zig/lib/std/DoublyLinkedList.zig

285 lines
8 KiB
Zig

//! A doubly-linked list has a pair of pointers to both the head and
//! tail of the list. List elements have pointers to both the previous
//! and next elements in the sequence. The list can be traversed both
//! forward and backward. Some operations that take linear O(n) time
//! with a singly-linked list can be done without traversal in constant
//! O(1) time with a doubly-linked list:
//!
//! * Removing an element.
//! * Inserting a new element before an existing element.
//! * Pushing or popping an element from the end of the list.
const std = @import("std.zig");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const DoublyLinkedList = @This();
first: ?*Node = null,
last: ?*Node = null,
/// This struct contains only the prev and next pointers and not any data
/// payload. The intended usage is to embed it intrusively into another data
/// structure and access the data with `@fieldParentPtr`.
pub const Node = struct {
prev: ?*Node = null,
next: ?*Node = null,
};
pub fn insertAfter(list: *DoublyLinkedList, existing_node: *Node, new_node: *Node) void {
new_node.prev = existing_node;
if (existing_node.next) |next_node| {
// Intermediate node.
new_node.next = next_node;
next_node.prev = new_node;
} else {
// Last element of the list.
new_node.next = null;
list.last = new_node;
}
existing_node.next = new_node;
}
pub fn insertBefore(list: *DoublyLinkedList, existing_node: *Node, new_node: *Node) void {
new_node.next = existing_node;
if (existing_node.prev) |prev_node| {
// Intermediate node.
new_node.prev = prev_node;
prev_node.next = new_node;
} else {
// First element of the list.
new_node.prev = null;
list.first = new_node;
}
existing_node.prev = new_node;
}
/// Concatenate list2 onto the end of list1, removing all entries from the former.
///
/// Arguments:
/// list1: the list to concatenate onto
/// list2: the list to be concatenated
pub fn concatByMoving(list1: *DoublyLinkedList, list2: *DoublyLinkedList) void {
const l2_first = list2.first orelse return;
if (list1.last) |l1_last| {
l1_last.next = list2.first;
l2_first.prev = list1.last;
} else {
// list1 was empty
list1.first = list2.first;
}
list1.last = list2.last;
list2.first = null;
list2.last = null;
}
/// Insert a new node at the end of the list.
///
/// Arguments:
/// new_node: Pointer to the new node to insert.
pub fn append(list: *DoublyLinkedList, new_node: *Node) void {
if (list.last) |last| {
// Insert after last.
list.insertAfter(last, new_node);
} else {
// Empty list.
list.prepend(new_node);
}
}
/// Insert a new node at the beginning of the list.
///
/// Arguments:
/// new_node: Pointer to the new node to insert.
pub fn prepend(list: *DoublyLinkedList, new_node: *Node) void {
if (list.first) |first| {
// Insert before first.
list.insertBefore(first, new_node);
} else {
// Empty list.
list.first = new_node;
list.last = new_node;
new_node.prev = null;
new_node.next = null;
}
}
/// Remove a node from the list.
/// Assumes the node is in the list.
///
/// Arguments:
/// node: Pointer to the node to be removed.
pub fn remove(list: *DoublyLinkedList, node: *Node) void {
if (node.prev) |prev_node| {
// Intermediate node.
prev_node.next = node.next;
} else {
// First element of the list.
list.first = node.next;
}
if (node.next) |next_node| {
// Intermediate node.
next_node.prev = node.prev;
} else {
// Last element of the list.
list.last = node.prev;
}
}
/// Remove and return the last node in the list.
///
/// Returns:
/// A pointer to the last node in the list.
pub fn pop(list: *DoublyLinkedList) ?*Node {
const last = list.last orelse return null;
list.remove(last);
return last;
}
/// Remove and return the first node in the list.
///
/// Returns:
/// A pointer to the first node in the list.
pub fn popFirst(list: *DoublyLinkedList) ?*Node {
const first = list.first orelse return null;
list.remove(first);
return first;
}
/// Iterate over all nodes, returning the count.
///
/// This operation is O(N). Consider tracking the length separately rather than
/// computing it.
pub fn len(list: DoublyLinkedList) usize {
var count: usize = 0;
var it: ?*const Node = list.first;
while (it) |n| : (it = n.next) count += 1;
return count;
}
test "basics" {
const L = struct {
data: u32,
node: DoublyLinkedList.Node = .{},
};
var list: DoublyLinkedList = .{};
var one: L = .{ .data = 1 };
var two: L = .{ .data = 2 };
var three: L = .{ .data = 3 };
var four: L = .{ .data = 4 };
var five: L = .{ .data = 5 };
list.append(&two.node); // {2}
list.append(&five.node); // {2, 5}
list.prepend(&one.node); // {1, 2, 5}
list.insertBefore(&five.node, &four.node); // {1, 2, 4, 5}
list.insertAfter(&two.node, &three.node); // {1, 2, 3, 4, 5}
// Traverse forwards.
{
var it = list.first;
var index: u32 = 1;
while (it) |node| : (it = node.next) {
const l: *L = @fieldParentPtr("node", node);
try testing.expect(l.data == index);
index += 1;
}
}
// Traverse backwards.
{
var it = list.last;
var index: u32 = 1;
while (it) |node| : (it = node.prev) {
const l: *L = @fieldParentPtr("node", node);
try testing.expect(l.data == (6 - index));
index += 1;
}
}
_ = list.popFirst(); // {2, 3, 4, 5}
_ = list.pop(); // {2, 3, 4}
list.remove(&three.node); // {2, 4}
try testing.expect(@as(*L, @fieldParentPtr("node", list.first.?)).data == 2);
try testing.expect(@as(*L, @fieldParentPtr("node", list.last.?)).data == 4);
try testing.expect(list.len() == 2);
}
test "concatenation" {
const L = struct {
data: u32,
node: DoublyLinkedList.Node = .{},
};
var list1: DoublyLinkedList = .{};
var list2: DoublyLinkedList = .{};
var one: L = .{ .data = 1 };
var two: L = .{ .data = 2 };
var three: L = .{ .data = 3 };
var four: L = .{ .data = 4 };
var five: L = .{ .data = 5 };
list1.append(&one.node);
list1.append(&two.node);
list2.append(&three.node);
list2.append(&four.node);
list2.append(&five.node);
list1.concatByMoving(&list2);
try testing.expect(list1.last == &five.node);
try testing.expect(list1.len() == 5);
try testing.expect(list2.first == null);
try testing.expect(list2.last == null);
try testing.expect(list2.len() == 0);
// Traverse forwards.
{
var it = list1.first;
var index: u32 = 1;
while (it) |node| : (it = node.next) {
const l: *L = @fieldParentPtr("node", node);
try testing.expect(l.data == index);
index += 1;
}
}
// Traverse backwards.
{
var it = list1.last;
var index: u32 = 1;
while (it) |node| : (it = node.prev) {
const l: *L = @fieldParentPtr("node", node);
try testing.expect(l.data == (6 - index));
index += 1;
}
}
// Swap them back, this verifies that concatenating to an empty list works.
list2.concatByMoving(&list1);
// Traverse forwards.
{
var it = list2.first;
var index: u32 = 1;
while (it) |node| : (it = node.next) {
const l: *L = @fieldParentPtr("node", node);
try testing.expect(l.data == index);
index += 1;
}
}
// Traverse backwards.
{
var it = list2.last;
var index: u32 = 1;
while (it) |node| : (it = node.prev) {
const l: *L = @fieldParentPtr("node", node);
try testing.expect(l.data == (6 - index));
index += 1;
}
}
}