zig/lib/std/hash/benchmark.zig

502 lines
16 KiB
Zig

// zig run -O ReleaseFast --zig-lib-dir ../.. benchmark.zig
const std = @import("std");
const builtin = @import("builtin");
const time = std.time;
const Timer = time.Timer;
const hash = std.hash;
const KiB = 1024;
const MiB = 1024 * KiB;
const GiB = 1024 * MiB;
var prng = std.Random.DefaultPrng.init(0);
const random = prng.random();
const Hash = struct {
ty: type,
name: []const u8,
has_iterative_api: bool = true,
has_crypto_api: bool = false,
has_anytype_api: ?[]const comptime_int = null,
init_u8s: ?[]const u8 = null,
init_u64: ?u64 = null,
};
const hashes = [_]Hash{
Hash{
.ty = hash.XxHash3,
.name = "xxh3",
.init_u64 = 0,
.has_anytype_api = @as([]const comptime_int, &[_]comptime_int{ 8, 16, 32, 48, 64, 80, 96, 112, 128 }),
},
Hash{
.ty = hash.XxHash64,
.name = "xxhash64",
.init_u64 = 0,
.has_anytype_api = @as([]const comptime_int, &[_]comptime_int{ 8, 16, 32, 48, 64, 80, 96, 112, 128 }),
},
Hash{
.ty = hash.XxHash32,
.name = "xxhash32",
.init_u64 = 0,
.has_anytype_api = @as([]const comptime_int, &[_]comptime_int{ 8, 16, 32, 48, 64, 80, 96, 112, 128 }),
},
Hash{
.ty = hash.Wyhash,
.name = "wyhash",
.init_u64 = 0,
},
Hash{
.ty = hash.Fnv1a_64,
.name = "fnv1a",
},
Hash{
.ty = hash.Adler32,
.name = "adler32",
},
Hash{
.ty = hash.crc.Crc32WithPoly(.IEEE),
.name = "crc32-slicing-by-8",
},
Hash{
.ty = hash.crc.Crc32SmallWithPoly(.IEEE),
.name = "crc32-half-byte-lookup",
},
Hash{
.ty = hash.CityHash32,
.name = "cityhash-32",
.has_iterative_api = false,
},
Hash{
.ty = hash.CityHash64,
.name = "cityhash-64",
.has_iterative_api = false,
},
Hash{
.ty = hash.Murmur2_32,
.name = "murmur2-32",
.has_iterative_api = false,
},
Hash{
.ty = hash.Murmur2_64,
.name = "murmur2-64",
.has_iterative_api = false,
},
Hash{
.ty = hash.Murmur3_32,
.name = "murmur3-32",
.has_iterative_api = false,
},
Hash{
.ty = hash.SipHash64(1, 3),
.name = "siphash64",
.has_crypto_api = true,
.init_u8s = &[_]u8{0} ** 16,
},
Hash{
.ty = hash.SipHash128(1, 3),
.name = "siphash128",
.has_crypto_api = true,
.init_u8s = &[_]u8{0} ** 16,
},
};
const Result = struct {
hash: u64,
throughput: u64,
};
const block_size: usize = 8 * 8192;
pub fn benchmarkHash(comptime H: anytype, bytes: usize, allocator: std.mem.Allocator) !Result {
var blocks = try allocator.alloc(u8, bytes);
defer allocator.free(blocks);
random.bytes(blocks);
const block_count = bytes / block_size;
var h = blk: {
if (H.init_u8s) |init| {
break :blk H.ty.init(init[0..H.ty.key_length]);
}
if (H.init_u64) |init| {
break :blk H.ty.init(init);
}
break :blk H.ty.init();
};
var timer = try Timer.start();
for (0..block_count) |i| {
h.update(blocks[i * block_size ..][0..block_size]);
}
const final = if (H.has_crypto_api) @as(u64, @truncate(h.finalInt())) else h.final();
std.mem.doNotOptimizeAway(final);
const elapsed_ns = timer.read();
const elapsed_s = @as(f64, @floatFromInt(elapsed_ns)) / time.ns_per_s;
const size_float: f64 = @floatFromInt(block_size * block_count);
const throughput: u64 = @intFromFloat(size_float / elapsed_s);
return Result{
.hash = final,
.throughput = throughput,
};
}
pub fn benchmarkHashSmallKeys(comptime H: anytype, key_size: usize, bytes: usize, allocator: std.mem.Allocator) !Result {
var blocks = try allocator.alloc(u8, bytes);
defer allocator.free(blocks);
random.bytes(blocks);
const key_count = bytes / key_size;
var timer = try Timer.start();
var sum: u64 = 0;
for (0..key_count) |i| {
const small_key = blocks[i * key_size ..][0..key_size];
const final = blk: {
if (H.init_u8s) |init| {
if (H.has_crypto_api) {
break :blk @as(u64, @truncate(H.ty.toInt(small_key, init[0..H.ty.key_length])));
} else {
break :blk H.ty.hash(init, small_key);
}
}
if (H.init_u64) |init| {
break :blk H.ty.hash(init, small_key);
}
break :blk H.ty.hash(small_key);
};
sum +%= final;
}
const elapsed_ns = timer.read();
const elapsed_s = @as(f64, @floatFromInt(elapsed_ns)) / time.ns_per_s;
const size_float: f64 = @floatFromInt(key_count * key_size);
const throughput: u64 = @intFromFloat(size_float / elapsed_s);
std.mem.doNotOptimizeAway(sum);
return Result{
.hash = sum,
.throughput = throughput,
};
}
// the array and array pointer benchmarks for xxhash are very sensitive to in-lining,
// if you see strange performance changes consider using `.never_inline` or `.always_inline`
// to ensure the changes are not only due to the optimiser inlining the benchmark differently
pub fn benchmarkHashSmallKeysArrayPtr(
comptime H: anytype,
comptime key_size: usize,
bytes: usize,
allocator: std.mem.Allocator,
) !Result {
var blocks = try allocator.alloc(u8, bytes);
defer allocator.free(blocks);
random.bytes(blocks);
const key_count = bytes / key_size;
var timer = try Timer.start();
var sum: u64 = 0;
for (0..key_count) |i| {
const small_key = blocks[i * key_size ..][0..key_size];
const final: u64 = blk: {
if (H.init_u8s) |init| {
if (H.has_crypto_api) {
break :blk @truncate(H.ty.toInt(small_key, init[0..H.ty.key_length]));
} else {
break :blk H.ty.hash(init, small_key);
}
}
if (H.init_u64) |init| {
break :blk H.ty.hash(init, small_key);
}
break :blk H.ty.hash(small_key);
};
sum +%= final;
}
const elapsed_ns = timer.read();
const elapsed_s = @as(f64, @floatFromInt(elapsed_ns)) / time.ns_per_s;
const throughput: u64 = @intFromFloat(@as(f64, @floatFromInt(bytes)) / elapsed_s);
std.mem.doNotOptimizeAway(sum);
return Result{
.hash = sum,
.throughput = throughput,
};
}
// the array and array pointer benchmarks for xxhash are very sensitive to in-lining,
// if you see strange performance changes consider using `.never_inline` or `.always_inline`
// to ensure the changes are not only due to the optimiser inlining the benchmark differently
pub fn benchmarkHashSmallKeysArray(
comptime H: anytype,
comptime key_size: usize,
bytes: usize,
allocator: std.mem.Allocator,
) !Result {
var blocks = try allocator.alloc(u8, bytes);
defer allocator.free(blocks);
random.bytes(blocks);
const key_count = bytes / key_size;
var i: usize = 0;
var timer = try Timer.start();
var sum: u64 = 0;
while (i < key_count) : (i += 1) {
const small_key = blocks[i * key_size ..][0..key_size];
const final: u64 = blk: {
if (H.init_u8s) |init| {
if (H.has_crypto_api) {
break :blk @truncate(H.ty.toInt(small_key, init[0..H.ty.key_length]));
} else {
break :blk H.ty.hash(init, small_key.*);
}
}
if (H.init_u64) |init| {
break :blk H.ty.hash(init, small_key.*);
}
break :blk H.ty.hash(small_key.*);
};
sum +%= final;
}
const elapsed_ns = timer.read();
const elapsed_s = @as(f64, @floatFromInt(elapsed_ns)) / time.ns_per_s;
const throughput: u64 = @intFromFloat(@as(f64, @floatFromInt(bytes)) / elapsed_s);
std.mem.doNotOptimizeAway(sum);
return Result{
.hash = sum,
.throughput = throughput,
};
}
pub fn benchmarkHashSmallApi(comptime H: anytype, key_size: usize, bytes: usize, allocator: std.mem.Allocator) !Result {
var blocks = try allocator.alloc(u8, bytes);
defer allocator.free(blocks);
random.bytes(blocks);
const key_count = bytes / key_size;
var timer = try Timer.start();
var sum: u64 = 0;
for (0..key_count) |i| {
const small_key = blocks[i * key_size ..][0..key_size];
const final: u64 = blk: {
if (H.init_u8s) |init| {
if (H.has_crypto_api) {
break :blk @truncate(H.ty.toInt(small_key, init[0..H.ty.key_length]));
} else {
break :blk H.ty.hashSmall(init, small_key);
}
}
if (H.init_u64) |init| {
break :blk H.ty.hashSmall(init, small_key);
}
break :blk H.ty.hashSmall(small_key);
};
sum +%= final;
}
const elapsed_ns = timer.read();
const elapsed_s = @as(f64, @floatFromInt(elapsed_ns)) / time.ns_per_s;
const throughput: u64 = @intFromFloat(@as(f64, @floatFromInt(bytes)) / elapsed_s);
std.mem.doNotOptimizeAway(sum);
return Result{
.throughput = throughput,
.hash = sum,
};
}
fn usage() void {
std.debug.print(
\\throughput_test [options]
\\
\\Options:
\\ --filter [test-name]
\\ --seed [int]
\\ --count [int]
\\ --key-size [int]
\\ --iterative-only
\\ --help
\\
, .{});
}
fn mode(comptime x: comptime_int) comptime_int {
return if (builtin.mode == .Debug) x / 64 else x;
}
pub fn main() !void {
const stdout = std.io.getStdOut().writer();
var buffer: [1024]u8 = undefined;
var fixed = std.heap.FixedBufferAllocator.init(buffer[0..]);
const args = try std.process.argsAlloc(fixed.allocator());
var filter: ?[]u8 = "";
var count: usize = mode(128 * MiB);
var key_size: ?usize = null;
var seed: u32 = 0;
var test_iterative_only = false;
var test_arrays = false;
const default_small_key_size = 32;
var i: usize = 1;
while (i < args.len) : (i += 1) {
if (std.mem.eql(u8, args[i], "--mode")) {
try stdout.print("{}\n", .{builtin.mode});
return;
} else if (std.mem.eql(u8, args[i], "--seed")) {
i += 1;
if (i == args.len) {
usage();
std.os.exit(1);
}
seed = try std.fmt.parseUnsigned(u32, args[i], 10);
// we seed later
} else if (std.mem.eql(u8, args[i], "--filter")) {
i += 1;
if (i == args.len) {
usage();
std.os.exit(1);
}
filter = args[i];
} else if (std.mem.eql(u8, args[i], "--count")) {
i += 1;
if (i == args.len) {
usage();
std.os.exit(1);
}
const c = try std.fmt.parseUnsigned(usize, args[i], 10);
count = c * MiB;
} else if (std.mem.eql(u8, args[i], "--key-size")) {
i += 1;
if (i == args.len) {
usage();
std.os.exit(1);
}
key_size = try std.fmt.parseUnsigned(usize, args[i], 10);
if (key_size.? > block_size) {
try stdout.print("key_size cannot exceed block size of {}\n", .{block_size});
std.os.exit(1);
}
} else if (std.mem.eql(u8, args[i], "--iterative-only")) {
test_iterative_only = true;
} else if (std.mem.eql(u8, args[i], "--include-array")) {
test_arrays = true;
} else if (std.mem.eql(u8, args[i], "--help")) {
usage();
return;
} else {
usage();
std.os.exit(1);
}
}
var gpa = std.heap.GeneralPurposeAllocator(.{}){};
defer std.testing.expect(gpa.deinit() == .ok) catch @panic("leak");
const allocator = gpa.allocator();
inline for (hashes) |H| {
if (filter == null or std.mem.indexOf(u8, H.name, filter.?) != null) hash: {
if (!test_iterative_only or H.has_iterative_api) {
try stdout.print("{s}\n", .{H.name});
// Always reseed prior to every call so we are hashing the same buffer contents.
// This allows easier comparison between different implementations.
if (H.has_iterative_api) {
prng.seed(seed);
const result = try benchmarkHash(H, count, allocator);
try stdout.print(" iterative: {:5} MiB/s [{x:0<16}]\n", .{ result.throughput / (1 * MiB), result.hash });
}
if (!test_iterative_only) {
if (key_size) |size| {
prng.seed(seed);
const result_small = try benchmarkHashSmallKeys(H, size, count, allocator);
try stdout.print(" small keys: {:3}B {:5} MiB/s {} Hashes/s [{x:0<16}]\n", .{
size,
result_small.throughput / (1 * MiB),
result_small.throughput / size,
result_small.hash,
});
if (!test_arrays) break :hash;
if (H.has_anytype_api) |sizes| {
inline for (sizes) |exact_size| {
if (size == exact_size) {
prng.seed(seed);
const result_array = try benchmarkHashSmallKeysArray(H, exact_size, count, allocator);
prng.seed(seed);
const result_ptr = try benchmarkHashSmallKeysArrayPtr(H, exact_size, count, allocator);
try stdout.print(" array: {:5} MiB/s [{x:0<16}]\n", .{
result_array.throughput / (1 * MiB),
result_array.hash,
});
try stdout.print(" array ptr: {:5} MiB/s [{x:0<16}]\n", .{
result_ptr.throughput / (1 * MiB),
result_ptr.hash,
});
}
}
}
} else {
prng.seed(seed);
const result_small = try benchmarkHashSmallKeys(H, default_small_key_size, count, allocator);
try stdout.print(" small keys: {:3}B {:5} MiB/s {} Hashes/s [{x:0<16}]\n", .{
default_small_key_size,
result_small.throughput / (1 * MiB),
result_small.throughput / default_small_key_size,
result_small.hash,
});
if (!test_arrays) break :hash;
if (H.has_anytype_api) |sizes| {
try stdout.print(" array:\n", .{});
inline for (sizes) |exact_size| {
prng.seed(seed);
const result = try benchmarkHashSmallKeysArray(H, exact_size, count, allocator);
try stdout.print(" {d: >3}B {:5} MiB/s [{x:0<16}]\n", .{
exact_size,
result.throughput / (1 * MiB),
result.hash,
});
}
try stdout.print(" array ptr: \n", .{});
inline for (sizes) |exact_size| {
prng.seed(seed);
const result = try benchmarkHashSmallKeysArrayPtr(H, exact_size, count, allocator);
try stdout.print(" {d: >3}B {:5} MiB/s [{x:0<16}]\n", .{
exact_size,
result.throughput / (1 * MiB),
result.hash,
});
}
}
}
}
}
}
}
}