mirror of
https://codeberg.org/ziglang/zig.git
synced 2025-12-06 05:44:20 +00:00
688 lines
30 KiB
Zig
688 lines
30 KiB
Zig
const std = @import("std");
|
|
const crypto = std.crypto;
|
|
const debug = std.debug;
|
|
const fmt = std.fmt;
|
|
const mem = std.mem;
|
|
|
|
const Sha512 = crypto.hash.sha2.Sha512;
|
|
|
|
const EncodingError = crypto.errors.EncodingError;
|
|
const IdentityElementError = crypto.errors.IdentityElementError;
|
|
const NonCanonicalError = crypto.errors.NonCanonicalError;
|
|
const SignatureVerificationError = crypto.errors.SignatureVerificationError;
|
|
const KeyMismatchError = crypto.errors.KeyMismatchError;
|
|
const WeakPublicKeyError = crypto.errors.WeakPublicKeyError;
|
|
|
|
/// Ed25519 (EdDSA) signatures.
|
|
pub const Ed25519 = struct {
|
|
/// The underlying elliptic curve.
|
|
pub const Curve = std.crypto.ecc.Edwards25519;
|
|
|
|
/// Length (in bytes) of optional random bytes, for non-deterministic signatures.
|
|
pub const noise_length = 32;
|
|
|
|
const CompressedScalar = Curve.scalar.CompressedScalar;
|
|
const Scalar = Curve.scalar.Scalar;
|
|
|
|
/// An Ed25519 secret key.
|
|
pub const SecretKey = struct {
|
|
/// Length (in bytes) of a raw secret key.
|
|
pub const encoded_length = 64;
|
|
|
|
bytes: [encoded_length]u8,
|
|
|
|
/// Return the seed used to generate this secret key.
|
|
pub fn seed(self: SecretKey) [KeyPair.seed_length]u8 {
|
|
return self.bytes[0..KeyPair.seed_length].*;
|
|
}
|
|
|
|
/// Return the raw public key bytes corresponding to this secret key.
|
|
pub fn publicKeyBytes(self: SecretKey) [PublicKey.encoded_length]u8 {
|
|
return self.bytes[KeyPair.seed_length..].*;
|
|
}
|
|
|
|
/// Create a secret key from raw bytes.
|
|
pub fn fromBytes(bytes: [encoded_length]u8) !SecretKey {
|
|
return SecretKey{ .bytes = bytes };
|
|
}
|
|
|
|
/// Return the secret key as raw bytes.
|
|
pub fn toBytes(sk: SecretKey) [encoded_length]u8 {
|
|
return sk.bytes;
|
|
}
|
|
|
|
// Return the clamped secret scalar and prefix for this secret key
|
|
fn scalarAndPrefix(self: SecretKey) struct { scalar: CompressedScalar, prefix: [32]u8 } {
|
|
var az: [Sha512.digest_length]u8 = undefined;
|
|
var h = Sha512.init(.{});
|
|
h.update(&self.seed());
|
|
h.final(&az);
|
|
|
|
var s = az[0..32].*;
|
|
Curve.scalar.clamp(&s);
|
|
|
|
return .{ .scalar = s, .prefix = az[32..].* };
|
|
}
|
|
};
|
|
|
|
/// A Signer is used to incrementally compute a signature.
|
|
/// It can be obtained from a `KeyPair`, using the `signer()` function.
|
|
pub const Signer = struct {
|
|
h: Sha512,
|
|
scalar: CompressedScalar,
|
|
nonce: CompressedScalar,
|
|
r_bytes: [Curve.encoded_length]u8,
|
|
|
|
fn init(scalar: CompressedScalar, nonce: CompressedScalar, public_key: PublicKey) (IdentityElementError || KeyMismatchError || NonCanonicalError || WeakPublicKeyError)!Signer {
|
|
const r = try Curve.basePoint.mul(nonce);
|
|
const r_bytes = r.toBytes();
|
|
|
|
var t: [64]u8 = undefined;
|
|
t[0..32].* = r_bytes;
|
|
t[32..].* = public_key.bytes;
|
|
var h = Sha512.init(.{});
|
|
h.update(&t);
|
|
|
|
return Signer{ .h = h, .scalar = scalar, .nonce = nonce, .r_bytes = r_bytes };
|
|
}
|
|
|
|
/// Add new data to the message being signed.
|
|
pub fn update(self: *Signer, data: []const u8) void {
|
|
self.h.update(data);
|
|
}
|
|
|
|
/// Compute a signature over the entire message.
|
|
pub fn finalize(self: *Signer) Signature {
|
|
var hram64: [Sha512.digest_length]u8 = undefined;
|
|
self.h.final(&hram64);
|
|
const hram = Curve.scalar.reduce64(hram64);
|
|
|
|
const s = Curve.scalar.mulAdd(hram, self.scalar, self.nonce);
|
|
|
|
return Signature{ .r = self.r_bytes, .s = s };
|
|
}
|
|
};
|
|
|
|
/// An Ed25519 public key.
|
|
pub const PublicKey = struct {
|
|
/// Length (in bytes) of a raw public key.
|
|
pub const encoded_length = 32;
|
|
|
|
bytes: [encoded_length]u8,
|
|
|
|
/// Create a public key from raw bytes.
|
|
pub fn fromBytes(bytes: [encoded_length]u8) NonCanonicalError!PublicKey {
|
|
try Curve.rejectNonCanonical(bytes);
|
|
return PublicKey{ .bytes = bytes };
|
|
}
|
|
|
|
/// Convert a public key to raw bytes.
|
|
pub fn toBytes(pk: PublicKey) [encoded_length]u8 {
|
|
return pk.bytes;
|
|
}
|
|
|
|
fn signWithNonce(public_key: PublicKey, msg: []const u8, scalar: CompressedScalar, nonce: CompressedScalar) (IdentityElementError || NonCanonicalError || KeyMismatchError || WeakPublicKeyError)!Signature {
|
|
var st = try Signer.init(scalar, nonce, public_key);
|
|
st.update(msg);
|
|
return st.finalize();
|
|
}
|
|
|
|
fn computeNonceAndSign(public_key: PublicKey, msg: []const u8, noise: ?[noise_length]u8, scalar: CompressedScalar, prefix: []const u8) (IdentityElementError || NonCanonicalError || KeyMismatchError || WeakPublicKeyError)!Signature {
|
|
var h = Sha512.init(.{});
|
|
if (noise) |*z| {
|
|
h.update(z);
|
|
}
|
|
h.update(prefix);
|
|
h.update(msg);
|
|
var nonce64: [64]u8 = undefined;
|
|
h.final(&nonce64);
|
|
|
|
const nonce = Curve.scalar.reduce64(nonce64);
|
|
|
|
return public_key.signWithNonce(msg, scalar, nonce);
|
|
}
|
|
};
|
|
|
|
/// A Verifier is used to incrementally verify a signature.
|
|
/// It can be obtained from a `Signature`, using the `verifier()` function.
|
|
pub const Verifier = struct {
|
|
h: Sha512,
|
|
s: CompressedScalar,
|
|
a: Curve,
|
|
expected_r: Curve,
|
|
|
|
pub const InitError = NonCanonicalError || EncodingError || IdentityElementError;
|
|
|
|
fn init(sig: Signature, public_key: PublicKey) InitError!Verifier {
|
|
const r = sig.r;
|
|
const s = sig.s;
|
|
try Curve.scalar.rejectNonCanonical(s);
|
|
const a = try Curve.fromBytes(public_key.bytes);
|
|
try a.rejectIdentity();
|
|
try Curve.rejectNonCanonical(r);
|
|
const expected_r = try Curve.fromBytes(r);
|
|
try expected_r.rejectIdentity();
|
|
|
|
var h = Sha512.init(.{});
|
|
h.update(&r);
|
|
h.update(&public_key.bytes);
|
|
|
|
return Verifier{ .h = h, .s = s, .a = a, .expected_r = expected_r };
|
|
}
|
|
|
|
/// Add new content to the message to be verified.
|
|
pub fn update(self: *Verifier, msg: []const u8) void {
|
|
self.h.update(msg);
|
|
}
|
|
|
|
pub const VerifyError = WeakPublicKeyError || IdentityElementError ||
|
|
SignatureVerificationError;
|
|
|
|
/// Verify that the signature is valid for the entire message.
|
|
pub fn verify(self: *Verifier) VerifyError!void {
|
|
var hram64: [Sha512.digest_length]u8 = undefined;
|
|
self.h.final(&hram64);
|
|
const hram = Curve.scalar.reduce64(hram64);
|
|
|
|
const sb_ah = try Curve.basePoint.mulDoubleBasePublic(self.s, self.a.neg(), hram);
|
|
if (self.expected_r.sub(sb_ah).rejectLowOrder()) {
|
|
return error.SignatureVerificationFailed;
|
|
} else |_| {}
|
|
}
|
|
};
|
|
|
|
/// An Ed25519 signature.
|
|
pub const Signature = struct {
|
|
/// Length (in bytes) of a raw signature.
|
|
pub const encoded_length = Curve.encoded_length + @sizeOf(CompressedScalar);
|
|
|
|
/// The R component of an EdDSA signature.
|
|
r: [Curve.encoded_length]u8,
|
|
/// The S component of an EdDSA signature.
|
|
s: CompressedScalar,
|
|
|
|
/// Return the raw signature (r, s) in little-endian format.
|
|
pub fn toBytes(sig: Signature) [encoded_length]u8 {
|
|
var bytes: [encoded_length]u8 = undefined;
|
|
bytes[0..Curve.encoded_length].* = sig.r;
|
|
bytes[Curve.encoded_length..].* = sig.s;
|
|
return bytes;
|
|
}
|
|
|
|
/// Create a signature from a raw encoding of (r, s).
|
|
/// EdDSA always assumes little-endian.
|
|
pub fn fromBytes(bytes: [encoded_length]u8) Signature {
|
|
return Signature{
|
|
.r = bytes[0..Curve.encoded_length].*,
|
|
.s = bytes[Curve.encoded_length..].*,
|
|
};
|
|
}
|
|
|
|
/// Create a Verifier for incremental verification of a signature.
|
|
pub fn verifier(sig: Signature, public_key: PublicKey) Verifier.InitError!Verifier {
|
|
return Verifier.init(sig, public_key);
|
|
}
|
|
|
|
pub const VerifyError = Verifier.InitError || Verifier.VerifyError;
|
|
|
|
/// Verify the signature against a message and public key.
|
|
/// Return IdentityElement or NonCanonical if the public key or signature are not in the expected range,
|
|
/// or SignatureVerificationError if the signature is invalid for the given message and key.
|
|
pub fn verify(sig: Signature, msg: []const u8, public_key: PublicKey) VerifyError!void {
|
|
var st = try sig.verifier(public_key);
|
|
st.update(msg);
|
|
try st.verify();
|
|
}
|
|
};
|
|
|
|
/// An Ed25519 key pair.
|
|
pub const KeyPair = struct {
|
|
/// Length (in bytes) of a seed required to create a key pair.
|
|
pub const seed_length = noise_length;
|
|
|
|
/// Public part.
|
|
public_key: PublicKey,
|
|
/// Secret scalar.
|
|
secret_key: SecretKey,
|
|
|
|
/// Derive a key pair from an optional secret seed.
|
|
///
|
|
/// As in RFC 8032, an Ed25519 public key is generated by hashing
|
|
/// the secret key using the SHA-512 function, and interpreting the
|
|
/// bit-swapped, clamped lower-half of the output as the secret scalar.
|
|
///
|
|
/// For this reason, an EdDSA secret key is commonly called a seed,
|
|
/// from which the actual secret is derived.
|
|
pub fn create(seed: ?[seed_length]u8) IdentityElementError!KeyPair {
|
|
const ss = seed orelse ss: {
|
|
var random_seed: [seed_length]u8 = undefined;
|
|
crypto.random.bytes(&random_seed);
|
|
break :ss random_seed;
|
|
};
|
|
var az: [Sha512.digest_length]u8 = undefined;
|
|
var h = Sha512.init(.{});
|
|
h.update(&ss);
|
|
h.final(&az);
|
|
const pk_p = Curve.basePoint.clampedMul(az[0..32].*) catch return error.IdentityElement;
|
|
const pk_bytes = pk_p.toBytes();
|
|
var sk_bytes: [SecretKey.encoded_length]u8 = undefined;
|
|
sk_bytes[0..ss.len].* = ss;
|
|
sk_bytes[seed_length..].* = pk_bytes;
|
|
return KeyPair{
|
|
.public_key = PublicKey.fromBytes(pk_bytes) catch unreachable,
|
|
.secret_key = try SecretKey.fromBytes(sk_bytes),
|
|
};
|
|
}
|
|
|
|
/// Create a KeyPair from a secret key.
|
|
/// Note that with EdDSA, storing the seed, and recovering the key pair
|
|
/// from it is recommended over storing the entire secret key.
|
|
/// The seed of an exiting key pair can be obtained with
|
|
/// `key_pair.secret_key.seed()`.
|
|
pub fn fromSecretKey(secret_key: SecretKey) (NonCanonicalError || EncodingError || IdentityElementError)!KeyPair {
|
|
// It is critical for EdDSA to use the correct public key.
|
|
// In order to enforce this, a SecretKey implicitly includes a copy of the public key.
|
|
// With runtime safety, we can still afford checking that the public key is correct.
|
|
if (std.debug.runtime_safety) {
|
|
const pk_p = try Curve.fromBytes(secret_key.publicKeyBytes());
|
|
const recomputed_kp = try create(secret_key.seed());
|
|
debug.assert(mem.eql(u8, &recomputed_kp.public_key.toBytes(), &pk_p.toBytes()));
|
|
}
|
|
return KeyPair{
|
|
.public_key = try PublicKey.fromBytes(secret_key.publicKeyBytes()),
|
|
.secret_key = secret_key,
|
|
};
|
|
}
|
|
|
|
/// Sign a message using the key pair.
|
|
/// The noise can be null in order to create deterministic signatures.
|
|
/// If deterministic signatures are not required, the noise should be randomly generated instead.
|
|
/// This helps defend against fault attacks.
|
|
pub fn sign(key_pair: KeyPair, msg: []const u8, noise: ?[noise_length]u8) (IdentityElementError || NonCanonicalError || KeyMismatchError || WeakPublicKeyError)!Signature {
|
|
if (!mem.eql(u8, &key_pair.secret_key.publicKeyBytes(), &key_pair.public_key.toBytes())) {
|
|
return error.KeyMismatch;
|
|
}
|
|
const scalar_and_prefix = key_pair.secret_key.scalarAndPrefix();
|
|
return key_pair.public_key.computeNonceAndSign(
|
|
msg,
|
|
noise,
|
|
scalar_and_prefix.scalar,
|
|
&scalar_and_prefix.prefix,
|
|
);
|
|
}
|
|
|
|
/// Create a Signer, that can be used for incremental signing.
|
|
/// Note that the signature is not deterministic.
|
|
/// The noise parameter, if set, should be something unique for each message,
|
|
/// such as a random nonce, or a counter.
|
|
pub fn signer(key_pair: KeyPair, noise: ?[noise_length]u8) (IdentityElementError || KeyMismatchError || NonCanonicalError || WeakPublicKeyError)!Signer {
|
|
if (!mem.eql(u8, &key_pair.secret_key.publicKeyBytes(), &key_pair.public_key.toBytes())) {
|
|
return error.KeyMismatch;
|
|
}
|
|
const scalar_and_prefix = key_pair.secret_key.scalarAndPrefix();
|
|
var h = Sha512.init(.{});
|
|
h.update(&scalar_and_prefix.prefix);
|
|
var noise2: [noise_length]u8 = undefined;
|
|
crypto.random.bytes(&noise2);
|
|
h.update(&noise2);
|
|
if (noise) |*z| {
|
|
h.update(z);
|
|
}
|
|
var nonce64: [64]u8 = undefined;
|
|
h.final(&nonce64);
|
|
const nonce = Curve.scalar.reduce64(nonce64);
|
|
|
|
return Signer.init(scalar_and_prefix.scalar, nonce, key_pair.public_key);
|
|
}
|
|
};
|
|
|
|
/// A (signature, message, public_key) tuple for batch verification
|
|
pub const BatchElement = struct {
|
|
sig: Signature,
|
|
msg: []const u8,
|
|
public_key: PublicKey,
|
|
};
|
|
|
|
/// Verify several signatures in a single operation, much faster than verifying signatures one-by-one
|
|
pub fn verifyBatch(comptime count: usize, signature_batch: [count]BatchElement) (SignatureVerificationError || IdentityElementError || WeakPublicKeyError || EncodingError || NonCanonicalError)!void {
|
|
var r_batch: [count]CompressedScalar = undefined;
|
|
var s_batch: [count]CompressedScalar = undefined;
|
|
var a_batch: [count]Curve = undefined;
|
|
var expected_r_batch: [count]Curve = undefined;
|
|
|
|
for (signature_batch, 0..) |signature, i| {
|
|
const r = signature.sig.r;
|
|
const s = signature.sig.s;
|
|
try Curve.scalar.rejectNonCanonical(s);
|
|
const a = try Curve.fromBytes(signature.public_key.bytes);
|
|
try a.rejectIdentity();
|
|
try Curve.rejectNonCanonical(r);
|
|
const expected_r = try Curve.fromBytes(r);
|
|
try expected_r.rejectIdentity();
|
|
expected_r_batch[i] = expected_r;
|
|
r_batch[i] = r;
|
|
s_batch[i] = s;
|
|
a_batch[i] = a;
|
|
}
|
|
|
|
var hram_batch: [count]Curve.scalar.CompressedScalar = undefined;
|
|
for (signature_batch, 0..) |signature, i| {
|
|
var h = Sha512.init(.{});
|
|
h.update(&r_batch[i]);
|
|
h.update(&signature.public_key.bytes);
|
|
h.update(signature.msg);
|
|
var hram64: [Sha512.digest_length]u8 = undefined;
|
|
h.final(&hram64);
|
|
hram_batch[i] = Curve.scalar.reduce64(hram64);
|
|
}
|
|
|
|
var z_batch: [count]Curve.scalar.CompressedScalar = undefined;
|
|
for (&z_batch) |*z| {
|
|
crypto.random.bytes(z[0..16]);
|
|
@memset(z[16..], 0);
|
|
}
|
|
|
|
var zs_sum = Curve.scalar.zero;
|
|
for (z_batch, 0..) |z, i| {
|
|
const zs = Curve.scalar.mul(z, s_batch[i]);
|
|
zs_sum = Curve.scalar.add(zs_sum, zs);
|
|
}
|
|
zs_sum = Curve.scalar.mul8(zs_sum);
|
|
|
|
var zhs: [count]Curve.scalar.CompressedScalar = undefined;
|
|
for (z_batch, 0..) |z, i| {
|
|
zhs[i] = Curve.scalar.mul(z, hram_batch[i]);
|
|
}
|
|
|
|
const zr = (try Curve.mulMulti(count, expected_r_batch, z_batch)).clearCofactor();
|
|
const zah = (try Curve.mulMulti(count, a_batch, zhs)).clearCofactor();
|
|
|
|
const zsb = try Curve.basePoint.mulPublic(zs_sum);
|
|
if (zr.add(zah).sub(zsb).rejectIdentity()) |_| {
|
|
return error.SignatureVerificationFailed;
|
|
} else |_| {}
|
|
}
|
|
|
|
/// Ed25519 signatures with key blinding.
|
|
pub const key_blinding = struct {
|
|
/// Length (in bytes) of a blinding seed.
|
|
pub const blind_seed_length = 32;
|
|
|
|
/// A blind secret key.
|
|
pub const BlindSecretKey = struct {
|
|
prefix: [64]u8,
|
|
blind_scalar: CompressedScalar,
|
|
blind_public_key: BlindPublicKey,
|
|
};
|
|
|
|
/// A blind public key.
|
|
pub const BlindPublicKey = struct {
|
|
/// Public key equivalent, that can used for signature verification.
|
|
key: PublicKey,
|
|
|
|
/// Recover a public key from a blind version of it.
|
|
pub fn unblind(blind_public_key: BlindPublicKey, blind_seed: [blind_seed_length]u8, ctx: []const u8) (IdentityElementError || NonCanonicalError || EncodingError || WeakPublicKeyError)!PublicKey {
|
|
const blind_h = blindCtx(blind_seed, ctx);
|
|
const inv_blind_factor = Scalar.fromBytes(blind_h[0..32].*).invert().toBytes();
|
|
const pk_p = try (try Curve.fromBytes(blind_public_key.key.bytes)).mul(inv_blind_factor);
|
|
return PublicKey.fromBytes(pk_p.toBytes());
|
|
}
|
|
};
|
|
|
|
/// A blind key pair.
|
|
pub const BlindKeyPair = struct {
|
|
blind_public_key: BlindPublicKey,
|
|
blind_secret_key: BlindSecretKey,
|
|
|
|
/// Create an blind key pair from an existing key pair, a blinding seed and a context.
|
|
pub fn init(key_pair: Ed25519.KeyPair, blind_seed: [blind_seed_length]u8, ctx: []const u8) (NonCanonicalError || IdentityElementError)!BlindKeyPair {
|
|
var h: [Sha512.digest_length]u8 = undefined;
|
|
Sha512.hash(&key_pair.secret_key.seed(), &h, .{});
|
|
Curve.scalar.clamp(h[0..32]);
|
|
const scalar = Curve.scalar.reduce(h[0..32].*);
|
|
|
|
const blind_h = blindCtx(blind_seed, ctx);
|
|
const blind_factor = Curve.scalar.reduce(blind_h[0..32].*);
|
|
|
|
const blind_scalar = Curve.scalar.mul(scalar, blind_factor);
|
|
const blind_public_key = BlindPublicKey{
|
|
.key = try PublicKey.fromBytes((Curve.basePoint.mul(blind_scalar) catch return error.IdentityElement).toBytes()),
|
|
};
|
|
|
|
var prefix: [64]u8 = undefined;
|
|
prefix[0..32].* = h[32..64].*;
|
|
prefix[32..64].* = blind_h[32..64].*;
|
|
|
|
const blind_secret_key = BlindSecretKey{
|
|
.prefix = prefix,
|
|
.blind_scalar = blind_scalar,
|
|
.blind_public_key = blind_public_key,
|
|
};
|
|
return BlindKeyPair{
|
|
.blind_public_key = blind_public_key,
|
|
.blind_secret_key = blind_secret_key,
|
|
};
|
|
}
|
|
|
|
/// Sign a message using a blind key pair, and optional random noise.
|
|
/// Having noise creates non-standard, non-deterministic signatures,
|
|
/// but has been proven to increase resilience against fault attacks.
|
|
pub fn sign(key_pair: BlindKeyPair, msg: []const u8, noise: ?[noise_length]u8) (IdentityElementError || KeyMismatchError || NonCanonicalError || WeakPublicKeyError)!Signature {
|
|
const scalar = key_pair.blind_secret_key.blind_scalar;
|
|
const prefix = key_pair.blind_secret_key.prefix;
|
|
|
|
return (try PublicKey.fromBytes(key_pair.blind_public_key.key.bytes))
|
|
.computeNonceAndSign(msg, noise, scalar, &prefix);
|
|
}
|
|
};
|
|
|
|
/// Compute a blind context from a blinding seed and a context.
|
|
fn blindCtx(blind_seed: [blind_seed_length]u8, ctx: []const u8) [Sha512.digest_length]u8 {
|
|
var blind_h: [Sha512.digest_length]u8 = undefined;
|
|
var hx = Sha512.init(.{});
|
|
hx.update(&blind_seed);
|
|
hx.update(&[1]u8{0});
|
|
hx.update(ctx);
|
|
hx.final(&blind_h);
|
|
return blind_h;
|
|
}
|
|
};
|
|
};
|
|
|
|
test "key pair creation" {
|
|
var seed: [32]u8 = undefined;
|
|
_ = try fmt.hexToBytes(seed[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
|
|
const key_pair = try Ed25519.KeyPair.create(seed);
|
|
var buf: [256]u8 = undefined;
|
|
try std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{s}", .{std.fmt.fmtSliceHexUpper(&key_pair.secret_key.toBytes())}), "8052030376D47112BE7F73ED7A019293DD12AD910B654455798B4667D73DE1662D6F7455D97B4A3A10D7293909D1A4F2058CB9A370E43FA8154BB280DB839083");
|
|
try std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{s}", .{std.fmt.fmtSliceHexUpper(&key_pair.public_key.toBytes())}), "2D6F7455D97B4A3A10D7293909D1A4F2058CB9A370E43FA8154BB280DB839083");
|
|
}
|
|
|
|
test "signature" {
|
|
var seed: [32]u8 = undefined;
|
|
_ = try fmt.hexToBytes(seed[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
|
|
const key_pair = try Ed25519.KeyPair.create(seed);
|
|
|
|
const sig = try key_pair.sign("test", null);
|
|
var buf: [128]u8 = undefined;
|
|
try std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{s}", .{std.fmt.fmtSliceHexUpper(&sig.toBytes())}), "10A442B4A80CC4225B154F43BEF28D2472CA80221951262EB8E0DF9091575E2687CC486E77263C3418C757522D54F84B0359236ABBBD4ACD20DC297FDCA66808");
|
|
try sig.verify("test", key_pair.public_key);
|
|
try std.testing.expectError(error.SignatureVerificationFailed, sig.verify("TEST", key_pair.public_key));
|
|
}
|
|
|
|
test "batch verification" {
|
|
var i: usize = 0;
|
|
while (i < 100) : (i += 1) {
|
|
const key_pair = try Ed25519.KeyPair.create(null);
|
|
var msg1: [32]u8 = undefined;
|
|
var msg2: [32]u8 = undefined;
|
|
crypto.random.bytes(&msg1);
|
|
crypto.random.bytes(&msg2);
|
|
const sig1 = try key_pair.sign(&msg1, null);
|
|
const sig2 = try key_pair.sign(&msg2, null);
|
|
var signature_batch = [_]Ed25519.BatchElement{
|
|
Ed25519.BatchElement{
|
|
.sig = sig1,
|
|
.msg = &msg1,
|
|
.public_key = key_pair.public_key,
|
|
},
|
|
Ed25519.BatchElement{
|
|
.sig = sig2,
|
|
.msg = &msg2,
|
|
.public_key = key_pair.public_key,
|
|
},
|
|
};
|
|
try Ed25519.verifyBatch(2, signature_batch);
|
|
|
|
signature_batch[1].sig = sig1;
|
|
try std.testing.expectError(error.SignatureVerificationFailed, Ed25519.verifyBatch(signature_batch.len, signature_batch));
|
|
}
|
|
}
|
|
|
|
test "test vectors" {
|
|
const Vec = struct {
|
|
msg_hex: *const [64:0]u8,
|
|
public_key_hex: *const [64:0]u8,
|
|
sig_hex: *const [128:0]u8,
|
|
expected: ?anyerror,
|
|
};
|
|
|
|
const entries = [_]Vec{
|
|
Vec{
|
|
.msg_hex = "8c93255d71dcab10e8f379c26200f3c7bd5f09d9bc3068d3ef4edeb4853022b6",
|
|
.public_key_hex = "c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa",
|
|
.sig_hex = "c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac037a0000000000000000000000000000000000000000000000000000000000000000",
|
|
.expected = error.WeakPublicKey, // 0
|
|
},
|
|
Vec{
|
|
.msg_hex = "9bd9f44f4dcc75bd531b56b2cd280b0bb38fc1cd6d1230e14861d861de092e79",
|
|
.public_key_hex = "c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa",
|
|
.sig_hex = "f7badec5b8abeaf699583992219b7b223f1df3fbbea919844e3f7c554a43dd43a5bb704786be79fc476f91d3f3f89b03984d8068dcf1bb7dfc6637b45450ac04",
|
|
.expected = error.WeakPublicKey, // 1
|
|
},
|
|
Vec{
|
|
.msg_hex = "aebf3f2601a0c8c5d39cc7d8911642f740b78168218da8471772b35f9d35b9ab",
|
|
.public_key_hex = "f7badec5b8abeaf699583992219b7b223f1df3fbbea919844e3f7c554a43dd43",
|
|
.sig_hex = "c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa8c4bd45aecaca5b24fb97bc10ac27ac8751a7dfe1baff8b953ec9f5833ca260e",
|
|
.expected = null, // 2 - small order R is acceptable
|
|
},
|
|
Vec{
|
|
.msg_hex = "9bd9f44f4dcc75bd531b56b2cd280b0bb38fc1cd6d1230e14861d861de092e79",
|
|
.public_key_hex = "cdb267ce40c5cd45306fa5d2f29731459387dbf9eb933b7bd5aed9a765b88d4d",
|
|
.sig_hex = "9046a64750444938de19f227bb80485e92b83fdb4b6506c160484c016cc1852f87909e14428a7a1d62e9f22f3d3ad7802db02eb2e688b6c52fcd6648a98bd009",
|
|
.expected = null, // 3 - mixed orders
|
|
},
|
|
Vec{
|
|
.msg_hex = "e47d62c63f830dc7a6851a0b1f33ae4bb2f507fb6cffec4011eaccd55b53f56c",
|
|
.public_key_hex = "cdb267ce40c5cd45306fa5d2f29731459387dbf9eb933b7bd5aed9a765b88d4d",
|
|
.sig_hex = "160a1cb0dc9c0258cd0a7d23e94d8fa878bcb1925f2c64246b2dee1796bed5125ec6bc982a269b723e0668e540911a9a6a58921d6925e434ab10aa7940551a09",
|
|
.expected = null, // 4 - cofactored verification
|
|
},
|
|
Vec{
|
|
.msg_hex = "e47d62c63f830dc7a6851a0b1f33ae4bb2f507fb6cffec4011eaccd55b53f56c",
|
|
.public_key_hex = "cdb267ce40c5cd45306fa5d2f29731459387dbf9eb933b7bd5aed9a765b88d4d",
|
|
.sig_hex = "21122a84e0b5fca4052f5b1235c80a537878b38f3142356b2c2384ebad4668b7e40bc836dac0f71076f9abe3a53f9c03c1ceeeddb658d0030494ace586687405",
|
|
.expected = null, // 5 - cofactored verification
|
|
},
|
|
Vec{
|
|
.msg_hex = "85e241a07d148b41e47d62c63f830dc7a6851a0b1f33ae4bb2f507fb6cffec40",
|
|
.public_key_hex = "442aad9f089ad9e14647b1ef9099a1ff4798d78589e66f28eca69c11f582a623",
|
|
.sig_hex = "e96f66be976d82e60150baecff9906684aebb1ef181f67a7189ac78ea23b6c0e547f7690a0e2ddcd04d87dbc3490dc19b3b3052f7ff0538cb68afb369ba3a514",
|
|
.expected = error.NonCanonical, // 6 - S > L
|
|
},
|
|
Vec{
|
|
.msg_hex = "85e241a07d148b41e47d62c63f830dc7a6851a0b1f33ae4bb2f507fb6cffec40",
|
|
.public_key_hex = "442aad9f089ad9e14647b1ef9099a1ff4798d78589e66f28eca69c11f582a623",
|
|
.sig_hex = "8ce5b96c8f26d0ab6c47958c9e68b937104cd36e13c33566acd2fe8d38aa19427e71f98a4734e74f2f13f06f97c20d58cc3f54b8bd0d272f42b695dd7e89a8c2",
|
|
.expected = error.NonCanonical, // 7 - S >> L
|
|
},
|
|
Vec{
|
|
.msg_hex = "9bedc267423725d473888631ebf45988bad3db83851ee85c85e241a07d148b41",
|
|
.public_key_hex = "f7badec5b8abeaf699583992219b7b223f1df3fbbea919844e3f7c554a43dd43",
|
|
.sig_hex = "ecffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff03be9678ac102edcd92b0210bb34d7428d12ffc5df5f37e359941266a4e35f0f",
|
|
.expected = error.IdentityElement, // 8 - non-canonical R
|
|
},
|
|
Vec{
|
|
.msg_hex = "9bedc267423725d473888631ebf45988bad3db83851ee85c85e241a07d148b41",
|
|
.public_key_hex = "f7badec5b8abeaf699583992219b7b223f1df3fbbea919844e3f7c554a43dd43",
|
|
.sig_hex = "ecffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffca8c5b64cd208982aa38d4936621a4775aa233aa0505711d8fdcfdaa943d4908",
|
|
.expected = error.IdentityElement, // 9 - non-canonical R
|
|
},
|
|
Vec{
|
|
.msg_hex = "e96b7021eb39c1a163b6da4e3093dcd3f21387da4cc4572be588fafae23c155b",
|
|
.public_key_hex = "ecffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
|
|
.sig_hex = "a9d55260f765261eb9b84e106f665e00b867287a761990d7135963ee0a7d59dca5bb704786be79fc476f91d3f3f89b03984d8068dcf1bb7dfc6637b45450ac04",
|
|
.expected = error.IdentityElement, // 10 - small-order A
|
|
},
|
|
Vec{
|
|
.msg_hex = "39a591f5321bbe07fd5a23dc2f39d025d74526615746727ceefd6e82ae65c06f",
|
|
.public_key_hex = "ecffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
|
|
.sig_hex = "a9d55260f765261eb9b84e106f665e00b867287a761990d7135963ee0a7d59dca5bb704786be79fc476f91d3f3f89b03984d8068dcf1bb7dfc6637b45450ac04",
|
|
.expected = error.IdentityElement, // 11 - small-order A
|
|
},
|
|
};
|
|
for (entries) |entry| {
|
|
var msg: [64 / 2]u8 = undefined;
|
|
_ = try fmt.hexToBytes(&msg, entry.msg_hex);
|
|
var public_key_bytes: [32]u8 = undefined;
|
|
_ = try fmt.hexToBytes(&public_key_bytes, entry.public_key_hex);
|
|
const public_key = Ed25519.PublicKey.fromBytes(public_key_bytes) catch |err| {
|
|
try std.testing.expectEqual(entry.expected.?, err);
|
|
continue;
|
|
};
|
|
var sig_bytes: [64]u8 = undefined;
|
|
_ = try fmt.hexToBytes(&sig_bytes, entry.sig_hex);
|
|
const sig = Ed25519.Signature.fromBytes(sig_bytes);
|
|
if (entry.expected) |error_type| {
|
|
try std.testing.expectError(error_type, sig.verify(&msg, public_key));
|
|
} else {
|
|
try sig.verify(&msg, public_key);
|
|
}
|
|
}
|
|
}
|
|
|
|
test "with blind keys" {
|
|
const BlindKeyPair = Ed25519.key_blinding.BlindKeyPair;
|
|
|
|
// Create a standard Ed25519 key pair
|
|
const kp = try Ed25519.KeyPair.create(null);
|
|
|
|
// Create a random blinding seed
|
|
var blind: [32]u8 = undefined;
|
|
crypto.random.bytes(&blind);
|
|
|
|
// Blind the key pair
|
|
const blind_kp = try BlindKeyPair.init(kp, blind, "ctx");
|
|
|
|
// Sign a message and check that it can be verified with the blind public key
|
|
const msg = "test";
|
|
const sig = try blind_kp.sign(msg, null);
|
|
try sig.verify(msg, blind_kp.blind_public_key.key);
|
|
|
|
// Unblind the public key
|
|
const pk = try blind_kp.blind_public_key.unblind(blind, "ctx");
|
|
try std.testing.expectEqualSlices(u8, &pk.toBytes(), &kp.public_key.toBytes());
|
|
}
|
|
|
|
test "signatures with streaming" {
|
|
const kp = try Ed25519.KeyPair.create(null);
|
|
|
|
var signer = try kp.signer(null);
|
|
signer.update("mes");
|
|
signer.update("sage");
|
|
const sig = signer.finalize();
|
|
|
|
try sig.verify("message", kp.public_key);
|
|
|
|
var verifier = try sig.verifier(kp.public_key);
|
|
verifier.update("mess");
|
|
verifier.update("age");
|
|
try verifier.verify();
|
|
}
|
|
|
|
test "key pair from secret key" {
|
|
const kp = try Ed25519.KeyPair.create(null);
|
|
const kp2 = try Ed25519.KeyPair.fromSecretKey(kp.secret_key);
|
|
try std.testing.expectEqualSlices(u8, &kp.secret_key.toBytes(), &kp2.secret_key.toBytes());
|
|
try std.testing.expectEqualSlices(u8, &kp.public_key.toBytes(), &kp2.public_key.toBytes());
|
|
}
|