zig/lib/std/math/float.zig
Ali Cheraghi dec1163fbb
all: replace all @Type usages
Co-authored-by: Matthew Lugg <mlugg@mlugg.co.uk>
2025-11-22 22:42:38 +00:00

297 lines
11 KiB
Zig

const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const expect = std.testing.expect;
const expectEqual = std.testing.expectEqual;
pub fn FloatRepr(comptime Float: type) type {
const fractional_bits = floatFractionalBits(Float);
const exponent_bits = floatExponentBits(Float);
return packed struct {
const Repr = @This();
mantissa: StoredMantissa,
exponent: BiasedExponent,
sign: std.math.Sign,
pub const StoredMantissa = @Int(.unsigned, floatMantissaBits(Float));
pub const Mantissa = @Int(.unsigned, 1 + fractional_bits);
pub const Exponent = @Int(.signed, exponent_bits);
pub const BiasedExponent = enum(@Int(.unsigned, exponent_bits)) {
denormal = 0,
min_normal = 1,
zero = (1 << (exponent_bits - 1)) - 1,
max_normal = (1 << exponent_bits) - 2,
infinite = (1 << exponent_bits) - 1,
_,
pub const Int = @typeInfo(BiasedExponent).@"enum".tag_type;
pub fn unbias(biased: BiasedExponent) Exponent {
switch (biased) {
.denormal => unreachable,
else => return @bitCast(@intFromEnum(biased) -% @intFromEnum(BiasedExponent.zero)),
.infinite => unreachable,
}
}
pub fn bias(unbiased: Exponent) BiasedExponent {
return @enumFromInt(@intFromEnum(BiasedExponent.zero) +% @as(Int, @bitCast(unbiased)));
}
};
pub const Normalized = struct {
fraction: Fraction,
exponent: Normalized.Exponent,
pub const Fraction = @Int(.unsigned, fractional_bits);
pub const Exponent = @Int(.signed, 1 + exponent_bits);
/// This currently truncates denormal values, which needs to be fixed before this can be used to
/// produce a rounded value.
pub fn reconstruct(normalized: Normalized, sign: std.math.Sign) Float {
if (normalized.exponent > BiasedExponent.max_normal.unbias()) return @bitCast(Repr{
.mantissa = 0,
.exponent = .infinite,
.sign = sign,
});
const mantissa = @as(Mantissa, 1 << fractional_bits) | normalized.fraction;
if (normalized.exponent < BiasedExponent.min_normal.unbias()) return @bitCast(Repr{
.mantissa = @truncate(std.math.shr(
Mantissa,
mantissa,
BiasedExponent.min_normal.unbias() - normalized.exponent,
)),
.exponent = .denormal,
.sign = sign,
});
return @bitCast(Repr{
.mantissa = @truncate(mantissa),
.exponent = .bias(@intCast(normalized.exponent)),
.sign = sign,
});
}
};
pub const Classified = union(enum) { normalized: Normalized, infinity, nan, invalid };
fn classify(repr: Repr) Classified {
return switch (repr.exponent) {
.denormal => {
const mantissa: Mantissa = repr.mantissa;
const shift = @clz(mantissa);
return .{ .normalized = .{
.fraction = @truncate(mantissa << shift),
.exponent = @as(Normalized.Exponent, comptime BiasedExponent.min_normal.unbias()) - shift,
} };
},
else => if (repr.mantissa <= std.math.maxInt(Normalized.Fraction)) .{ .normalized = .{
.fraction = @intCast(repr.mantissa),
.exponent = repr.exponent.unbias(),
} } else .invalid,
.infinite => switch (repr.mantissa) {
0 => .infinity,
else => .nan,
},
};
}
};
}
/// Creates a raw "1.0" mantissa for floating point type T. Used to dedupe f80 logic.
inline fn mantissaOne(comptime T: type) comptime_int {
return if (@typeInfo(T).float.bits == 80) 1 << floatFractionalBits(T) else 0;
}
/// Creates floating point type T from an unbiased exponent and raw mantissa.
inline fn reconstructFloat(comptime T: type, comptime exponent: comptime_int, comptime mantissa: comptime_int) T {
const TBits = @Int(.unsigned, @bitSizeOf(T));
const biased_exponent = @as(TBits, exponent + floatExponentMax(T));
return @as(T, @bitCast((biased_exponent << floatMantissaBits(T)) | @as(TBits, mantissa)));
}
/// Returns the number of bits in the exponent of floating point type T.
pub inline fn floatExponentBits(comptime T: type) comptime_int {
comptime assert(@typeInfo(T) == .float);
return switch (@typeInfo(T).float.bits) {
16 => 5,
32 => 8,
64 => 11,
80 => 15,
128 => 15,
else => @compileError("unknown floating point type " ++ @typeName(T)),
};
}
/// Returns the number of bits in the mantissa of floating point type T.
pub inline fn floatMantissaBits(comptime T: type) comptime_int {
comptime assert(@typeInfo(T) == .float);
return switch (@typeInfo(T).float.bits) {
16 => 10,
32 => 23,
64 => 52,
80 => 64,
128 => 112,
else => @compileError("unknown floating point type " ++ @typeName(T)),
};
}
/// Returns the number of fractional bits in the mantissa of floating point type T.
pub inline fn floatFractionalBits(comptime T: type) comptime_int {
comptime assert(@typeInfo(T) == .float);
// standard IEEE floats have an implicit 0.m or 1.m integer part
// f80 is special and has an explicitly stored bit in the MSB
// this function corresponds to `MANT_DIG - 1' from C
return switch (@typeInfo(T).float.bits) {
16 => 10,
32 => 23,
64 => 52,
80 => 63,
128 => 112,
else => @compileError("unknown floating point type " ++ @typeName(T)),
};
}
/// Returns the minimum exponent that can represent
/// a normalised value in floating point type T.
pub inline fn floatExponentMin(comptime T: type) comptime_int {
return -floatExponentMax(T) + 1;
}
/// Returns the maximum exponent that can represent
/// a normalised value in floating point type T.
pub inline fn floatExponentMax(comptime T: type) comptime_int {
return (1 << (floatExponentBits(T) - 1)) - 1;
}
/// Returns the smallest subnormal number representable in floating point type T.
pub inline fn floatTrueMin(comptime T: type) T {
return reconstructFloat(T, floatExponentMin(T) - 1, 1);
}
/// Returns the smallest normal number representable in floating point type T.
pub inline fn floatMin(comptime T: type) T {
return reconstructFloat(T, floatExponentMin(T), mantissaOne(T));
}
/// Returns the largest normal number representable in floating point type T.
pub inline fn floatMax(comptime T: type) T {
const all1s_mantissa = (1 << floatMantissaBits(T)) - 1;
return reconstructFloat(T, floatExponentMax(T), all1s_mantissa);
}
/// Returns the machine epsilon of floating point type T.
pub inline fn floatEps(comptime T: type) T {
return reconstructFloat(T, -floatFractionalBits(T), mantissaOne(T));
}
/// Returns the local epsilon of floating point type T.
pub inline fn floatEpsAt(comptime T: type, x: T) T {
switch (@typeInfo(T)) {
.float => |F| {
const U: type = @Int(.unsigned, F.bits);
const u: U = @bitCast(x);
const y: T = @bitCast(u ^ 1);
return @abs(x - y);
},
else => @compileError("floatEpsAt only supports floats"),
}
}
/// Returns the inf value for a floating point `Type`.
pub inline fn inf(comptime Type: type) Type {
const RuntimeType = switch (Type) {
else => Type,
comptime_float => f128, // any float type will do
};
return reconstructFloat(RuntimeType, floatExponentMax(RuntimeType) + 1, mantissaOne(RuntimeType));
}
/// Returns the canonical quiet NaN representation for a floating point `Type`.
pub inline fn nan(comptime Type: type) Type {
const RuntimeType = switch (Type) {
else => Type,
comptime_float => f128, // any float type will do
};
return reconstructFloat(
RuntimeType,
floatExponentMax(RuntimeType) + 1,
mantissaOne(RuntimeType) | 1 << (floatFractionalBits(RuntimeType) - 1),
);
}
/// Returns a signalling NaN representation for a floating point `Type`.
///
/// TODO: LLVM is known to miscompile on some architectures to quiet NaN -
/// this is tracked by https://github.com/ziglang/zig/issues/14366
pub inline fn snan(comptime Type: type) Type {
const RuntimeType = switch (Type) {
else => Type,
comptime_float => f128, // any float type will do
};
return reconstructFloat(
RuntimeType,
floatExponentMax(RuntimeType) + 1,
mantissaOne(RuntimeType) | 1 << (floatFractionalBits(RuntimeType) - 2),
);
}
fn floatBits(comptime Type: type) !void {
// (1 +) for the sign bit, since it is separate from the other bits
const size = 1 + floatExponentBits(Type) + floatMantissaBits(Type);
try expect(@bitSizeOf(Type) == size);
try expect(floatFractionalBits(Type) <= floatMantissaBits(Type));
// for machine epsilon, assert expmin <= -prec <= expmax
try expect(floatExponentMin(Type) <= -floatFractionalBits(Type));
try expect(-floatFractionalBits(Type) <= floatExponentMax(Type));
}
test floatBits {
try floatBits(f16);
try floatBits(f32);
try floatBits(f64);
try floatBits(f80);
try floatBits(f128);
try floatBits(c_longdouble);
}
test inf {
const inf_u16: u16 = 0x7C00;
const inf_u32: u32 = 0x7F800000;
const inf_u64: u64 = 0x7FF0000000000000;
const inf_u80: u80 = 0x7FFF8000000000000000;
const inf_u128: u128 = 0x7FFF0000000000000000000000000000;
try expectEqual(inf_u16, @as(u16, @bitCast(inf(f16))));
try expectEqual(inf_u32, @as(u32, @bitCast(inf(f32))));
try expectEqual(inf_u64, @as(u64, @bitCast(inf(f64))));
try expectEqual(inf_u80, @as(u80, @bitCast(inf(f80))));
try expectEqual(inf_u128, @as(u128, @bitCast(inf(f128))));
}
test nan {
const qnan_u16: u16 = 0x7E00;
const qnan_u32: u32 = 0x7FC00000;
const qnan_u64: u64 = 0x7FF8000000000000;
const qnan_u80: u80 = 0x7FFFC000000000000000;
const qnan_u128: u128 = 0x7FFF8000000000000000000000000000;
try expectEqual(qnan_u16, @as(u16, @bitCast(nan(f16))));
try expectEqual(qnan_u32, @as(u32, @bitCast(nan(f32))));
try expectEqual(qnan_u64, @as(u64, @bitCast(nan(f64))));
try expectEqual(qnan_u80, @as(u80, @bitCast(nan(f80))));
try expectEqual(qnan_u128, @as(u128, @bitCast(nan(f128))));
}
test snan {
const snan_u16: u16 = 0x7D00;
const snan_u32: u32 = 0x7FA00000;
const snan_u64: u64 = 0x7FF4000000000000;
const snan_u80: u80 = 0x7FFFA000000000000000;
const snan_u128: u128 = 0x7FFF4000000000000000000000000000;
try expectEqual(snan_u16, @as(u16, @bitCast(snan(f16))));
try expectEqual(snan_u32, @as(u32, @bitCast(snan(f32))));
try expectEqual(snan_u64, @as(u64, @bitCast(snan(f64))));
try expectEqual(snan_u80, @as(u80, @bitCast(snan(f80))));
try expectEqual(snan_u128, @as(u128, @bitCast(snan(f128))));
}