zig/lib/std/crypto/tls/Client.zig
Andrew Kelley 79b41dbdbf std.crypto.tls: avoid heap allocation
The code we are borrowing from https://github.com/shiguredo/tls13-zig
requires an Allocator for doing RSA certificate verification. As a
stopgap measure, this commit uses a FixedBufferAllocator to avoid heap
allocation for these functions.

Thank you to @naoki9911 for providing this great resource which has been
extremely helpful for me when working on this standard library TLS
implementation. Until Zig has std.crypto.rsa officially, we will borrow
this implementation of RSA. 🙏
2023-01-02 16:57:16 -07:00

1303 lines
66 KiB
Zig

const std = @import("../../std.zig");
const tls = std.crypto.tls;
const Client = @This();
const net = std.net;
const mem = std.mem;
const crypto = std.crypto;
const assert = std.debug.assert;
const Certificate = std.crypto.Certificate;
const max_ciphertext_len = tls.max_ciphertext_len;
const hkdfExpandLabel = tls.hkdfExpandLabel;
const int2 = tls.int2;
const int3 = tls.int3;
const array = tls.array;
const enum_array = tls.enum_array;
read_seq: u64,
write_seq: u64,
/// The starting index of cleartext bytes inside `partially_read_buffer`.
partial_cleartext_idx: u15,
/// The ending index of cleartext bytes inside `partially_read_buffer` as well
/// as the starting index of ciphertext bytes.
partial_ciphertext_idx: u15,
/// The ending index of ciphertext bytes inside `partially_read_buffer`.
partial_ciphertext_end: u15,
/// When this is true, the stream may still not be at the end because there
/// may be data in `partially_read_buffer`.
received_close_notify: bool,
application_cipher: tls.ApplicationCipher,
/// The size is enough to contain exactly one TLSCiphertext record.
/// This buffer is segmented into four parts:
/// 0. unused
/// 1. cleartext
/// 2. ciphertext
/// 3. unused
/// The fields `partial_cleartext_idx`, `partial_ciphertext_idx`, and
/// `partial_ciphertext_end` describe the span of the segments.
partially_read_buffer: [tls.max_ciphertext_record_len]u8,
/// `host` is only borrowed during this function call.
pub fn init(stream: net.Stream, ca_bundle: Certificate.Bundle, host: []const u8) !Client {
const host_len = @intCast(u16, host.len);
var random_buffer: [128]u8 = undefined;
crypto.random.bytes(&random_buffer);
const hello_rand = random_buffer[0..32].*;
const legacy_session_id = random_buffer[32..64].*;
const x25519_kp_seed = random_buffer[64..96].*;
const secp256r1_kp_seed = random_buffer[96..128].*;
const x25519_kp = crypto.dh.X25519.KeyPair.create(x25519_kp_seed) catch |err| switch (err) {
// Only possible to happen if the private key is all zeroes.
error.IdentityElement => return error.InsufficientEntropy,
};
const secp256r1_kp = crypto.sign.ecdsa.EcdsaP256Sha256.KeyPair.create(secp256r1_kp_seed) catch |err| switch (err) {
// Only possible to happen if the private key is all zeroes.
error.IdentityElement => return error.InsufficientEntropy,
};
const extensions_payload =
tls.extension(.supported_versions, [_]u8{
0x02, // byte length of supported versions
0x03, 0x04, // TLS 1.3
}) ++ tls.extension(.signature_algorithms, enum_array(tls.SignatureScheme, &.{
.ecdsa_secp256r1_sha256,
.ecdsa_secp384r1_sha384,
.ecdsa_secp521r1_sha512,
.rsa_pkcs1_sha256,
.rsa_pkcs1_sha384,
.rsa_pkcs1_sha512,
.ed25519,
})) ++ tls.extension(.supported_groups, enum_array(tls.NamedGroup, &.{
.secp256r1,
.x25519,
})) ++ tls.extension(
.key_share,
array(1, int2(@enumToInt(tls.NamedGroup.x25519)) ++
array(1, x25519_kp.public_key) ++
int2(@enumToInt(tls.NamedGroup.secp256r1)) ++
array(1, secp256r1_kp.public_key.toUncompressedSec1())),
) ++
int2(@enumToInt(tls.ExtensionType.server_name)) ++
int2(host_len + 5) ++ // byte length of this extension payload
int2(host_len + 3) ++ // server_name_list byte count
[1]u8{0x00} ++ // name_type
int2(host_len);
const extensions_header =
int2(@intCast(u16, extensions_payload.len + host_len)) ++
extensions_payload;
const legacy_compression_methods = 0x0100;
const client_hello =
int2(@enumToInt(tls.ProtocolVersion.tls_1_2)) ++
hello_rand ++
[1]u8{32} ++ legacy_session_id ++
cipher_suites ++
int2(legacy_compression_methods) ++
extensions_header;
const out_handshake =
[_]u8{@enumToInt(tls.HandshakeType.client_hello)} ++
int3(@intCast(u24, client_hello.len + host_len)) ++
client_hello;
const plaintext_header = [_]u8{
@enumToInt(tls.ContentType.handshake),
0x03, 0x01, // legacy_record_version
} ++ int2(@intCast(u16, out_handshake.len + host_len)) ++ out_handshake;
{
var iovecs = [_]std.os.iovec_const{
.{
.iov_base = &plaintext_header,
.iov_len = plaintext_header.len,
},
.{
.iov_base = host.ptr,
.iov_len = host.len,
},
};
try stream.writevAll(&iovecs);
}
const client_hello_bytes1 = plaintext_header[5..];
var handshake_cipher: tls.HandshakeCipher = undefined;
var handshake_buf: [8000]u8 = undefined;
var len: usize = 0;
var i: usize = i: {
const plaintext = handshake_buf[0..5];
len = try stream.readAtLeast(&handshake_buf, plaintext.len);
if (len < plaintext.len) return error.EndOfStream;
const ct = @intToEnum(tls.ContentType, plaintext[0]);
const frag_len = mem.readIntBig(u16, plaintext[3..][0..2]);
const end = plaintext.len + frag_len;
if (end > handshake_buf.len) return error.TlsRecordOverflow;
if (end > len) {
len += try stream.readAtLeast(handshake_buf[len..], end - len);
if (end > len) return error.EndOfStream;
}
const frag = handshake_buf[plaintext.len..end];
switch (ct) {
.alert => {
const level = @intToEnum(tls.AlertLevel, frag[0]);
const desc = @intToEnum(tls.AlertDescription, frag[1]);
std.debug.print("alert: {s} {s}\n", .{ @tagName(level), @tagName(desc) });
return error.TlsAlert;
},
.handshake => {
if (frag[0] != @enumToInt(tls.HandshakeType.server_hello)) {
return error.TlsUnexpectedMessage;
}
const length = mem.readIntBig(u24, frag[1..4]);
if (4 + length != frag.len) return error.TlsBadLength;
var i: usize = 4;
const legacy_version = mem.readIntBig(u16, frag[i..][0..2]);
i += 2;
const random = frag[i..][0..32].*;
i += 32;
if (mem.eql(u8, &random, &tls.hello_retry_request_sequence)) {
@panic("TODO handle HelloRetryRequest");
}
const legacy_session_id_echo_len = frag[i];
i += 1;
if (legacy_session_id_echo_len != 32) return error.TlsIllegalParameter;
const legacy_session_id_echo = frag[i..][0..32];
if (!mem.eql(u8, legacy_session_id_echo, &legacy_session_id))
return error.TlsIllegalParameter;
i += 32;
const cipher_suite_int = mem.readIntBig(u16, frag[i..][0..2]);
i += 2;
const cipher_suite_tag = @intToEnum(tls.CipherSuite, cipher_suite_int);
const legacy_compression_method = frag[i];
i += 1;
_ = legacy_compression_method;
const extensions_size = mem.readIntBig(u16, frag[i..][0..2]);
i += 2;
if (i + extensions_size != frag.len) return error.TlsBadLength;
var supported_version: u16 = 0;
var shared_key: [32]u8 = undefined;
var have_shared_key = false;
while (i < frag.len) {
const et = @intToEnum(tls.ExtensionType, mem.readIntBig(u16, frag[i..][0..2]));
i += 2;
const ext_size = mem.readIntBig(u16, frag[i..][0..2]);
i += 2;
const next_i = i + ext_size;
if (next_i > frag.len) return error.TlsBadLength;
switch (et) {
.supported_versions => {
if (supported_version != 0) return error.TlsIllegalParameter;
supported_version = mem.readIntBig(u16, frag[i..][0..2]);
},
.key_share => {
if (have_shared_key) return error.TlsIllegalParameter;
have_shared_key = true;
const named_group = @intToEnum(tls.NamedGroup, mem.readIntBig(u16, frag[i..][0..2]));
i += 2;
const key_size = mem.readIntBig(u16, frag[i..][0..2]);
i += 2;
switch (named_group) {
.x25519 => {
if (key_size != 32) return error.TlsBadLength;
const server_pub_key = frag[i..][0..32];
shared_key = crypto.dh.X25519.scalarmult(
x25519_kp.secret_key,
server_pub_key.*,
) catch return error.TlsDecryptFailure;
},
.secp256r1 => {
const server_pub_key = frag[i..][0..key_size];
const PublicKey = crypto.sign.ecdsa.EcdsaP256Sha256.PublicKey;
const pk = PublicKey.fromSec1(server_pub_key) catch {
return error.TlsDecryptFailure;
};
const mul = pk.p.mulPublic(secp256r1_kp.secret_key.bytes, .Big) catch {
return error.TlsDecryptFailure;
};
shared_key = mul.affineCoordinates().x.toBytes(.Big);
},
else => {
//std.debug.print("named group: {x}\n", .{named_group});
return error.TlsIllegalParameter;
},
}
},
else => {
std.debug.print("unexpected extension: {x}\n", .{et});
},
}
i = next_i;
}
if (!have_shared_key) return error.TlsIllegalParameter;
const tls_version = if (supported_version == 0) legacy_version else supported_version;
switch (tls_version) {
@enumToInt(tls.ProtocolVersion.tls_1_3) => {},
else => return error.TlsIllegalParameter,
}
switch (cipher_suite_tag) {
inline .AES_128_GCM_SHA256,
.AES_256_GCM_SHA384,
.CHACHA20_POLY1305_SHA256,
.AEGIS_256_SHA384,
.AEGIS_128L_SHA256,
=> |tag| {
const P = std.meta.TagPayloadByName(tls.HandshakeCipher, @tagName(tag));
handshake_cipher = @unionInit(tls.HandshakeCipher, @tagName(tag), .{
.handshake_secret = undefined,
.master_secret = undefined,
.client_handshake_key = undefined,
.server_handshake_key = undefined,
.client_finished_key = undefined,
.server_finished_key = undefined,
.client_handshake_iv = undefined,
.server_handshake_iv = undefined,
.transcript_hash = P.Hash.init(.{}),
});
const p = &@field(handshake_cipher, @tagName(tag));
p.transcript_hash.update(client_hello_bytes1); // Client Hello part 1
p.transcript_hash.update(host); // Client Hello part 2
p.transcript_hash.update(frag); // Server Hello
const hello_hash = p.transcript_hash.peek();
const zeroes = [1]u8{0} ** P.Hash.digest_length;
const early_secret = P.Hkdf.extract(&[1]u8{0}, &zeroes);
const empty_hash = tls.emptyHash(P.Hash);
const hs_derived_secret = hkdfExpandLabel(P.Hkdf, early_secret, "derived", &empty_hash, P.Hash.digest_length);
p.handshake_secret = P.Hkdf.extract(&hs_derived_secret, &shared_key);
const ap_derived_secret = hkdfExpandLabel(P.Hkdf, p.handshake_secret, "derived", &empty_hash, P.Hash.digest_length);
p.master_secret = P.Hkdf.extract(&ap_derived_secret, &zeroes);
const client_secret = hkdfExpandLabel(P.Hkdf, p.handshake_secret, "c hs traffic", &hello_hash, P.Hash.digest_length);
const server_secret = hkdfExpandLabel(P.Hkdf, p.handshake_secret, "s hs traffic", &hello_hash, P.Hash.digest_length);
p.client_finished_key = hkdfExpandLabel(P.Hkdf, client_secret, "finished", "", P.Hmac.key_length);
p.server_finished_key = hkdfExpandLabel(P.Hkdf, server_secret, "finished", "", P.Hmac.key_length);
p.client_handshake_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length);
p.server_handshake_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length);
p.client_handshake_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length);
p.server_handshake_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length);
//std.debug.print("shared_key: {}\nhello_hash: {}\nearly_secret: {}\nempty_hash: {}\nderived_secret: {}\nhandshake_secret: {}\n client_secret: {}\n server_secret: {}\nclient_handshake_iv: {}\nserver_handshake_iv: {}\n", .{
// std.fmt.fmtSliceHexLower(&shared_key),
// std.fmt.fmtSliceHexLower(&hello_hash),
// std.fmt.fmtSliceHexLower(&early_secret),
// std.fmt.fmtSliceHexLower(&empty_hash),
// std.fmt.fmtSliceHexLower(&hs_derived_secret),
// std.fmt.fmtSliceHexLower(&p.handshake_secret),
// std.fmt.fmtSliceHexLower(&client_secret),
// std.fmt.fmtSliceHexLower(&server_secret),
// std.fmt.fmtSliceHexLower(&p.client_handshake_iv),
// std.fmt.fmtSliceHexLower(&p.server_handshake_iv),
//});
},
else => {
return error.TlsIllegalParameter;
},
}
},
else => return error.TlsUnexpectedMessage,
}
break :i end;
};
// This is used for two purposes:
// * Detect whether a certificate is the first one presented, in which case
// we need to verify the host name.
// * Flip back and forth between the two cleartext buffers in order to keep
// the previous certificate in memory so that it can be verified by the
// next one.
var cert_index: usize = 0;
var read_seq: u64 = 0;
var prev_cert: Certificate.Parsed = undefined;
// Set to true once a trust chain has been established from the first
// certificate to a root CA.
const HandshakeState = enum {
/// In this state we expect only an encrypted_extensions message.
encrypted_extensions,
/// In this state we expect certificate messages.
certificate,
/// In this state we expect certificate or certificate_verify messages.
/// certificate messages are ignored since the trust chain is already
/// established.
trust_chain_established,
/// In this state, we expect only the finished message.
finished,
};
var handshake_state: HandshakeState = .encrypted_extensions;
var cleartext_bufs: [2][8000]u8 = undefined;
var main_cert_pub_key_algo: Certificate.AlgorithmCategory = undefined;
var main_cert_pub_key_buf: [300]u8 = undefined;
var main_cert_pub_key_len: u16 = undefined;
while (true) {
const end_hdr = i + 5;
if (end_hdr > handshake_buf.len) return error.TlsRecordOverflow;
if (end_hdr > len) {
len += try stream.readAtLeast(handshake_buf[len..], end_hdr - len);
if (end_hdr > len) return error.EndOfStream;
}
const ct = @intToEnum(tls.ContentType, handshake_buf[i]);
i += 1;
const legacy_version = mem.readIntBig(u16, handshake_buf[i..][0..2]);
i += 2;
_ = legacy_version;
const record_size = mem.readIntBig(u16, handshake_buf[i..][0..2]);
i += 2;
const end = i + record_size;
if (end > handshake_buf.len) return error.TlsRecordOverflow;
if (end > len) {
len += try stream.readAtLeast(handshake_buf[len..], end - len);
if (end > len) return error.EndOfStream;
}
switch (ct) {
.change_cipher_spec => {
if (record_size != 1) return error.TlsUnexpectedMessage;
if (handshake_buf[i] != 0x01) return error.TlsUnexpectedMessage;
},
.application_data => {
const cleartext_buf = &cleartext_bufs[cert_index % 2];
const cleartext = switch (handshake_cipher) {
inline else => |*p| c: {
const P = @TypeOf(p.*);
const ciphertext_len = record_size - P.AEAD.tag_length;
const ciphertext = handshake_buf[i..][0..ciphertext_len];
i += ciphertext.len;
if (ciphertext.len > cleartext_buf.len) return error.TlsRecordOverflow;
const cleartext = cleartext_buf[0..ciphertext.len];
const auth_tag = handshake_buf[i..][0..P.AEAD.tag_length].*;
const V = @Vector(P.AEAD.nonce_length, u8);
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
const operand: V = pad ++ @bitCast([8]u8, big(read_seq));
read_seq += 1;
const nonce = @as(V, p.server_handshake_iv) ^ operand;
const ad = handshake_buf[end_hdr - 5 ..][0..5];
P.AEAD.decrypt(cleartext, ciphertext, auth_tag, ad, nonce, p.server_handshake_key) catch
return error.TlsBadRecordMac;
break :c cleartext;
},
};
const inner_ct = @intToEnum(tls.ContentType, cleartext[cleartext.len - 1]);
switch (inner_ct) {
.handshake => {
var ct_i: usize = 0;
while (true) {
const handshake_type = @intToEnum(tls.HandshakeType, cleartext[ct_i]);
ct_i += 1;
const handshake_len = mem.readIntBig(u24, cleartext[ct_i..][0..3]);
ct_i += 3;
const next_handshake_i = ct_i + handshake_len;
if (next_handshake_i > cleartext.len - 1)
return error.TlsBadLength;
const wrapped_handshake = cleartext[ct_i - 4 .. next_handshake_i];
const handshake = cleartext[ct_i..next_handshake_i];
switch (handshake_type) {
.encrypted_extensions => {
if (handshake_state != .encrypted_extensions) return error.TlsUnexpectedMessage;
handshake_state = .certificate;
switch (handshake_cipher) {
inline else => |*p| p.transcript_hash.update(wrapped_handshake),
}
const total_ext_size = mem.readIntBig(u16, handshake[0..2]);
var hs_i: usize = 2;
const end_ext_i = 2 + total_ext_size;
while (hs_i < end_ext_i) {
const et = @intToEnum(tls.ExtensionType, mem.readIntBig(u16, handshake[hs_i..][0..2]));
hs_i += 2;
const ext_size = mem.readIntBig(u16, handshake[hs_i..][0..2]);
hs_i += 2;
const next_ext_i = hs_i + ext_size;
switch (et) {
.server_name => {},
else => {
std.debug.print("encrypted extension: {any}\n", .{
et,
});
},
}
hs_i = next_ext_i;
}
},
.certificate => cert: {
switch (handshake_cipher) {
inline else => |*p| p.transcript_hash.update(wrapped_handshake),
}
switch (handshake_state) {
.certificate => {},
.trust_chain_established => break :cert,
else => return error.TlsUnexpectedMessage,
}
var hs_i: u32 = 0;
const cert_req_ctx_len = handshake[hs_i];
hs_i += 1;
if (cert_req_ctx_len != 0) return error.TlsIllegalParameter;
const certs_size = mem.readIntBig(u24, handshake[hs_i..][0..3]);
hs_i += 3;
const end_certs = hs_i + certs_size;
while (hs_i < end_certs) {
const cert_size = mem.readIntBig(u24, handshake[hs_i..][0..3]);
hs_i += 3;
const end_cert = hs_i + cert_size;
const subject_cert: Certificate = .{
.buffer = handshake,
.index = hs_i,
};
const subject = try subject_cert.parse();
if (cert_index == 0) {
// Verify the host on the first certificate.
if (!hostMatchesCommonName(host, subject.commonName())) {
return error.TlsCertificateHostMismatch;
}
// Keep track of the public key for
// the certificate_verify message
// later.
main_cert_pub_key_algo = subject.pub_key_algo;
const pub_key = subject.pubKey();
if (pub_key.len > main_cert_pub_key_buf.len)
return error.CertificatePublicKeyInvalid;
@memcpy(&main_cert_pub_key_buf, pub_key.ptr, pub_key.len);
main_cert_pub_key_len = @intCast(@TypeOf(main_cert_pub_key_len), pub_key.len);
} else {
prev_cert.verify(subject) catch |err| {
std.debug.print("unable to validate previous cert: {s}\n", .{
@errorName(err),
});
return err;
};
}
if (ca_bundle.verify(subject)) |_| {
handshake_state = .trust_chain_established;
break :cert;
} else |err| switch (err) {
error.CertificateIssuerNotFound => {},
else => |e| {
std.debug.print("unable to validate cert against system root CAs: {s}\n", .{
@errorName(e),
});
return e;
},
}
prev_cert = subject;
cert_index += 1;
hs_i = end_cert;
const total_ext_size = mem.readIntBig(u16, handshake[hs_i..][0..2]);
hs_i += 2;
hs_i += total_ext_size;
}
},
.certificate_verify => {
switch (handshake_state) {
.trust_chain_established => handshake_state = .finished,
.certificate => return error.TlsCertificateNotVerified,
else => return error.TlsUnexpectedMessage,
}
const scheme = @intToEnum(tls.SignatureScheme, mem.readIntBig(u16, handshake[0..2]));
const sig_len = mem.readIntBig(u16, handshake[2..4]);
if (4 + sig_len > handshake.len) return error.TlsBadLength;
const encoded_sig = handshake[4..][0..sig_len];
const max_digest_len = 64;
var verify_buffer =
([1]u8{0x20} ** 64) ++
"TLS 1.3, server CertificateVerify\x00".* ++
@as([max_digest_len]u8, undefined);
const verify_bytes = switch (handshake_cipher) {
inline else => |*p| v: {
const transcript_digest = p.transcript_hash.peek();
verify_buffer[verify_buffer.len - max_digest_len ..][0..transcript_digest.len].* = transcript_digest;
p.transcript_hash.update(wrapped_handshake);
break :v verify_buffer[0 .. verify_buffer.len - max_digest_len + transcript_digest.len];
},
};
const main_cert_pub_key = main_cert_pub_key_buf[0..main_cert_pub_key_len];
switch (scheme) {
inline .ecdsa_secp256r1_sha256,
.ecdsa_secp384r1_sha384,
=> |comptime_scheme| {
if (main_cert_pub_key_algo != .X9_62_id_ecPublicKey)
return error.TlsBadSignatureScheme;
const Ecdsa = SchemeEcdsa(comptime_scheme);
const sig = try Ecdsa.Signature.fromDer(encoded_sig);
const key = try Ecdsa.PublicKey.fromSec1(main_cert_pub_key);
try sig.verify(verify_bytes, key);
},
.rsa_pss_rsae_sha256 => {
if (main_cert_pub_key_algo != .rsaEncryption)
return error.TlsBadSignatureScheme;
const Hash = crypto.hash.sha2.Sha256;
const rsa = Certificate.rsa;
const components = try rsa.PublicKey.parseDer(main_cert_pub_key);
const exponent = components.exponent;
const modulus = components.modulus;
var rsa_mem_buf: [512 * 32]u8 = undefined;
var fba = std.heap.FixedBufferAllocator.init(&rsa_mem_buf);
const ally = fba.allocator();
switch (modulus.len) {
inline 128, 256, 512 => |modulus_len| {
const key = try rsa.PublicKey.fromBytes(exponent, modulus, ally);
const sig = rsa.PSSSignature.fromBytes(modulus_len, encoded_sig);
try rsa.PSSSignature.verify(modulus_len, sig, verify_bytes, key, Hash, ally);
},
else => {
return error.TlsBadRsaSignatureBitCount;
},
}
},
else => {
//std.debug.print("signature scheme: {any}\n", .{
// scheme,
//});
return error.TlsBadSignatureScheme;
},
}
},
.finished => {
if (handshake_state != .finished) return error.TlsUnexpectedMessage;
// This message is to trick buggy proxies into behaving correctly.
const client_change_cipher_spec_msg = [_]u8{
@enumToInt(tls.ContentType.change_cipher_spec),
0x03, 0x03, // legacy protocol version
0x00, 0x01, // length
0x01,
};
const app_cipher = switch (handshake_cipher) {
inline else => |*p, tag| c: {
const P = @TypeOf(p.*);
const finished_digest = p.transcript_hash.peek();
p.transcript_hash.update(wrapped_handshake);
const expected_server_verify_data = tls.hmac(P.Hmac, &finished_digest, p.server_finished_key);
if (!mem.eql(u8, &expected_server_verify_data, handshake))
return error.TlsDecryptError;
const handshake_hash = p.transcript_hash.finalResult();
const verify_data = tls.hmac(P.Hmac, &handshake_hash, p.client_finished_key);
const out_cleartext = [_]u8{
@enumToInt(tls.HandshakeType.finished),
0, 0, verify_data.len, // length
} ++ verify_data ++ [1]u8{@enumToInt(tls.ContentType.handshake)};
const wrapped_len = out_cleartext.len + P.AEAD.tag_length;
var finished_msg = [_]u8{
@enumToInt(tls.ContentType.application_data),
0x03, 0x03, // legacy protocol version
0, wrapped_len, // byte length of encrypted record
} ++ @as([wrapped_len]u8, undefined);
const ad = finished_msg[0..5];
const ciphertext = finished_msg[5..][0..out_cleartext.len];
const auth_tag = finished_msg[finished_msg.len - P.AEAD.tag_length ..];
const nonce = p.client_handshake_iv;
P.AEAD.encrypt(ciphertext, auth_tag, &out_cleartext, ad, nonce, p.client_handshake_key);
const both_msgs = client_change_cipher_spec_msg ++ finished_msg;
try stream.writeAll(&both_msgs);
const client_secret = hkdfExpandLabel(P.Hkdf, p.master_secret, "c ap traffic", &handshake_hash, P.Hash.digest_length);
const server_secret = hkdfExpandLabel(P.Hkdf, p.master_secret, "s ap traffic", &handshake_hash, P.Hash.digest_length);
//std.debug.print("master_secret={}\nclient_secret={}\nserver_secret={}\n", .{
// std.fmt.fmtSliceHexLower(&p.master_secret),
// std.fmt.fmtSliceHexLower(&client_secret),
// std.fmt.fmtSliceHexLower(&server_secret),
//});
break :c @unionInit(tls.ApplicationCipher, @tagName(tag), .{
.client_secret = client_secret,
.server_secret = server_secret,
.client_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length),
.server_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length),
.client_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length),
.server_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length),
});
},
};
var client: Client = .{
.read_seq = 0,
.write_seq = 0,
.partial_cleartext_idx = 0,
.partial_ciphertext_idx = 0,
.partial_ciphertext_end = @intCast(u15, len - end),
.received_close_notify = false,
.application_cipher = app_cipher,
.partially_read_buffer = undefined,
};
mem.copy(u8, &client.partially_read_buffer, handshake_buf[len..end]);
return client;
},
else => {
return error.TlsUnexpectedMessage;
},
}
ct_i = next_handshake_i;
if (ct_i >= cleartext.len - 1) break;
}
},
else => {
std.debug.print("inner content type: {any}\n", .{inner_ct});
return error.TlsUnexpectedMessage;
},
}
},
else => {
std.debug.print("content type: {s}\n", .{@tagName(ct)});
return error.TlsUnexpectedMessage;
},
}
i = end;
}
return error.TlsHandshakeFailure;
}
pub fn write(c: *Client, stream: net.Stream, bytes: []const u8) !usize {
var ciphertext_buf: [tls.max_ciphertext_record_len * 4]u8 = undefined;
// Due to the trailing inner content type byte in the ciphertext, we need
// an additional buffer for storing the cleartext into before encrypting.
var cleartext_buf: [max_ciphertext_len]u8 = undefined;
var iovecs_buf: [5]std.os.iovec_const = undefined;
var ciphertext_end: usize = 0;
var iovec_end: usize = 0;
var bytes_i: usize = 0;
// How many bytes are taken up by overhead per record.
const overhead_len: usize = switch (c.application_cipher) {
inline else => |*p| l: {
const P = @TypeOf(p.*);
const V = @Vector(P.AEAD.nonce_length, u8);
const overhead_len = tls.ciphertext_record_header_len + P.AEAD.tag_length + 1;
while (true) {
const encrypted_content_len = @intCast(u16, @min(
@min(bytes.len - bytes_i, max_ciphertext_len - 1),
ciphertext_buf.len -
tls.ciphertext_record_header_len - P.AEAD.tag_length - ciphertext_end - 1,
));
if (encrypted_content_len == 0) break :l overhead_len;
mem.copy(u8, &cleartext_buf, bytes[bytes_i..][0..encrypted_content_len]);
cleartext_buf[encrypted_content_len] = @enumToInt(tls.ContentType.application_data);
bytes_i += encrypted_content_len;
const ciphertext_len = encrypted_content_len + 1;
const cleartext = cleartext_buf[0..ciphertext_len];
const record_start = ciphertext_end;
const ad = ciphertext_buf[ciphertext_end..][0..5];
ad.* =
[_]u8{@enumToInt(tls.ContentType.application_data)} ++
int2(@enumToInt(tls.ProtocolVersion.tls_1_2)) ++
int2(ciphertext_len + P.AEAD.tag_length);
ciphertext_end += ad.len;
const ciphertext = ciphertext_buf[ciphertext_end..][0..ciphertext_len];
ciphertext_end += ciphertext_len;
const auth_tag = ciphertext_buf[ciphertext_end..][0..P.AEAD.tag_length];
ciphertext_end += auth_tag.len;
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
const operand: V = pad ++ @bitCast([8]u8, big(c.write_seq));
c.write_seq += 1; // TODO send key_update on overflow
const nonce = @as(V, p.client_iv) ^ operand;
P.AEAD.encrypt(ciphertext, auth_tag, cleartext, ad, nonce, p.client_key);
//std.debug.print("seq: {d} nonce: {} client_key: {} client_iv: {} ad: {} auth_tag: {}\nserver_key: {} server_iv: {}\n", .{
// c.write_seq - 1,
// std.fmt.fmtSliceHexLower(&nonce),
// std.fmt.fmtSliceHexLower(&p.client_key),
// std.fmt.fmtSliceHexLower(&p.client_iv),
// std.fmt.fmtSliceHexLower(ad),
// std.fmt.fmtSliceHexLower(auth_tag),
// std.fmt.fmtSliceHexLower(&p.server_key),
// std.fmt.fmtSliceHexLower(&p.server_iv),
//});
const record = ciphertext_buf[record_start..ciphertext_end];
iovecs_buf[iovec_end] = .{
.iov_base = record.ptr,
.iov_len = record.len,
};
iovec_end += 1;
}
},
};
// Ideally we would call writev exactly once here, however, we must ensure
// that we don't return with a record partially written.
var i: usize = 0;
var total_amt: usize = 0;
while (true) {
var amt = try stream.writev(iovecs_buf[i..iovec_end]);
while (amt >= iovecs_buf[i].iov_len) {
const encrypted_amt = iovecs_buf[i].iov_len;
total_amt += encrypted_amt - overhead_len;
amt -= encrypted_amt;
i += 1;
// Rely on the property that iovecs delineate records, meaning that
// if amt equals zero here, we have fortunately found ourselves
// with a short read that aligns at the record boundary.
if (i >= iovec_end or amt == 0) return total_amt;
}
iovecs_buf[i].iov_base += amt;
iovecs_buf[i].iov_len -= amt;
}
}
pub fn writeAll(c: *Client, stream: net.Stream, bytes: []const u8) !void {
var index: usize = 0;
while (index < bytes.len) {
index += try c.write(stream, bytes[index..]);
}
}
pub fn eof(c: Client) bool {
return c.received_close_notify and
c.partial_cleartext_idx >= c.partial_ciphertext_idx and
c.partial_ciphertext_idx >= c.partial_ciphertext_end;
}
/// Returns the number of bytes read, calling the underlying read function the
/// minimal number of times until the buffer has at least `len` bytes filled.
/// If the number read is less than `len` it means the stream reached the end.
/// Reaching the end of the stream is not an error condition.
pub fn readAtLeast(c: *Client, stream: anytype, buffer: []u8, len: usize) !usize {
var iovecs = [1]std.os.iovec{.{ .iov_base = buffer.ptr, .iov_len = buffer.len }};
return readvAtLeast(c, stream, &iovecs, len);
}
pub fn read(c: *Client, stream: anytype, buffer: []u8) !usize {
return readAtLeast(c, stream, buffer, 1);
}
/// Returns the number of bytes read. If the number read is smaller than
/// `buffer.len`, it means the stream reached the end. Reaching the end of the
/// stream is not an error condition.
pub fn readAll(c: *Client, stream: anytype, buffer: []u8) !usize {
return readAtLeast(c, stream, buffer, buffer.len);
}
/// Returns the number of bytes read. If the number read is less than the space
/// provided it means the stream reached the end. Reaching the end of the
/// stream is not an error condition.
/// The `iovecs` parameter is mutable because this function needs to mutate the fields in
/// order to handle partial reads from the underlying stream layer.
pub fn readv(c: *Client, stream: anytype, iovecs: []std.os.iovec) !usize {
return readvAtLeast(c, stream, iovecs);
}
/// Returns the number of bytes read, calling the underlying read function the
/// minimal number of times until the iovecs have at least `len` bytes filled.
/// If the number read is less than `len` it means the stream reached the end.
/// Reaching the end of the stream is not an error condition.
/// The `iovecs` parameter is mutable because this function needs to mutate the fields in
/// order to handle partial reads from the underlying stream layer.
pub fn readvAtLeast(c: *Client, stream: anytype, iovecs: []std.os.iovec, len: usize) !usize {
if (c.eof()) return 0;
var off_i: usize = 0;
var vec_i: usize = 0;
while (true) {
var amt = try c.readvAdvanced(stream, iovecs[vec_i..]);
off_i += amt;
if (c.eof() or off_i >= len) return off_i;
while (amt >= iovecs[vec_i].iov_len) {
amt -= iovecs[vec_i].iov_len;
vec_i += 1;
}
iovecs[vec_i].iov_base += amt;
iovecs[vec_i].iov_len -= amt;
}
}
/// Returns number of bytes that have been read, populated inside `iovecs`. A
/// return value of zero bytes does not mean end of stream. Instead, check the `eof()`
/// for the end of stream. The `eof()` may be true after any call to
/// `read`, including when greater than zero bytes are returned, and this
/// function asserts that `eof()` is `false`.
/// See `readv` for a higher level function that has the same, familiar API as
/// other read functions, such as `std.fs.File.read`.
pub fn readvAdvanced(c: *Client, stream: net.Stream, iovecs: []const std.os.iovec) !usize {
var vp: VecPut = .{ .iovecs = iovecs };
// Give away the buffered cleartext we have, if any.
const partial_cleartext = c.partially_read_buffer[c.partial_cleartext_idx..c.partial_ciphertext_idx];
if (partial_cleartext.len > 0) {
const amt = @intCast(u15, vp.put(partial_cleartext));
c.partial_cleartext_idx += amt;
if (amt < partial_cleartext.len) {
// We still have cleartext left so we cannot issue another read() call yet.
assert(vp.total == amt);
return amt;
}
if (c.received_close_notify) {
c.partial_ciphertext_end = 0;
assert(vp.total == amt);
return amt;
}
if (c.partial_ciphertext_end == c.partial_ciphertext_idx) {
c.partial_cleartext_idx = 0;
c.partial_ciphertext_idx = 0;
c.partial_ciphertext_end = 0;
} else {
std.debug.print("finished giving partial cleartext. {d} bytes ciphertext remain\n", .{
c.partial_ciphertext_end - c.partial_ciphertext_idx,
});
}
}
assert(!c.received_close_notify);
// Ideally, this buffer would never be used. It is needed when `iovecs` are
// too small to fit the cleartext, which may be as large as `max_ciphertext_len`.
var cleartext_stack_buffer: [max_ciphertext_len]u8 = undefined;
// Temporarily stores ciphertext before decrypting it and giving it to `iovecs`.
var in_stack_buffer: [max_ciphertext_len * 4]u8 = undefined;
// How many bytes left in the user's buffer.
const free_size = vp.freeSize();
// The amount of the user's buffer that we need to repurpose for storing
// ciphertext. The end of the buffer will be used for such purposes.
const ciphertext_buf_len = (free_size / 2) -| in_stack_buffer.len;
// The amount of the user's buffer that will be used to give cleartext. The
// beginning of the buffer will be used for such purposes.
const cleartext_buf_len = free_size - ciphertext_buf_len;
const first_iov = c.partially_read_buffer[c.partial_ciphertext_end..];
var ask_iovecs_buf: [2]std.os.iovec = .{
.{
.iov_base = first_iov.ptr,
.iov_len = first_iov.len,
},
.{
.iov_base = &in_stack_buffer,
.iov_len = in_stack_buffer.len,
},
};
// Cleartext capacity of output buffer, in records, rounded up.
const buf_cap = (cleartext_buf_len +| (max_ciphertext_len - 1)) / max_ciphertext_len;
const wanted_read_len = buf_cap * (max_ciphertext_len + tls.ciphertext_record_header_len);
const ask_len = @max(wanted_read_len, cleartext_stack_buffer.len);
const ask_iovecs = limitVecs(&ask_iovecs_buf, ask_len);
const actual_read_len = try stream.readv(ask_iovecs);
if (actual_read_len == 0) {
// This is either a truncation attack, or a bug in the server.
return error.TlsConnectionTruncated;
}
// There might be more bytes inside `in_stack_buffer` that need to be processed,
// but at least frag0 will have one complete ciphertext record.
const frag0_end = @min(c.partially_read_buffer.len, c.partial_ciphertext_end + actual_read_len);
const frag0 = c.partially_read_buffer[c.partial_ciphertext_idx..frag0_end];
var frag1 = in_stack_buffer[0..actual_read_len -| first_iov.len];
// We need to decipher frag0 and frag1 but there may be a ciphertext record
// straddling the boundary. We can handle this with two memcpy() calls to
// assemble the straddling record in between handling the two sides.
var frag = frag0;
var in: usize = 0;
while (true) {
if (in == frag.len) {
// Perfect split.
if (frag.ptr == frag1.ptr) {
c.partial_ciphertext_end = c.partial_ciphertext_idx;
return vp.total;
}
frag = frag1;
in = 0;
continue;
}
if (in + tls.ciphertext_record_header_len > frag.len) {
if (frag.ptr == frag1.ptr)
return finishRead(c, frag, in, vp.total);
const first = frag[in..];
if (frag1.len < tls.ciphertext_record_header_len)
return finishRead2(c, first, frag1, vp.total);
// A record straddles the two fragments. Copy into the now-empty first fragment.
const record_len_byte_0: u16 = straddleByte(frag, frag1, in + 3);
const record_len_byte_1: u16 = straddleByte(frag, frag1, in + 4);
const record_len = (record_len_byte_0 << 8) | record_len_byte_1;
if (record_len > max_ciphertext_len) return error.TlsRecordOverflow;
const full_record_len = record_len + tls.ciphertext_record_header_len;
const second_len = full_record_len - first.len;
if (frag1.len < second_len)
return finishRead2(c, first, frag1, vp.total);
mem.copy(u8, frag[0..in], first);
mem.copy(u8, frag[first.len..], frag1[0..second_len]);
frag = frag[0..full_record_len];
frag1 = frag1[second_len..];
in = 0;
continue;
}
const ct = @intToEnum(tls.ContentType, frag[in]);
in += 1;
const legacy_version = mem.readIntBig(u16, frag[in..][0..2]);
in += 2;
//_ = legacy_version;
const record_len = mem.readIntBig(u16, frag[in..][0..2]);
std.debug.print("ct={any} legacy_version={x} record_len={d}\n", .{
ct, legacy_version, record_len,
});
if (record_len > max_ciphertext_len) return error.TlsRecordOverflow;
in += 2;
const end = in + record_len;
if (end > frag.len) {
// We need the record header on the next iteration of the loop.
in -= tls.ciphertext_record_header_len;
if (frag.ptr == frag1.ptr)
return finishRead(c, frag, in, vp.total);
// A record straddles the two fragments. Copy into the now-empty first fragment.
const first = frag[in..];
const full_record_len = record_len + tls.ciphertext_record_header_len;
const second_len = full_record_len - first.len;
if (frag1.len < second_len) {
std.debug.print("end > frag.len finishRead2 end={d} frag.len={d}\n", .{
end, frag.len,
});
return finishRead2(c, first, frag1, vp.total);
}
mem.copy(u8, frag[0..in], first);
mem.copy(u8, frag[first.len..], frag1[0..second_len]);
frag = frag[0..full_record_len];
frag1 = frag1[second_len..];
in = 0;
continue;
}
switch (ct) {
.alert => {
@panic("TODO handle an alert here");
},
.application_data => {
const cleartext = switch (c.application_cipher) {
inline else => |*p| c: {
const P = @TypeOf(p.*);
const V = @Vector(P.AEAD.nonce_length, u8);
const ad = frag[in - 5 ..][0..5];
const ciphertext_len = record_len - P.AEAD.tag_length;
const ciphertext = frag[in..][0..ciphertext_len];
in += ciphertext_len;
const auth_tag = frag[in..][0..P.AEAD.tag_length].*;
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
const operand: V = pad ++ @bitCast([8]u8, big(c.read_seq));
const nonce: [P.AEAD.nonce_length]u8 = @as(V, p.server_iv) ^ operand;
const out_buf = vp.peek();
const cleartext_buf = if (ciphertext.len <= out_buf.len)
out_buf
else
&cleartext_stack_buffer;
const cleartext = cleartext_buf[0..ciphertext.len];
P.AEAD.decrypt(cleartext, ciphertext, auth_tag, ad, nonce, p.server_key) catch
return error.TlsBadRecordMac;
break :c cleartext;
},
};
c.read_seq += 1;
const inner_ct = @intToEnum(tls.ContentType, cleartext[cleartext.len - 1]);
switch (inner_ct) {
.alert => {
const level = @intToEnum(tls.AlertLevel, cleartext[0]);
const desc = @intToEnum(tls.AlertDescription, cleartext[1]);
if (desc == .close_notify) {
c.received_close_notify = true;
c.partial_ciphertext_end = c.partial_ciphertext_idx;
return vp.total;
}
std.debug.print("alert: {s} {s}\n", .{ @tagName(level), @tagName(desc) });
return error.TlsAlert;
},
.handshake => {
var ct_i: usize = 0;
while (true) {
const handshake_type = @intToEnum(tls.HandshakeType, cleartext[ct_i]);
ct_i += 1;
const handshake_len = mem.readIntBig(u24, cleartext[ct_i..][0..3]);
ct_i += 3;
const next_handshake_i = ct_i + handshake_len;
if (next_handshake_i > cleartext.len - 1)
return error.TlsBadLength;
const handshake = cleartext[ct_i..next_handshake_i];
switch (handshake_type) {
.new_session_ticket => {
std.debug.print("new_session_ticket\n", .{});
// This client implementation ignores new session tickets.
},
.key_update => {
std.debug.print("key_update\n", .{});
switch (c.application_cipher) {
inline else => |*p| {
const P = @TypeOf(p.*);
const server_secret = hkdfExpandLabel(P.Hkdf, p.server_secret, "traffic upd", "", P.Hash.digest_length);
p.server_secret = server_secret;
p.server_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length);
p.server_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length);
},
}
c.read_seq = 0;
switch (@intToEnum(tls.KeyUpdateRequest, handshake[0])) {
.update_requested => {
switch (c.application_cipher) {
inline else => |*p| {
const P = @TypeOf(p.*);
const client_secret = hkdfExpandLabel(P.Hkdf, p.client_secret, "traffic upd", "", P.Hash.digest_length);
p.client_secret = client_secret;
p.client_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length);
p.client_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length);
},
}
c.write_seq = 0;
},
.update_not_requested => {},
_ => return error.TlsIllegalParameter,
}
},
else => {
return error.TlsUnexpectedMessage;
},
}
ct_i = next_handshake_i;
if (ct_i >= cleartext.len - 1) break;
}
},
.application_data => {
// Determine whether the output buffer or a stack
// buffer was used for storing the cleartext.
if (cleartext.ptr == &cleartext_stack_buffer) {
// Stack buffer was used, so we must copy to the output buffer.
const msg = cleartext[0 .. cleartext.len - 1];
if (c.partial_ciphertext_idx > c.partial_cleartext_idx) {
// We have already run out of room in iovecs. Continue
// appending to `partially_read_buffer`.
const dest = c.partially_read_buffer[c.partial_ciphertext_idx..];
mem.copy(u8, dest, msg);
c.partial_ciphertext_idx = @intCast(@TypeOf(c.partial_ciphertext_idx), c.partial_ciphertext_idx + msg.len);
std.debug.print("application_data {d} bytes to partial buffer\n", .{msg.len});
} else {
const amt = vp.put(msg);
std.debug.print("application_data {d} bytes to read buffer\n", .{msg.len});
if (amt < msg.len) {
const rest = msg[amt..];
std.debug.print(" {d} bytes to partial buffer\n", .{rest.len});
c.partial_cleartext_idx = 0;
c.partial_ciphertext_idx = @intCast(@TypeOf(c.partial_ciphertext_idx), rest.len);
mem.copy(u8, &c.partially_read_buffer, rest);
}
}
} else {
// Output buffer was used directly which means no
// memory copying needs to occur, and we can move
// on to the next ciphertext record.
std.debug.print("application_data {d} bytes directly to read buffer\n", .{cleartext.len - 1});
vp.next(cleartext.len - 1);
}
},
else => {
return error.TlsUnexpectedMessage;
},
}
},
else => {
return error.TlsUnexpectedMessage;
},
}
in = end;
}
}
fn finishRead(c: *Client, frag: []const u8, in: usize, out: usize) usize {
const saved_buf = frag[in..];
if (c.partial_ciphertext_idx > c.partial_cleartext_idx) {
// There is cleartext at the beginning already which we need to preserve.
c.partial_ciphertext_end = @intCast(@TypeOf(c.partial_ciphertext_end), c.partial_ciphertext_idx + saved_buf.len);
mem.copy(u8, c.partially_read_buffer[c.partial_ciphertext_idx..], saved_buf);
} else {
c.partial_cleartext_idx = 0;
c.partial_ciphertext_idx = 0;
c.partial_ciphertext_end = @intCast(@TypeOf(c.partial_ciphertext_end), saved_buf.len);
mem.copy(u8, &c.partially_read_buffer, saved_buf);
}
return out;
}
fn finishRead2(c: *Client, first: []const u8, frag1: []const u8, out: usize) usize {
if (c.partial_ciphertext_idx > c.partial_cleartext_idx) {
// There is cleartext at the beginning already which we need to preserve.
c.partial_ciphertext_end = @intCast(@TypeOf(c.partial_ciphertext_end), c.partial_ciphertext_idx + first.len + frag1.len);
mem.copy(u8, c.partially_read_buffer[c.partial_ciphertext_idx..], first);
mem.copy(u8, c.partially_read_buffer[c.partial_ciphertext_idx + first.len ..], frag1);
} else {
c.partial_cleartext_idx = 0;
c.partial_ciphertext_idx = 0;
c.partial_ciphertext_end = @intCast(@TypeOf(c.partial_ciphertext_end), first.len + frag1.len);
mem.copy(u8, &c.partially_read_buffer, first);
mem.copy(u8, c.partially_read_buffer[first.len..], frag1);
}
return out;
}
fn straddleByte(s1: []const u8, s2: []const u8, index: usize) u8 {
if (index < s1.len) {
return s1[index];
} else {
return s2[index - s1.len];
}
}
fn hostMatchesCommonName(host: []const u8, common_name: []const u8) bool {
if (mem.eql(u8, common_name, host)) {
return true; // exact match
}
if (mem.startsWith(u8, common_name, "*.")) {
// wildcard certificate, matches any subdomain
if (mem.endsWith(u8, host, common_name[1..])) {
// The host has a subdomain, but the important part matches.
return true;
}
if (mem.eql(u8, common_name[2..], host)) {
// The host has no subdomain and matches exactly.
return true;
}
}
return false;
}
const builtin = @import("builtin");
const native_endian = builtin.cpu.arch.endian();
inline fn big(x: anytype) @TypeOf(x) {
return switch (native_endian) {
.Big => x,
.Little => @byteSwap(x),
};
}
fn SchemeEcdsa(comptime scheme: tls.SignatureScheme) type {
return switch (scheme) {
.ecdsa_secp256r1_sha256 => crypto.sign.ecdsa.EcdsaP256Sha256,
.ecdsa_secp384r1_sha384 => crypto.sign.ecdsa.EcdsaP384Sha384,
.ecdsa_secp521r1_sha512 => crypto.sign.ecdsa.EcdsaP512Sha512,
else => @compileError("bad scheme"),
};
}
/// Abstraction for sending multiple byte buffers to a slice of iovecs.
const VecPut = struct {
iovecs: []const std.os.iovec,
idx: usize = 0,
off: usize = 0,
total: usize = 0,
/// Returns the amount actually put which is always equal to bytes.len
/// unless the vectors ran out of space.
fn put(vp: *VecPut, bytes: []const u8) usize {
var bytes_i: usize = 0;
while (true) {
const v = vp.iovecs[vp.idx];
const dest = v.iov_base[vp.off..v.iov_len];
const src = bytes[bytes_i..][0..@min(dest.len, bytes.len - bytes_i)];
mem.copy(u8, dest, src);
bytes_i += src.len;
vp.off += src.len;
if (vp.off >= v.iov_len) {
vp.off = 0;
vp.idx += 1;
if (vp.idx >= vp.iovecs.len) {
vp.total += bytes_i;
return bytes_i;
}
}
if (bytes_i >= bytes.len) {
vp.total += bytes_i;
return bytes_i;
}
}
}
/// Returns the next buffer that consecutive bytes can go into.
fn peek(vp: VecPut) []u8 {
if (vp.idx >= vp.iovecs.len) return &.{};
const v = vp.iovecs[vp.idx];
return v.iov_base[vp.off..v.iov_len];
}
// After writing to the result of peek(), one can call next() to
// advance the cursor.
fn next(vp: *VecPut, len: usize) void {
vp.total += len;
vp.off += len;
if (vp.off >= vp.iovecs[vp.idx].iov_len) {
vp.off = 0;
vp.idx += 1;
}
}
fn freeSize(vp: VecPut) usize {
if (vp.idx >= vp.iovecs.len) return 0;
var total: usize = 0;
total += vp.iovecs[vp.idx].iov_len - vp.off;
if (vp.idx + 1 >= vp.iovecs.len) return total;
for (vp.iovecs[vp.idx + 1 ..]) |v| total += v.iov_len;
return total;
}
};
/// Limit iovecs to a specific byte size.
fn limitVecs(iovecs: []std.os.iovec, len: usize) []std.os.iovec {
var vec_i: usize = 0;
var bytes_left: usize = len;
while (true) {
if (bytes_left >= iovecs[vec_i].iov_len) {
bytes_left -= iovecs[vec_i].iov_len;
vec_i += 1;
if (vec_i == iovecs.len or bytes_left == 0) return iovecs[0..vec_i];
continue;
}
iovecs[vec_i].iov_len = bytes_left;
return iovecs[0..vec_i];
}
}
/// The priority order here is chosen based on what crypto algorithms Zig has
/// available in the standard library as well as what is faster. Following are
/// a few data points on the relative performance of these algorithms.
///
/// Measurement taken with 0.11.0-dev.810+c2f5848fe
/// on x86_64-linux Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz:
/// zig run .lib/std/crypto/benchmark.zig -OReleaseFast
/// aegis-128l: 15382 MiB/s
/// aegis-256: 9553 MiB/s
/// aes128-gcm: 3721 MiB/s
/// aes256-gcm: 3010 MiB/s
/// chacha20Poly1305: 597 MiB/s
///
/// Measurement taken with 0.11.0-dev.810+c2f5848fe
/// on x86_64-linux Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz:
/// zig run .lib/std/crypto/benchmark.zig -OReleaseFast -mcpu=baseline
/// aegis-128l: 629 MiB/s
/// chacha20Poly1305: 529 MiB/s
/// aegis-256: 461 MiB/s
/// aes128-gcm: 138 MiB/s
/// aes256-gcm: 120 MiB/s
const cipher_suites = enum_array(tls.CipherSuite, &.{
.AEGIS_128L_SHA256,
.AEGIS_256_SHA384,
.AES_128_GCM_SHA256,
.AES_256_GCM_SHA384,
.CHACHA20_POLY1305_SHA256,
});