zig/lib/std/unicode.zig
Carl Åstholm 59ac0d1eed Deprecate suggestVectorSize in favor of suggestVectorLength
The function returns the vector length, not the byte size of the vector or the bit size of individual elements. This distinction is very important and some usages of this function in the stdlib operated under these incorrect assumptions.
2024-01-01 16:18:57 +01:00

1230 lines
46 KiB
Zig
Raw Blame History

const std = @import("./std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const mem = std.mem;
const native_endian = builtin.cpu.arch.endian();
/// Use this to replace an unknown, unrecognized, or unrepresentable character.
///
/// See also: https://en.wikipedia.org/wiki/Specials_(Unicode_block)#Replacement_character
pub const replacement_character: u21 = 0xFFFD;
/// Returns how many bytes the UTF-8 representation would require
/// for the given codepoint.
pub fn utf8CodepointSequenceLength(c: u21) !u3 {
if (c < 0x80) return @as(u3, 1);
if (c < 0x800) return @as(u3, 2);
if (c < 0x10000) return @as(u3, 3);
if (c < 0x110000) return @as(u3, 4);
return error.CodepointTooLarge;
}
/// Given the first byte of a UTF-8 codepoint,
/// returns a number 1-4 indicating the total length of the codepoint in bytes.
/// If this byte does not match the form of a UTF-8 start byte, returns Utf8InvalidStartByte.
pub fn utf8ByteSequenceLength(first_byte: u8) !u3 {
// The switch is optimized much better than a "smart" approach using @clz
return switch (first_byte) {
0b0000_0000...0b0111_1111 => 1,
0b1100_0000...0b1101_1111 => 2,
0b1110_0000...0b1110_1111 => 3,
0b1111_0000...0b1111_0111 => 4,
else => error.Utf8InvalidStartByte,
};
}
/// Encodes the given codepoint into a UTF-8 byte sequence.
/// c: the codepoint.
/// out: the out buffer to write to. Must have a len >= utf8CodepointSequenceLength(c).
/// Errors: if c cannot be encoded in UTF-8.
/// Returns: the number of bytes written to out.
pub fn utf8Encode(c: u21, out: []u8) !u3 {
const length = try utf8CodepointSequenceLength(c);
assert(out.len >= length);
switch (length) {
// The pattern for each is the same
// - Increasing the initial shift by 6 each time
// - Each time after the first shorten the shifted
// value to a max of 0b111111 (63)
1 => out[0] = @as(u8, @intCast(c)), // Can just do 0 + codepoint for initial range
2 => {
out[0] = @as(u8, @intCast(0b11000000 | (c >> 6)));
out[1] = @as(u8, @intCast(0b10000000 | (c & 0b111111)));
},
3 => {
if (0xd800 <= c and c <= 0xdfff) return error.Utf8CannotEncodeSurrogateHalf;
out[0] = @as(u8, @intCast(0b11100000 | (c >> 12)));
out[1] = @as(u8, @intCast(0b10000000 | ((c >> 6) & 0b111111)));
out[2] = @as(u8, @intCast(0b10000000 | (c & 0b111111)));
},
4 => {
out[0] = @as(u8, @intCast(0b11110000 | (c >> 18)));
out[1] = @as(u8, @intCast(0b10000000 | ((c >> 12) & 0b111111)));
out[2] = @as(u8, @intCast(0b10000000 | ((c >> 6) & 0b111111)));
out[3] = @as(u8, @intCast(0b10000000 | (c & 0b111111)));
},
else => unreachable,
}
return length;
}
const Utf8DecodeError = Utf8Decode2Error || Utf8Decode3Error || Utf8Decode4Error;
/// Decodes the UTF-8 codepoint encoded in the given slice of bytes.
/// bytes.len must be equal to utf8ByteSequenceLength(bytes[0]) catch unreachable.
/// If you already know the length at comptime, you can call one of
/// utf8Decode2,utf8Decode3,utf8Decode4 directly instead of this function.
pub fn utf8Decode(bytes: []const u8) Utf8DecodeError!u21 {
return switch (bytes.len) {
1 => @as(u21, bytes[0]),
2 => utf8Decode2(bytes),
3 => utf8Decode3(bytes),
4 => utf8Decode4(bytes),
else => unreachable,
};
}
const Utf8Decode2Error = error{
Utf8ExpectedContinuation,
Utf8OverlongEncoding,
};
pub fn utf8Decode2(bytes: []const u8) Utf8Decode2Error!u21 {
assert(bytes.len == 2);
assert(bytes[0] & 0b11100000 == 0b11000000);
var value: u21 = bytes[0] & 0b00011111;
if (bytes[1] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation;
value <<= 6;
value |= bytes[1] & 0b00111111;
if (value < 0x80) return error.Utf8OverlongEncoding;
return value;
}
const Utf8Decode3Error = error{
Utf8ExpectedContinuation,
Utf8OverlongEncoding,
Utf8EncodesSurrogateHalf,
};
pub fn utf8Decode3(bytes: []const u8) Utf8Decode3Error!u21 {
assert(bytes.len == 3);
assert(bytes[0] & 0b11110000 == 0b11100000);
var value: u21 = bytes[0] & 0b00001111;
if (bytes[1] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation;
value <<= 6;
value |= bytes[1] & 0b00111111;
if (bytes[2] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation;
value <<= 6;
value |= bytes[2] & 0b00111111;
if (value < 0x800) return error.Utf8OverlongEncoding;
if (0xd800 <= value and value <= 0xdfff) return error.Utf8EncodesSurrogateHalf;
return value;
}
const Utf8Decode4Error = error{
Utf8ExpectedContinuation,
Utf8OverlongEncoding,
Utf8CodepointTooLarge,
};
pub fn utf8Decode4(bytes: []const u8) Utf8Decode4Error!u21 {
assert(bytes.len == 4);
assert(bytes[0] & 0b11111000 == 0b11110000);
var value: u21 = bytes[0] & 0b00000111;
if (bytes[1] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation;
value <<= 6;
value |= bytes[1] & 0b00111111;
if (bytes[2] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation;
value <<= 6;
value |= bytes[2] & 0b00111111;
if (bytes[3] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation;
value <<= 6;
value |= bytes[3] & 0b00111111;
if (value < 0x10000) return error.Utf8OverlongEncoding;
if (value > 0x10FFFF) return error.Utf8CodepointTooLarge;
return value;
}
/// Returns true if the given unicode codepoint can be encoded in UTF-8.
pub fn utf8ValidCodepoint(value: u21) bool {
return switch (value) {
0xD800...0xDFFF => false, // Surrogates range
0x110000...0x1FFFFF => false, // Above the maximum codepoint value
else => true,
};
}
/// Returns the length of a supplied UTF-8 string literal in terms of unicode
/// codepoints.
pub fn utf8CountCodepoints(s: []const u8) !usize {
var len: usize = 0;
const N = @sizeOf(usize);
const MASK = 0x80 * (std.math.maxInt(usize) / 0xff);
var i: usize = 0;
while (i < s.len) {
// Fast path for ASCII sequences
while (i + N <= s.len) : (i += N) {
const v = mem.readInt(usize, s[i..][0..N], native_endian);
if (v & MASK != 0) break;
len += N;
}
if (i < s.len) {
const n = try utf8ByteSequenceLength(s[i]);
if (i + n > s.len) return error.TruncatedInput;
switch (n) {
1 => {}, // ASCII, no validation needed
else => _ = try utf8Decode(s[i..][0..n]),
}
i += n;
len += 1;
}
}
return len;
}
/// Returns true if the input consists entirely of UTF-8 codepoints
pub fn utf8ValidateSlice(input: []const u8) bool {
var remaining = input;
const chunk_len = std.simd.suggestVectorLength(u8) orelse 1;
const Chunk = @Vector(chunk_len, u8);
// Fast path. Check for and skip ASCII characters at the start of the input.
while (remaining.len >= chunk_len) {
const chunk: Chunk = remaining[0..chunk_len].*;
const mask: Chunk = @splat(0x80);
if (@reduce(.Or, chunk & mask == mask)) {
// found a non ASCII byte
break;
}
remaining = remaining[chunk_len..];
}
// default lowest and highest continuation byte
const lo_cb = 0b10000000;
const hi_cb = 0b10111111;
const min_non_ascii_codepoint = 0x80;
// The first nibble is used to identify the continuation byte range to
// accept. The second nibble is the size.
const xx = 0xF1; // invalid: size 1
const as = 0xF0; // ASCII: size 1
const s1 = 0x02; // accept 0, size 2
const s2 = 0x13; // accept 1, size 3
const s3 = 0x03; // accept 0, size 3
const s4 = 0x23; // accept 2, size 3
const s5 = 0x34; // accept 3, size 4
const s6 = 0x04; // accept 0, size 4
const s7 = 0x44; // accept 4, size 4
// Information about the first byte in a UTF-8 sequence.
const first = comptime ([_]u8{as} ** 128) ++ ([_]u8{xx} ** 64) ++ [_]u8{
xx, xx, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1,
s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1,
s2, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s4, s3, s3,
s5, s6, s6, s6, s7, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx,
};
const n = remaining.len;
var i: usize = 0;
while (i < n) {
const first_byte = remaining[i];
if (first_byte < min_non_ascii_codepoint) {
i += 1;
continue;
}
const info = first[first_byte];
if (info == xx) {
return false; // Illegal starter byte.
}
const size = info & 7;
if (i + size > n) {
return false; // Short or invalid.
}
// Figure out the acceptable low and high continuation bytes, starting
// with our defaults.
var accept_lo: u8 = lo_cb;
var accept_hi: u8 = hi_cb;
switch (info >> 4) {
0 => {},
1 => accept_lo = 0xA0,
2 => accept_hi = 0x9F,
3 => accept_lo = 0x90,
4 => accept_hi = 0x8F,
else => unreachable,
}
const c1 = remaining[i + 1];
if (c1 < accept_lo or accept_hi < c1) {
return false;
}
switch (size) {
2 => i += 2,
3 => {
const c2 = remaining[i + 2];
if (c2 < lo_cb or hi_cb < c2) {
return false;
}
i += 3;
},
4 => {
const c2 = remaining[i + 2];
if (c2 < lo_cb or hi_cb < c2) {
return false;
}
const c3 = remaining[i + 3];
if (c3 < lo_cb or hi_cb < c3) {
return false;
}
i += 4;
},
else => unreachable,
}
}
return true;
}
/// Utf8View iterates the code points of a utf-8 encoded string.
///
/// ```
/// var utf8 = (try std.unicode.Utf8View.init("hi there")).iterator();
/// while (utf8.nextCodepointSlice()) |codepoint| {
/// std.debug.print("got codepoint {}\n", .{codepoint});
/// }
/// ```
pub const Utf8View = struct {
bytes: []const u8,
pub fn init(s: []const u8) !Utf8View {
if (!utf8ValidateSlice(s)) {
return error.InvalidUtf8;
}
return initUnchecked(s);
}
pub fn initUnchecked(s: []const u8) Utf8View {
return Utf8View{ .bytes = s };
}
pub inline fn initComptime(comptime s: []const u8) Utf8View {
return comptime if (init(s)) |r| r else |err| switch (err) {
error.InvalidUtf8 => {
@compileError("invalid utf8");
},
};
}
pub fn iterator(s: Utf8View) Utf8Iterator {
return Utf8Iterator{
.bytes = s.bytes,
.i = 0,
};
}
};
pub const Utf8Iterator = struct {
bytes: []const u8,
i: usize,
pub fn nextCodepointSlice(it: *Utf8Iterator) ?[]const u8 {
if (it.i >= it.bytes.len) {
return null;
}
const cp_len = utf8ByteSequenceLength(it.bytes[it.i]) catch unreachable;
it.i += cp_len;
return it.bytes[it.i - cp_len .. it.i];
}
pub fn nextCodepoint(it: *Utf8Iterator) ?u21 {
const slice = it.nextCodepointSlice() orelse return null;
return utf8Decode(slice) catch unreachable;
}
/// Look ahead at the next n codepoints without advancing the iterator.
/// If fewer than n codepoints are available, then return the remainder of the string.
pub fn peek(it: *Utf8Iterator, n: usize) []const u8 {
const original_i = it.i;
defer it.i = original_i;
var end_ix = original_i;
var found: usize = 0;
while (found < n) : (found += 1) {
const next_codepoint = it.nextCodepointSlice() orelse return it.bytes[original_i..];
end_ix += next_codepoint.len;
}
return it.bytes[original_i..end_ix];
}
};
pub fn utf16IsHighSurrogate(c: u16) bool {
return c & ~@as(u16, 0x03ff) == 0xd800;
}
pub fn utf16IsLowSurrogate(c: u16) bool {
return c & ~@as(u16, 0x03ff) == 0xdc00;
}
/// Returns how many code units the UTF-16 representation would require
/// for the given codepoint.
pub fn utf16CodepointSequenceLength(c: u21) !u2 {
if (c <= 0xFFFF) return 1;
if (c <= 0x10FFFF) return 2;
return error.CodepointTooLarge;
}
test utf16CodepointSequenceLength {
try testing.expectEqual(@as(u2, 1), try utf16CodepointSequenceLength('a'));
try testing.expectEqual(@as(u2, 1), try utf16CodepointSequenceLength(0xFFFF));
try testing.expectEqual(@as(u2, 2), try utf16CodepointSequenceLength(0x10000));
try testing.expectEqual(@as(u2, 2), try utf16CodepointSequenceLength(0x10FFFF));
try testing.expectError(error.CodepointTooLarge, utf16CodepointSequenceLength(0x110000));
}
/// Given the first code unit of a UTF-16 codepoint, returns a number 1-2
/// indicating the total length of the codepoint in UTF-16 code units.
/// If this code unit does not match the form of a UTF-16 start code unit, returns Utf16InvalidStartCodeUnit.
pub fn utf16CodeUnitSequenceLength(first_code_unit: u16) !u2 {
if (utf16IsHighSurrogate(first_code_unit)) return 2;
if (utf16IsLowSurrogate(first_code_unit)) return error.Utf16InvalidStartCodeUnit;
return 1;
}
test utf16CodeUnitSequenceLength {
try testing.expectEqual(@as(u2, 1), try utf16CodeUnitSequenceLength('a'));
try testing.expectEqual(@as(u2, 1), try utf16CodeUnitSequenceLength(0xFFFF));
try testing.expectEqual(@as(u2, 2), try utf16CodeUnitSequenceLength(0xDBFF));
try testing.expectError(error.Utf16InvalidStartCodeUnit, utf16CodeUnitSequenceLength(0xDFFF));
}
/// Decodes the codepoint encoded in the given pair of UTF-16 code units.
/// Asserts that `surrogate_pair.len >= 2` and that the first code unit is a high surrogate.
/// If the second code unit is not a low surrogate, error.ExpectedSecondSurrogateHalf is returned.
pub fn utf16DecodeSurrogatePair(surrogate_pair: []const u16) !u21 {
assert(surrogate_pair.len >= 2);
assert(utf16IsHighSurrogate(surrogate_pair[0]));
const high_half: u21 = surrogate_pair[0];
const low_half = surrogate_pair[1];
if (!utf16IsLowSurrogate(low_half)) return error.ExpectedSecondSurrogateHalf;
return 0x10000 + ((high_half & 0x03ff) << 10) | (low_half & 0x03ff);
}
pub const Utf16LeIterator = struct {
bytes: []const u8,
i: usize,
pub fn init(s: []const u16) Utf16LeIterator {
return Utf16LeIterator{
.bytes = mem.sliceAsBytes(s),
.i = 0,
};
}
pub fn nextCodepoint(it: *Utf16LeIterator) !?u21 {
assert(it.i <= it.bytes.len);
if (it.i == it.bytes.len) return null;
var code_units: [2]u16 = undefined;
code_units[0] = mem.readInt(u16, it.bytes[it.i..][0..2], .little);
it.i += 2;
if (utf16IsHighSurrogate(code_units[0])) {
// surrogate pair
if (it.i >= it.bytes.len) return error.DanglingSurrogateHalf;
code_units[1] = mem.readInt(u16, it.bytes[it.i..][0..2], .little);
const codepoint = try utf16DecodeSurrogatePair(&code_units);
it.i += 2;
return codepoint;
} else if (utf16IsLowSurrogate(code_units[0])) {
return error.UnexpectedSecondSurrogateHalf;
} else {
return code_units[0];
}
}
};
/// Returns the length of a supplied UTF-16 string literal in terms of unicode
/// codepoints.
pub fn utf16CountCodepoints(utf16le: []const u16) !usize {
var len: usize = 0;
var it = Utf16LeIterator.init(utf16le);
while (try it.nextCodepoint()) |_| len += 1;
return len;
}
fn testUtf16CountCodepoints() !void {
try testing.expectEqual(
@as(usize, 1),
try utf16CountCodepoints(utf8ToUtf16LeStringLiteral("a")),
);
try testing.expectEqual(
@as(usize, 10),
try utf16CountCodepoints(utf8ToUtf16LeStringLiteral("abcdefghij")),
);
try testing.expectEqual(
@as(usize, 10),
try utf16CountCodepoints(utf8ToUtf16LeStringLiteral("äåéëþüúíóö")),
);
try testing.expectEqual(
@as(usize, 5),
try utf16CountCodepoints(utf8ToUtf16LeStringLiteral("こんにちは")),
);
}
test "utf16 count codepoints" {
try testUtf16CountCodepoints();
try comptime testUtf16CountCodepoints();
}
test "utf8 encode" {
try comptime testUtf8Encode();
try testUtf8Encode();
}
fn testUtf8Encode() !void {
// A few taken from wikipedia a few taken elsewhere
var array: [4]u8 = undefined;
try testing.expect((try utf8Encode(try utf8Decode(""), array[0..])) == 3);
try testing.expect(array[0] == 0b11100010);
try testing.expect(array[1] == 0b10000010);
try testing.expect(array[2] == 0b10101100);
try testing.expect((try utf8Encode(try utf8Decode("$"), array[0..])) == 1);
try testing.expect(array[0] == 0b00100100);
try testing.expect((try utf8Encode(try utf8Decode("¢"), array[0..])) == 2);
try testing.expect(array[0] == 0b11000010);
try testing.expect(array[1] == 0b10100010);
try testing.expect((try utf8Encode(try utf8Decode("𐍈"), array[0..])) == 4);
try testing.expect(array[0] == 0b11110000);
try testing.expect(array[1] == 0b10010000);
try testing.expect(array[2] == 0b10001101);
try testing.expect(array[3] == 0b10001000);
}
test "utf8 encode error" {
try comptime testUtf8EncodeError();
try testUtf8EncodeError();
}
fn testUtf8EncodeError() !void {
var array: [4]u8 = undefined;
try testErrorEncode(0xd800, array[0..], error.Utf8CannotEncodeSurrogateHalf);
try testErrorEncode(0xdfff, array[0..], error.Utf8CannotEncodeSurrogateHalf);
try testErrorEncode(0x110000, array[0..], error.CodepointTooLarge);
try testErrorEncode(0x1fffff, array[0..], error.CodepointTooLarge);
}
fn testErrorEncode(codePoint: u21, array: []u8, expectedErr: anyerror) !void {
try testing.expectError(expectedErr, utf8Encode(codePoint, array));
}
test "utf8 iterator on ascii" {
try comptime testUtf8IteratorOnAscii();
try testUtf8IteratorOnAscii();
}
fn testUtf8IteratorOnAscii() !void {
const s = Utf8View.initComptime("abc");
var it1 = s.iterator();
try testing.expect(std.mem.eql(u8, "a", it1.nextCodepointSlice().?));
try testing.expect(std.mem.eql(u8, "b", it1.nextCodepointSlice().?));
try testing.expect(std.mem.eql(u8, "c", it1.nextCodepointSlice().?));
try testing.expect(it1.nextCodepointSlice() == null);
var it2 = s.iterator();
try testing.expect(it2.nextCodepoint().? == 'a');
try testing.expect(it2.nextCodepoint().? == 'b');
try testing.expect(it2.nextCodepoint().? == 'c');
try testing.expect(it2.nextCodepoint() == null);
}
test "utf8 view bad" {
try comptime testUtf8ViewBad();
try testUtf8ViewBad();
}
fn testUtf8ViewBad() !void {
// Compile-time error.
// const s3 = Utf8View.initComptime("\xfe\xf2");
try testing.expectError(error.InvalidUtf8, Utf8View.init("hel\xadlo"));
}
test "utf8 view ok" {
try comptime testUtf8ViewOk();
try testUtf8ViewOk();
}
fn testUtf8ViewOk() !void {
const s = Utf8View.initComptime("東京市");
var it1 = s.iterator();
try testing.expect(std.mem.eql(u8, "", it1.nextCodepointSlice().?));
try testing.expect(std.mem.eql(u8, "", it1.nextCodepointSlice().?));
try testing.expect(std.mem.eql(u8, "", it1.nextCodepointSlice().?));
try testing.expect(it1.nextCodepointSlice() == null);
var it2 = s.iterator();
try testing.expect(it2.nextCodepoint().? == 0x6771);
try testing.expect(it2.nextCodepoint().? == 0x4eac);
try testing.expect(it2.nextCodepoint().? == 0x5e02);
try testing.expect(it2.nextCodepoint() == null);
}
test "validate slice" {
try comptime testValidateSlice();
try testValidateSlice();
// We skip a variable (based on recommended vector size) chunks of
// ASCII characters. Let's make sure we're chunking correctly.
const str = [_]u8{'a'} ** 550 ++ "\xc0";
for (0..str.len - 3) |i| {
try testing.expect(!utf8ValidateSlice(str[i..]));
}
}
fn testValidateSlice() !void {
try testing.expect(utf8ValidateSlice("abc"));
try testing.expect(utf8ValidateSlice("abc\xdf\xbf"));
try testing.expect(utf8ValidateSlice(""));
try testing.expect(utf8ValidateSlice("a"));
try testing.expect(utf8ValidateSlice("abc"));
try testing.expect(utf8ValidateSlice("Ж"));
try testing.expect(utf8ValidateSlice("ЖЖ"));
try testing.expect(utf8ValidateSlice("брэд-ЛГТМ"));
try testing.expect(utf8ValidateSlice("☺☻☹"));
try testing.expect(utf8ValidateSlice("a\u{fffdb}"));
try testing.expect(utf8ValidateSlice("\xf4\x8f\xbf\xbf"));
try testing.expect(utf8ValidateSlice("abc\xdf\xbf"));
try testing.expect(!utf8ValidateSlice("abc\xc0"));
try testing.expect(!utf8ValidateSlice("abc\xc0abc"));
try testing.expect(!utf8ValidateSlice("aa\xe2"));
try testing.expect(!utf8ValidateSlice("\x42\xfa"));
try testing.expect(!utf8ValidateSlice("\x42\xfa\x43"));
try testing.expect(!utf8ValidateSlice("abc\xc0"));
try testing.expect(!utf8ValidateSlice("abc\xc0abc"));
try testing.expect(!utf8ValidateSlice("\xf4\x90\x80\x80"));
try testing.expect(!utf8ValidateSlice("\xf7\xbf\xbf\xbf"));
try testing.expect(!utf8ValidateSlice("\xfb\xbf\xbf\xbf\xbf"));
try testing.expect(!utf8ValidateSlice("\xc0\x80"));
try testing.expect(!utf8ValidateSlice("\xed\xa0\x80"));
try testing.expect(!utf8ValidateSlice("\xed\xbf\xbf"));
}
test "valid utf8" {
try comptime testValidUtf8();
try testValidUtf8();
}
fn testValidUtf8() !void {
try testValid("\x00", 0x0);
try testValid("\x20", 0x20);
try testValid("\x7f", 0x7f);
try testValid("\xc2\x80", 0x80);
try testValid("\xdf\xbf", 0x7ff);
try testValid("\xe0\xa0\x80", 0x800);
try testValid("\xe1\x80\x80", 0x1000);
try testValid("\xef\xbf\xbf", 0xffff);
try testValid("\xf0\x90\x80\x80", 0x10000);
try testValid("\xf1\x80\x80\x80", 0x40000);
try testValid("\xf3\xbf\xbf\xbf", 0xfffff);
try testValid("\xf4\x8f\xbf\xbf", 0x10ffff);
}
test "invalid utf8 continuation bytes" {
try comptime testInvalidUtf8ContinuationBytes();
try testInvalidUtf8ContinuationBytes();
}
fn testInvalidUtf8ContinuationBytes() !void {
// unexpected continuation
try testError("\x80", error.Utf8InvalidStartByte);
try testError("\xbf", error.Utf8InvalidStartByte);
// too many leading 1's
try testError("\xf8", error.Utf8InvalidStartByte);
try testError("\xff", error.Utf8InvalidStartByte);
// expected continuation for 2 byte sequences
try testError("\xc2", error.UnexpectedEof);
try testError("\xc2\x00", error.Utf8ExpectedContinuation);
try testError("\xc2\xc0", error.Utf8ExpectedContinuation);
// expected continuation for 3 byte sequences
try testError("\xe0", error.UnexpectedEof);
try testError("\xe0\x00", error.UnexpectedEof);
try testError("\xe0\xc0", error.UnexpectedEof);
try testError("\xe0\xa0", error.UnexpectedEof);
try testError("\xe0\xa0\x00", error.Utf8ExpectedContinuation);
try testError("\xe0\xa0\xc0", error.Utf8ExpectedContinuation);
// expected continuation for 4 byte sequences
try testError("\xf0", error.UnexpectedEof);
try testError("\xf0\x00", error.UnexpectedEof);
try testError("\xf0\xc0", error.UnexpectedEof);
try testError("\xf0\x90\x00", error.UnexpectedEof);
try testError("\xf0\x90\xc0", error.UnexpectedEof);
try testError("\xf0\x90\x80\x00", error.Utf8ExpectedContinuation);
try testError("\xf0\x90\x80\xc0", error.Utf8ExpectedContinuation);
}
test "overlong utf8 codepoint" {
try comptime testOverlongUtf8Codepoint();
try testOverlongUtf8Codepoint();
}
fn testOverlongUtf8Codepoint() !void {
try testError("\xc0\x80", error.Utf8OverlongEncoding);
try testError("\xc1\xbf", error.Utf8OverlongEncoding);
try testError("\xe0\x80\x80", error.Utf8OverlongEncoding);
try testError("\xe0\x9f\xbf", error.Utf8OverlongEncoding);
try testError("\xf0\x80\x80\x80", error.Utf8OverlongEncoding);
try testError("\xf0\x8f\xbf\xbf", error.Utf8OverlongEncoding);
}
test "misc invalid utf8" {
try comptime testMiscInvalidUtf8();
try testMiscInvalidUtf8();
}
fn testMiscInvalidUtf8() !void {
// codepoint out of bounds
try testError("\xf4\x90\x80\x80", error.Utf8CodepointTooLarge);
try testError("\xf7\xbf\xbf\xbf", error.Utf8CodepointTooLarge);
// surrogate halves
try testValid("\xed\x9f\xbf", 0xd7ff);
try testError("\xed\xa0\x80", error.Utf8EncodesSurrogateHalf);
try testError("\xed\xbf\xbf", error.Utf8EncodesSurrogateHalf);
try testValid("\xee\x80\x80", 0xe000);
}
test "utf8 iterator peeking" {
try comptime testUtf8Peeking();
try testUtf8Peeking();
}
fn testUtf8Peeking() !void {
const s = Utf8View.initComptime("noël");
var it = s.iterator();
try testing.expect(std.mem.eql(u8, "n", it.nextCodepointSlice().?));
try testing.expect(std.mem.eql(u8, "o", it.peek(1)));
try testing.expect(std.mem.eql(u8, "", it.peek(2)));
try testing.expect(std.mem.eql(u8, "oël", it.peek(3)));
try testing.expect(std.mem.eql(u8, "oël", it.peek(4)));
try testing.expect(std.mem.eql(u8, "oël", it.peek(10)));
try testing.expect(std.mem.eql(u8, "o", it.nextCodepointSlice().?));
try testing.expect(std.mem.eql(u8, "ë", it.nextCodepointSlice().?));
try testing.expect(std.mem.eql(u8, "l", it.nextCodepointSlice().?));
try testing.expect(it.nextCodepointSlice() == null);
try testing.expect(std.mem.eql(u8, &[_]u8{}, it.peek(1)));
}
fn testError(bytes: []const u8, expected_err: anyerror) !void {
try testing.expectError(expected_err, testDecode(bytes));
}
fn testValid(bytes: []const u8, expected_codepoint: u21) !void {
try testing.expect((testDecode(bytes) catch unreachable) == expected_codepoint);
}
fn testDecode(bytes: []const u8) !u21 {
const length = try utf8ByteSequenceLength(bytes[0]);
if (bytes.len < length) return error.UnexpectedEof;
try testing.expect(bytes.len == length);
return utf8Decode(bytes);
}
/// Caller must free returned memory.
pub fn utf16leToUtf8Alloc(allocator: mem.Allocator, utf16le: []const u16) ![]u8 {
// optimistically guess that it will all be ascii.
var result = try std.ArrayList(u8).initCapacity(allocator, utf16le.len);
errdefer result.deinit();
var remaining = utf16le;
if (builtin.zig_backend != .stage2_x86_64) {
const chunk_len = std.simd.suggestVectorLength(u16) orelse 1;
const Chunk = @Vector(chunk_len, u16);
// Fast path. Check for and encode ASCII characters at the start of the input.
while (remaining.len >= chunk_len) {
const chunk: Chunk = remaining[0..chunk_len].*;
const mask: Chunk = @splat(std.mem.nativeToLittle(u16, 0x7F));
if (@reduce(.Or, chunk | mask != mask)) {
// found a non ASCII code unit
break;
}
const chunk_byte_len = chunk_len * 2;
const chunk_bytes: @Vector(chunk_byte_len, u8) = (std.mem.sliceAsBytes(remaining)[0..chunk_byte_len]).*;
const deinterlaced_bytes = std.simd.deinterlace(2, chunk_bytes);
const ascii_bytes: [chunk_len]u8 = deinterlaced_bytes[0];
// We allocated enough space to encode every UTF-16 code unit
// as ASCII, so if the entire string is ASCII then we are
// guaranteed to have enough space allocated
result.appendSliceAssumeCapacity(&ascii_bytes);
remaining = remaining[chunk_len..];
}
}
var out_index: usize = result.items.len;
var it = Utf16LeIterator.init(remaining);
while (try it.nextCodepoint()) |codepoint| {
const utf8_len = utf8CodepointSequenceLength(codepoint) catch unreachable;
try result.resize(result.items.len + utf8_len);
assert((utf8Encode(codepoint, result.items[out_index..]) catch unreachable) == utf8_len);
out_index += utf8_len;
}
return result.toOwnedSlice();
}
/// Caller must free returned memory.
pub fn utf16leToUtf8AllocZ(allocator: mem.Allocator, utf16le: []const u16) ![:0]u8 {
// optimistically guess that it will all be ascii (and allocate space for the null terminator)
var result = try std.ArrayList(u8).initCapacity(allocator, utf16le.len + 1);
errdefer result.deinit();
var remaining = utf16le;
if (builtin.zig_backend != .stage2_x86_64) {
const chunk_len = std.simd.suggestVectorLength(u16) orelse 1;
const Chunk = @Vector(chunk_len, u16);
// Fast path. Check for and encode ASCII characters at the start of the input.
while (remaining.len >= chunk_len) {
const chunk: Chunk = remaining[0..chunk_len].*;
const mask: Chunk = @splat(std.mem.nativeToLittle(u16, 0x7F));
if (@reduce(.Or, chunk | mask != mask)) {
// found a non ASCII code unit
break;
}
const chunk_byte_len = chunk_len * 2;
const chunk_bytes: @Vector(chunk_byte_len, u8) = (std.mem.sliceAsBytes(remaining)[0..chunk_byte_len]).*;
const deinterlaced_bytes = std.simd.deinterlace(2, chunk_bytes);
const ascii_bytes: [chunk_len]u8 = deinterlaced_bytes[0];
// We allocated enough space to encode every UTF-16 code unit
// as ASCII, so if the entire string is ASCII then we are
// guaranteed to have enough space allocated
result.appendSliceAssumeCapacity(&ascii_bytes);
remaining = remaining[chunk_len..];
}
}
var out_index = result.items.len;
var it = Utf16LeIterator.init(remaining);
while (try it.nextCodepoint()) |codepoint| {
const utf8_len = utf8CodepointSequenceLength(codepoint) catch unreachable;
try result.resize(result.items.len + utf8_len);
assert((utf8Encode(codepoint, result.items[out_index..]) catch unreachable) == utf8_len);
out_index += utf8_len;
}
return result.toOwnedSliceSentinel(0);
}
/// Asserts that the output buffer is big enough.
/// Returns end byte index into utf8.
pub fn utf16leToUtf8(utf8: []u8, utf16le: []const u16) !usize {
var end_index: usize = 0;
var remaining = utf16le;
if (builtin.zig_backend != .stage2_x86_64) {
const chunk_len = std.simd.suggestVectorLength(u16) orelse 1;
const Chunk = @Vector(chunk_len, u16);
// Fast path. Check for and encode ASCII characters at the start of the input.
while (remaining.len >= chunk_len) {
const chunk: Chunk = remaining[0..chunk_len].*;
const mask: Chunk = @splat(std.mem.nativeToLittle(u16, 0x7F));
if (@reduce(.Or, chunk | mask != mask)) {
// found a non ASCII code unit
break;
}
const chunk_byte_len = chunk_len * 2;
const chunk_bytes: @Vector(chunk_byte_len, u8) = (std.mem.sliceAsBytes(remaining)[0..chunk_byte_len]).*;
const deinterlaced_bytes = std.simd.deinterlace(2, chunk_bytes);
const ascii_bytes: [chunk_len]u8 = deinterlaced_bytes[0];
@memcpy(utf8[end_index .. end_index + chunk_len], &ascii_bytes);
end_index += chunk_len;
remaining = remaining[chunk_len..];
}
}
var it = Utf16LeIterator.init(remaining);
while (try it.nextCodepoint()) |codepoint| {
end_index += try utf8Encode(codepoint, utf8[end_index..]);
}
return end_index;
}
test "utf16leToUtf8" {
var utf16le: [2]u16 = undefined;
const utf16le_as_bytes = mem.sliceAsBytes(utf16le[0..]);
{
mem.writeInt(u16, utf16le_as_bytes[0..2], 'A', .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 'a', .little);
const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
defer std.testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "Aa"));
}
{
mem.writeInt(u16, utf16le_as_bytes[0..2], 0x80, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xffff, .little);
const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
defer std.testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xc2\x80" ++ "\xef\xbf\xbf"));
}
{
// the values just outside the surrogate half range
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xd7ff, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xe000, .little);
const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
defer std.testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xed\x9f\xbf" ++ "\xee\x80\x80"));
}
{
// smallest surrogate pair
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xd800, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdc00, .little);
const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
defer std.testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xf0\x90\x80\x80"));
}
{
// largest surrogate pair
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xdbff, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdfff, .little);
const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
defer std.testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xf4\x8f\xbf\xbf"));
}
{
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xdbff, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdc00, .little);
const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
defer std.testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xf4\x8f\xb0\x80"));
}
{
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xdcdc, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdcdc, .little);
const result = utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
try std.testing.expectError(error.UnexpectedSecondSurrogateHalf, result);
}
}
pub fn utf8ToUtf16LeWithNull(allocator: mem.Allocator, utf8: []const u8) ![:0]u16 {
// optimistically guess that it will not require surrogate pairs
var result = try std.ArrayList(u16).initCapacity(allocator, utf8.len + 1);
errdefer result.deinit();
var remaining = utf8;
// Need support for std.simd.interlace
if (builtin.zig_backend != .stage2_x86_64 and comptime !builtin.cpu.arch.isMIPS()) {
const chunk_len = std.simd.suggestVectorLength(u8) orelse 1;
const Chunk = @Vector(chunk_len, u8);
// Fast path. Check for and encode ASCII characters at the start of the input.
while (remaining.len >= chunk_len) {
const chunk: Chunk = remaining[0..chunk_len].*;
const mask: Chunk = @splat(0x80);
if (@reduce(.Or, chunk & mask == mask)) {
// found a non ASCII code unit
break;
}
const zeroes: Chunk = @splat(0);
const utf16_chunk: [chunk_len * 2]u8 align(@alignOf(u16)) = std.simd.interlace(.{ chunk, zeroes });
result.appendSliceAssumeCapacity(std.mem.bytesAsSlice(u16, &utf16_chunk));
remaining = remaining[chunk_len..];
}
}
const view = try Utf8View.init(remaining);
var it = view.iterator();
while (it.nextCodepoint()) |codepoint| {
if (codepoint < 0x10000) {
const short = @as(u16, @intCast(codepoint));
try result.append(mem.nativeToLittle(u16, short));
} else {
const high = @as(u16, @intCast((codepoint - 0x10000) >> 10)) + 0xD800;
const low = @as(u16, @intCast(codepoint & 0x3FF)) + 0xDC00;
var out: [2]u16 = undefined;
out[0] = mem.nativeToLittle(u16, high);
out[1] = mem.nativeToLittle(u16, low);
try result.appendSlice(out[0..]);
}
}
return result.toOwnedSliceSentinel(0);
}
/// Returns index of next character. If exact fit, returned index equals output slice length.
/// Assumes there is enough space for the output.
pub fn utf8ToUtf16Le(utf16le: []u16, utf8: []const u8) !usize {
var dest_i: usize = 0;
var remaining = utf8;
// Need support for std.simd.interlace
if (builtin.zig_backend != .stage2_x86_64 and comptime !builtin.cpu.arch.isMIPS()) {
const chunk_len = std.simd.suggestVectorLength(u8) orelse 1;
const Chunk = @Vector(chunk_len, u8);
// Fast path. Check for and encode ASCII characters at the start of the input.
while (remaining.len >= chunk_len) {
const chunk: Chunk = remaining[0..chunk_len].*;
const mask: Chunk = @splat(0x80);
if (@reduce(.Or, chunk & mask == mask)) {
// found a non ASCII code unit
break;
}
const zeroes: Chunk = @splat(0);
const utf16_bytes: [chunk_len * 2]u8 align(@alignOf(u16)) = std.simd.interlace(.{ chunk, zeroes });
@memcpy(utf16le[dest_i..][0..chunk_len], std.mem.bytesAsSlice(u16, &utf16_bytes));
dest_i += chunk_len;
remaining = remaining[chunk_len..];
}
}
var src_i: usize = 0;
while (src_i < remaining.len) {
const n = utf8ByteSequenceLength(remaining[src_i]) catch return error.InvalidUtf8;
const next_src_i = src_i + n;
const codepoint = utf8Decode(remaining[src_i..next_src_i]) catch return error.InvalidUtf8;
if (codepoint < 0x10000) {
const short = @as(u16, @intCast(codepoint));
utf16le[dest_i] = mem.nativeToLittle(u16, short);
dest_i += 1;
} else {
const high = @as(u16, @intCast((codepoint - 0x10000) >> 10)) + 0xD800;
const low = @as(u16, @intCast(codepoint & 0x3FF)) + 0xDC00;
utf16le[dest_i] = mem.nativeToLittle(u16, high);
utf16le[dest_i + 1] = mem.nativeToLittle(u16, low);
dest_i += 2;
}
src_i = next_src_i;
}
return dest_i;
}
test "utf8ToUtf16Le" {
var utf16le: [2]u16 = [_]u16{0} ** 2;
{
const length = try utf8ToUtf16Le(utf16le[0..], "𐐷");
try testing.expectEqual(@as(usize, 2), length);
try testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(utf16le[0..]));
}
{
const length = try utf8ToUtf16Le(utf16le[0..], "\u{10FFFF}");
try testing.expectEqual(@as(usize, 2), length);
try testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(utf16le[0..]));
}
{
const result = utf8ToUtf16Le(utf16le[0..], "\xf4\x90\x80\x80");
try testing.expectError(error.InvalidUtf8, result);
}
}
test "utf8ToUtf16LeWithNull" {
{
const utf16 = try utf8ToUtf16LeWithNull(testing.allocator, "𐐷");
defer testing.allocator.free(utf16);
try testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(utf16[0..]));
try testing.expect(utf16[2] == 0);
}
{
const utf16 = try utf8ToUtf16LeWithNull(testing.allocator, "\u{10FFFF}");
defer testing.allocator.free(utf16);
try testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(utf16[0..]));
try testing.expect(utf16[2] == 0);
}
{
const result = utf8ToUtf16LeWithNull(testing.allocator, "\xf4\x90\x80\x80");
try testing.expectError(error.InvalidUtf8, result);
}
}
/// Converts a UTF-8 string literal into a UTF-16LE string literal.
pub fn utf8ToUtf16LeStringLiteral(comptime utf8: []const u8) *const [calcUtf16LeLen(utf8) catch unreachable:0]u16 {
return comptime blk: {
const len: usize = calcUtf16LeLen(utf8) catch |err| @compileError(err);
var utf16le: [len:0]u16 = [_:0]u16{0} ** len;
const utf16le_len = utf8ToUtf16Le(&utf16le, utf8[0..]) catch |err| @compileError(err);
assert(len == utf16le_len);
break :blk &utf16le;
};
}
const CalcUtf16LeLenError = Utf8DecodeError || error{Utf8InvalidStartByte};
/// Returns length in UTF-16 of UTF-8 slice as length of []u16.
/// Length in []u8 is 2*len16.
pub fn calcUtf16LeLen(utf8: []const u8) CalcUtf16LeLenError!usize {
var src_i: usize = 0;
var dest_len: usize = 0;
while (src_i < utf8.len) {
const n = try utf8ByteSequenceLength(utf8[src_i]);
const next_src_i = src_i + n;
const codepoint = try utf8Decode(utf8[src_i..next_src_i]);
if (codepoint < 0x10000) {
dest_len += 1;
} else {
dest_len += 2;
}
src_i = next_src_i;
}
return dest_len;
}
fn testCalcUtf16LeLen() !void {
try testing.expectEqual(@as(usize, 1), try calcUtf16LeLen("a"));
try testing.expectEqual(@as(usize, 10), try calcUtf16LeLen("abcdefghij"));
try testing.expectEqual(@as(usize, 10), try calcUtf16LeLen("äåéëþüúíóö"));
try testing.expectEqual(@as(usize, 5), try calcUtf16LeLen("こんにちは"));
}
test "calculate utf16 string length of given utf8 string in u16" {
try testCalcUtf16LeLen();
try comptime testCalcUtf16LeLen();
}
/// Print the given `utf16le` string
fn formatUtf16le(
utf16le: []const u16,
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
writer: anytype,
) !void {
_ = fmt;
_ = options;
var buf: [300]u8 = undefined; // just a random size I chose
var it = Utf16LeIterator.init(utf16le);
var u8len: usize = 0;
while (it.nextCodepoint() catch replacement_character) |codepoint| {
u8len += utf8Encode(codepoint, buf[u8len..]) catch
utf8Encode(replacement_character, buf[u8len..]) catch unreachable;
if (u8len + 3 >= buf.len) {
try writer.writeAll(buf[0..u8len]);
u8len = 0;
}
}
try writer.writeAll(buf[0..u8len]);
}
/// Return a Formatter for a Utf16le string
pub fn fmtUtf16le(utf16le: []const u16) std.fmt.Formatter(formatUtf16le) {
return .{ .data = utf16le };
}
test "fmtUtf16le" {
const expectFmt = std.testing.expectFmt;
try expectFmt("", "{}", .{fmtUtf16le(utf8ToUtf16LeStringLiteral(""))});
try expectFmt("foo", "{}", .{fmtUtf16le(utf8ToUtf16LeStringLiteral("foo"))});
try expectFmt("𐐷", "{}", .{fmtUtf16le(utf8ToUtf16LeStringLiteral("𐐷"))});
try expectFmt("", "{}", .{fmtUtf16le(&[_]u16{std.mem.readInt(u16, "\xff\xd7", native_endian)})});
try expectFmt("<EFBFBD>", "{}", .{fmtUtf16le(&[_]u16{std.mem.readInt(u16, "\x00\xd8", native_endian)})});
try expectFmt("<EFBFBD>", "{}", .{fmtUtf16le(&[_]u16{std.mem.readInt(u16, "\xff\xdb", native_endian)})});
try expectFmt("<EFBFBD>", "{}", .{fmtUtf16le(&[_]u16{std.mem.readInt(u16, "\x00\xdc", native_endian)})});
try expectFmt("<EFBFBD>", "{}", .{fmtUtf16le(&[_]u16{std.mem.readInt(u16, "\xff\xdf", native_endian)})});
try expectFmt("", "{}", .{fmtUtf16le(&[_]u16{std.mem.readInt(u16, "\x00\xe0", native_endian)})});
}
test "utf8ToUtf16LeStringLiteral" {
{
const bytes = [_:0]u16{
mem.nativeToLittle(u16, 0x41),
};
const utf16 = utf8ToUtf16LeStringLiteral("A");
try testing.expectEqualSlices(u16, &bytes, utf16);
try testing.expect(utf16[1] == 0);
}
{
const bytes = [_:0]u16{
mem.nativeToLittle(u16, 0xD801),
mem.nativeToLittle(u16, 0xDC37),
};
const utf16 = utf8ToUtf16LeStringLiteral("𐐷");
try testing.expectEqualSlices(u16, &bytes, utf16);
try testing.expect(utf16[2] == 0);
}
{
const bytes = [_:0]u16{
mem.nativeToLittle(u16, 0x02FF),
};
const utf16 = utf8ToUtf16LeStringLiteral("\u{02FF}");
try testing.expectEqualSlices(u16, &bytes, utf16);
try testing.expect(utf16[1] == 0);
}
{
const bytes = [_:0]u16{
mem.nativeToLittle(u16, 0x7FF),
};
const utf16 = utf8ToUtf16LeStringLiteral("\u{7FF}");
try testing.expectEqualSlices(u16, &bytes, utf16);
try testing.expect(utf16[1] == 0);
}
{
const bytes = [_:0]u16{
mem.nativeToLittle(u16, 0x801),
};
const utf16 = utf8ToUtf16LeStringLiteral("\u{801}");
try testing.expectEqualSlices(u16, &bytes, utf16);
try testing.expect(utf16[1] == 0);
}
{
const bytes = [_:0]u16{
mem.nativeToLittle(u16, 0xDBFF),
mem.nativeToLittle(u16, 0xDFFF),
};
const utf16 = utf8ToUtf16LeStringLiteral("\u{10FFFF}");
try testing.expectEqualSlices(u16, &bytes, utf16);
try testing.expect(utf16[2] == 0);
}
}
fn testUtf8CountCodepoints() !void {
try testing.expectEqual(@as(usize, 10), try utf8CountCodepoints("abcdefghij"));
try testing.expectEqual(@as(usize, 10), try utf8CountCodepoints("äåéëþüúíóö"));
try testing.expectEqual(@as(usize, 5), try utf8CountCodepoints("こんにちは"));
// testing.expectError(error.Utf8EncodesSurrogateHalf, utf8CountCodepoints("\xED\xA0\x80"));
}
test "utf8 count codepoints" {
try testUtf8CountCodepoints();
try comptime testUtf8CountCodepoints();
}
fn testUtf8ValidCodepoint() !void {
try testing.expect(utf8ValidCodepoint('e'));
try testing.expect(utf8ValidCodepoint('ë'));
try testing.expect(utf8ValidCodepoint('は'));
try testing.expect(utf8ValidCodepoint(0xe000));
try testing.expect(utf8ValidCodepoint(0x10ffff));
try testing.expect(!utf8ValidCodepoint(0xd800));
try testing.expect(!utf8ValidCodepoint(0xdfff));
try testing.expect(!utf8ValidCodepoint(0x110000));
}
test "utf8 valid codepoint" {
try testUtf8ValidCodepoint();
try comptime testUtf8ValidCodepoint();
}