAir(inst, result, &.{ty_op.operand});
}
/// Truncates a float from a given `Type` to its wanted `Type`
/// NOTE: The result value remains on the stack
fn fptrunc(func: *CodeGen, operand: WValue, given: Type, wanted: Type) InnerError!WValue {
const given_bits = given.floatBits(func.target.*);
const wanted_bits = wanted.floatBits(func.target.*);
if (wanted_bits == 32 and given_bits == 64) {
try func.emitWValue(operand);
try func.addTag(.f32_demote_f64);
return .stack;
} else if (wanted_bits == 16 and given_bits <= 64) {
const op: WValue = if (given_bits == 64) blk: {
try func.emitWValue(operand);
try func.addTag(.f32_demote_f64);
break :blk .stack;
} else operand;
// call __truncsfhf2(f32) f16
return func.callIntrinsic("__truncsfhf2", &.{.f32_type}, Type.f16, &.{op});
}
var fn_name_buf: [12]u8 = undefined;
const fn_name = std.fmt.bufPrint(&fn_name_buf, "__trunc{s}f{s}f2", .{
target_util.compilerRtFloatAbbrev(given_bits),
target_util.compilerRtFloatAbbrev(wanted_bits),
}) catch unreachable;
return func.callIntrinsic(fn_name, &.{given.ip_index}, wanted, &.{operand});
}
fn airErrUnionPayloadPtrSet(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const err_set_ty = func.typeOf(ty_op.operand).childType(mod);
const payload_ty = err_set_ty.errorUnionPayload(mod);
const operand = try func.resolveInst(ty_op.operand);
// set error-tag to '0' to annotate error union is non-error
try func.store(
operand,
.{ .imm32 = 0 },
Type.anyerror,
@intCast(errUnionErrorOffset(payload_ty, pt)),
);
const result = result: {
if (!payload_ty.hasRuntimeBitsIgnoreComptime(pt)) {
break :result func.reuseOperand(ty_op.operand, operand);
}
break :result try func.buildPointerOffset(operand, @as(u32, @intCast(errUnionPayloadOffset(payload_ty, pt))), .new);
};
return func.finishAir(inst, result, &.{ty_op.operand});
}
fn airFieldParentPtr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.FieldParentPtr, ty_pl.payload).data;
const field_ptr = try func.resolveInst(extra.field_ptr);
const parent_ty = ty_pl.ty.toType().childType(mod);
const field_offset = parent_ty.structFieldOffset(extra.field_index, pt);
const result = if (field_offset != 0) result: {
const base = try func.buildPointerOffset(field_ptr, 0, .new);
try func.addLabel(.local_get, base.local.value);
try func.addImm32(@intCast(field_offset));
try func.addTag(.i32_sub);
try func.addLabel(.local_set, base.local.value);
break :result base;
} else func.reuseOperand(extra.field_ptr, field_ptr);
return func.finishAir(inst, result, &.{extra.field_ptr});
}
fn sliceOrArrayPtr(func: *CodeGen, ptr: WValue, ptr_ty: Type) InnerError!WValue {
const pt = func.pt;
const mod = pt.zcu;
if (ptr_ty.isSlice(mod)) {
return func.slicePtr(ptr);
} else {
return ptr;
}
}
fn airMemcpy(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const dst = try func.resolveInst(bin_op.lhs);
const dst_ty = func.typeOf(bin_op.lhs);
const ptr_elem_ty = dst_ty.childType(mod);
const src = try func.resolveInst(bin_op.rhs);
const src_ty = func.typeOf(bin_op.rhs);
const len = switch (dst_ty.ptrSize(mod)) {
.Slice => blk: {
const slice_len = try func.sliceLen(dst);
if (ptr_elem_ty.abiSize(pt) != 1) {
try func.emitWValue(slice_len);
try func.emitWValue(.{ .imm32 = @as(u32, @intCast(ptr_elem_ty.abiSize(pt))) });
try func.addTag(.i32_mul);
try func.addLabel(.local_set, slice_len.local.value);
}
break :blk slice_len;
},
.One => @as(WValue, .{
.imm32 = @as(u32, @intCast(ptr_elem_ty.arrayLen(mod) * ptr_elem_ty.childType(mod).abiSize(pt))),
}),
.C, .Many => unreachable,
};
const dst_ptr = try func.sliceOrArrayPtr(dst, dst_ty);
const src_ptr = try func.sliceOrArrayPtr(src, src_ty);
try func.memcpy(dst_ptr, src_ptr, len);
return func.finishAir(inst, .none, &.{ bin_op.lhs, bin_op.rhs });
}
fn airRetAddr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
// TODO: Implement this properly once stack serialization is solved
return func.finishAir(inst, switch (func.arch()) {
.wasm32 => .{ .imm32 = 0 },
.wasm64 => .{ .imm64 = 0 },
else => unreachable,
}, &.{});
}
fn airPopcount(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const op_ty = func.typeOf(ty_op.operand);
if (op_ty.zigTypeTag(mod) == .Vector) {
return func.fail("TODO: Implement @popCount for vectors", .{});
}
const int_info = op_ty.intInfo(mod);
const bits = int_info.bits;
const wasm_bits = toWasmBits(bits) orelse {
return func.fail("TODO: Implement @popCount for integers with bitsize '{d}'", .{bits});
};
switch (wasm_bits) {
32 => {
try func.emitWValue(operand);
if (op_ty.isSignedInt(mod) and bits != wasm_bits) {
_ = try func.wrapOperand(.stack, try pt.intType(.unsigned, bits));
}
try func.addTag(.i32_popcnt);
},
64 => {
try func.emitWValue(operand);
if (op_ty.isSignedInt(mod) and bits != wasm_bits) {
_ = try func.wrapOperand(.stack, try pt.intType(.unsigned, bits));
}
try func.addTag(.i64_popcnt);
try func.addTag(.i32_wrap_i64);
try func.emitWValue(operand);
},
128 => {
_ = try func.load(operand, Type.u64, 0);
try func.addTag(.i64_popcnt);
_ = try func.load(operand, Type.u64, 8);
if (op_ty.isSignedInt(mod) and bits != wasm_bits) {
_ = try func.wrapOperand(.stack, try pt.intType(.unsigned, bits - 64));
}
try func.addTag(.i64_popcnt);
try func.addTag(.i64_add);
try func.addTag(.i32_wrap_i64);
},
else => unreachable,
}
return func.finishAir(inst, .stack, &.{ty_op.operand});
}
fn airBitReverse(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const ty = func.typeOf(ty_op.operand);
if (ty.zigTypeTag(mod) == .Vector) {
return func.fail("TODO: Implement @bitReverse for vectors", .{});
}
const int_info = ty.intInfo(mod);
const bits = int_info.bits;
const wasm_bits = toWasmBits(bits) orelse {
return func.fail("TODO: Implement @bitReverse for integers with bitsize '{d}'", .{bits});
};
switch (wasm_bits) {
32 => {
const intrin_ret = try func.callIntrinsic(
"__bitreversesi2",
&.{.u32_type},
Type.u32,
&.{operand},
);
const result = if (bits == 32)
intrin_ret
else
try func.binOp(intrin_ret, .{ .imm32 = 32 - bits }, ty, .shr);
return func.finishAir(inst, result, &.{ty_op.operand});
},
64 => {
const intrin_ret = try func.callIntrinsic(
"__bitreversedi2",
&.{.u64_type},
Type.u64,
&.{operand},
);
const result = if (bits == 64)
intrin_ret
else
try func.binOp(intrin_ret, .{ .imm64 = 64 - bits }, ty, .shr);
return func.finishAir(inst, result, &.{ty_op.operand});
},
128 => {
const result = try func.allocStack(ty);
try func.emitWValue(result);
const first_half = try func.load(operand, Type.u64, 8);
const intrin_ret_first = try func.callIntrinsic(
"__bitreversedi2",
&.{.u64_type},
Type.u64,
&.{first_half},
);
try func.emitWValue(intrin_ret_first);
if (bits < 128) {
try func.emitWValue(.{ .imm64 = 128 - bits });
try func.addTag(.i64_shr_u);
}
try func.emitWValue(result);
const second_half = try func.load(operand, Type.u64, 0);
const intrin_ret_second = try func.callIntrinsic(
"__bitreversedi2",
&.{.u64_type},
Type.u64,
&.{second_half},
);
try func.emitWValue(intrin_ret_second);
if (bits == 128) {
try func.store(.stack, .stack, Type.u64, result.offset() + 8);
try func.store(.stack, .stack, Type.u64, result.offset());
} else {
var tmp = try func.allocLocal(Type.u64);
defer tmp.free(func);
try func.addLabel(.local_tee, tmp.local.value);
try func.emitWValue(.{ .imm64 = 128 - bits });
if (ty.isSignedInt(mod)) {
try func.addTag(.i64_shr_s);
} else {
try func.addTag(.i64_shr_u);
}
try func.store(.stack, .stack, Type.u64, result.offset() + 8);
try func.addLabel(.local_get, tmp.local.value);
try func.emitWValue(.{ .imm64 = bits - 64 });
try func.addTag(.i64_shl);
try func.addTag(.i64_or);
try func.store(.stack, .stack, Type.u64, result.offset());
}
return func.finishAir(inst, result, &.{ty_op.operand});
},
else => unreachable,
}
}
fn airErrorName(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try func.resolveInst(un_op);
// First retrieve the symbol index to the error name table
// that will be used to emit a relocation for the pointer
// to the error name table.
//
// Each entry to this table is a slice (ptr+len).
// The operand in this instruction represents the index within this table.
// This means to get the final name, we emit the base pointer and then perform
// pointer arithmetic to find the pointer to this slice and return that.
//
// As the names are global and the slice elements are constant, we do not have
// to make a copy of the ptr+value but can point towards them directly.
const pt = func.pt;
const error_table_symbol = try func.bin_file.getErrorTableSymbol(pt);
const name_ty = Type.slice_const_u8_sentinel_0;
const abi_size = name_ty.abiSize(pt);
const error_name_value: WValue = .{ .memory = error_table_symbol }; // emitting this will create a relocation
try func.emitWValue(error_name_value);
try func.emitWValue(operand);
switch (func.arch()) {
.wasm32 => {
try func.addImm32(@intCast(abi_size));
try func.addTag(.i32_mul);
try func.addTag(.i32_add);
},
.wasm64 => {
try func.addImm64(abi_size);
try func.addTag(.i64_mul);
try func.addTag(.i64_add);
},
else => unreachable,
}
return func.finishAir(inst, .stack, &.{un_op});
}
fn airPtrSliceFieldPtr(func: *CodeGen, inst: Air.Inst.Index, offset: u32) InnerError!void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const slice_ptr = try func.resolveInst(ty_op.operand);
const result = try func.buildPointerOffset(slice_ptr, offset, .new);
return func.finishAir(inst, result, &.{ty_op.operand});
}
/// NOTE: Allocates place for result on virtual stack, when integer size > 64 bits
fn intZeroValue(func: *CodeGen, ty: Type) InnerError!WValue {
const mod = func.bin_file.base.comp.module.?;
const int_info = ty.intInfo(mod);
const wasm_bits = toWasmBits(int_info.bits) orelse {
return func.fail("TODO: Implement intZeroValue for integer bitsize: {d}", .{int_info.bits});
};
switch (wasm_bits) {
32 => return .{ .imm32 = 0 },
64 => return .{ .imm64 = 0 },
128 => {
const result = try func.allocStack(ty);
try func.store(result, .{ .imm64 = 0 }, Type.u64, 0);
try func.store(result, .{ .imm64 = 0 }, Type.u64, 8);
return result;
},
else => unreachable,
}
}
fn airAddSubWithOverflow(func: *CodeGen, inst: Air.Inst.Index, op: Op) InnerError!void {
assert(op == .add or op == .sub);
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.Bin, ty_pl.payload).data;
const lhs = try func.resolveInst(extra.lhs);
const rhs = try func.resolveInst(extra.rhs);
const ty = func.typeOf(extra.lhs);
const pt = func.pt;
const mod = pt.zcu;
if (ty.zigTypeTag(mod) == .Vector) {
return func.fail("TODO: Implement overflow arithmetic for vectors", .{});
}
const int_info = ty.intInfo(mod);
const is_signed = int_info.signedness == .signed;
if (int_info.bits > 128) {
return func.fail("TODO: Implement {{add/sub}}_with_overflow for integer bitsize: {d}", .{int_info.bits});
}
const op_result = try func.wrapBinOp(lhs, rhs, ty, op);
var op_tmp = try op_result.toLocal(func, ty);
defer op_tmp.free(func);
const cmp_op: std.math.CompareOperator = switch (op) {
.add => .lt,
.sub => .gt,
else => unreachable,
};
const overflow_bit = if (is_signed) blk: {
const zero = try intZeroValue(func, ty);
const rhs_is_neg = try func.cmp(rhs, zero, ty, .lt);
const overflow_cmp = try func.cmp(op_tmp, lhs, ty, cmp_op);
break :blk try func.cmp(rhs_is_neg, overflow_cmp, Type.u1, .neq);
} else try func.cmp(op_tmp, lhs, ty, cmp_op);
var bit_tmp = try overflow_bit.toLocal(func, Type.u1);
defer bit_tmp.free(func);
const result = try func.allocStack(func.typeOfIndex(inst));
const offset: u32 = @intCast(ty.abiSize(pt));
try func.store(result, op_tmp, ty, 0);
try func.store(result, bit_tmp, Type.u1, offset);
return func.finishAir(inst, result, &.{ extra.lhs, extra.rhs });
}
fn airShlWithOverflow(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.Bin, ty_pl.payload).data;
const lhs = try func.resolveInst(extra.lhs);
const rhs = try func.resolveInst(extra.rhs);
const ty = func.typeOf(extra.lhs);
const rhs_ty = func.typeOf(extra.rhs);
if (ty.zigTypeTag(mod) == .Vector) {
return func.fail("TODO: Implement overflow arithmetic for vectors", .{});
}
const int_info = ty.intInfo(mod);
const wasm_bits = toWasmBits(int_info.bits) orelse {
return func.fail("TODO: Implement shl_with_overflow for integer bitsize: {d}", .{int_info.bits});
};
// Ensure rhs is coerced to lhs as they must have the same WebAssembly types
// before we can perform any binary operation.
const rhs_wasm_bits = toWasmBits(rhs_ty.intInfo(mod).bits).?;
// If wasm_bits == 128, compiler-rt expects i32 for shift
const rhs_final = if (wasm_bits != rhs_wasm_bits and wasm_bits == 64) blk: {
const rhs_casted = try func.intcast(rhs, rhs_ty, ty);
break :blk try rhs_casted.toLocal(func, ty);
} else rhs;
var shl = try (try func.wrapBinOp(lhs, rhs_final, ty, .shl)).toLocal(func, ty);
defer shl.free(func);
const overflow_bit = blk: {
const shr = try func.binOp(shl, rhs_final, ty, .shr);
break :blk try func.cmp(shr, lhs, ty, .neq);
};
var overflow_local = try overflow_bit.toLocal(func, Type.u1);
defer overflow_local.free(func);
const result = try func.allocStack(func.typeOfIndex(inst));
const offset: u32 = @intCast(ty.abiSize(pt));
try func.store(result, shl, ty, 0);
try func.store(result, overflow_local, Type.u1, offset);
return func.finishAir(inst, result, &.{ extra.lhs, extra.rhs });
}
fn airMulWithOverflow(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.Bin, ty_pl.payload).data;
const lhs = try func.resolveInst(extra.lhs);
const rhs = try func.resolveInst(extra.rhs);
const ty = func.typeOf(extra.lhs);
const pt = func.pt;
const mod = pt.zcu;
if (ty.zigTypeTag(mod) == .Vector) {
return func.fail("TODO: Implement overflow arithmetic for vectors", .{});
}
// We store the bit if it's overflowed or not in this. As it's zero-initialized
// we only need to update it if an overflow (or underflow) occurred.
var overflow_bit = try func.ensureAllocLocal(Type.u1);
defer overflow_bit.free(func);
const int_info = ty.intInfo(mod);
const wasm_bits = toWasmBits(int_info.bits) orelse {
return func.fail("TODO: Implement `@mulWithOverflow` for integer bitsize: {d}", .{int_info.bits});
};
const zero: WValue = switch (wasm_bits) {
32 => .{ .imm32 = 0 },
64, 128 => .{ .imm64 = 0 },
else => unreachable,
};
// for 32 bit integers we upcast it to a 64bit integer
const mul = if (wasm_bits == 32) blk: {
const new_ty = if (int_info.signedness == .signed) Type.i64 else Type.u64;
const lhs_upcast = try func.intcast(lhs, ty, new_ty);
const rhs_upcast = try func.intcast(rhs, ty, new_ty);
const bin_op = try (try func.binOp(lhs_upcast, rhs_upcast, new_ty, .mul)).toLocal(func, new_ty);
const res = try (try func.trunc(bin_op, ty, new_ty)).toLocal(func, ty);
const res_upcast = try func.intcast(res, ty, new_ty);
_ = try func.cmp(res_upcast, bin_op, new_ty, .neq);
try func.addLabel(.local_set, overflow_bit.local.value);
break :blk res;
} else if (wasm_bits == 64) blk: {
const new_ty = if (int_info.signedness == .signed) Type.i128 else Type.u128;
const lhs_upcast = try func.intcast(lhs, ty, new_ty);
const rhs_upcast = try func.intcast(rhs, ty, new_ty);
const bin_op = try (try func.binOp(lhs_upcast, rhs_upcast, new_ty, .mul)).toLocal(func, new_ty);
const res = try (try func.trunc(bin_op, ty, new_ty)).toLocal(func, ty);
const res_upcast = try func.intcast(res, ty, new_ty);
_ = try func.cmp(res_upcast, bin_op, new_ty, .neq);
try func.addLabel(.local_set, overflow_bit.local.value);
break :blk res;
} else if (int_info.bits == 128 and int_info.signedness == .unsigned) blk: {
var lhs_lsb = try (try func.load(lhs, Type.u64, 0)).toLocal(func, Type.u64);
defer lhs_lsb.free(func);
var lhs_msb = try (try func.load(lhs, Type.u64, 8)).toLocal(func, Type.u64);
defer lhs_msb.free(func);
var rhs_lsb = try (try func.load(rhs, Type.u64, 0)).toLocal(func, Type.u64);
defer rhs_lsb.free(func);
var rhs_msb = try (try func.load(rhs, Type.u64, 8)).toLocal(func, Type.u64);
defer rhs_msb.free(func);
const cross_1 = try func.callIntrinsic(
"__multi3",
&[_]InternPool.Index{.i64_type} ** 4,
Type.i128,
&.{ lhs_msb, zero, rhs_lsb, zero },
);
const cross_2 = try func.callIntrinsic(
"__multi3",
&[_]InternPool.Index{.i64_type} ** 4,
Type.i128,
&.{ rhs_msb, zero, lhs_lsb, zero },
);
const mul_lsb = try func.callIntrinsic(
"__multi3",
&[_]InternPool.Index{.i64_type} ** 4,
Type.i128,
&.{ rhs_lsb, zero, lhs_lsb, zero },
);
const rhs_msb_not_zero = try func.cmp(rhs_msb, zero, Type.u64, .neq);
const lhs_msb_not_zero = try func.cmp(lhs_msb, zero, Type.u64, .neq);
const both_msb_not_zero = try func.binOp(rhs_msb_not_zero, lhs_msb_not_zero, Type.bool, .@"and");
const cross_1_msb = try func.load(cross_1, Type.u64, 8);
const cross_1_msb_not_zero = try func.cmp(cross_1_msb, zero, Type.u64, .neq);
const cond_1 = try func.binOp(both_msb_not_zero, cross_1_msb_not_zero, Type.bool, .@"or");
const cross_2_msb = try func.load(cross_2, Type.u64, 8);
const cross_2_msb_not_zero = try func.cmp(cross_2_msb, zero, Type.u64, .neq);
const cond_2 = try func.binOp(cond_1, cross_2_msb_not_zero, Type.bool, .@"or");
const cross_1_lsb = try func.load(cross_1, Type.u64, 0);
const cross_2_lsb = try func.load(cross_2, Type.u64, 0);
const cross_add = try func.binOp(cross_1_lsb, cross_2_lsb, Type.u64, .add);
var mul_lsb_msb = try (try func.load(mul_lsb, Type.u64, 8)).toLocal(func, Type.u64);
defer mul_lsb_msb.free(func);
var all_add = try (try func.binOp(cross_add, mul_lsb_msb, Type.u64, .add)).toLocal(func, Type.u64);
defer all_add.free(func);
const add_overflow = try func.cmp(all_add, mul_lsb_msb, Type.u64, .lt);
// result for overflow bit
_ = try func.binOp(cond_2, add_overflow, Type.bool, .@"or");
try func.addLabel(.local_set, overflow_bit.local.value);
const tmp_result = try func.allocStack(Type.u128);
try func.emitWValue(tmp_result);
const mul_lsb_lsb = try func.load(mul_lsb, Type.u64, 0);
try func.store(.stack, mul_lsb_lsb, Type.u64, tmp_result.offset());
try func.store(tmp_result, all_add, Type.u64, 8);
break :blk tmp_result;
} else if (int_info.bits == 128 and int_info.signedness == .signed) blk: {
const overflow_ret = try func.allocStack(Type.i32);
const res = try func.callIntrinsic(
"__muloti4",
&[_]InternPool.Index{ .i128_type, .i128_type, .usize_type },
Type.i128,
&.{ lhs, rhs, overflow_ret },
);
_ = try func.load(overflow_ret, Type.i32, 0);
try func.addLabel(.local_set, overflow_bit.local.value);
break :blk res;
} else return func.fail("TODO: @mulWithOverflow for {}", .{ty.fmt(pt)});
var bin_op_local = try mul.toLocal(func, ty);
defer bin_op_local.free(func);
const result = try func.allocStack(func.typeOfIndex(inst));
const offset: u32 = @intCast(ty.abiSize(pt));
try func.store(result, bin_op_local, ty, 0);
try func.store(result, overflow_bit, Type.u1, offset);
return func.finishAir(inst, result, &.{ extra.lhs, extra.rhs });
}
fn airMaxMin(func: *CodeGen, inst: Air.Inst.Index, op: Op) InnerError!void {
assert(op == .max or op == .min);
const pt = func.pt;
const mod = pt.zcu;
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ty = func.typeOfIndex(inst);
if (ty.zigTypeTag(mod) == .Vector) {
return func.fail("TODO: `@maximum` and `@minimum` for vectors", .{});
}
if (ty.abiSize(pt) > 16) {
return func.fail("TODO: `@maximum` and `@minimum` for types larger than 16 bytes", .{});
}
const lhs = try func.resolveInst(bin_op.lhs);
const rhs = try func.resolveInst(bin_op.rhs);
if (ty.zigTypeTag(mod) == .Float) {
var fn_name_buf: [64]u8 = undefined;
const float_bits = ty.floatBits(func.target.*);
const fn_name = std.fmt.bufPrint(&fn_name_buf, "{s}f{s}{s}", .{
target_util.libcFloatPrefix(float_bits),
@tagName(op),
target_util.libcFloatSuffix(float_bits),
}) catch unreachable;
const result = try func.callIntrinsic(fn_name, &.{ ty.ip_index, ty.ip_index }, ty, &.{ lhs, rhs });
try func.lowerToStack(result);
} else {
// operands to select from
try func.lowerToStack(lhs);
try func.lowerToStack(rhs);
_ = try func.cmp(lhs, rhs, ty, if (op == .max) .gt else .lt);
// based on the result from comparison, return operand 0 or 1.
try func.addTag(.select);
}
return func.finishAir(inst, .stack, &.{ bin_op.lhs, bin_op.rhs });
}
fn airMulAdd(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const pl_op = func.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const bin_op = func.air.extraData(Air.Bin, pl_op.payload).data;
const ty = func.typeOfIndex(inst);
if (ty.zigTypeTag(mod) == .Vector) {
return func.fail("TODO: `@mulAdd` for vectors", .{});
}
const addend = try func.resolveInst(pl_op.operand);
const lhs = try func.resolveInst(bin_op.lhs);
const rhs = try func.resolveInst(bin_op.rhs);
const result = if (ty.floatBits(func.target.*) == 16) fl_result: {
const rhs_ext = try func.fpext(rhs, ty, Type.f32);
const lhs_ext = try func.fpext(lhs, ty, Type.f32);
const addend_ext = try func.fpext(addend, ty, Type.f32);
// call to compiler-rt `fn fmaf(f32, f32, f32) f32`
const result = try func.callIntrinsic(
"fmaf",
&.{ .f32_type, .f32_type, .f32_type },
Type.f32,
&.{ rhs_ext, lhs_ext, addend_ext },
);
break :fl_result try func.fptrunc(result, Type.f32, ty);
} else result: {
const mul_result = try func.binOp(lhs, rhs, ty, .mul);
break :result try func.binOp(mul_result, addend, ty, .add);
};
return func.finishAir(inst, result, &.{ bin_op.lhs, bin_op.rhs, pl_op.operand });
}
fn airClz(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const ty = func.typeOf(ty_op.operand);
if (ty.zigTypeTag(mod) == .Vector) {
return func.fail("TODO: `@clz` for vectors", .{});
}
const operand = try func.resolveInst(ty_op.operand);
const int_info = ty.intInfo(mod);
const wasm_bits = toWasmBits(int_info.bits) orelse {
return func.fail("TODO: `@clz` for integers with bitsize '{d}'", .{int_info.bits});
};
switch (wasm_bits) {
32 => {
try func.emitWValue(operand);
try func.addTag(.i32_clz);
},
64 => {
try func.emitWValue(operand);
try func.addTag(.i64_clz);
try func.addTag(.i32_wrap_i64);
},
128 => {
var msb = try (try func.load(operand, Type.u64, 8)).toLocal(func, Type.u64);
defer msb.free(func);
try func.emitWValue(msb);
try func.addTag(.i64_clz);
_ = try func.load(operand, Type.u64, 0);
try func.addTag(.i64_clz);
try func.emitWValue(.{ .imm64 = 64 });
try func.addTag(.i64_add);
_ = try func.cmp(msb, .{ .imm64 = 0 }, Type.u64, .neq);
try func.addTag(.select);
try func.addTag(.i32_wrap_i64);
},
else => unreachable,
}
if (wasm_bits != int_info.bits) {
try func.emitWValue(.{ .imm32 = wasm_bits - int_info.bits });
try func.addTag(.i32_sub);
}
return func.finishAir(inst, .stack, &.{ty_op.operand});
}
fn airCtz(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const ty = func.typeOf(ty_op.operand);
if (ty.zigTypeTag(mod) == .Vector) {
return func.fail("TODO: `@ctz` for vectors", .{});
}
const operand = try func.resolveInst(ty_op.operand);
const int_info = ty.intInfo(mod);
const wasm_bits = toWasmBits(int_info.bits) orelse {
return func.fail("TODO: `@clz` for integers with bitsize '{d}'", .{int_info.bits});
};
switch (wasm_bits) {
32 => {
if (wasm_bits != int_info.bits) {
const val: u32 = @as(u32, 1) << @as(u5, @intCast(int_info.bits));
// leave value on the stack
_ = try func.binOp(operand, .{ .imm32 = val }, ty, .@"or");
} else try func.emitWValue(operand);
try func.addTag(.i32_ctz);
},
64 => {
if (wasm_bits != int_info.bits) {
const val: u64 = @as(u64, 1) << @as(u6, @intCast(int_info.bits));
// leave value on the stack
_ = try func.binOp(operand, .{ .imm64 = val }, ty, .@"or");
} else try func.emitWValue(operand);
try func.addTag(.i64_ctz);
try func.addTag(.i32_wrap_i64);
},
128 => {
var lsb = try (try func.load(operand, Type.u64, 0)).toLocal(func, Type.u64);
defer lsb.free(func);
try func.emitWValue(lsb);
try func.addTag(.i64_ctz);
_ = try func.load(operand, Type.u64, 8);
if (wasm_bits != int_info.bits) {
try func.addImm64(@as(u64, 1) << @as(u6, @intCast(int_info.bits - 64)));
try func.addTag(.i64_or);
}
try func.addTag(.i64_ctz);
try func.addImm64(64);
if (wasm_bits != int_info.bits) {
try func.addTag(.i64_or);
} else {
try func.addTag(.i64_add);
}
_ = try func.cmp(lsb, .{ .imm64 = 0 }, Type.u64, .neq);
try func.addTag(.select);
try func.addTag(.i32_wrap_i64);
},
else => unreachable,
}
return func.finishAir(inst, .stack, &.{ty_op.operand});
}
fn airDbgStmt(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
if (func.debug_output != .dwarf) return func.finishAir(inst, .none, &.{});
const dbg_stmt = func.air.instructions.items(.data)[@intFromEnum(inst)].dbg_stmt;
try func.addInst(.{ .tag = .dbg_line, .data = .{
.payload = try func.addExtra(Mir.DbgLineColumn{
.line = dbg_stmt.line,
.column = dbg_stmt.column,
}),
} });
return func.finishAir(inst, .none, &.{});
}
fn airDbgInlineBlock(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.DbgInlineBlock, ty_pl.payload);
// TODO
try func.lowerBlock(inst, ty_pl.ty.toType(), @ptrCast(func.air.extra[extra.end..][0..extra.data.body_len]));
}
fn airDbgVar(func: *CodeGen, inst: Air.Inst.Index, is_ptr: bool) InnerError!void {
if (func.debug_output != .dwarf) return func.finishAir(inst, .none, &.{});
const pl_op = func.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const ty = func.typeOf(pl_op.operand);
const operand = try func.resolveInst(pl_op.operand);
log.debug("airDbgVar: %{d}: {}, {}", .{ inst, ty.fmtDebug(), operand });
const name = func.air.nullTerminatedString(pl_op.payload);
log.debug(" var name = ({s})", .{name});
const loc: link.File.Dwarf.NavState.DbgInfoLoc = switch (operand) {
.local => |local| .{ .wasm_local = local.value },
else => blk: {
log.debug("TODO generate debug info for {}", .{operand});
break :blk .nop;
},
};
try func.debug_output.dwarf.genVarDbgInfo(name, ty, func.owner_nav, is_ptr, loc);
return func.finishAir(inst, .none, &.{});
}
fn airTry(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pl_op = func.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const err_union = try func.resolveInst(pl_op.operand);
const extra = func.air.extraData(Air.Try, pl_op.payload);
const body: []const Air.Inst.Index = @ptrCast(func.air.extra[extra.end..][0..extra.data.body_len]);
const err_union_ty = func.typeOf(pl_op.operand);
const result = try lowerTry(func, inst, err_union, body, err_union_ty, false);
return func.finishAir(inst, result, &.{pl_op.operand});
}
fn airTryPtr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.TryPtr, ty_pl.payload);
const err_union_ptr = try func.resolveInst(extra.data.ptr);
const body: []const Air.Inst.Index = @ptrCast(func.air.extra[extra.end..][0..extra.data.body_len]);
const err_union_ty = func.typeOf(extra.data.ptr).childType(mod);
const result = try lowerTry(func, inst, err_union_ptr, body, err_union_ty, true);
return func.finishAir(inst, result, &.{extra.data.ptr});
}
fn lowerTry(
func: *CodeGen,
inst: Air.Inst.Index,
err_union: WValue,
body: []const Air.Inst.Index,
err_union_ty: Type,
operand_is_ptr: bool,
) InnerError!WValue {
const pt = func.pt;
const mod = pt.zcu;
if (operand_is_ptr) {
return func.fail("TODO: lowerTry for pointers", .{});
}
const pl_ty = err_union_ty.errorUnionPayload(mod);
const pl_has_bits = pl_ty.hasRuntimeBitsIgnoreComptime(pt);
if (!err_union_ty.errorUnionSet(mod).errorSetIsEmpty(mod)) {
// Block we can jump out of when error is not set
try func.startBlock(.block, wasm.block_empty);
// check if the error tag is set for the error union.
try func.emitWValue(err_union);
if (pl_has_bits) {
const err_offset: u32 = @intCast(errUnionErrorOffset(pl_ty, pt));
try func.addMemArg(.i32_load16_u, .{
.offset = err_union.offset() + err_offset,
.alignment = @intCast(Type.anyerror.abiAlignment(pt).toByteUnits().?),
});
}
try func.addTag(.i32_eqz);
try func.addLabel(.br_if, 0); // jump out of block when error is '0'
const liveness = func.liveness.getCondBr(inst);
try func.branches.append(func.gpa, .{});
try func.currentBranch().values.ensureUnusedCapacity(func.gpa, liveness.else_deaths.len + liveness.then_deaths.len);
defer {
var branch = func.branches.pop();
branch.deinit(func.gpa);
}
try func.genBody(body);
try func.endBlock();
}
// if we reach here it means error was not set, and we want the payload
if (!pl_has_bits) {
return .none;
}
const pl_offset: u32 = @intCast(errUnionPayloadOffset(pl_ty, pt));
if (isByRef(pl_ty, pt, func.target.*)) {
return buildPointerOffset(func, err_union, pl_offset, .new);
}
const payload = try func.load(err_union, pl_ty, pl_offset);
return payload.toLocal(func, pl_ty);
}
fn airByteSwap(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const ty = func.typeOfIndex(inst);
const operand = try func.resolveInst(ty_op.operand);
if (ty.zigTypeTag(mod) == .Vector) {
return func.fail("TODO: @byteSwap for vectors", .{});
}
const int_info = ty.intInfo(mod);
const wasm_bits = toWasmBits(int_info.bits) orelse {
return func.fail("TODO: @byteSwap for integers with bitsize {d}", .{int_info.bits});
};
// bytes are no-op
if (int_info.bits == 8) {
return func.finishAir(inst, func.reuseOperand(ty_op.operand, operand), &.{ty_op.operand});
}
const result = result: {
switch (wasm_bits) {
32 => {
const intrin_ret = try func.callIntrinsic(
"__bswapsi2",
&.{.u32_type},
Type.u32,
&.{operand},
);
break :result if (int_info.bits == 32)
intrin_ret
else
try func.binOp(intrin_ret, .{ .imm32 = 32 - int_info.bits }, ty, .shr);
},
64 => {
const intrin_ret = try func.callIntrinsic(
"__bswapdi2",
&.{.u64_type},
Type.u64,
&.{operand},
);
break :result if (int_info.bits == 64)
intrin_ret
else
try func.binOp(intrin_ret, .{ .imm64 = 64 - int_info.bits }, ty, .shr);
},
else => return func.fail("TODO: @byteSwap for integers with bitsize {d}", .{int_info.bits}),
}
};
return func.finishAir(inst, result, &.{ty_op.operand});
}
fn airDiv(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ty = func.typeOfIndex(inst);
const lhs = try func.resolveInst(bin_op.lhs);
const rhs = try func.resolveInst(bin_op.rhs);
const result = try func.binOp(lhs, rhs, ty, .div);
return func.finishAir(inst, result, &.{ bin_op.lhs, bin_op.rhs });
}
fn airDivTrunc(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ty = func.typeOfIndex(inst);
const lhs = try func.resolveInst(bin_op.lhs);
const rhs = try func.resolveInst(bin_op.rhs);
const div_result = try func.binOp(lhs, rhs, ty, .div);
if (ty.isAnyFloat()) {
const trunc_result = try func.floatOp(.trunc, ty, &.{div_result});
return func.finishAir(inst, trunc_result, &.{ bin_op.lhs, bin_op.rhs });
}
return func.finishAir(inst, div_result, &.{ bin_op.lhs, bin_op.rhs });
}
fn airDivFloor(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const pt = func.pt;
const mod = pt.zcu;
const ty = func.typeOfIndex(inst);
const lhs = try func.resolveInst(bin_op.lhs);
const rhs = try func.resolveInst(bin_op.rhs);
if (ty.isUnsignedInt(mod)) {
_ = try func.binOp(lhs, rhs, ty, .div);
} else if (ty.isSignedInt(mod)) {
const int_bits = ty.intInfo(mod).bits;
const wasm_bits = toWasmBits(int_bits) orelse {
return func.fail("TODO: `@divFloor` for signed integers larger than 64 bits ({d} bits requested)", .{int_bits});
};
if (wasm_bits > 64) {
return func.fail("TODO: `@divFloor` for signed integers larger than 64 bits ({d} bits requested)", .{int_bits});
}
const zero: WValue = switch (wasm_bits) {
32 => .{ .imm32 = 0 },
64 => .{ .imm64 = 0 },
else => unreachable,
};
// tee leaves the value on the stack and stores it in a local.
const quotient = try func.allocLocal(ty);
_ = try func.binOp(lhs, rhs, ty, .div);
try func.addLabel(.local_tee, quotient.local.value);
// select takes a 32 bit value as the condition, so in the 64 bit case we use eqz to narrow
// the 64 bit value we want to use as the condition to 32 bits.
// This also inverts the condition (non 0 => 0, 0 => 1), so we put the adjusted and
// non-adjusted quotients on the stack in the opposite order for 32 vs 64 bits.
if (wasm_bits == 64) {
try func.emitWValue(quotient);
}
// 0 if the signs of rhs_wasm and lhs_wasm are the same, 1 otherwise.
_ = try func.binOp(lhs, rhs, ty, .xor);
_ = try func.cmp(.stack, zero, ty, .lt);
switch (wasm_bits) {
32 => {
try func.addTag(.i32_sub);
try func.emitWValue(quotient);
},
64 => {
try func.addTag(.i64_extend_i32_u);
try func.addTag(.i64_sub);
},
else => unreachable,
}
_ = try func.binOp(lhs, rhs, ty, .rem);
if (wasm_bits == 64) {
try func.addTag(.i64_eqz);
}
try func.addTag(.select);
// We need to zero the high bits because N bit comparisons consider all 32 or 64 bits, and
// expect all but the lowest N bits to be 0.
// TODO: Should we be zeroing the high bits here or should we be ignoring the high bits
// when performing comparisons?
if (int_bits != wasm_bits) {
_ = try func.wrapOperand(.stack, ty);
}
} else {
const float_bits = ty.floatBits(func.target.*);
if (float_bits > 64) {
return func.fail("TODO: `@divFloor` for floats with bitsize: {d}", .{float_bits});
}
const is_f16 = float_bits == 16;
const lhs_wasm = if (is_f16) try func.fpext(lhs, Type.f16, Type.f32) else lhs;
const rhs_wasm = if (is_f16) try func.fpext(rhs, Type.f16, Type.f32) else rhs;
try func.emitWValue(lhs_wasm);
try func.emitWValue(rhs_wasm);
switch (float_bits) {
16, 32 => {
try func.addTag(.f32_div);
try func.addTag(.f32_floor);
},
64 => {
try func.addTag(.f64_div);
try func.addTag(.f64_floor);
},
else => unreachable,
}
if (is_f16) {
_ = try func.fptrunc(.stack, Type.f32, Type.f16);
}
}
return func.finishAir(inst, .stack, &.{ bin_op.lhs, bin_op.rhs });
}
fn airRem(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ty = func.typeOfIndex(inst);
const lhs = try func.resolveInst(bin_op.lhs);
const rhs = try func.resolveInst(bin_op.rhs);
const result = try func.binOp(lhs, rhs, ty, .rem);
return func.finishAir(inst, result, &.{ bin_op.lhs, bin_op.rhs });
}
/// Remainder after floor division, defined by:
/// @divFloor(a, b) * b + @mod(a, b) = a
fn airMod(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const pt = func.pt;
const mod = pt.zcu;
const ty = func.typeOfIndex(inst);
const lhs = try func.resolveInst(bin_op.lhs);
const rhs = try func.resolveInst(bin_op.rhs);
if (ty.isUnsignedInt(mod)) {
_ = try func.binOp(lhs, rhs, ty, .rem);
} else if (ty.isSignedInt(mod)) {
// The wasm rem instruction gives the remainder after truncating division (rounding towards
// 0), equivalent to @rem.
// We make use of the fact that:
// @mod(a, b) = @rem(@rem(a, b) + b, b)
const int_bits = ty.intInfo(mod).bits;
const wasm_bits = toWasmBits(int_bits) orelse {
return func.fail("TODO: `@mod` for signed integers larger than 64 bits ({d} bits requested)", .{int_bits});
};
if (wasm_bits > 64) {
return func.fail("TODO: `@mod` for signed integers larger than 64 bits ({d} bits requested)", .{int_bits});
}
_ = try func.binOp(lhs, rhs, ty, .rem);
_ = try func.binOp(.stack, rhs, ty, .add);
_ = try func.binOp(.stack, rhs, ty, .rem);
} else {
return func.fail("TODO: implement `@mod` on floating point types for {}", .{func.target.cpu.arch});
}
return func.finishAir(inst, .stack, &.{ bin_op.lhs, bin_op.rhs });
}
fn airSatMul(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const pt = func.pt;
const mod = pt.zcu;
const ty = func.typeOfIndex(inst);
const int_info = ty.intInfo(mod);
const is_signed = int_info.signedness == .signed;
const lhs = try func.resolveInst(bin_op.lhs);
const rhs = try func.resolveInst(bin_op.rhs);
const wasm_bits = toWasmBits(int_info.bits) orelse {
return func.fail("TODO: mul_sat for {}", .{ty.fmt(pt)});
};
switch (wasm_bits) {
32 => {
const upcast_ty: Type = if (is_signed) Type.i64 else Type.u64;
const lhs_up = try func.intcast(lhs, ty, upcast_ty);
const rhs_up = try func.intcast(rhs, ty, upcast_ty);
var mul_res = try (try func.binOp(lhs_up, rhs_up, upcast_ty, .mul)).toLocal(func, upcast_ty);
defer mul_res.free(func);
if (is_signed) {
const imm_max: WValue = .{ .imm64 = ~@as(u64, 0) >> @intCast(64 - (int_info.bits - 1)) };
try func.emitWValue(mul_res);
try func.emitWValue(imm_max);
_ = try func.cmp(mul_res, imm_max, upcast_ty, .lt);
try func.addTag(.select);
var tmp = try func.allocLocal(upcast_ty);
defer tmp.free(func);
try func.addLabel(.local_set, tmp.local.value);
const imm_min: WValue = .{ .imm64 = ~@as(u64, 0) << @intCast(int_info.bits - 1) };
try func.emitWValue(tmp);
try func.emitWValue(imm_min);
_ = try func.cmp(tmp, imm_min, upcast_ty, .gt);
try func.addTag(.select);
} else {
const imm_max: WValue = .{ .imm64 = ~@as(u64, 0) >> @intCast(64 - int_info.bits) };
try func.emitWValue(mul_res);
try func.emitWValue(imm_max);
_ = try func.cmp(mul_res, imm_max, upcast_ty, .lt);
try func.addTag(.select);
}
try func.addTag(.i32_wrap_i64);
},
64 => {
if (!(int_info.bits == 64 and int_info.signedness == .signed)) {
return func.fail("TODO: mul_sat for {}", .{ty.fmt(pt)});
}
const overflow_ret = try func.allocStack(Type.i32);
_ = try func.callIntrinsic(
"__mulodi4",
&[_]InternPool.Index{ .i64_type, .i64_type, .usize_type },
Type.i64,
&.{ lhs, rhs, overflow_ret },
);
const xor = try func.binOp(lhs, rhs, Type.i64, .xor);
const sign_v = try func.binOp(xor, .{ .imm64 = 63 }, Type.i64, .shr);
_ = try func.binOp(sign_v, .{ .imm64 = ~@as(u63, 0) }, Type.i64, .xor);
_ = try func.load(overflow_ret, Type.i32, 0);
try func.addTag(.i32_eqz);
try func.addTag(.select);
},
128 => {
if (!(int_info.bits == 128 and int_info.signedness == .signed)) {
return func.fail("TODO: mul_sat for {}", .{ty.fmt(pt)});
}
const overflow_ret = try func.allocStack(Type.i32);
const ret = try func.callIntrinsic(
"__muloti4",
&[_]InternPool.Index{ .i128_type, .i128_type, .usize_type },
Type.i128,
&.{ lhs, rhs, overflow_ret },
);
try func.lowerToStack(ret);
const xor = try func.binOp(lhs, rhs, Type.i128, .xor);
const sign_v = try func.binOp(xor, .{ .imm32 = 127 }, Type.i128, .shr);
// xor ~@as(u127, 0)
try func.emitWValue(sign_v);
const lsb = try func.load(sign_v, Type.u64, 0);
_ = try func.binOp(lsb, .{ .imm64 = ~@as(u64, 0) }, Type.u64, .xor);
try func.store(.stack, .stack, Type.u64, sign_v.offset());
try func.emitWValue(sign_v);
const msb = try func.load(sign_v, Type.u64, 8);
_ = try func.binOp(msb, .{ .imm64 = ~@as(u63, 0) }, Type.u64, .xor);
try func.store(.stack, .stack, Type.u64, sign_v.offset() + 8);
try func.lowerToStack(sign_v);
_ = try func.load(overflow_ret, Type.i32, 0);
try func.addTag(.i32_eqz);
try func.addTag(.select);
},
else => unreachable,
}
return func.finishAir(inst, .stack, &.{ bin_op.lhs, bin_op.rhs });
}
fn airSatBinOp(func: *CodeGen, inst: Air.Inst.Index, op: Op) InnerError!void {
assert(op == .add or op == .sub);
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const pt = func.pt;
const mod = pt.zcu;
const ty = func.typeOfIndex(inst);
const lhs = try func.resolveInst(bin_op.lhs);
const rhs = try func.resolveInst(bin_op.rhs);
const int_info = ty.intInfo(mod);
const is_signed = int_info.signedness == .signed;
if (int_info.bits > 64) {
return func.fail("TODO: saturating arithmetic for integers with bitsize '{d}'", .{int_info.bits});
}
if (is_signed) {
const result = try signedSat(func, lhs, rhs, ty, op);
return func.finishAir(inst, result, &.{ bin_op.lhs, bin_op.rhs });
}
const wasm_bits = toWasmBits(int_info.bits).?;
var bin_result = try (try func.binOp(lhs, rhs, ty, op)).toLocal(func, ty);
defer bin_result.free(func);
if (wasm_bits != int_info.bits and op == .add) {
const val: u64 = @as(u64, @intCast((@as(u65, 1) << @as(u7, @intCast(int_info.bits))) - 1));
const imm_val: WValue = switch (wasm_bits) {
32 => .{ .imm32 = @intCast(val) },
64 => .{ .imm64 = val },
else => unreachable,
};
try func.emitWValue(bin_result);
try func.emitWValue(imm_val);
_ = try func.cmp(bin_result, imm_val, ty, .lt);
} else {
switch (wasm_bits) {
32 => try func.addImm32(if (op == .add) std.math.maxInt(u32) else 0),
64 => try func.addImm64(if (op == .add) std.math.maxInt(u64) else 0),
else => unreachable,
}
try func.emitWValue(bin_result);
_ = try func.cmp(bin_result, lhs, ty, if (op == .add) .lt else .gt);
}
try func.addTag(.select);
return func.finishAir(inst, .stack, &.{ bin_op.lhs, bin_op.rhs });
}
fn signedSat(func: *CodeGen, lhs: WValue, rhs: WValue, ty: Type, op: Op) InnerError!WValue {
const pt = func.pt;
const mod = pt.zcu;
const int_info = ty.intInfo(mod);
const wasm_bits = toWasmBits(int_info.bits).?;
const is_wasm_bits = wasm_bits == int_info.bits;
const ext_ty = if (!is_wasm_bits) try pt.intType(int_info.signedness, wasm_bits) else ty;
const max_val: u64 = @as(u64, @intCast((@as(u65, 1) << @as(u7, @intCast(int_info.bits - 1))) - 1));
const min_val: i64 = (-@as(i64, @intCast(@as(u63, @intCast(max_val))))) - 1;
const max_wvalue: WValue = switch (wasm_bits) {
32 => .{ .imm32 = @truncate(max_val) },
64 => .{ .imm64 = max_val },
else => unreachable,
};
const min_wvalue: WValue = switch (wasm_bits) {
32 => .{ .imm32 = @bitCast(@as(i32, @truncate(min_val))) },
64 => .{ .imm64 = @bitCast(min_val) },
else => unreachable,
};
var bin_result = try (try func.binOp(lhs, rhs, ext_ty, op)).toLocal(func, ext_ty);
if (!is_wasm_bits) {
defer bin_result.free(func); // not returned in this branch
try func.emitWValue(bin_result);
try func.emitWValue(max_wvalue);
_ = try func.cmp(bin_result, max_wvalue, ext_ty, .lt);
try func.addTag(.select);
try func.addLabel(.local_set, bin_result.local.value); // re-use local
try func.emitWValue(bin_result);
try func.emitWValue(min_wvalue);
_ = try func.cmp(bin_result, min_wvalue, ext_ty, .gt);
try func.addTag(.select);
try func.addLabel(.local_set, bin_result.local.value); // re-use local
return (try func.wrapOperand(bin_result, ty)).toLocal(func, ty);
} else {
const zero: WValue = switch (wasm_bits) {
32 => .{ .imm32 = 0 },
64 => .{ .imm64 = 0 },
else => unreachable,
};
try func.emitWValue(max_wvalue);
try func.emitWValue(min_wvalue);
_ = try func.cmp(bin_result, zero, ty, .lt);
try func.addTag(.select);
try func.emitWValue(bin_result);
// leave on stack
const cmp_zero_result = try func.cmp(rhs, zero, ty, if (op == .add) .lt else .gt);
const cmp_bin_result = try func.cmp(bin_result, lhs, ty, .lt);
_ = try func.binOp(cmp_zero_result, cmp_bin_result, Type.u32, .xor); // comparisons always return i32, so provide u32 as type to xor.
try func.addTag(.select);
try func.addLabel(.local_set, bin_result.local.value); // re-use local
return bin_result;
}
}
fn airShlSat(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const pt = func.pt;
const mod = pt.zcu;
const ty = func.typeOfIndex(inst);
const int_info = ty.intInfo(mod);
const is_signed = int_info.signedness == .signed;
if (int_info.bits > 64) {
return func.fail("TODO: Saturating shifting left for integers with bitsize '{d}'", .{int_info.bits});
}
const lhs = try func.resolveInst(bin_op.lhs);
const rhs = try func.resolveInst(bin_op.rhs);
const wasm_bits = toWasmBits(int_info.bits).?;
const result = try func.allocLocal(ty);
if (wasm_bits == int_info.bits) {
var shl = try (try func.binOp(lhs, rhs, ty, .shl)).toLocal(func, ty);
defer shl.free(func);
var shr = try (try func.binOp(shl, rhs, ty, .shr)).toLocal(func, ty);
defer shr.free(func);
switch (wasm_bits) {
32 => blk: {
if (!is_signed) {
try func.addImm32(std.math.maxInt(u32));
break :blk;
}
try func.addImm32(@bitCast(@as(i32, std.math.minInt(i32))));
try func.addImm32(@bitCast(@as(i32, std.math.maxInt(i32))));
_ = try func.cmp(lhs, .{ .imm32 = 0 }, ty, .lt);
try func.addTag(.select);
},
64 => blk: {
if (!is_signed) {
try func.addImm64(std.math.maxInt(u64));
break :blk;
}
try func.addImm64(@bitCast(@as(i64, std.math.minInt(i64))));
try func.addImm64(@bitCast(@as(i64, std.math.maxInt(i64))));
_ = try func.cmp(lhs, .{ .imm64 = 0 }, ty, .lt);
try func.addTag(.select);
},
else => unreachable,
}
try func.emitWValue(shl);
_ = try func.cmp(lhs, shr, ty, .neq);
try func.addTag(.select);
try func.addLabel(.local_set, result.local.value);
} else {
const shift_size = wasm_bits - int_info.bits;
const shift_value: WValue = switch (wasm_bits) {
32 => .{ .imm32 = shift_size },
64 => .{ .imm64 = shift_size },
else => unreachable,
};
const ext_ty = try pt.intType(int_info.signedness, wasm_bits);
var shl_res = try (try func.binOp(lhs, shift_value, ext_ty, .shl)).toLocal(func, ext_ty);
defer shl_res.free(func);
var shl = try (try func.binOp(shl_res, rhs, ext_ty, .shl)).toLocal(func, ext_ty);
defer shl.free(func);
var shr = try (try func.binOp(shl, rhs, ext_ty, .shr)).toLocal(func, ext_ty);
defer shr.free(func);
switch (wasm_bits) {
32 => blk: {
if (!is_signed) {
try func.addImm32(std.math.maxInt(u32));
break :blk;
}
try func.addImm32(@bitCast(@as(i32, std.math.minInt(i32))));
try func.addImm32(@bitCast(@as(i32, std.math.maxInt(i32))));
_ = try func.cmp(shl_res, .{ .imm32 = 0 }, ext_ty, .lt);
try func.addTag(.select);
},
64 => blk: {
if (!is_signed) {
try func.addImm64(std.math.maxInt(u64));
break :blk;
}
try func.addImm64(@bitCast(@as(i64, std.math.minInt(i64))));
try func.addImm64(@bitCast(@as(i64, std.math.maxInt(i64))));
_ = try func.cmp(shl_res, .{ .imm64 = 0 }, ext_ty, .lt);
try func.addTag(.select);
},
else => unreachable,
}
try func.emitWValue(shl);
_ = try func.cmp(shl_res, shr, ext_ty, .neq);
try func.addTag(.select);
try func.addLabel(.local_set, result.local.value);
var shift_result = try func.binOp(result, shift_value, ext_ty, .shr);
if (is_signed) {
shift_result = try func.wrapOperand(shift_result, ty);
}
try func.addLabel(.local_set, result.local.value);
}
return func.finishAir(inst, result, &.{ bin_op.lhs, bin_op.rhs });
}
/// Calls a compiler-rt intrinsic by creating an undefined symbol,
/// then lowering the arguments and calling the symbol as a function call.
/// This function call assumes the C-ABI.
/// Asserts arguments are not stack values when the return value is
/// passed as the first parameter.
/// May leave the return value on the stack.
fn callIntrinsic(
func: *CodeGen,
name: []const u8,
param_types: []const InternPool.Index,
return_type: Type,
args: []const WValue,
) InnerError!WValue {
assert(param_types.len == args.len);
const symbol_index = func.bin_file.getGlobalSymbol(name, null) catch |err| {
return func.fail("Could not find or create global symbol '{s}'", .{@errorName(err)});
};
// Always pass over C-ABI
const pt = func.pt;
const mod = pt.zcu;
var func_type = try genFunctype(func.gpa, .C, param_types, return_type, pt, func.target.*);
defer func_type.deinit(func.gpa);
const func_type_index = try func.bin_file.zigObjectPtr().?.putOrGetFuncType(func.gpa, func_type);
try func.bin_file.addOrUpdateImport(name, symbol_index, null, func_type_index);
const want_sret_param = firstParamSRet(.C, return_type, pt, func.target.*);
// if we want return as first param, we allocate a pointer to stack,
// and emit it as our first argument
const sret = if (want_sret_param) blk: {
const sret_local = try func.allocStack(return_type);
try func.lowerToStack(sret_local);
break :blk sret_local;
} else .none;
// Lower all arguments to the stack before we call our function
for (args, 0..) |arg, arg_i| {
assert(!(want_sret_param and arg == .stack));
assert(Type.fromInterned(param_types[arg_i]).hasRuntimeBitsIgnoreComptime(pt));
try func.lowerArg(.C, Type.fromInterned(param_types[arg_i]), arg);
}
// Actually call our intrinsic
try func.addLabel(.call, @intFromEnum(symbol_index));
if (!return_type.hasRuntimeBitsIgnoreComptime(pt)) {
return .none;
} else if (return_type.isNoReturn(mod)) {
try func.addTag(.@"unreachable");
return .none;
} else if (want_sret_param) {
return sret;
} else {
return .stack;
}
}
fn airTagName(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const un_op = func.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try func.resolveInst(un_op);
const enum_ty = func.typeOf(un_op);
const func_sym_index = try func.getTagNameFunction(enum_ty);
const result_ptr = try func.allocStack(func.typeOfIndex(inst));
try func.lowerToStack(result_ptr);
try func.emitWValue(operand);
try func.addLabel(.call, func_sym_index);
return func.finishAir(inst, result_ptr, &.{un_op});
}
fn getTagNameFunction(func: *CodeGen, enum_ty: Type) InnerError!u32 {
const pt = func.pt;
const mod = pt.zcu;
const ip = &mod.intern_pool;
var arena_allocator = std.heap.ArenaAllocator.init(func.gpa);
defer arena_allocator.deinit();
const arena = arena_allocator.allocator();
const func_name = try std.fmt.allocPrintZ(arena, "__zig_tag_name_{}", .{ip.loadEnumType(enum_ty.toIntern()).name.fmt(ip)});
// check if we already generated code for this.
if (func.bin_file.findGlobalSymbol(func_name)) |loc| {
return @intFromEnum(loc.index);
}
const int_tag_ty = enum_ty.intTagType(mod);
if (int_tag_ty.bitSize(pt) > 64) {
return func.fail("TODO: Implement @tagName for enums with tag size larger than 64 bits", .{});
}
var relocs = std.ArrayList(link.File.Wasm.Relocation).init(func.gpa);
defer relocs.deinit();
var body_list = std.ArrayList(u8).init(func.gpa);
defer body_list.deinit();
var writer = body_list.writer();
// The locals of the function body (always 0)
try leb.writeUleb128(writer, @as(u32, 0));
// outer block
try writer.writeByte(std.wasm.opcode(.block));
try writer.writeByte(std.wasm.block_empty);
// TODO: Make switch implementation generic so we can use a jump table for this when the tags are not sparse.
// generate an if-else chain for each tag value as well as constant.
const tag_names = enum_ty.enumFields(mod);
for (0..tag_names.len) |tag_index| {
const tag_name = tag_names.get(ip)[tag_index];
const tag_name_len = tag_name.length(ip);
// for each tag name, create an unnamed const,
// and then get a pointer to its value.
const name_ty = try pt.arrayType(.{
.len = tag_name_len,
.child = .u8_type,
.sentinel = .zero_u8,
});
const name_val = try pt.intern(.{ .aggregate = .{
.ty = name_ty.toIntern(),
.storage = .{ .bytes = tag_name.toString() },
} });
const tag_sym_index = switch (try func.bin_file.lowerUav(pt, name_val, .none, func.src_loc)) {
.mcv => |mcv| mcv.load_symbol,
.fail => |err_msg| {
func.err_msg = err_msg;
return error.CodegenFail;
},
};
// block for this if case
try writer.writeByte(std.wasm.opcode(.block));
try writer.writeByte(std.wasm.block_empty);
// get actual tag value (stored in 2nd parameter);
try writer.writeByte(std.wasm.opcode(.local_get));
try leb.writeUleb128(writer, @as(u32, 1));
const tag_val = try pt.enumValueFieldIndex(enum_ty, @intCast(tag_index));
const tag_value = try func.lowerConstant(tag_val, enum_ty);
switch (tag_value) {
.imm32 => |value| {
try writer.writeByte(std.wasm.opcode(.i32_const));
try leb.writeIleb128(writer, @as(i32, @bitCast(value)));
try writer.writeByte(std.wasm.opcode(.i32_ne));
},
.imm64 => |value| {
try writer.writeByte(std.wasm.opcode(.i64_const));
try leb.writeIleb128(writer, @as(i64, @bitCast(value)));
try writer.writeByte(std.wasm.opcode(.i64_ne));
},
else => unreachable,
}
// if they're not equal, break out of current branch
try writer.writeByte(std.wasm.opcode(.br_if));
try leb.writeUleb128(writer, @as(u32, 0));
// store the address of the tagname in the pointer field of the slice
// get the address twice so we can also store the length.
try writer.writeByte(std.wasm.opcode(.local_get));
try leb.writeUleb128(writer, @as(u32, 0));
try writer.writeByte(std.wasm.opcode(.local_get));
try leb.writeUleb128(writer, @as(u32, 0));
// get address of tagname and emit a relocation to it
if (func.arch() == .wasm32) {
const encoded_alignment = @ctz(@as(u32, 4));
try writer.writeByte(std.wasm.opcode(.i32_const));
try relocs.append(.{
.relocation_type = .R_WASM_MEMORY_ADDR_LEB,
.offset = @as(u32, @intCast(body_list.items.len)),
.index = tag_sym_index,
});
try writer.writeAll(&[_]u8{0} ** 5); // will be relocated
// store pointer
try writer.writeByte(std.wasm.opcode(.i32_store));
try leb.writeUleb128(writer, encoded_alignment);
try leb.writeUleb128(writer, @as(u32, 0));
// store length
try writer.writeByte(std.wasm.opcode(.i32_const));
try leb.writeUleb128(writer, @as(u32, @intCast(tag_name_len)));
try writer.writeByte(std.wasm.opcode(.i32_store));
try leb.writeUleb128(writer, encoded_alignment);
try leb.writeUleb128(writer, @as(u32, 4));
} else {
const encoded_alignment = @ctz(@as(u32, 8));
try writer.writeByte(std.wasm.opcode(.i64_const));
try relocs.append(.{
.relocation_type = .R_WASM_MEMORY_ADDR_LEB64,
.offset = @as(u32, @intCast(body_list.items.len)),
.index = tag_sym_index,
});
try writer.writeAll(&[_]u8{0} ** 10); // will be relocated
// store pointer
try writer.writeByte(std.wasm.opcode(.i64_store));
try leb.writeUleb128(writer, encoded_alignment);
try leb.writeUleb128(writer, @as(u32, 0));
// store length
try writer.writeByte(std.wasm.opcode(.i64_const));
try leb.writeUleb128(writer, @as(u64, @intCast(tag_name_len)));
try writer.writeByte(std.wasm.opcode(.i64_store));
try leb.writeUleb128(writer, encoded_alignment);
try leb.writeUleb128(writer, @as(u32, 8));
}
// break outside blocks
try writer.writeByte(std.wasm.opcode(.br));
try leb.writeUleb128(writer, @as(u32, 1));
// end the block for this case
try writer.writeByte(std.wasm.opcode(.end));
}
try writer.writeByte(std.wasm.opcode(.@"unreachable")); // tag value does not have a name
// finish outer block
try writer.writeByte(std.wasm.opcode(.end));
// finish function body
try writer.writeByte(std.wasm.opcode(.end));
const slice_ty = Type.slice_const_u8_sentinel_0;
const func_type = try genFunctype(arena, .Unspecified, &.{int_tag_ty.ip_index}, slice_ty, pt, func.target.*);
const sym_index = try func.bin_file.createFunction(func_name, func_type, &body_list, &relocs);
return @intFromEnum(sym_index);
}
fn airErrorSetHasValue(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ip = &mod.intern_pool;
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try func.resolveInst(ty_op.operand);
const error_set_ty = ty_op.ty.toType();
const result = try func.allocLocal(Type.bool);
const names = error_set_ty.errorSetNames(mod);
var values = try std.ArrayList(u32).initCapacity(func.gpa, names.len);
defer values.deinit();
var lowest: ?u32 = null;
var highest: ?u32 = null;
for (0..names.len) |name_index| {
const err_int = ip.getErrorValueIfExists(names.get(ip)[name_index]).?;
if (lowest) |*l| {
if (err_int < l.*) {
l.* = err_int;
}
} else {
lowest = err_int;
}
if (highest) |*h| {
if (err_int > h.*) {
highest = err_int;
}
} else {
highest = err_int;
}
values.appendAssumeCapacity(err_int);
}
// start block for 'true' branch
try func.startBlock(.block, wasm.block_empty);
// start block for 'false' branch
try func.startBlock(.block, wasm.block_empty);
// block for the jump table itself
try func.startBlock(.block, wasm.block_empty);
// lower operand to determine jump table target
try func.emitWValue(operand);
try func.addImm32(lowest.?);
try func.addTag(.i32_sub);
// Account for default branch so always add '1'
const depth = @as(u32, @intCast(highest.? - lowest.? + 1));
const jump_table: Mir.JumpTable = .{ .length = depth };
const table_extra_index = try func.addExtra(jump_table);
try func.addInst(.{ .tag = .br_table, .data = .{ .payload = table_extra_index } });
try func.mir_extra.ensureUnusedCapacity(func.gpa, depth);
var value: u32 = lowest.?;
while (value <= highest.?) : (value += 1) {
const idx: u32 = blk: {
for (values.items) |val| {
if (val == value) break :blk 1;
}
break :blk 0;
};
func.mir_extra.appendAssumeCapacity(idx);
}
try func.endBlock();
// 'false' branch (i.e. error set does not have value
// ensure we set local to 0 in case the local was re-used.
try func.addImm32(0);
try func.addLabel(.local_set, result.local.value);
try func.addLabel(.br, 1);
try func.endBlock();
// 'true' branch
try func.addImm32(1);
try func.addLabel(.local_set, result.local.value);
try func.addLabel(.br, 0);
try func.endBlock();
return func.finishAir(inst, result, &.{ty_op.operand});
}
inline fn useAtomicFeature(func: *const CodeGen) bool {
return std.Target.wasm.featureSetHas(func.target.cpu.features, .atomics);
}
fn airCmpxchg(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const ty_pl = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = func.air.extraData(Air.Cmpxchg, ty_pl.payload).data;
const ptr_ty = func.typeOf(extra.ptr);
const ty = ptr_ty.childType(mod);
const result_ty = func.typeOfIndex(inst);
const ptr_operand = try func.resolveInst(extra.ptr);
const expected_val = try func.resolveInst(extra.expected_value);
const new_val = try func.resolveInst(extra.new_value);
const cmp_result = try func.allocLocal(Type.bool);
const ptr_val = if (func.useAtomicFeature()) val: {
const val_local = try func.allocLocal(ty);
try func.emitWValue(ptr_operand);
try func.lowerToStack(expected_val);
try func.lowerToStack(new_val);
try func.addAtomicMemArg(switch (ty.abiSize(pt)) {
1 => .i32_atomic_rmw8_cmpxchg_u,
2 => .i32_atomic_rmw16_cmpxchg_u,
4 => .i32_atomic_rmw_cmpxchg,
8 => .i32_atomic_rmw_cmpxchg,
else => |size| return func.fail("TODO: implement `@cmpxchg` for types with abi size '{d}'", .{size}),
}, .{
.offset = ptr_operand.offset(),
.alignment = @intCast(ty.abiAlignment(pt).toByteUnits().?),
});
try func.addLabel(.local_tee, val_local.local.value);
_ = try func.cmp(.stack, expected_val, ty, .eq);
try func.addLabel(.local_set, cmp_result.local.value);
break :val val_local;
} else val: {
if (ty.abiSize(pt) > 8) {
return func.fail("TODO: Implement `@cmpxchg` for types larger than abi size of 8 bytes", .{});
}
const ptr_val = try WValue.toLocal(try func.load(ptr_operand, ty, 0), func, ty);
try func.lowerToStack(ptr_operand);
try func.lowerToStack(new_val);
try func.emitWValue(ptr_val);
_ = try func.cmp(ptr_val, expected_val, ty, .eq);
try func.addLabel(.local_tee, cmp_result.local.value);
try func.addTag(.select);
try func.store(.stack, .stack, ty, 0);
break :val ptr_val;
};
const result = if (isByRef(result_ty, pt, func.target.*)) val: {
try func.emitWValue(cmp_result);
try func.addImm32(~@as(u32, 0));
try func.addTag(.i32_xor);
try func.addImm32(1);
try func.addTag(.i32_and);
const and_result = try WValue.toLocal(.stack, func, Type.bool);
const result_ptr = try func.allocStack(result_ty);
try func.store(result_ptr, and_result, Type.bool, @as(u32, @intCast(ty.abiSize(pt))));
try func.store(result_ptr, ptr_val, ty, 0);
break :val result_ptr;
} else val: {
try func.addImm32(0);
try func.emitWValue(ptr_val);
try func.emitWValue(cmp_result);
try func.addTag(.select);
break :val .stack;
};
return func.finishAir(inst, result, &.{ extra.ptr, extra.expected_value, extra.new_value });
}
fn airAtomicLoad(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const atomic_load = func.air.instructions.items(.data)[@intFromEnum(inst)].atomic_load;
const ptr = try func.resolveInst(atomic_load.ptr);
const ty = func.typeOfIndex(inst);
if (func.useAtomicFeature()) {
const tag: wasm.AtomicsOpcode = switch (ty.abiSize(pt)) {
1 => .i32_atomic_load8_u,
2 => .i32_atomic_load16_u,
4 => .i32_atomic_load,
8 => .i64_atomic_load,
else => |size| return func.fail("TODO: @atomicLoad for types with abi size {d}", .{size}),
};
try func.emitWValue(ptr);
try func.addAtomicMemArg(tag, .{
.offset = ptr.offset(),
.alignment = @intCast(ty.abiAlignment(pt).toByteUnits().?),
});
} else {
_ = try func.load(ptr, ty, 0);
}
return func.finishAir(inst, .stack, &.{atomic_load.ptr});
}
fn airAtomicRmw(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const pl_op = func.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = func.air.extraData(Air.AtomicRmw, pl_op.payload).data;
const ptr = try func.resolveInst(pl_op.operand);
const operand = try func.resolveInst(extra.operand);
const ty = func.typeOfIndex(inst);
const op: std.builtin.AtomicRmwOp = extra.op();
if (func.useAtomicFeature()) {
switch (op) {
.Max,
.Min,
.Nand,
=> {
const tmp = try func.load(ptr, ty, 0);
const value = try tmp.toLocal(func, ty);
// create a loop to cmpxchg the new value
try func.startBlock(.loop, wasm.block_empty);
try func.emitWValue(ptr);
try func.emitWValue(value);
if (op == .Nand) {
const wasm_bits = toWasmBits(@intCast(ty.bitSize(pt))).?;
const and_res = try func.binOp(value, operand, ty, .@"and");
if (wasm_bits == 32)
try func.addImm32(~@as(u32, 0))
else if (wasm_bits == 64)
try func.addImm64(~@as(u64, 0))
else
return func.fail("TODO: `@atomicRmw` with operator `Nand` for types larger than 64 bits", .{});
_ = try func.binOp(and_res, .stack, ty, .xor);
} else {
try func.emitWValue(value);
try func.emitWValue(operand);
_ = try func.cmp(value, operand, ty, if (op == .Max) .gt else .lt);
try func.addTag(.select);
}
try func.addAtomicMemArg(
switch (ty.abiSize(pt)) {
1 => .i32_atomic_rmw8_cmpxchg_u,
2 => .i32_atomic_rmw16_cmpxchg_u,
4 => .i32_atomic_rmw_cmpxchg,
8 => .i64_atomic_rmw_cmpxchg,
else => return func.fail("TODO: implement `@atomicRmw` with operation `{s}` for types larger than 64 bits", .{@tagName(op)}),
},
.{
.offset = ptr.offset(),
.alignment = @intCast(ty.abiAlignment(pt).toByteUnits().?),
},
);
const select_res = try func.allocLocal(ty);
try func.addLabel(.local_tee, select_res.local.value);
_ = try func.cmp(.stack, value, ty, .neq); // leave on stack so we can use it for br_if
try func.emitWValue(select_res);
try func.addLabel(.local_set, value.local.value);
try func.addLabel(.br_if, 0);
try func.endBlock();
return func.finishAir(inst, value, &.{ pl_op.operand, extra.operand });
},
// the other operations have their own instructions for Wasm.
else => {
try func.emitWValue(ptr);
try func.emitWValue(operand);
const tag: wasm.AtomicsOpcode = switch (ty.abiSize(pt)) {
1 => switch (op) {
.Xchg => .i32_atomic_rmw8_xchg_u,
.Add => .i32_atomic_rmw8_add_u,
.Sub => .i32_atomic_rmw8_sub_u,
.And => .i32_atomic_rmw8_and_u,
.Or => .i32_atomic_rmw8_or_u,
.Xor => .i32_atomic_rmw8_xor_u,
else => unreachable,
},
2 => switch (op) {
.Xchg => .i32_atomic_rmw16_xchg_u,
.Add => .i32_atomic_rmw16_add_u,
.Sub => .i32_atomic_rmw16_sub_u,
.And => .i32_atomic_rmw16_and_u,
.Or => .i32_atomic_rmw16_or_u,
.Xor => .i32_atomic_rmw16_xor_u,
else => unreachable,
},
4 => switch (op) {
.Xchg => .i32_atomic_rmw_xchg,
.Add => .i32_atomic_rmw_add,
.Sub => .i32_atomic_rmw_sub,
.And => .i32_atomic_rmw_and,
.Or => .i32_atomic_rmw_or,
.Xor => .i32_atomic_rmw_xor,
else => unreachable,
},
8 => switch (op) {
.Xchg => .i64_atomic_rmw_xchg,
.Add => .i64_atomic_rmw_add,
.Sub => .i64_atomic_rmw_sub,
.And => .i64_atomic_rmw_and,
.Or => .i64_atomic_rmw_or,
.Xor => .i64_atomic_rmw_xor,
else => unreachable,
},
else => |size| return func.fail("TODO: Implement `@atomicRmw` for types with abi size {d}", .{size}),
};
try func.addAtomicMemArg(tag, .{
.offset = ptr.offset(),
.alignment = @intCast(ty.abiAlignment(pt).toByteUnits().?),
});
return func.finishAir(inst, .stack, &.{ pl_op.operand, extra.operand });
},
}
} else {
const loaded = try func.load(ptr, ty, 0);
const result = try loaded.toLocal(func, ty);
switch (op) {
.Xchg => {
try func.store(ptr, operand, ty, 0);
},
.Add,
.Sub,
.And,
.Or,
.Xor,
=> {
try func.emitWValue(ptr);
_ = try func.binOp(result, operand, ty, switch (op) {
.Add => .add,
.Sub => .sub,
.And => .@"and",
.Or => .@"or",
.Xor => .xor,
else => unreachable,
});
if (ty.isInt(mod) and (op == .Add or op == .Sub)) {
_ = try func.wrapOperand(.stack, ty);
}
try func.store(.stack, .stack, ty, ptr.offset());
},
.Max,
.Min,
=> {
try func.emitWValue(ptr);
try func.emitWValue(result);
try func.emitWValue(operand);
_ = try func.cmp(result, operand, ty, if (op == .Max) .gt else .lt);
try func.addTag(.select);
try func.store(.stack, .stack, ty, ptr.offset());
},
.Nand => {
const wasm_bits = toWasmBits(@intCast(ty.bitSize(pt))).?;
try func.emitWValue(ptr);
const and_res = try func.binOp(result, operand, ty, .@"and");
if (wasm_bits == 32)
try func.addImm32(~@as(u32, 0))
else if (wasm_bits == 64)
try func.addImm64(~@as(u64, 0))
else
return func.fail("TODO: `@atomicRmw` with operator `Nand` for types larger than 64 bits", .{});
_ = try func.binOp(and_res, .stack, ty, .xor);
try func.store(.stack, .stack, ty, ptr.offset());
},
}
return func.finishAir(inst, result, &.{ pl_op.operand, extra.operand });
}
}
fn airFence(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const zcu = pt.zcu;
// Only when the atomic feature is enabled, and we're not building
// for a single-threaded build, can we emit the `fence` instruction.
// In all other cases, we emit no instructions for a fence.
const single_threaded = zcu.navFileScope(func.owner_nav).mod.single_threaded;
if (func.useAtomicFeature() and !single_threaded) {
try func.addAtomicTag(.atomic_fence);
}
return func.finishAir(inst, .none, &.{});
}
fn airAtomicStore(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const pt = func.pt;
const mod = pt.zcu;
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ptr = try func.resolveInst(bin_op.lhs);
const operand = try func.resolveInst(bin_op.rhs);
const ptr_ty = func.typeOf(bin_op.lhs);
const ty = ptr_ty.childType(mod);
if (func.useAtomicFeature()) {
const tag: wasm.AtomicsOpcode = switch (ty.abiSize(pt)) {
1 => .i32_atomic_store8,
2 => .i32_atomic_store16,
4 => .i32_atomic_store,
8 => .i64_atomic_store,
else => |size| return func.fail("TODO: @atomicLoad for types with abi size {d}", .{size}),
};
try func.emitWValue(ptr);
try func.lowerToStack(operand);
try func.addAtomicMemArg(tag, .{
.offset = ptr.offset(),
.alignment = @intCast(ty.abiAlignment(pt).toByteUnits().?),
});
} else {
try func.store(ptr, operand, ty, 0);
}
return func.finishAir(inst, .none, &.{ bin_op.lhs, bin_op.rhs });
}
fn airFrameAddress(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
if (func.initial_stack_value == .none) {
try func.initializeStack();
}
try func.emitWValue(func.bottom_stack_value);
return func.finishAir(inst, .stack, &.{});
}
fn typeOf(func: *CodeGen, inst: Air.Inst.Ref) Type {
const pt = func.pt;
const mod = pt.zcu;
return func.air.typeOf(inst, &mod.intern_pool);
}
fn typeOfIndex(func: *CodeGen, inst: Air.Inst.Index) Type {
const pt = func.pt;
const mod = pt.zcu;
return func.air.typeOfIndex(inst, &mod.intern_pool);
}