zig/src/Zcu/PerThread.zig
Alex Rønne Petersen 9ab7eec23e represent Mac Catalyst as aarch64-maccatalyst-none rather than aarch64-ios-macabi
Apple's own headers and tbd files prefer to think of Mac Catalyst as a distinct
OS target. Earlier, when DriverKit support was added to LLVM, it was represented
a distinct OS. So why Apple decided to only represent Mac Catalyst as an ABI in
the target triple is beyond me. But this isn't the first time they've ignored
established target triple norms (see: armv7k and aarch64_32) and it probably
won't be the last.

While doing this, I also audited all Darwin OS prongs throughout the codebase
and made sure they cover all the tags.
2025-11-14 11:33:35 +01:00

4548 lines
182 KiB
Zig

//! This type provides a wrapper around a `*Zcu` for uses which require a thread `Id`.
//! Any operation which mutates `InternPool` state lives here rather than on `Zcu`.
const Air = @import("../Air.zig");
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const Ast = std.zig.Ast;
const AstGen = std.zig.AstGen;
const BigIntConst = std.math.big.int.Const;
const BigIntMutable = std.math.big.int.Mutable;
const Builtin = @import("../Builtin.zig");
const build_options = @import("build_options");
const builtin = @import("builtin");
const Cache = std.Build.Cache;
const dev = @import("../dev.zig");
const InternPool = @import("../InternPool.zig");
const AnalUnit = InternPool.AnalUnit;
const introspect = @import("../introspect.zig");
const log = std.log.scoped(.zcu);
const Module = @import("../Package.zig").Module;
const Sema = @import("../Sema.zig");
const std = @import("std");
const mem = std.mem;
const target_util = @import("../target.zig");
const trace = @import("../tracy.zig").trace;
const Type = @import("../Type.zig");
const Value = @import("../Value.zig");
const Zcu = @import("../Zcu.zig");
const Compilation = @import("../Compilation.zig");
const codegen = @import("../codegen.zig");
const crash_report = @import("../crash_report.zig");
const Zir = std.zig.Zir;
const Zoir = std.zig.Zoir;
const ZonGen = std.zig.ZonGen;
zcu: *Zcu,
/// Dense, per-thread unique index.
tid: Id,
pub const IdBacking = u7;
pub const Id = if (InternPool.single_threaded) enum { main } else enum(IdBacking) { main, _ };
pub fn activate(zcu: *Zcu, tid: Id) Zcu.PerThread {
zcu.intern_pool.activate();
return .{ .zcu = zcu, .tid = tid };
}
pub fn deactivate(pt: Zcu.PerThread) void {
pt.zcu.intern_pool.deactivate();
}
fn deinitFile(pt: Zcu.PerThread, file_index: Zcu.File.Index) void {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const file = zcu.fileByIndex(file_index);
log.debug("deinit File {f}", .{file.path.fmt(zcu.comp)});
file.path.deinit(gpa);
file.unload(gpa);
if (file.prev_zir) |prev_zir| {
prev_zir.deinit(gpa);
gpa.destroy(prev_zir);
}
file.* = undefined;
}
pub fn destroyFile(pt: Zcu.PerThread, file_index: Zcu.File.Index) void {
const gpa = pt.zcu.gpa;
const file = pt.zcu.fileByIndex(file_index);
pt.deinitFile(file_index);
gpa.destroy(file);
}
/// Ensures that `file` has up-to-date ZIR. If not, loads the ZIR cache or runs
/// AstGen as needed. Also updates `file.status`. Does not assume that `file.mod`
/// is populated. Does not return `error.AnalysisFail` on AstGen failures.
pub fn updateFile(
pt: Zcu.PerThread,
file_index: Zcu.File.Index,
file: *Zcu.File,
) !void {
dev.check(.ast_gen);
const tracy = trace(@src());
defer tracy.end();
const zcu = pt.zcu;
const comp = zcu.comp;
const gpa = zcu.gpa;
const io = comp.io;
// In any case we need to examine the stat of the file to determine the course of action.
var source_file = f: {
const dir, const sub_path = file.path.openInfo(comp.dirs);
break :f try dir.openFile(sub_path, .{});
};
defer source_file.close();
const stat = try source_file.stat();
const want_local_cache = switch (file.path.root) {
.none, .local_cache => true,
.global_cache, .zig_lib => false,
};
const hex_digest: Cache.HexDigest = d: {
var h: Cache.HashHelper = .{};
// As well as the file path, we also include the compiler version in case of backwards-incompatible ZIR changes.
file.path.addToHasher(&h.hasher);
h.addBytes(build_options.version);
h.add(builtin.zig_backend);
break :d h.final();
};
const cache_directory = if (want_local_cache) zcu.local_zir_cache else zcu.global_zir_cache;
const zir_dir = cache_directory.handle;
// Determine whether we need to reload the file from disk and redo parsing and AstGen.
var lock: std.fs.File.Lock = switch (file.status) {
.never_loaded, .retryable_failure => lock: {
// First, load the cached ZIR code, if any.
log.debug("AstGen checking cache: {f} (local={}, digest={s})", .{
file.path.fmt(comp), want_local_cache, &hex_digest,
});
break :lock .shared;
},
.astgen_failure, .success => lock: {
const unchanged_metadata =
stat.size == file.stat.size and
stat.mtime.nanoseconds == file.stat.mtime.nanoseconds and
stat.inode == file.stat.inode;
if (unchanged_metadata) {
log.debug("unmodified metadata of file: {f}", .{file.path.fmt(comp)});
return;
}
log.debug("metadata changed: {f}", .{file.path.fmt(comp)});
break :lock .exclusive;
},
};
// The old compile error, if any, is no longer relevant.
pt.lockAndClearFileCompileError(file_index, file);
// If `zir` is not null, and `prev_zir` is null, then `TrackedInst`s are associated with `zir`.
// We need to keep it around!
// As an optimization, also check `loweringFailed`; if true, but `prev_zir == null`, then this
// file has never passed AstGen, so we actually need not cache the old ZIR.
if (file.zir != null and file.prev_zir == null and !file.zir.?.loweringFailed()) {
assert(file.prev_zir == null);
const prev_zir_ptr = try gpa.create(Zir);
file.prev_zir = prev_zir_ptr;
prev_zir_ptr.* = file.zir.?;
file.zir = null;
}
// If ZOIR is changing, then we need to invalidate dependencies on it
if (file.zoir != null) file.zoir_invalidated = true;
// We're going to re-load everything, so unload source, AST, ZIR, ZOIR.
file.unload(gpa);
// We ask for a lock in order to coordinate with other zig processes.
// If another process is already working on this file, we will get the cached
// version. Likewise if we're working on AstGen and another process asks for
// the cached file, they'll get it.
const cache_file = while (true) {
break zir_dir.createFile(&hex_digest, .{
.read = true,
.truncate = false,
.lock = lock,
}) catch |err| switch (err) {
error.NotDir => unreachable, // no dir components
error.BadPathName => unreachable, // it's a hex encoded name
error.NameTooLong => unreachable, // it's a fixed size name
error.PipeBusy => unreachable, // it's not a pipe
error.NoDevice => unreachable, // it's not a pipe
error.WouldBlock => unreachable, // not asking for non-blocking I/O
error.FileNotFound => {
// There are no dir components, so the only possibility should
// be that the directory behind the handle has been deleted,
// however we have observed on macOS two processes racing to do
// openat() with O_CREAT manifest in ENOENT.
//
// As a workaround, we retry with exclusive=true which
// disambiguates by returning EEXIST, indicating original
// failure was a race, or ENOENT, indicating deletion of the
// directory of our open handle.
if (!builtin.os.tag.isDarwin()) {
std.process.fatal("cache directory '{f}' unexpectedly removed during compiler execution", .{
cache_directory,
});
}
break zir_dir.createFile(&hex_digest, .{
.read = true,
.truncate = false,
.lock = lock,
.exclusive = true,
}) catch |excl_err| switch (excl_err) {
error.PathAlreadyExists => continue,
error.FileNotFound => {
std.process.fatal("cache directory '{f}' unexpectedly removed during compiler execution", .{
cache_directory,
});
},
else => |e| return e,
};
},
else => |e| return e, // Retryable errors are handled at callsite.
};
};
defer cache_file.close();
// Under `--time-report`, ignore cache hits; do the work anyway for those juicy numbers.
const ignore_hit = comp.time_report != null;
const need_update = while (true) {
const result = switch (file.getMode()) {
inline else => |mode| try loadZirZoirCache(zcu, cache_file, stat, file, mode),
};
switch (result) {
.success => if (!ignore_hit) {
log.debug("AstGen cached success: {f}", .{file.path.fmt(comp)});
break false;
},
.invalid => {},
.truncated => log.warn("unexpected EOF reading cached ZIR for {f}", .{file.path.fmt(comp)}),
.stale => log.debug("AstGen cache stale: {f}", .{file.path.fmt(comp)}),
}
// If we already have the exclusive lock then it is our job to update.
if (builtin.os.tag == .wasi or lock == .exclusive) break true;
// Otherwise, unlock to give someone a chance to get the exclusive lock
// and then upgrade to an exclusive lock.
cache_file.unlock();
lock = .exclusive;
try cache_file.lock(lock);
};
if (need_update) {
// The cache is definitely stale so delete the contents to avoid an underwrite later.
cache_file.setEndPos(0) catch |err| switch (err) {
error.FileTooBig => unreachable, // 0 is not too big
else => |e| return e,
};
try cache_file.seekTo(0);
if (stat.size > std.math.maxInt(u32))
return error.FileTooBig;
const source = try gpa.allocSentinel(u8, @intCast(stat.size), 0);
defer if (file.source == null) gpa.free(source);
var source_fr = source_file.reader(io, &.{});
source_fr.size = stat.size;
source_fr.interface.readSliceAll(source) catch |err| switch (err) {
error.ReadFailed => return source_fr.err.?,
error.EndOfStream => return error.UnexpectedEndOfFile,
};
file.source = source;
var timer = comp.startTimer();
// Any potential AST errors are converted to ZIR errors when we run AstGen/ZonGen.
file.tree = try Ast.parse(gpa, source, file.getMode());
if (timer.finish()) |ns_parse| {
comp.mutex.lock();
defer comp.mutex.unlock();
comp.time_report.?.stats.cpu_ns_parse += ns_parse;
}
timer = comp.startTimer();
switch (file.getMode()) {
.zig => {
file.zir = try AstGen.generate(gpa, file.tree.?);
Zcu.saveZirCache(gpa, cache_file, stat, file.zir.?) catch |err| switch (err) {
error.OutOfMemory => |e| return e,
else => log.warn("unable to write cached ZIR code for {f} to {f}{s}: {s}", .{
file.path.fmt(comp), cache_directory, &hex_digest, @errorName(err),
}),
};
},
.zon => {
file.zoir = try ZonGen.generate(gpa, file.tree.?, .{});
Zcu.saveZoirCache(cache_file, stat, file.zoir.?) catch |err| {
log.warn("unable to write cached ZOIR code for {f} to {f}{s}: {s}", .{
file.path.fmt(comp), cache_directory, &hex_digest, @errorName(err),
});
};
},
}
if (timer.finish()) |ns_astgen| {
comp.mutex.lock();
defer comp.mutex.unlock();
comp.time_report.?.stats.cpu_ns_astgen += ns_astgen;
}
log.debug("AstGen fresh success: {f}", .{file.path.fmt(comp)});
}
file.stat = .{
.size = stat.size,
.inode = stat.inode,
.mtime = stat.mtime,
};
// Now, `zir` or `zoir` is definitely populated and up-to-date.
// Mark file successes/failures as needed.
switch (file.getMode()) {
.zig => {
if (file.zir.?.hasCompileErrors()) {
comp.mutex.lock();
defer comp.mutex.unlock();
try zcu.failed_files.putNoClobber(gpa, file_index, null);
}
if (file.zir.?.loweringFailed()) {
file.status = .astgen_failure;
} else {
file.status = .success;
}
},
.zon => {
if (file.zoir.?.hasCompileErrors()) {
file.status = .astgen_failure;
comp.mutex.lock();
defer comp.mutex.unlock();
try zcu.failed_files.putNoClobber(gpa, file_index, null);
} else {
file.status = .success;
}
},
}
switch (file.status) {
.never_loaded => unreachable,
.retryable_failure => unreachable,
.astgen_failure, .success => {},
}
}
fn loadZirZoirCache(
zcu: *Zcu,
cache_file: std.fs.File,
stat: std.fs.File.Stat,
file: *Zcu.File,
comptime mode: Ast.Mode,
) !enum { success, invalid, truncated, stale } {
assert(file.getMode() == mode);
const gpa = zcu.gpa;
const io = zcu.comp.io;
const Header = switch (mode) {
.zig => Zir.Header,
.zon => Zoir.Header,
};
var buffer: [2000]u8 = undefined;
var cache_fr = cache_file.reader(io, &buffer);
cache_fr.size = stat.size;
const cache_br = &cache_fr.interface;
// First we read the header to determine the lengths of arrays.
const header = (cache_br.takeStructPointer(Header) catch |err| switch (err) {
error.ReadFailed => return cache_fr.err.?,
// This can happen if Zig bails out of this function between creating
// the cached file and writing it.
error.EndOfStream => return .invalid,
else => |e| return e,
}).*;
const unchanged_metadata =
stat.size == header.stat_size and
stat.mtime.nanoseconds == header.stat_mtime and
stat.inode == header.stat_inode;
if (!unchanged_metadata) {
return .stale;
}
switch (mode) {
.zig => file.zir = Zcu.loadZirCacheBody(gpa, header, cache_br) catch |err| switch (err) {
error.ReadFailed => return cache_fr.err.?,
error.EndOfStream => return .truncated,
else => |e| return e,
},
.zon => file.zoir = Zcu.loadZoirCacheBody(gpa, header, cache_br) catch |err| switch (err) {
error.ReadFailed => return cache_fr.err.?,
error.EndOfStream => return .truncated,
else => |e| return e,
},
}
return .success;
}
const UpdatedFile = struct {
file: *Zcu.File,
inst_map: std.AutoHashMapUnmanaged(Zir.Inst.Index, Zir.Inst.Index),
};
fn cleanupUpdatedFiles(gpa: Allocator, updated_files: *std.AutoArrayHashMapUnmanaged(Zcu.File.Index, UpdatedFile)) void {
for (updated_files.values()) |*elem| elem.inst_map.deinit(gpa);
updated_files.deinit(gpa);
}
pub fn updateZirRefs(pt: Zcu.PerThread) Allocator.Error!void {
assert(pt.tid == .main);
const zcu = pt.zcu;
const comp = zcu.comp;
const ip = &zcu.intern_pool;
const gpa = zcu.gpa;
// We need to visit every updated File for every TrackedInst in InternPool.
// This only includes Zig files; ZON files are omitted.
var updated_files: std.AutoArrayHashMapUnmanaged(Zcu.File.Index, UpdatedFile) = .empty;
defer cleanupUpdatedFiles(gpa, &updated_files);
for (zcu.import_table.keys()) |file_index| {
if (!zcu.alive_files.contains(file_index)) continue;
const file = zcu.fileByIndex(file_index);
assert(file.status == .success);
if (file.module_changed) {
try updated_files.putNoClobber(gpa, file_index, .{
.file = file,
// We intentionally don't map any instructions here; that's the point, the whole file is outdated!
.inst_map = .{},
});
continue;
}
switch (file.getMode()) {
.zig => {}, // logic below
.zon => {
if (file.zoir_invalidated) {
try zcu.markDependeeOutdated(.not_marked_po, .{ .zon_file = file_index });
file.zoir_invalidated = false;
}
continue;
},
}
const old_zir = file.prev_zir orelse continue;
const new_zir = file.zir.?;
const gop = try updated_files.getOrPut(gpa, file_index);
assert(!gop.found_existing);
gop.value_ptr.* = .{
.file = file,
.inst_map = .{},
};
try Zcu.mapOldZirToNew(gpa, old_zir.*, new_zir, &gop.value_ptr.inst_map);
}
if (updated_files.count() == 0)
return;
for (ip.locals, 0..) |*local, tid| {
const tracked_insts_list = local.getMutableTrackedInsts(gpa);
for (tracked_insts_list.viewAllowEmpty().items(.@"0"), 0..) |*tracked_inst, tracked_inst_unwrapped_index| {
const file_index = tracked_inst.file;
const updated_file = updated_files.get(file_index) orelse continue;
const file = updated_file.file;
const old_inst = tracked_inst.inst.unwrap() orelse continue; // we can't continue tracking lost insts
const tracked_inst_index = (InternPool.TrackedInst.Index.Unwrapped{
.tid = @enumFromInt(tid),
.index = @intCast(tracked_inst_unwrapped_index),
}).wrap(ip);
const new_inst = updated_file.inst_map.get(old_inst) orelse {
// Tracking failed for this instruction due to changes in the ZIR.
// Invalidate associated `src_hash` deps.
log.debug("tracking failed for %{d}", .{old_inst});
tracked_inst.inst = .lost;
try zcu.markDependeeOutdated(.not_marked_po, .{ .src_hash = tracked_inst_index });
continue;
};
tracked_inst.inst = InternPool.TrackedInst.MaybeLost.ZirIndex.wrap(new_inst);
const old_zir = file.prev_zir.?.*;
const new_zir = file.zir.?;
const old_tag = old_zir.instructions.items(.tag)[@intFromEnum(old_inst)];
const old_data = old_zir.instructions.items(.data)[@intFromEnum(old_inst)];
switch (old_tag) {
.declaration => {
const old_line = old_zir.getDeclaration(old_inst).src_line;
const new_line = new_zir.getDeclaration(new_inst).src_line;
if (old_line != new_line) {
try comp.queueJob(.{ .update_line_number = tracked_inst_index });
}
},
else => {},
}
if (old_zir.getAssociatedSrcHash(old_inst)) |old_hash| hash_changed: {
if (new_zir.getAssociatedSrcHash(new_inst)) |new_hash| {
if (std.zig.srcHashEql(old_hash, new_hash)) {
break :hash_changed;
}
log.debug("hash for (%{d} -> %{d}) changed: {x} -> {x}", .{
old_inst, new_inst, &old_hash, &new_hash,
});
}
// The source hash associated with this instruction changed - invalidate relevant dependencies.
try zcu.markDependeeOutdated(.not_marked_po, .{ .src_hash = tracked_inst_index });
}
// If this is a `struct_decl` etc, we must invalidate any outdated namespace dependencies.
const has_namespace = switch (old_tag) {
.extended => switch (old_data.extended.opcode) {
.struct_decl, .union_decl, .opaque_decl, .enum_decl => true,
else => false,
},
else => false,
};
if (!has_namespace) continue;
// Value is whether the declaration is `pub`.
var old_names: std.AutoArrayHashMapUnmanaged(InternPool.NullTerminatedString, bool) = .empty;
defer old_names.deinit(zcu.gpa);
{
var it = old_zir.declIterator(old_inst);
while (it.next()) |decl_inst| {
const old_decl = old_zir.getDeclaration(decl_inst);
if (old_decl.name == .empty) continue;
const name_ip = try zcu.intern_pool.getOrPutString(
zcu.gpa,
pt.tid,
old_zir.nullTerminatedString(old_decl.name),
.no_embedded_nulls,
);
try old_names.put(zcu.gpa, name_ip, old_decl.is_pub);
}
}
var any_change = false;
{
var it = new_zir.declIterator(new_inst);
while (it.next()) |decl_inst| {
const new_decl = new_zir.getDeclaration(decl_inst);
if (new_decl.name == .empty) continue;
const name_ip = try zcu.intern_pool.getOrPutString(
zcu.gpa,
pt.tid,
new_zir.nullTerminatedString(new_decl.name),
.no_embedded_nulls,
);
if (old_names.fetchSwapRemove(name_ip)) |kv| {
if (kv.value == new_decl.is_pub) continue;
}
// Name added, or changed whether it's pub
any_change = true;
try zcu.markDependeeOutdated(.not_marked_po, .{ .namespace_name = .{
.namespace = tracked_inst_index,
.name = name_ip,
} });
}
}
// The only elements remaining in `old_names` now are any names which were removed.
for (old_names.keys()) |name_ip| {
any_change = true;
try zcu.markDependeeOutdated(.not_marked_po, .{ .namespace_name = .{
.namespace = tracked_inst_index,
.name = name_ip,
} });
}
if (any_change) {
try zcu.markDependeeOutdated(.not_marked_po, .{ .namespace = tracked_inst_index });
}
}
}
try ip.rehashTrackedInsts(gpa, pt.tid);
for (updated_files.keys(), updated_files.values()) |file_index, updated_file| {
const file = updated_file.file;
if (file.prev_zir) |prev_zir| {
prev_zir.deinit(gpa);
gpa.destroy(prev_zir);
file.prev_zir = null;
}
file.module_changed = false;
// For every file which has changed, re-scan the namespace of the file's root struct type.
// These types are special-cased because they don't have an enclosing declaration which will
// be re-analyzed (causing the struct's namespace to be re-scanned). It's fine to do this
// now because this work is fast (no actual Sema work is happening, we're just updating the
// namespace contents). We must do this after updating ZIR refs above, since `scanNamespace`
// will track some instructions.
try pt.updateFileNamespace(file_index);
}
}
/// Ensures that `zcu.fileRootType` on this `file_index` gives an up-to-date answer.
/// Returns `error.AnalysisFail` if the file has an error.
pub fn ensureFileAnalyzed(pt: Zcu.PerThread, file_index: Zcu.File.Index) Zcu.SemaError!void {
const file_root_type = pt.zcu.fileRootType(file_index);
if (file_root_type != .none) {
if (pt.ensureTypeUpToDate(file_root_type)) |_| {
return;
} else |err| switch (err) {
error.AnalysisFail => {
// The file's root `struct_decl` has, at some point, been lost, because the file failed AstGen.
// Clear `file_root_type`, and try the `semaFile` call below, in case the instruction has since
// been discovered under a new `TrackedInst.Index`.
pt.zcu.setFileRootType(file_index, .none);
},
else => |e| return e,
}
}
return pt.semaFile(file_index);
}
/// Ensures that all memoized state on `Zcu` is up-to-date, performing re-analysis if necessary.
/// Returns `error.AnalysisFail` if an analysis error is encountered; the caller is free to ignore
/// this, since the error is already registered, but it must not use the value of memoized fields.
pub fn ensureMemoizedStateUpToDate(pt: Zcu.PerThread, stage: InternPool.MemoizedStateStage) Zcu.SemaError!void {
const tracy = trace(@src());
defer tracy.end();
const zcu = pt.zcu;
const gpa = zcu.gpa;
const unit: AnalUnit = .wrap(.{ .memoized_state = stage });
log.debug("ensureMemoizedStateUpToDate", .{});
assert(!zcu.analysis_in_progress.contains(unit));
const was_outdated = zcu.outdated.swapRemove(unit) or zcu.potentially_outdated.swapRemove(unit);
const prev_failed = zcu.failed_analysis.contains(unit) or zcu.transitive_failed_analysis.contains(unit);
if (was_outdated) {
dev.check(.incremental);
_ = zcu.outdated_ready.swapRemove(unit);
// No need for `deleteUnitExports` because we never export anything.
zcu.deleteUnitReferences(unit);
zcu.deleteUnitCompileLogs(unit);
if (zcu.failed_analysis.fetchSwapRemove(unit)) |kv| {
kv.value.destroy(gpa);
}
_ = zcu.transitive_failed_analysis.swapRemove(unit);
} else {
if (prev_failed) return error.AnalysisFail;
// We use an arbitrary element to check if the state has been resolved yet.
const to_check: Zcu.BuiltinDecl = switch (stage) {
.main => .Type,
.panic => .panic,
.va_list => .VaList,
.assembly => .assembly,
};
if (zcu.builtin_decl_values.get(to_check) != .none) return;
}
if (zcu.comp.debugIncremental()) {
const info = try zcu.incremental_debug_state.getUnitInfo(gpa, unit);
info.last_update_gen = zcu.generation;
info.deps.clearRetainingCapacity();
}
const any_changed: bool, const new_failed: bool = if (pt.analyzeMemoizedState(stage)) |any_changed|
.{ any_changed or prev_failed, false }
else |err| switch (err) {
error.AnalysisFail => res: {
if (!zcu.failed_analysis.contains(unit)) {
// If this unit caused the error, it would have an entry in `failed_analysis`.
// Since it does not, this must be a transitive failure.
try zcu.transitive_failed_analysis.put(gpa, unit, {});
log.debug("mark transitive analysis failure for {f}", .{zcu.fmtAnalUnit(unit)});
}
break :res .{ !prev_failed, true };
},
error.OutOfMemory => {
// TODO: same as for `ensureComptimeUnitUpToDate` etc
return error.OutOfMemory;
},
error.ComptimeReturn => unreachable,
error.ComptimeBreak => unreachable,
};
if (was_outdated) {
const dependee: InternPool.Dependee = .{ .memoized_state = stage };
if (any_changed) {
try zcu.markDependeeOutdated(.marked_po, dependee);
} else {
try zcu.markPoDependeeUpToDate(dependee);
}
}
if (new_failed) return error.AnalysisFail;
}
fn analyzeMemoizedState(pt: Zcu.PerThread, stage: InternPool.MemoizedStateStage) Zcu.CompileError!bool {
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const gpa = zcu.gpa;
const unit: AnalUnit = .wrap(.{ .memoized_state = stage });
try zcu.analysis_in_progress.putNoClobber(gpa, unit, {});
defer assert(zcu.analysis_in_progress.swapRemove(unit));
// Before we begin, collect:
// * The type `std`, and its namespace
// * The type `std.builtin`, and its namespace
// * A semi-reasonable source location
const std_file_index = zcu.module_roots.get(zcu.std_mod).?.unwrap().?;
try pt.ensureFileAnalyzed(std_file_index);
const std_type: Type = .fromInterned(zcu.fileRootType(std_file_index));
const std_namespace = std_type.getNamespaceIndex(zcu);
try pt.ensureNamespaceUpToDate(std_namespace);
const builtin_str = try ip.getOrPutString(gpa, pt.tid, "builtin", .no_embedded_nulls);
const builtin_nav = zcu.namespacePtr(std_namespace).pub_decls.getKeyAdapted(builtin_str, Zcu.Namespace.NameAdapter{ .zcu = zcu }) orelse
@panic("lib/std.zig is corrupt and missing 'builtin'");
try pt.ensureNavValUpToDate(builtin_nav);
const builtin_type: Type = .fromInterned(ip.getNav(builtin_nav).status.fully_resolved.val);
const builtin_namespace = builtin_type.getNamespaceIndex(zcu);
try pt.ensureNamespaceUpToDate(builtin_namespace);
const src: Zcu.LazySrcLoc = .{
.base_node_inst = builtin_type.typeDeclInst(zcu).?,
.offset = .{ .byte_abs = 0 },
};
var analysis_arena: std.heap.ArenaAllocator = .init(gpa);
defer analysis_arena.deinit();
var comptime_err_ret_trace: std.array_list.Managed(Zcu.LazySrcLoc) = .init(gpa);
defer comptime_err_ret_trace.deinit();
var sema: Sema = .{
.pt = pt,
.gpa = gpa,
.arena = analysis_arena.allocator(),
.code = .{ .instructions = .empty, .string_bytes = &.{}, .extra = &.{} },
.owner = unit,
.func_index = .none,
.func_is_naked = false,
.fn_ret_ty = .void,
.fn_ret_ty_ies = null,
.comptime_err_ret_trace = &comptime_err_ret_trace,
};
defer sema.deinit();
var block: Sema.Block = .{
.parent = null,
.sema = &sema,
.namespace = std_namespace,
.instructions = .{},
.inlining = null,
.comptime_reason = .{ .reason = .{
.src = src,
.r = .{ .simple = .type },
} },
.src_base_inst = src.base_node_inst,
.type_name_ctx = .empty,
};
defer block.instructions.deinit(gpa);
return sema.analyzeMemoizedState(&block, src, builtin_namespace, stage);
}
/// Ensures that the state of the given `ComptimeUnit` is fully up-to-date, performing re-analysis
/// if necessary. Returns `error.AnalysisFail` if an analysis error is encountered; the caller is
/// free to ignore this, since the error is already registered.
pub fn ensureComptimeUnitUpToDate(pt: Zcu.PerThread, cu_id: InternPool.ComptimeUnit.Id) Zcu.SemaError!void {
const tracy = trace(@src());
defer tracy.end();
const zcu = pt.zcu;
const gpa = zcu.gpa;
const anal_unit: AnalUnit = .wrap(.{ .@"comptime" = cu_id });
log.debug("ensureComptimeUnitUpToDate {f}", .{zcu.fmtAnalUnit(anal_unit)});
assert(!zcu.analysis_in_progress.contains(anal_unit));
// Determine whether or not this `ComptimeUnit` is outdated. For this kind of `AnalUnit`, that's
// the only indicator as to whether or not analysis is required; when a `ComptimeUnit` is first
// created, it's marked as outdated.
//
// Note that if the unit is PO, we pessimistically assume that it *does* require re-analysis, to
// ensure that the unit is definitely up-to-date when this function returns. This mechanism could
// result in over-analysis if analysis occurs in a poor order; we do our best to avoid this by
// carefully choosing which units to re-analyze. See `Zcu.findOutdatedToAnalyze`.
const was_outdated = zcu.outdated.swapRemove(anal_unit) or
zcu.potentially_outdated.swapRemove(anal_unit);
if (was_outdated) {
_ = zcu.outdated_ready.swapRemove(anal_unit);
// `was_outdated` can be true in the initial update for comptime units, so this isn't a `dev.check`.
if (dev.env.supports(.incremental)) {
zcu.deleteUnitExports(anal_unit);
zcu.deleteUnitReferences(anal_unit);
zcu.deleteUnitCompileLogs(anal_unit);
if (zcu.failed_analysis.fetchSwapRemove(anal_unit)) |kv| {
kv.value.destroy(gpa);
}
_ = zcu.transitive_failed_analysis.swapRemove(anal_unit);
zcu.intern_pool.removeDependenciesForDepender(gpa, anal_unit);
}
} else {
// We can trust the current information about this unit.
if (zcu.failed_analysis.contains(anal_unit)) return error.AnalysisFail;
if (zcu.transitive_failed_analysis.contains(anal_unit)) return error.AnalysisFail;
return;
}
if (zcu.comp.debugIncremental()) {
const info = try zcu.incremental_debug_state.getUnitInfo(gpa, anal_unit);
info.last_update_gen = zcu.generation;
info.deps.clearRetainingCapacity();
}
const unit_tracking = zcu.trackUnitSema(
"comptime",
zcu.intern_pool.getComptimeUnit(cu_id).zir_index,
);
defer unit_tracking.end(zcu);
return pt.analyzeComptimeUnit(cu_id) catch |err| switch (err) {
error.AnalysisFail => {
if (!zcu.failed_analysis.contains(anal_unit)) {
// If this unit caused the error, it would have an entry in `failed_analysis`.
// Since it does not, this must be a transitive failure.
try zcu.transitive_failed_analysis.put(gpa, anal_unit, {});
log.debug("mark transitive analysis failure for {f}", .{zcu.fmtAnalUnit(anal_unit)});
}
return error.AnalysisFail;
},
error.OutOfMemory => {
// TODO: it's unclear how to gracefully handle this.
// To report the error cleanly, we need to add a message to `failed_analysis` and a
// corresponding entry to `retryable_failures`; but either of these things is quite
// likely to OOM at this point.
// If that happens, what do we do? Perhaps we could have a special field on `Zcu`
// for reporting OOM errors without allocating.
return error.OutOfMemory;
},
error.ComptimeReturn => unreachable,
error.ComptimeBreak => unreachable,
};
}
/// Re-analyzes a `ComptimeUnit`. The unit has already been determined to be out-of-date, and old
/// side effects (exports/references/etc) have been dropped. If semantic analysis fails, this
/// function will return `error.AnalysisFail`, and it is the caller's reponsibility to add an entry
/// to `transitive_failed_analysis` if necessary.
fn analyzeComptimeUnit(pt: Zcu.PerThread, cu_id: InternPool.ComptimeUnit.Id) Zcu.CompileError!void {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const anal_unit: AnalUnit = .wrap(.{ .@"comptime" = cu_id });
const comptime_unit = ip.getComptimeUnit(cu_id);
log.debug("analyzeComptimeUnit {f}", .{zcu.fmtAnalUnit(anal_unit)});
const inst_resolved = comptime_unit.zir_index.resolveFull(ip) orelse return error.AnalysisFail;
const file = zcu.fileByIndex(inst_resolved.file);
const zir = file.zir.?;
try zcu.analysis_in_progress.putNoClobber(gpa, anal_unit, {});
defer assert(zcu.analysis_in_progress.swapRemove(anal_unit));
var analysis_arena: std.heap.ArenaAllocator = .init(gpa);
defer analysis_arena.deinit();
var comptime_err_ret_trace: std.array_list.Managed(Zcu.LazySrcLoc) = .init(gpa);
defer comptime_err_ret_trace.deinit();
var sema: Sema = .{
.pt = pt,
.gpa = gpa,
.arena = analysis_arena.allocator(),
.code = zir,
.owner = anal_unit,
.func_index = .none,
.func_is_naked = false,
.fn_ret_ty = .void,
.fn_ret_ty_ies = null,
.comptime_err_ret_trace = &comptime_err_ret_trace,
};
defer sema.deinit();
// The comptime unit declares on the source of the corresponding `comptime` declaration.
try sema.declareDependency(.{ .src_hash = comptime_unit.zir_index });
var block: Sema.Block = .{
.parent = null,
.sema = &sema,
.namespace = comptime_unit.namespace,
.instructions = .{},
.inlining = null,
.comptime_reason = .{ .reason = .{
.src = .{
.base_node_inst = comptime_unit.zir_index,
.offset = .{ .token_offset = .zero },
},
.r = .{ .simple = .comptime_keyword },
} },
.src_base_inst = comptime_unit.zir_index,
.type_name_ctx = try ip.getOrPutStringFmt(gpa, pt.tid, "{f}.comptime", .{
Type.fromInterned(zcu.namespacePtr(comptime_unit.namespace).owner_type).containerTypeName(ip).fmt(ip),
}, .no_embedded_nulls),
};
defer block.instructions.deinit(gpa);
const zir_decl = zir.getDeclaration(inst_resolved.inst);
assert(zir_decl.kind == .@"comptime");
assert(zir_decl.type_body == null);
assert(zir_decl.align_body == null);
assert(zir_decl.linksection_body == null);
assert(zir_decl.addrspace_body == null);
const value_body = zir_decl.value_body.?;
const result_ref = try sema.resolveInlineBody(&block, value_body, inst_resolved.inst);
assert(result_ref == .void_value); // AstGen should always uphold this
// Nothing else to do -- for a comptime decl, all we care about are the side effects.
// Just make sure to `flushExports`.
try sema.flushExports();
}
/// Ensures that the resolved value of the given `Nav` is fully up-to-date, performing re-analysis
/// if necessary. Returns `error.AnalysisFail` if an analysis error is encountered; the caller is
/// free to ignore this, since the error is already registered.
pub fn ensureNavValUpToDate(pt: Zcu.PerThread, nav_id: InternPool.Nav.Index) Zcu.SemaError!void {
const tracy = trace(@src());
defer tracy.end();
// TODO: document this elsewhere mlugg!
// For my own benefit, here's how a namespace update for a normal (non-file-root) type works:
// `const S = struct { ... };`
// We are adding or removing a declaration within this `struct`.
// * `S` registers a dependency on `.{ .src_hash = (declaration of S) }`
// * Any change to the `struct` body -- including changing a declaration -- invalidates this
// * `S` is re-analyzed, but notes:
// * there is an existing struct instance (at this `TrackedInst` with these captures)
// * the struct's resolution is up-to-date (because nothing about the fields changed)
// * so, it uses the same `struct`
// * but this doesn't stop it from updating the namespace!
// * we basically do `scanDecls`, updating the namespace as needed
// * so everyone lived happily ever after
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
_ = zcu.nav_val_analysis_queued.swapRemove(nav_id);
const anal_unit: AnalUnit = .wrap(.{ .nav_val = nav_id });
const nav = ip.getNav(nav_id);
log.debug("ensureNavValUpToDate {f}", .{zcu.fmtAnalUnit(anal_unit)});
assert(!zcu.analysis_in_progress.contains(anal_unit));
// Determine whether or not this `Nav`'s value is outdated. This also includes checking if the
// status is `.unresolved`, which indicates that the value is outdated because it has *never*
// been analyzed so far.
//
// Note that if the unit is PO, we pessimistically assume that it *does* require re-analysis, to
// ensure that the unit is definitely up-to-date when this function returns. This mechanism could
// result in over-analysis if analysis occurs in a poor order; we do our best to avoid this by
// carefully choosing which units to re-analyze. See `Zcu.findOutdatedToAnalyze`.
const was_outdated = zcu.outdated.swapRemove(anal_unit) or
zcu.potentially_outdated.swapRemove(anal_unit);
const prev_failed = zcu.failed_analysis.contains(anal_unit) or
zcu.transitive_failed_analysis.contains(anal_unit);
if (was_outdated) {
dev.check(.incremental);
_ = zcu.outdated_ready.swapRemove(anal_unit);
zcu.deleteUnitExports(anal_unit);
zcu.deleteUnitReferences(anal_unit);
zcu.deleteUnitCompileLogs(anal_unit);
if (zcu.failed_analysis.fetchSwapRemove(anal_unit)) |kv| {
kv.value.destroy(gpa);
}
_ = zcu.transitive_failed_analysis.swapRemove(anal_unit);
ip.removeDependenciesForDepender(gpa, anal_unit);
} else {
// We can trust the current information about this unit.
if (prev_failed) return error.AnalysisFail;
switch (nav.status) {
.unresolved, .type_resolved => {},
.fully_resolved => return,
}
}
if (zcu.comp.debugIncremental()) {
const info = try zcu.incremental_debug_state.getUnitInfo(gpa, anal_unit);
info.last_update_gen = zcu.generation;
info.deps.clearRetainingCapacity();
}
const unit_tracking = zcu.trackUnitSema(nav.fqn.toSlice(ip), nav.srcInst(ip));
defer unit_tracking.end(zcu);
const invalidate_value: bool, const new_failed: bool = if (pt.analyzeNavVal(nav_id)) |result| res: {
break :res .{
// If the unit has gone from failed to success, we still need to invalidate the dependencies.
result.val_changed or prev_failed,
false,
};
} else |err| switch (err) {
error.AnalysisFail => res: {
if (!zcu.failed_analysis.contains(anal_unit)) {
// If this unit caused the error, it would have an entry in `failed_analysis`.
// Since it does not, this must be a transitive failure.
try zcu.transitive_failed_analysis.put(gpa, anal_unit, {});
log.debug("mark transitive analysis failure for {f}", .{zcu.fmtAnalUnit(anal_unit)});
}
break :res .{ !prev_failed, true };
},
error.OutOfMemory => {
// TODO: it's unclear how to gracefully handle this.
// To report the error cleanly, we need to add a message to `failed_analysis` and a
// corresponding entry to `retryable_failures`; but either of these things is quite
// likely to OOM at this point.
// If that happens, what do we do? Perhaps we could have a special field on `Zcu`
// for reporting OOM errors without allocating.
return error.OutOfMemory;
},
error.ComptimeReturn => unreachable,
error.ComptimeBreak => unreachable,
};
if (was_outdated) {
const dependee: InternPool.Dependee = .{ .nav_val = nav_id };
if (invalidate_value) {
// This dependency was marked as PO, meaning dependees were waiting
// on its analysis result, and it has turned out to be outdated.
// Update dependees accordingly.
try zcu.markDependeeOutdated(.marked_po, dependee);
} else {
// This dependency was previously PO, but turned out to be up-to-date.
// We do not need to queue successive analysis.
try zcu.markPoDependeeUpToDate(dependee);
}
}
// If there isn't a type annotation, then we have also just resolved the type. That means the
// the type is up-to-date, so it won't have the chance to mark its own dependency on the value;
// we must do that ourselves.
type_deps_on_val: {
const inst_resolved = nav.analysis.?.zir_index.resolveFull(ip) orelse break :type_deps_on_val;
const file = zcu.fileByIndex(inst_resolved.file);
const zir_decl = file.zir.?.getDeclaration(inst_resolved.inst);
if (zir_decl.type_body != null) break :type_deps_on_val;
// The type does indeed depend on the value. We are responsible for populating all state of
// the `nav_ty`, including exports, references, errors, and dependencies.
const ty_unit: AnalUnit = .wrap(.{ .nav_ty = nav_id });
const ty_was_outdated = zcu.outdated.swapRemove(ty_unit) or
zcu.potentially_outdated.swapRemove(ty_unit);
if (ty_was_outdated) {
_ = zcu.outdated_ready.swapRemove(ty_unit);
zcu.deleteUnitExports(ty_unit);
zcu.deleteUnitReferences(ty_unit);
zcu.deleteUnitCompileLogs(ty_unit);
if (zcu.failed_analysis.fetchSwapRemove(ty_unit)) |kv| {
kv.value.destroy(gpa);
}
_ = zcu.transitive_failed_analysis.swapRemove(ty_unit);
ip.removeDependenciesForDepender(gpa, ty_unit);
}
try pt.addDependency(ty_unit, .{ .nav_val = nav_id });
if (new_failed) try zcu.transitive_failed_analysis.put(gpa, ty_unit, {});
if (ty_was_outdated) try zcu.markDependeeOutdated(.marked_po, .{ .nav_ty = nav_id });
}
if (new_failed) return error.AnalysisFail;
}
fn analyzeNavVal(pt: Zcu.PerThread, nav_id: InternPool.Nav.Index) Zcu.CompileError!struct { val_changed: bool } {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const anal_unit: AnalUnit = .wrap(.{ .nav_val = nav_id });
const old_nav = ip.getNav(nav_id);
log.debug("analyzeNavVal {f}", .{zcu.fmtAnalUnit(anal_unit)});
const inst_resolved = old_nav.analysis.?.zir_index.resolveFull(ip) orelse return error.AnalysisFail;
const file = zcu.fileByIndex(inst_resolved.file);
const zir = file.zir.?;
const zir_decl = zir.getDeclaration(inst_resolved.inst);
try zcu.analysis_in_progress.putNoClobber(gpa, anal_unit, {});
errdefer _ = zcu.analysis_in_progress.swapRemove(anal_unit);
// If there's no type body, we are also resolving the type here.
if (zir_decl.type_body == null) {
try zcu.analysis_in_progress.putNoClobber(gpa, .wrap(.{ .nav_ty = nav_id }), {});
}
errdefer if (zir_decl.type_body == null) {
_ = zcu.analysis_in_progress.swapRemove(.wrap(.{ .nav_ty = nav_id }));
};
var analysis_arena: std.heap.ArenaAllocator = .init(gpa);
defer analysis_arena.deinit();
var comptime_err_ret_trace: std.array_list.Managed(Zcu.LazySrcLoc) = .init(gpa);
defer comptime_err_ret_trace.deinit();
var sema: Sema = .{
.pt = pt,
.gpa = gpa,
.arena = analysis_arena.allocator(),
.code = zir,
.owner = anal_unit,
.func_index = .none,
.func_is_naked = false,
.fn_ret_ty = .void,
.fn_ret_ty_ies = null,
.comptime_err_ret_trace = &comptime_err_ret_trace,
};
defer sema.deinit();
// Every `Nav` declares a dependency on the source of the corresponding declaration.
try sema.declareDependency(.{ .src_hash = old_nav.analysis.?.zir_index });
// In theory, we would also add a reference to the corresponding `nav_val` unit here: there are
// always references in both directions between a `nav_val` and `nav_ty`. However, to save memory,
// these references are known implicitly. See logic in `Zcu.resolveReferences`.
var block: Sema.Block = .{
.parent = null,
.sema = &sema,
.namespace = old_nav.analysis.?.namespace,
.instructions = .{},
.inlining = null,
.comptime_reason = undefined, // set below
.src_base_inst = old_nav.analysis.?.zir_index,
.type_name_ctx = old_nav.fqn,
};
defer block.instructions.deinit(gpa);
const ty_src = block.src(.{ .node_offset_var_decl_ty = .zero });
const init_src = block.src(.{ .node_offset_var_decl_init = .zero });
const align_src = block.src(.{ .node_offset_var_decl_align = .zero });
const section_src = block.src(.{ .node_offset_var_decl_section = .zero });
const addrspace_src = block.src(.{ .node_offset_var_decl_addrspace = .zero });
block.comptime_reason = .{ .reason = .{
.src = init_src,
.r = .{ .simple = .container_var_init },
} };
const maybe_ty: ?Type = if (zir_decl.type_body != null) ty: {
// Since we have a type body, the type is resolved separately!
// Of course, we need to make sure we depend on it properly.
try sema.declareDependency(.{ .nav_ty = nav_id });
try pt.ensureNavTypeUpToDate(nav_id);
break :ty .fromInterned(ip.getNav(nav_id).typeOf(ip));
} else null;
const final_val: ?Value = if (zir_decl.value_body) |value_body| val: {
if (maybe_ty) |ty| {
// Put the resolved type into `inst_map` to be used as the result type of the init.
try sema.inst_map.ensureSpaceForInstructions(gpa, &.{inst_resolved.inst});
sema.inst_map.putAssumeCapacity(inst_resolved.inst, Air.internedToRef(ty.toIntern()));
const uncoerced_result_ref = try sema.resolveInlineBody(&block, value_body, inst_resolved.inst);
assert(sema.inst_map.remove(inst_resolved.inst));
const result_ref = try sema.coerce(&block, ty, uncoerced_result_ref, init_src);
break :val try sema.resolveFinalDeclValue(&block, init_src, result_ref);
} else {
// Just analyze the value; we have no type to offer.
const result_ref = try sema.resolveInlineBody(&block, value_body, inst_resolved.inst);
break :val try sema.resolveFinalDeclValue(&block, init_src, result_ref);
}
} else null;
const nav_ty: Type = maybe_ty orelse final_val.?.typeOf(zcu);
// First, we must resolve the declaration's type. To do this, we analyze the type body if available,
// or otherwise, we analyze the value body, populating `early_val` in the process.
const is_const = is_const: switch (zir_decl.kind) {
.@"comptime" => unreachable, // this is not a Nav
.unnamed_test, .@"test", .decltest => {
assert(nav_ty.zigTypeTag(zcu) == .@"fn");
break :is_const true;
},
.@"const" => true,
.@"var" => {
try sema.validateVarType(
&block,
if (zir_decl.type_body != null) ty_src else init_src,
nav_ty,
zir_decl.linkage == .@"extern",
);
break :is_const false;
},
};
// Now that we know the type, we can evaluate the alignment, linksection, and addrspace, to determine
// the full pointer type of this declaration.
const modifiers: Sema.NavPtrModifiers = if (zir_decl.type_body != null) m: {
// `analyzeNavType` (from the `ensureNavTypeUpToDate` call above) has already populated this data into
// the `Nav`. Load the new one, and pull the modifiers out.
switch (ip.getNav(nav_id).status) {
.unresolved => unreachable, // `analyzeNavType` will never leave us in this state
inline .type_resolved, .fully_resolved => |r| break :m .{
.alignment = r.alignment,
.@"linksection" = r.@"linksection",
.@"addrspace" = r.@"addrspace",
},
}
} else m: {
// `analyzeNavType` is essentially a stub which calls us. We are responsible for resolving this data.
break :m try sema.resolveNavPtrModifiers(&block, zir_decl, inst_resolved.inst, nav_ty);
};
// Lastly, we must figure out the actual interned value to store to the `Nav`.
// This isn't necessarily the same as `final_val`!
const nav_val: Value = switch (zir_decl.linkage) {
.normal, .@"export" => switch (zir_decl.kind) {
.@"var" => .fromInterned(try pt.intern(.{ .variable = .{
.ty = nav_ty.toIntern(),
.init = final_val.?.toIntern(),
.owner_nav = nav_id,
.is_threadlocal = zir_decl.is_threadlocal,
} })),
else => final_val.?,
},
.@"extern" => val: {
assert(final_val == null); // extern decls do not have a value body
const lib_name: ?[]const u8 = if (zir_decl.lib_name != .empty) l: {
break :l zir.nullTerminatedString(zir_decl.lib_name);
} else null;
if (lib_name) |l| {
const lib_name_src = block.src(.{ .node_offset_lib_name = .zero });
try sema.handleExternLibName(&block, lib_name_src, l);
}
break :val .fromInterned(try pt.getExtern(.{
.name = old_nav.name,
.ty = nav_ty.toIntern(),
.lib_name = try ip.getOrPutStringOpt(gpa, pt.tid, lib_name, .no_embedded_nulls),
.is_threadlocal = zir_decl.is_threadlocal,
.linkage = .strong,
.visibility = .default,
.is_dll_import = false,
.relocation = .any,
.is_const = is_const,
.alignment = modifiers.alignment,
.@"addrspace" = modifiers.@"addrspace",
.zir_index = old_nav.analysis.?.zir_index, // `declaration` instruction
.owner_nav = undefined, // ignored by `getExtern`
.source = .syntax,
}));
},
};
switch (nav_val.toIntern()) {
.unreachable_value => unreachable, // assertion failure
else => {},
}
// This resolves the type of the resolved value, not that value itself. If `nav_val` is a struct type,
// this resolves the type `type` (which needs no resolution), not the struct itself.
try nav_ty.resolveLayout(pt);
const queue_linker_work, const is_owned_fn = switch (ip.indexToKey(nav_val.toIntern())) {
.func => |f| .{ true, f.owner_nav == nav_id }, // note that this lets function aliases reach codegen
.variable => |v| .{ v.owner_nav == nav_id, false },
.@"extern" => |e| .{
false,
Type.fromInterned(e.ty).zigTypeTag(zcu) == .@"fn" and zir_decl.linkage == .@"extern",
},
else => .{ true, false },
};
if (is_owned_fn) {
// linksection etc are legal, except some targets do not support function alignment.
if (zir_decl.align_body != null and !target_util.supportsFunctionAlignment(zcu.getTarget())) {
return sema.fail(&block, align_src, "target does not support function alignment", .{});
}
} else if (try nav_ty.comptimeOnlySema(pt)) {
// alignment, linksection, addrspace annotations are not allowed for comptime-only types.
const reason: []const u8 = switch (ip.indexToKey(nav_val.toIntern())) {
.func => "function alias", // slightly clearer message, since you *can* specify these on function *declarations*
else => "comptime-only type",
};
if (zir_decl.align_body != null) {
return sema.fail(&block, align_src, "cannot specify alignment of {s}", .{reason});
}
if (zir_decl.linksection_body != null) {
return sema.fail(&block, section_src, "cannot specify linksection of {s}", .{reason});
}
if (zir_decl.addrspace_body != null) {
return sema.fail(&block, addrspace_src, "cannot specify addrspace of {s}", .{reason});
}
}
ip.resolveNavValue(nav_id, .{
.val = nav_val.toIntern(),
.is_const = is_const,
.alignment = modifiers.alignment,
.@"linksection" = modifiers.@"linksection",
.@"addrspace" = modifiers.@"addrspace",
});
// Mark the unit as completed before evaluating the export!
assert(zcu.analysis_in_progress.swapRemove(anal_unit));
if (zir_decl.type_body == null) {
assert(zcu.analysis_in_progress.swapRemove(.wrap(.{ .nav_ty = nav_id })));
}
if (zir_decl.linkage == .@"export") {
const export_src = block.src(.{ .token_offset = @enumFromInt(@intFromBool(zir_decl.is_pub)) });
const name_slice = zir.nullTerminatedString(zir_decl.name);
const name_ip = try ip.getOrPutString(gpa, pt.tid, name_slice, .no_embedded_nulls);
try sema.analyzeExport(&block, export_src, .{ .name = name_ip }, nav_id);
}
try sema.flushExports();
queue_codegen: {
if (!queue_linker_work) break :queue_codegen;
if (!try nav_ty.hasRuntimeBitsSema(pt)) {
if (zcu.comp.config.use_llvm) break :queue_codegen;
if (file.mod.?.strip) break :queue_codegen;
}
// This job depends on any resolve_type_fully jobs queued up before it.
zcu.comp.link_prog_node.increaseEstimatedTotalItems(1);
try zcu.comp.queueJob(.{ .link_nav = nav_id });
}
switch (old_nav.status) {
.unresolved, .type_resolved => return .{ .val_changed = true },
.fully_resolved => |old| return .{ .val_changed = old.val != nav_val.toIntern() },
}
}
pub fn ensureNavTypeUpToDate(pt: Zcu.PerThread, nav_id: InternPool.Nav.Index) Zcu.SemaError!void {
const tracy = trace(@src());
defer tracy.end();
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const anal_unit: AnalUnit = .wrap(.{ .nav_ty = nav_id });
const nav = ip.getNav(nav_id);
log.debug("ensureNavTypeUpToDate {f}", .{zcu.fmtAnalUnit(anal_unit)});
assert(!zcu.analysis_in_progress.contains(anal_unit));
const type_resolved_by_value: bool = from_val: {
const analysis = nav.analysis orelse break :from_val false;
const inst_resolved = analysis.zir_index.resolveFull(ip) orelse break :from_val false;
const file = zcu.fileByIndex(inst_resolved.file);
const zir_decl = file.zir.?.getDeclaration(inst_resolved.inst);
break :from_val zir_decl.type_body == null;
};
if (type_resolved_by_value) {
// Logic at the end of `ensureNavValUpToDate` is directly responsible for populating our state.
return pt.ensureNavValUpToDate(nav_id);
}
// Determine whether or not this `Nav`'s type is outdated. This also includes checking if the
// status is `.unresolved`, which indicates that the value is outdated because it has *never*
// been analyzed so far.
//
// Note that if the unit is PO, we pessimistically assume that it *does* require re-analysis, to
// ensure that the unit is definitely up-to-date when this function returns. This mechanism could
// result in over-analysis if analysis occurs in a poor order; we do our best to avoid this by
// carefully choosing which units to re-analyze. See `Zcu.findOutdatedToAnalyze`.
const was_outdated = zcu.outdated.swapRemove(anal_unit) or
zcu.potentially_outdated.swapRemove(anal_unit);
const prev_failed = zcu.failed_analysis.contains(anal_unit) or
zcu.transitive_failed_analysis.contains(anal_unit);
if (was_outdated) {
dev.check(.incremental);
_ = zcu.outdated_ready.swapRemove(anal_unit);
zcu.deleteUnitExports(anal_unit);
zcu.deleteUnitReferences(anal_unit);
zcu.deleteUnitCompileLogs(anal_unit);
if (zcu.failed_analysis.fetchSwapRemove(anal_unit)) |kv| {
kv.value.destroy(gpa);
}
_ = zcu.transitive_failed_analysis.swapRemove(anal_unit);
ip.removeDependenciesForDepender(gpa, anal_unit);
} else {
// We can trust the current information about this unit.
if (prev_failed) return error.AnalysisFail;
switch (nav.status) {
.unresolved => {},
.type_resolved, .fully_resolved => return,
}
}
if (zcu.comp.debugIncremental()) {
const info = try zcu.incremental_debug_state.getUnitInfo(gpa, anal_unit);
info.last_update_gen = zcu.generation;
info.deps.clearRetainingCapacity();
}
const unit_tracking = zcu.trackUnitSema(nav.fqn.toSlice(ip), nav.srcInst(ip));
defer unit_tracking.end(zcu);
const invalidate_type: bool, const new_failed: bool = if (pt.analyzeNavType(nav_id)) |result| res: {
break :res .{
// If the unit has gone from failed to success, we still need to invalidate the dependencies.
result.type_changed or prev_failed,
false,
};
} else |err| switch (err) {
error.AnalysisFail => res: {
if (!zcu.failed_analysis.contains(anal_unit)) {
// If this unit caused the error, it would have an entry in `failed_analysis`.
// Since it does not, this must be a transitive failure.
try zcu.transitive_failed_analysis.put(gpa, anal_unit, {});
log.debug("mark transitive analysis failure for {f}", .{zcu.fmtAnalUnit(anal_unit)});
}
break :res .{ !prev_failed, true };
},
error.OutOfMemory => {
// TODO: it's unclear how to gracefully handle this.
// To report the error cleanly, we need to add a message to `failed_analysis` and a
// corresponding entry to `retryable_failures`; but either of these things is quite
// likely to OOM at this point.
// If that happens, what do we do? Perhaps we could have a special field on `Zcu`
// for reporting OOM errors without allocating.
return error.OutOfMemory;
},
error.ComptimeReturn => unreachable,
error.ComptimeBreak => unreachable,
};
if (was_outdated) {
const dependee: InternPool.Dependee = .{ .nav_ty = nav_id };
if (invalidate_type) {
// This dependency was marked as PO, meaning dependees were waiting
// on its analysis result, and it has turned out to be outdated.
// Update dependees accordingly.
try zcu.markDependeeOutdated(.marked_po, dependee);
} else {
// This dependency was previously PO, but turned out to be up-to-date.
// We do not need to queue successive analysis.
try zcu.markPoDependeeUpToDate(dependee);
}
}
if (new_failed) return error.AnalysisFail;
}
fn analyzeNavType(pt: Zcu.PerThread, nav_id: InternPool.Nav.Index) Zcu.CompileError!struct { type_changed: bool } {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const anal_unit: AnalUnit = .wrap(.{ .nav_ty = nav_id });
const old_nav = ip.getNav(nav_id);
log.debug("analyzeNavType {f}", .{zcu.fmtAnalUnit(anal_unit)});
const inst_resolved = old_nav.analysis.?.zir_index.resolveFull(ip) orelse return error.AnalysisFail;
const file = zcu.fileByIndex(inst_resolved.file);
const zir = file.zir.?;
try zcu.analysis_in_progress.putNoClobber(gpa, anal_unit, {});
defer assert(zcu.analysis_in_progress.swapRemove(anal_unit));
const zir_decl = zir.getDeclaration(inst_resolved.inst);
const type_body = zir_decl.type_body.?;
var analysis_arena: std.heap.ArenaAllocator = .init(gpa);
defer analysis_arena.deinit();
var comptime_err_ret_trace: std.array_list.Managed(Zcu.LazySrcLoc) = .init(gpa);
defer comptime_err_ret_trace.deinit();
var sema: Sema = .{
.pt = pt,
.gpa = gpa,
.arena = analysis_arena.allocator(),
.code = zir,
.owner = anal_unit,
.func_index = .none,
.func_is_naked = false,
.fn_ret_ty = .void,
.fn_ret_ty_ies = null,
.comptime_err_ret_trace = &comptime_err_ret_trace,
};
defer sema.deinit();
// Every `Nav` declares a dependency on the source of the corresponding declaration.
try sema.declareDependency(.{ .src_hash = old_nav.analysis.?.zir_index });
// In theory, we would also add a reference to the corresponding `nav_val` unit here: there are
// always references in both directions between a `nav_val` and `nav_ty`. However, to save memory,
// these references are known implicitly. See logic in `Zcu.resolveReferences`.
var block: Sema.Block = .{
.parent = null,
.sema = &sema,
.namespace = old_nav.analysis.?.namespace,
.instructions = .{},
.inlining = null,
.comptime_reason = undefined, // set below
.src_base_inst = old_nav.analysis.?.zir_index,
.type_name_ctx = old_nav.fqn,
};
defer block.instructions.deinit(gpa);
const ty_src = block.src(.{ .node_offset_var_decl_ty = .zero });
block.comptime_reason = .{ .reason = .{
.src = ty_src,
.r = .{ .simple = .type },
} };
const resolved_ty: Type = ty: {
const uncoerced_type_ref = try sema.resolveInlineBody(&block, type_body, inst_resolved.inst);
const type_ref = try sema.coerce(&block, .type, uncoerced_type_ref, ty_src);
break :ty .fromInterned(type_ref.toInterned().?);
};
try resolved_ty.resolveLayout(pt);
// In the case where the type is specified, this function is also responsible for resolving
// the pointer modifiers, i.e. alignment, linksection, addrspace.
const modifiers = try sema.resolveNavPtrModifiers(&block, zir_decl, inst_resolved.inst, resolved_ty);
const is_const = switch (zir_decl.kind) {
.@"comptime" => unreachable,
.unnamed_test, .@"test", .decltest, .@"const" => true,
.@"var" => false,
};
const is_extern_decl = zir_decl.linkage == .@"extern";
// Now for the question of the day: are the type and modifiers the same as before?
// If they are, then we should actually keep the `Nav` as `fully_resolved` if it currently is.
// That's because `analyzeNavVal` will later want to look at the resolved value to figure out
// whether it's changed: if we threw that data away now, it would have to assume that the value
// had changed, potentially spinning off loads of unnecessary re-analysis!
const changed = switch (old_nav.status) {
.unresolved => true,
.type_resolved => |r| r.type != resolved_ty.toIntern() or
r.alignment != modifiers.alignment or
r.@"linksection" != modifiers.@"linksection" or
r.@"addrspace" != modifiers.@"addrspace" or
r.is_const != is_const or
r.is_extern_decl != is_extern_decl,
.fully_resolved => |r| ip.typeOf(r.val) != resolved_ty.toIntern() or
r.alignment != modifiers.alignment or
r.@"linksection" != modifiers.@"linksection" or
r.@"addrspace" != modifiers.@"addrspace" or
r.is_const != is_const or
(old_nav.getExtern(ip) != null) != is_extern_decl,
};
if (!changed) return .{ .type_changed = false };
ip.resolveNavType(nav_id, .{
.type = resolved_ty.toIntern(),
.is_const = is_const,
.alignment = modifiers.alignment,
.@"linksection" = modifiers.@"linksection",
.@"addrspace" = modifiers.@"addrspace",
.is_threadlocal = zir_decl.is_threadlocal,
.is_extern_decl = is_extern_decl,
});
return .{ .type_changed = true };
}
pub fn ensureFuncBodyUpToDate(pt: Zcu.PerThread, func_index: InternPool.Index) Zcu.SemaError!void {
dev.check(.sema);
const tracy = trace(@src());
defer tracy.end();
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
_ = zcu.func_body_analysis_queued.swapRemove(func_index);
const anal_unit: AnalUnit = .wrap(.{ .func = func_index });
log.debug("ensureFuncBodyUpToDate {f}", .{zcu.fmtAnalUnit(anal_unit)});
assert(!zcu.analysis_in_progress.contains(anal_unit));
const func = zcu.funcInfo(func_index);
assert(func.ty == func.uncoerced_ty); // analyze the body of the original function, not a coerced one
const was_outdated = zcu.outdated.swapRemove(anal_unit) or
zcu.potentially_outdated.swapRemove(anal_unit);
const prev_failed = zcu.failed_analysis.contains(anal_unit) or zcu.transitive_failed_analysis.contains(anal_unit);
if (was_outdated) {
dev.check(.incremental);
_ = zcu.outdated_ready.swapRemove(anal_unit);
zcu.deleteUnitExports(anal_unit);
zcu.deleteUnitReferences(anal_unit);
zcu.deleteUnitCompileLogs(anal_unit);
if (zcu.failed_analysis.fetchSwapRemove(anal_unit)) |kv| {
kv.value.destroy(gpa);
}
_ = zcu.transitive_failed_analysis.swapRemove(anal_unit);
} else {
// We can trust the current information about this function.
if (prev_failed) {
return error.AnalysisFail;
}
if (func.analysisUnordered(ip).is_analyzed) return;
}
if (zcu.comp.debugIncremental()) {
const info = try zcu.incremental_debug_state.getUnitInfo(gpa, anal_unit);
info.last_update_gen = zcu.generation;
info.deps.clearRetainingCapacity();
}
const owner_nav = ip.getNav(func.owner_nav);
const unit_tracking = zcu.trackUnitSema(
owner_nav.fqn.toSlice(ip),
owner_nav.srcInst(ip),
);
defer unit_tracking.end(zcu);
const ies_outdated, const new_failed = if (pt.analyzeFuncBody(func_index)) |result|
.{ prev_failed or result.ies_outdated, false }
else |err| switch (err) {
error.AnalysisFail => res: {
if (!zcu.failed_analysis.contains(anal_unit)) {
// If this function caused the error, it would have an entry in `failed_analysis`.
// Since it does not, this must be a transitive failure.
try zcu.transitive_failed_analysis.put(gpa, anal_unit, {});
log.debug("mark transitive analysis failure for {f}", .{zcu.fmtAnalUnit(anal_unit)});
}
// We consider the IES to be outdated if the function previously succeeded analysis; in this case,
// we need to re-analyze dependants to ensure they hit a transitive error here, rather than reporting
// a different error later (which may now be invalid).
break :res .{ !prev_failed, true };
},
error.OutOfMemory => {
// TODO: it's unclear how to gracefully handle this.
// To report the error cleanly, we need to add a message to `failed_analysis` and a
// corresponding entry to `retryable_failures`; but either of these things is quite
// likely to OOM at this point.
// If that happens, what do we do? Perhaps we could have a special field on `Zcu`
// for reporting OOM errors without allocating.
return error.OutOfMemory;
},
};
if (was_outdated) {
if (ies_outdated) {
try zcu.markDependeeOutdated(.marked_po, .{ .interned = func_index });
} else {
try zcu.markPoDependeeUpToDate(.{ .interned = func_index });
}
}
if (new_failed) return error.AnalysisFail;
}
fn analyzeFuncBody(
pt: Zcu.PerThread,
func_index: InternPool.Index,
) Zcu.SemaError!struct { ies_outdated: bool } {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const func = zcu.funcInfo(func_index);
const anal_unit = AnalUnit.wrap(.{ .func = func_index });
// Make sure that this function is still owned by the same `Nav`. Otherwise, analyzing
// it would be a waste of time in the best case, and could cause codegen to give bogus
// results in the worst case.
if (func.generic_owner == .none) {
// Among another things, this ensures that the function's `zir_body_inst` is correct.
try pt.ensureNavValUpToDate(func.owner_nav);
if (ip.getNav(func.owner_nav).status.fully_resolved.val != func_index) {
// This function is no longer referenced! There's no point in re-analyzing it.
// Just mark a transitive failure and move on.
return error.AnalysisFail;
}
} else {
const go_nav = zcu.funcInfo(func.generic_owner).owner_nav;
// Among another things, this ensures that the function's `zir_body_inst` is correct.
try pt.ensureNavValUpToDate(go_nav);
if (ip.getNav(go_nav).status.fully_resolved.val != func.generic_owner) {
// The generic owner is no longer referenced, so this function is also unreferenced.
// There's no point in re-analyzing it. Just mark a transitive failure and move on.
return error.AnalysisFail;
}
}
// We'll want to remember what the IES used to be before the update for
// dependency invalidation purposes.
const old_resolved_ies = if (func.analysisUnordered(ip).inferred_error_set)
func.resolvedErrorSetUnordered(ip)
else
.none;
log.debug("analyze and generate fn body {f}", .{zcu.fmtAnalUnit(anal_unit)});
var air = try pt.analyzeFnBodyInner(func_index);
errdefer air.deinit(gpa);
const ies_outdated = !func.analysisUnordered(ip).inferred_error_set or
func.resolvedErrorSetUnordered(ip) != old_resolved_ies;
const comp = zcu.comp;
const dump_air = build_options.enable_debug_extensions and comp.verbose_air;
const dump_llvm_ir = build_options.enable_debug_extensions and (comp.verbose_llvm_ir != null or comp.verbose_llvm_bc != null);
if (comp.bin_file == null and zcu.llvm_object == null and !dump_air and !dump_llvm_ir) {
air.deinit(gpa);
return .{ .ies_outdated = ies_outdated };
}
// This job depends on any resolve_type_fully jobs queued up before it.
zcu.codegen_prog_node.increaseEstimatedTotalItems(1);
comp.link_prog_node.increaseEstimatedTotalItems(1);
try comp.queueJob(.{ .codegen_func = .{
.func = func_index,
.air = air,
} });
return .{ .ies_outdated = ies_outdated };
}
pub fn semaMod(pt: Zcu.PerThread, mod: *Module) !void {
dev.check(.sema);
const file_index = pt.zcu.module_roots.get(mod).?.unwrap().?;
const root_type = pt.zcu.fileRootType(file_index);
if (root_type == .none) {
return pt.semaFile(file_index);
}
}
fn createFileRootStruct(
pt: Zcu.PerThread,
file_index: Zcu.File.Index,
namespace_index: Zcu.Namespace.Index,
replace_existing: bool,
) Allocator.Error!InternPool.Index {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const file = zcu.fileByIndex(file_index);
const extended = file.zir.?.instructions.items(.data)[@intFromEnum(Zir.Inst.Index.main_struct_inst)].extended;
assert(extended.opcode == .struct_decl);
const small: Zir.Inst.StructDecl.Small = @bitCast(extended.small);
assert(!small.has_captures_len);
assert(!small.has_backing_int);
assert(small.layout == .auto);
var extra_index: usize = extended.operand + @typeInfo(Zir.Inst.StructDecl).@"struct".fields.len;
const fields_len = if (small.has_fields_len) blk: {
const fields_len = file.zir.?.extra[extra_index];
extra_index += 1;
break :blk fields_len;
} else 0;
const decls_len = if (small.has_decls_len) blk: {
const decls_len = file.zir.?.extra[extra_index];
extra_index += 1;
break :blk decls_len;
} else 0;
const decls = file.zir.?.bodySlice(extra_index, decls_len);
extra_index += decls_len;
const tracked_inst = try ip.trackZir(gpa, pt.tid, .{
.file = file_index,
.inst = .main_struct_inst,
});
const wip_ty = switch (try ip.getStructType(gpa, pt.tid, .{
.layout = .auto,
.fields_len = fields_len,
.known_non_opv = small.known_non_opv,
.requires_comptime = if (small.known_comptime_only) .yes else .unknown,
.any_comptime_fields = small.any_comptime_fields,
.any_default_inits = small.any_default_inits,
.inits_resolved = false,
.any_aligned_fields = small.any_aligned_fields,
.key = .{ .declared = .{
.zir_index = tracked_inst,
.captures = &.{},
} },
}, replace_existing)) {
.existing => unreachable, // we wouldn't be analysing the file root if this type existed
.wip => |wip| wip,
};
errdefer wip_ty.cancel(ip, pt.tid);
wip_ty.setName(ip, try file.internFullyQualifiedName(pt), .none);
ip.namespacePtr(namespace_index).owner_type = wip_ty.index;
if (zcu.comp.config.incremental) {
try pt.addDependency(.wrap(.{ .type = wip_ty.index }), .{ .src_hash = tracked_inst });
}
try pt.scanNamespace(namespace_index, decls);
try zcu.comp.queueJob(.{ .resolve_type_fully = wip_ty.index });
codegen_type: {
if (file.mod.?.strip) break :codegen_type;
// This job depends on any resolve_type_fully jobs queued up before it.
zcu.comp.link_prog_node.increaseEstimatedTotalItems(1);
try zcu.comp.queueJob(.{ .link_type = wip_ty.index });
}
zcu.setFileRootType(file_index, wip_ty.index);
if (zcu.comp.debugIncremental()) try zcu.incremental_debug_state.newType(zcu, wip_ty.index);
return wip_ty.finish(ip, namespace_index);
}
/// Re-scan the namespace of a file's root struct type on an incremental update.
/// The file must have successfully populated ZIR.
/// If the file's root struct type is not populated (the file is unreferenced), nothing is done.
/// This is called by `updateZirRefs` for all updated files before the main work loop.
/// This function does not perform any semantic analysis.
fn updateFileNamespace(pt: Zcu.PerThread, file_index: Zcu.File.Index) Allocator.Error!void {
const zcu = pt.zcu;
const file = zcu.fileByIndex(file_index);
const file_root_type = zcu.fileRootType(file_index);
if (file_root_type == .none) return;
log.debug("updateFileNamespace mod={s} sub_file_path={s}", .{
file.mod.?.fully_qualified_name,
file.sub_file_path,
});
const namespace_index = Type.fromInterned(file_root_type).getNamespaceIndex(zcu);
const decls = decls: {
const extended = file.zir.?.instructions.items(.data)[@intFromEnum(Zir.Inst.Index.main_struct_inst)].extended;
const small: Zir.Inst.StructDecl.Small = @bitCast(extended.small);
var extra_index: usize = extended.operand + @typeInfo(Zir.Inst.StructDecl).@"struct".fields.len;
extra_index += @intFromBool(small.has_fields_len);
const decls_len = if (small.has_decls_len) blk: {
const decls_len = file.zir.?.extra[extra_index];
extra_index += 1;
break :blk decls_len;
} else 0;
break :decls file.zir.?.bodySlice(extra_index, decls_len);
};
try pt.scanNamespace(namespace_index, decls);
zcu.namespacePtr(namespace_index).generation = zcu.generation;
}
fn semaFile(pt: Zcu.PerThread, file_index: Zcu.File.Index) Zcu.SemaError!void {
const tracy = trace(@src());
defer tracy.end();
const zcu = pt.zcu;
const file = zcu.fileByIndex(file_index);
assert(file.getMode() == .zig);
assert(zcu.fileRootType(file_index) == .none);
assert(file.zir != null);
const new_namespace_index = try pt.createNamespace(.{
.parent = .none,
.owner_type = undefined, // set in `createFileRootStruct`
.file_scope = file_index,
.generation = zcu.generation,
});
const struct_ty = try pt.createFileRootStruct(file_index, new_namespace_index, false);
errdefer zcu.intern_pool.remove(pt.tid, struct_ty);
if (zcu.comp.time_report) |*tr| {
tr.stats.n_imported_files += 1;
}
}
/// Called by AstGen worker threads when an import is seen. If `new_file` is returned, the caller is
/// then responsible for queueing a new AstGen job for the new file.
/// Assumes that `comp.mutex` is NOT locked. It will be locked by this function where necessary.
pub fn discoverImport(
pt: Zcu.PerThread,
importer_path: Compilation.Path,
import_string: []const u8,
) Allocator.Error!union(enum) {
module,
existing_file: Zcu.File.Index,
new_file: struct {
index: Zcu.File.Index,
file: *Zcu.File,
},
} {
const zcu = pt.zcu;
const gpa = zcu.gpa;
if (!mem.endsWith(u8, import_string, ".zig") and !mem.endsWith(u8, import_string, ".zon")) {
return .module;
}
const new_path = try importer_path.upJoin(gpa, zcu.comp.dirs, import_string);
errdefer new_path.deinit(gpa);
// We're about to do a GOP on `import_table`, so we need the mutex.
zcu.comp.mutex.lock();
defer zcu.comp.mutex.unlock();
const gop = try zcu.import_table.getOrPutAdapted(gpa, new_path, Zcu.ImportTableAdapter{ .zcu = zcu });
errdefer _ = zcu.import_table.pop();
if (gop.found_existing) {
new_path.deinit(gpa); // we didn't need it for `File.path`
return .{ .existing_file = gop.key_ptr.* };
}
zcu.import_table.lockPointers();
defer zcu.import_table.unlockPointers();
const new_file = try gpa.create(Zcu.File);
errdefer gpa.destroy(new_file);
const new_file_index = try zcu.intern_pool.createFile(gpa, pt.tid, .{
.bin_digest = new_path.digest(),
.file = new_file,
.root_type = .none,
});
errdefer comptime unreachable; // because we don't remove the file from the internpool
gop.key_ptr.* = new_file_index;
new_file.* = .{
.status = .never_loaded,
.path = new_path,
.stat = undefined,
.is_builtin = false,
.source = null,
.tree = null,
.zir = null,
.zoir = null,
.mod = null,
.sub_file_path = undefined,
.module_changed = false,
.prev_zir = null,
.zoir_invalidated = false,
};
return .{ .new_file = .{
.index = new_file_index,
.file = new_file,
} };
}
pub fn doImport(
pt: Zcu.PerThread,
/// This file must have its `mod` populated.
importer: *Zcu.File,
import_string: []const u8,
) error{
OutOfMemory,
ModuleNotFound,
IllegalZigImport,
}!struct {
file: Zcu.File.Index,
module_root: ?*Module,
} {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const imported_mod: ?*Module = m: {
if (mem.eql(u8, import_string, "std")) break :m zcu.std_mod;
if (mem.eql(u8, import_string, "root")) break :m zcu.root_mod;
if (mem.eql(u8, import_string, "builtin")) {
const opts = importer.mod.?.getBuiltinOptions(zcu.comp.config);
break :m zcu.builtin_modules.get(opts.hash()).?;
}
break :m importer.mod.?.deps.get(import_string);
};
if (imported_mod) |mod| {
if (zcu.module_roots.get(mod).?.unwrap()) |file_index| {
return .{
.file = file_index,
.module_root = mod,
};
}
}
if (!std.mem.endsWith(u8, import_string, ".zig") and
!std.mem.endsWith(u8, import_string, ".zon"))
{
return error.ModuleNotFound;
}
const path = try importer.path.upJoin(gpa, zcu.comp.dirs, import_string);
defer path.deinit(gpa);
if (try path.isIllegalZigImport(gpa, zcu.comp.dirs)) {
return error.IllegalZigImport;
}
return .{
.file = zcu.import_table.getKeyAdapted(path, Zcu.ImportTableAdapter{ .zcu = zcu }).?,
.module_root = null,
};
}
/// This is called once during `Compilation.create` and never again. "builtin" modules don't yet
/// exist, so are not added to `module_roots` here. They must be added when they are created.
pub fn populateModuleRootTable(pt: Zcu.PerThread) error{
OutOfMemory,
/// One of the specified modules had its root source file at an illegal path.
IllegalZigImport,
}!void {
const zcu = pt.zcu;
const gpa = zcu.gpa;
// We'll initially add [mod, undefined] pairs, and when we reach the pair while
// iterating, rewrite the undefined value.
const roots = &zcu.module_roots;
roots.clearRetainingCapacity();
// Start with:
// * `std_mod`, which is the main root of analysis
// * `root_mod`, which is `@import("root")`
// * `main_mod`, which is a special analysis root in tests (and otherwise equal to `root_mod`)
// All other modules will be found by traversing their dependency tables.
try roots.ensureTotalCapacity(gpa, 3);
roots.putAssumeCapacity(zcu.std_mod, undefined);
roots.putAssumeCapacity(zcu.root_mod, undefined);
roots.putAssumeCapacity(zcu.main_mod, undefined);
var i: usize = 0;
while (i < roots.count()) {
const mod = roots.keys()[i];
try roots.ensureUnusedCapacity(gpa, mod.deps.count());
for (mod.deps.values()) |dep| {
const gop = roots.getOrPutAssumeCapacity(dep);
_ = gop; // we want to leave the value undefined if it was added
}
const root_file_out = &roots.values()[i];
roots.lockPointers();
defer roots.unlockPointers();
i += 1;
if (Zcu.File.modeFromPath(mod.root_src_path) == null) {
root_file_out.* = .none;
continue;
}
const path = try mod.root.join(gpa, zcu.comp.dirs, mod.root_src_path);
errdefer path.deinit(gpa);
if (try path.isIllegalZigImport(gpa, zcu.comp.dirs)) {
return error.IllegalZigImport;
}
const gop = try zcu.import_table.getOrPutAdapted(gpa, path, Zcu.ImportTableAdapter{ .zcu = zcu });
errdefer _ = zcu.import_table.pop();
if (gop.found_existing) {
path.deinit(gpa);
root_file_out.* = gop.key_ptr.*.toOptional();
continue;
}
zcu.import_table.lockPointers();
defer zcu.import_table.unlockPointers();
const new_file = try gpa.create(Zcu.File);
errdefer gpa.destroy(new_file);
const new_file_index = try zcu.intern_pool.createFile(gpa, pt.tid, .{
.bin_digest = path.digest(),
.file = new_file,
.root_type = .none,
});
errdefer comptime unreachable; // because we don't remove the file from the internpool
gop.key_ptr.* = new_file_index;
root_file_out.* = new_file_index.toOptional();
new_file.* = .{
.status = .never_loaded,
.path = path,
.stat = undefined,
.is_builtin = false,
.source = null,
.tree = null,
.zir = null,
.zoir = null,
.mod = null,
.sub_file_path = undefined,
.module_changed = false,
.prev_zir = null,
.zoir_invalidated = false,
};
}
}
/// Clears and re-populates `pt.zcu.alive_files`, and determines the module identity of every alive
/// file. If a file's module changes, its `module_changed` flag is set for `updateZirRefs` to see.
/// Also clears and re-populates `failed_imports` and `multi_module_err` based on the set of alive
/// files.
///
/// Live files are also added as file system inputs if necessary.
///
/// Returns whether there is any live file which is failed. Howewver, this function does *not*
/// modify `pt.zcu.skip_analysis_this_update`.
///
/// If an error is returned, `pt.zcu.alive_files` might contain undefined values.
pub fn computeAliveFiles(pt: Zcu.PerThread) Allocator.Error!bool {
const zcu = pt.zcu;
const comp = zcu.comp;
const gpa = zcu.gpa;
var any_fatal_files = false;
zcu.multi_module_err = null;
zcu.failed_imports.clearRetainingCapacity();
zcu.alive_files.clearRetainingCapacity();
// This function will iterate the keys of `alive_files`, adding new entries as it discovers
// imports. Once a file is in `alive_files`, it has its `mod` field up-to-date. If conflicting
// imports are discovered for a file, we will set `multi_module_err`. Crucially, this traversal
// is single-threaded, and depends only on the order of the imports map from AstGen, which makes
// its behavior (in terms of which multi module errors are discovered) entirely consistent in a
// multi-threaded environment (where things like file indices could differ between compiler runs).
// The roots of our file liveness analysis will be the analysis roots.
const analysis_roots = zcu.analysisRoots();
try zcu.alive_files.ensureTotalCapacity(gpa, analysis_roots.len);
for (analysis_roots) |mod| {
const file_index = zcu.module_roots.get(mod).?.unwrap() orelse continue;
const file = zcu.fileByIndex(file_index);
file.mod = mod;
file.sub_file_path = mod.root_src_path;
zcu.alive_files.putAssumeCapacityNoClobber(file_index, .{ .analysis_root = mod });
}
var live_check_idx: usize = 0;
while (live_check_idx < zcu.alive_files.count()) {
const file_idx = zcu.alive_files.keys()[live_check_idx];
const file = zcu.fileByIndex(file_idx);
live_check_idx += 1;
switch (file.status) {
.never_loaded => unreachable, // everything reachable is loaded by the AstGen workers
.retryable_failure, .astgen_failure => any_fatal_files = true,
.success => {},
}
try comp.appendFileSystemInput(file.path);
switch (file.getMode()) {
.zig => {}, // continue to logic below
.zon => continue, // ZON can't import anything
}
if (file.status != .success) continue; // ZIR not valid if there was a file failure
const zir = file.zir.?;
const imports_index = zir.extra[@intFromEnum(Zir.ExtraIndex.imports)];
if (imports_index == 0) continue; // this Zig file has no imports
const extra = zir.extraData(Zir.Inst.Imports, imports_index);
var extra_index = extra.end;
try zcu.alive_files.ensureUnusedCapacity(gpa, extra.data.imports_len);
for (0..extra.data.imports_len) |_| {
const item = zir.extraData(Zir.Inst.Imports.Item, extra_index);
extra_index = item.end;
const import_path = zir.nullTerminatedString(item.data.name);
if (std.mem.eql(u8, import_path, "builtin")) {
// We've not necessarily generated builtin modules yet, so `doImport` could fail. Instead,
// create the module here. Then, since we know that `builtin.zig` doesn't have an error and
// has no imports other than 'std', we can just continue onto the next import.
try pt.updateBuiltinModule(file.mod.?.getBuiltinOptions(comp.config));
continue;
}
const res = pt.doImport(file, import_path) catch |err| switch (err) {
error.OutOfMemory => |e| return e,
error.ModuleNotFound => {
// It'd be nice if this were a file-level error, but allowing this turns out to
// be quite important in practice, e.g. for optional dependencies whose import
// is behind a comptime condition. So, the error here happens in `Sema` instead.
continue;
},
error.IllegalZigImport => {
try zcu.failed_imports.append(gpa, .{
.file_index = file_idx,
.import_string = item.data.name,
.import_token = item.data.token,
.kind = .illegal_zig_import,
});
continue;
},
};
// If the import was not of a module, we propagate our own module.
const imported_mod = res.module_root orelse file.mod.?;
const imported_file = zcu.fileByIndex(res.file);
const imported_ref: Zcu.File.Reference = .{ .import = .{
.importer = file_idx,
.tok = item.data.token,
.module = res.module_root,
} };
const gop = zcu.alive_files.getOrPutAssumeCapacity(res.file);
if (gop.found_existing) {
// This means `imported_file.mod` is already populated. If it doesn't match
// `imported_mod`, then this file exists in multiple modules.
if (imported_file.mod.? != imported_mod) {
// We only report the first multi-module error we see. Thanks to this traversal
// being deterministic, this doesn't raise consistency issues. Moreover, it's a
// useful behavior; we know that this error can be reached *without* realising
// that any other files are multi-module, so it's probably approximately where
// the problem "begins". Any compilation with a multi-module file is likely to
// have a huge number of them by transitive imports, so just reporting this one
// hopefully keeps the error focused.
zcu.multi_module_err = .{
.file = file_idx,
.modules = .{ imported_file.mod.?, imported_mod },
.refs = .{ gop.value_ptr.*, imported_ref },
};
// If we discover a multi-module error, it's the only error which matters, and we
// can't discern any useful information about the file's own imports; so just do
// an early exit now we've populated `zcu.multi_module_err`.
return any_fatal_files;
}
continue;
}
// We're the first thing we've found referencing `res.file`.
gop.value_ptr.* = imported_ref;
if (imported_file.mod) |m| {
if (m == imported_mod) {
// Great, the module and sub path are already populated correctly.
continue;
}
}
// We need to set the file's module, meaning we also need to compute its sub path.
// This string is externally managed and has a lifetime at least equal to the
// lifetime of `imported_file`. `null` means the file is outside its module root.
switch (imported_file.path.isNested(imported_mod.root)) {
.yes => |sub_path| {
if (imported_file.mod != null) {
// There was a module from a previous update; instruct `updateZirRefs` to
// invalidate everything.
imported_file.module_changed = true;
}
imported_file.mod = imported_mod;
imported_file.sub_file_path = sub_path;
},
.different_roots, .no => {
try zcu.failed_imports.append(gpa, .{
.file_index = file_idx,
.import_string = item.data.name,
.import_token = item.data.token,
.kind = .file_outside_module_root,
});
_ = zcu.alive_files.pop(); // we failed to populate `mod`/`sub_file_path`
},
}
}
}
return any_fatal_files;
}
/// Ensures that the `@import("builtin")` module corresponding to `opts` is available in
/// `builtin_modules`, and that its file is populated. Also ensures the file on disk is
/// up-to-date, setting a misc failure if updating it fails.
/// Asserts that the imported `builtin.zig` has no ZIR errors, and that it has only one
/// import, which is 'std'.
pub fn updateBuiltinModule(pt: Zcu.PerThread, opts: Builtin) Allocator.Error!void {
const zcu = pt.zcu;
const comp = zcu.comp;
const gpa = zcu.gpa;
const gop = try zcu.builtin_modules.getOrPut(gpa, opts.hash());
if (gop.found_existing) return; // the `File` is up-to-date
errdefer _ = zcu.builtin_modules.pop();
const mod: *Module = try .createBuiltin(comp.arena, opts, comp.dirs);
assert(std.mem.eql(u8, &mod.getBuiltinOptions(comp.config).hash(), gop.key_ptr)); // builtin is its own builtin
const path = try mod.root.join(gpa, comp.dirs, "builtin.zig");
errdefer path.deinit(gpa);
const file_gop = try zcu.import_table.getOrPutAdapted(gpa, path, Zcu.ImportTableAdapter{ .zcu = zcu });
// `Compilation.Path.isIllegalZigImport` checks guard file creation, so
// there isn't an `import_table` entry for this path yet.
assert(!file_gop.found_existing);
errdefer _ = zcu.import_table.pop();
try zcu.module_roots.ensureUnusedCapacity(gpa, 1);
const file = try gpa.create(Zcu.File);
errdefer gpa.destroy(file);
file.* = .{
.status = .never_loaded,
.stat = undefined,
.path = path,
.is_builtin = true,
.source = null,
.tree = null,
.zir = null,
.zoir = null,
.mod = mod,
.sub_file_path = "builtin.zig",
.module_changed = false,
.prev_zir = null,
.zoir_invalidated = false,
};
const file_index = try zcu.intern_pool.createFile(gpa, pt.tid, .{
.bin_digest = path.digest(),
.file = file,
.root_type = .none,
});
gop.value_ptr.* = mod;
file_gop.key_ptr.* = file_index;
zcu.module_roots.putAssumeCapacityNoClobber(mod, file_index.toOptional());
try opts.populateFile(gpa, file);
assert(file.status == .success);
assert(!file.zir.?.hasCompileErrors());
{
// Check that it has only one import, which is 'std'.
const imports_idx = file.zir.?.extra[@intFromEnum(Zir.ExtraIndex.imports)];
assert(imports_idx != 0); // there is an import
const extra = file.zir.?.extraData(Zir.Inst.Imports, imports_idx);
assert(extra.data.imports_len == 1); // there is exactly one import
const item = file.zir.?.extraData(Zir.Inst.Imports.Item, extra.end);
const import_path = file.zir.?.nullTerminatedString(item.data.name);
assert(mem.eql(u8, import_path, "std")); // the single import is of 'std'
}
Builtin.updateFileOnDisk(file, comp) catch |err| comp.setMiscFailure(
.write_builtin_zig,
"unable to write '{f}': {s}",
.{ file.path.fmt(comp), @errorName(err) },
);
}
pub fn embedFile(
pt: Zcu.PerThread,
cur_file: *Zcu.File,
import_string: []const u8,
) error{
OutOfMemory,
ImportOutsideModulePath,
CurrentWorkingDirectoryUnlinked,
}!Zcu.EmbedFile.Index {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const opt_mod: ?*Module = m: {
if (mem.eql(u8, import_string, "std")) break :m zcu.std_mod;
if (mem.eql(u8, import_string, "root")) break :m zcu.root_mod;
if (mem.eql(u8, import_string, "builtin")) {
const opts = cur_file.mod.?.getBuiltinOptions(zcu.comp.config);
break :m zcu.builtin_modules.get(opts.hash()).?;
}
break :m cur_file.mod.?.deps.get(import_string);
};
if (opt_mod) |mod| {
const path = try mod.root.join(gpa, zcu.comp.dirs, mod.root_src_path);
errdefer path.deinit(gpa);
const gop = try zcu.embed_table.getOrPutAdapted(gpa, path, Zcu.EmbedTableAdapter{});
if (gop.found_existing) {
path.deinit(gpa); // we're not using this key
return @enumFromInt(gop.index);
}
errdefer _ = zcu.embed_table.pop();
gop.key_ptr.* = try pt.newEmbedFile(path);
return @enumFromInt(gop.index);
}
const embed_file: *Zcu.EmbedFile, const embed_file_idx: Zcu.EmbedFile.Index = ef: {
const path = try cur_file.path.upJoin(gpa, zcu.comp.dirs, import_string);
errdefer path.deinit(gpa);
const gop = try zcu.embed_table.getOrPutAdapted(gpa, path, Zcu.EmbedTableAdapter{});
if (gop.found_existing) {
path.deinit(gpa); // we're not using this key
break :ef .{ gop.key_ptr.*, @enumFromInt(gop.index) };
} else {
errdefer _ = zcu.embed_table.pop();
gop.key_ptr.* = try pt.newEmbedFile(path);
break :ef .{ gop.key_ptr.*, @enumFromInt(gop.index) };
}
};
switch (embed_file.path.isNested(cur_file.mod.?.root)) {
.yes => {},
.different_roots, .no => return error.ImportOutsideModulePath,
}
return embed_file_idx;
}
pub fn updateEmbedFile(
pt: Zcu.PerThread,
ef: *Zcu.EmbedFile,
/// If not `null`, the interned file data is stored here, if it was loaded.
/// `newEmbedFile` uses this to add the file to the `whole` cache manifest.
ip_str_out: ?*?InternPool.String,
) Allocator.Error!void {
pt.updateEmbedFileInner(ef, ip_str_out) catch |err| switch (err) {
error.OutOfMemory => |e| return e,
else => |e| {
ef.val = .none;
ef.err = e;
ef.stat = undefined;
},
};
}
fn updateEmbedFileInner(
pt: Zcu.PerThread,
ef: *Zcu.EmbedFile,
ip_str_out: ?*?InternPool.String,
) !void {
const tid = pt.tid;
const zcu = pt.zcu;
const gpa = zcu.gpa;
const io = zcu.comp.io;
const ip = &zcu.intern_pool;
var file = f: {
const dir, const sub_path = ef.path.openInfo(zcu.comp.dirs);
break :f try dir.openFile(sub_path, .{});
};
defer file.close();
const stat: Cache.File.Stat = .fromFs(try file.stat());
if (ef.val != .none) {
const old_stat = ef.stat;
const unchanged_metadata =
stat.size == old_stat.size and
stat.mtime.nanoseconds == old_stat.mtime.nanoseconds and
stat.inode == old_stat.inode;
if (unchanged_metadata) return;
}
const size = std.math.cast(usize, stat.size) orelse return error.FileTooBig;
const size_plus_one = std.math.add(usize, size, 1) catch return error.FileTooBig;
// The loaded bytes of the file, including a sentinel 0 byte.
const ip_str: InternPool.String = str: {
const string_bytes = ip.getLocal(tid).getMutableStringBytes(gpa);
const old_len = string_bytes.mutate.len;
errdefer string_bytes.shrinkRetainingCapacity(old_len);
const bytes = (try string_bytes.addManyAsSlice(size_plus_one))[0];
var fr = file.reader(io, &.{});
fr.size = stat.size;
fr.interface.readSliceAll(bytes[0..size]) catch |err| switch (err) {
error.ReadFailed => return fr.err.?,
error.EndOfStream => return error.UnexpectedEof,
};
bytes[size] = 0;
break :str try ip.getOrPutTrailingString(gpa, tid, @intCast(bytes.len), .maybe_embedded_nulls);
};
if (ip_str_out) |p| p.* = ip_str;
const array_ty = try pt.arrayType(.{
.len = size,
.sentinel = .zero_u8,
.child = .u8_type,
});
const ptr_ty = try pt.singleConstPtrType(array_ty);
const array_val = try pt.intern(.{ .aggregate = .{
.ty = array_ty.toIntern(),
.storage = .{ .bytes = ip_str },
} });
const ptr_val = try pt.intern(.{ .ptr = .{
.ty = ptr_ty.toIntern(),
.base_addr = .{ .uav = .{
.val = array_val,
.orig_ty = ptr_ty.toIntern(),
} },
.byte_offset = 0,
} });
ef.val = ptr_val;
ef.err = null;
ef.stat = stat;
}
/// Assumes that `path` is allocated into `gpa`. Takes ownership of `path` on success.
fn newEmbedFile(
pt: Zcu.PerThread,
path: Compilation.Path,
) !*Zcu.EmbedFile {
const zcu = pt.zcu;
const comp = zcu.comp;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const new_file = try gpa.create(Zcu.EmbedFile);
errdefer gpa.destroy(new_file);
new_file.* = .{
.path = path,
.val = .none,
.err = null,
.stat = undefined,
};
var opt_ip_str: ?InternPool.String = null;
try pt.updateEmbedFile(new_file, &opt_ip_str);
try comp.appendFileSystemInput(path);
// Add the file contents to the `whole` cache manifest if necessary.
cache: {
const whole = switch (zcu.comp.cache_use) {
.whole => |whole| whole,
.incremental, .none => break :cache,
};
const man = whole.cache_manifest orelse break :cache;
const ip_str = opt_ip_str orelse break :cache; // this will be a compile error
const array_len = Value.fromInterned(new_file.val).typeOf(zcu).childType(zcu).arrayLen(zcu);
const contents = ip_str.toSlice(array_len, ip);
const path_str = try path.toAbsolute(comp.dirs, gpa);
defer gpa.free(path_str);
whole.cache_manifest_mutex.lock();
defer whole.cache_manifest_mutex.unlock();
man.addFilePostContents(path_str, contents, new_file.stat) catch |err| switch (err) {
error.Unexpected => unreachable,
else => |e| return e,
};
}
return new_file;
}
pub fn scanNamespace(
pt: Zcu.PerThread,
namespace_index: Zcu.Namespace.Index,
decls: []const Zir.Inst.Index,
) Allocator.Error!void {
const tracy = trace(@src());
defer tracy.end();
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const gpa = zcu.gpa;
const namespace = zcu.namespacePtr(namespace_index);
const tracked_unit = zcu.trackUnitSema(
Type.fromInterned(namespace.owner_type).containerTypeName(ip).toSlice(ip),
null,
);
defer tracked_unit.end(zcu);
// For incremental updates, `scanDecl` wants to look up existing decls by their ZIR index rather
// than their name. We'll build an efficient mapping now, then discard the current `decls`.
// We map to the `AnalUnit`, since not every declaration has a `Nav`.
var existing_by_inst: std.AutoHashMapUnmanaged(InternPool.TrackedInst.Index, InternPool.AnalUnit) = .empty;
defer existing_by_inst.deinit(gpa);
try existing_by_inst.ensureTotalCapacity(gpa, @intCast(
namespace.pub_decls.count() + namespace.priv_decls.count() +
namespace.comptime_decls.items.len +
namespace.test_decls.items.len,
));
for (namespace.pub_decls.keys()) |nav| {
const zir_index = ip.getNav(nav).analysis.?.zir_index;
existing_by_inst.putAssumeCapacityNoClobber(zir_index, .wrap(.{ .nav_val = nav }));
}
for (namespace.priv_decls.keys()) |nav| {
const zir_index = ip.getNav(nav).analysis.?.zir_index;
existing_by_inst.putAssumeCapacityNoClobber(zir_index, .wrap(.{ .nav_val = nav }));
}
for (namespace.comptime_decls.items) |cu| {
const zir_index = ip.getComptimeUnit(cu).zir_index;
existing_by_inst.putAssumeCapacityNoClobber(zir_index, .wrap(.{ .@"comptime" = cu }));
}
for (namespace.test_decls.items) |nav| {
const zir_index = ip.getNav(nav).analysis.?.zir_index;
existing_by_inst.putAssumeCapacityNoClobber(zir_index, .wrap(.{ .nav_val = nav }));
// This test will be re-added to `test_functions` later on if it's still alive. Remove it for now.
_ = zcu.test_functions.swapRemove(nav);
}
var seen_decls: std.AutoHashMapUnmanaged(InternPool.NullTerminatedString, void) = .empty;
defer seen_decls.deinit(gpa);
namespace.pub_decls.clearRetainingCapacity();
namespace.priv_decls.clearRetainingCapacity();
namespace.comptime_decls.clearRetainingCapacity();
namespace.test_decls.clearRetainingCapacity();
var scan_decl_iter: ScanDeclIter = .{
.pt = pt,
.namespace_index = namespace_index,
.seen_decls = &seen_decls,
.existing_by_inst = &existing_by_inst,
.pass = .named,
};
for (decls) |decl_inst| {
try scan_decl_iter.scanDecl(decl_inst);
}
scan_decl_iter.pass = .unnamed;
for (decls) |decl_inst| {
try scan_decl_iter.scanDecl(decl_inst);
}
}
const ScanDeclIter = struct {
pt: Zcu.PerThread,
namespace_index: Zcu.Namespace.Index,
seen_decls: *std.AutoHashMapUnmanaged(InternPool.NullTerminatedString, void),
existing_by_inst: *const std.AutoHashMapUnmanaged(InternPool.TrackedInst.Index, InternPool.AnalUnit),
/// Decl scanning is run in two passes, so that we can detect when a generated
/// name would clash with an explicit name and use a different one.
pass: enum { named, unnamed },
unnamed_test_index: usize = 0,
fn avoidNameConflict(iter: *ScanDeclIter, comptime fmt: []const u8, args: anytype) !InternPool.NullTerminatedString {
const pt = iter.pt;
const gpa = pt.zcu.gpa;
const ip = &pt.zcu.intern_pool;
var name = try ip.getOrPutStringFmt(gpa, pt.tid, fmt, args, .no_embedded_nulls);
var gop = try iter.seen_decls.getOrPut(gpa, name);
var next_suffix: u32 = 0;
while (gop.found_existing) {
name = try ip.getOrPutStringFmt(gpa, pt.tid, "{f}_{d}", .{ name.fmt(ip), next_suffix }, .no_embedded_nulls);
gop = try iter.seen_decls.getOrPut(gpa, name);
next_suffix += 1;
}
return name;
}
fn scanDecl(iter: *ScanDeclIter, decl_inst: Zir.Inst.Index) Allocator.Error!void {
const tracy = trace(@src());
defer tracy.end();
const pt = iter.pt;
const zcu = pt.zcu;
const comp = zcu.comp;
const namespace_index = iter.namespace_index;
const namespace = zcu.namespacePtr(namespace_index);
const gpa = zcu.gpa;
const file = namespace.fileScope(zcu);
const zir = file.zir.?;
const ip = &zcu.intern_pool;
const decl = zir.getDeclaration(decl_inst);
const maybe_name: InternPool.OptionalNullTerminatedString = switch (decl.kind) {
.@"comptime" => name: {
if (iter.pass != .unnamed) return;
break :name .none;
},
.unnamed_test => name: {
if (iter.pass != .unnamed) return;
const i = iter.unnamed_test_index;
iter.unnamed_test_index += 1;
break :name (try iter.avoidNameConflict("test_{d}", .{i})).toOptional();
},
.@"test", .decltest => |kind| name: {
// We consider these to be unnamed since the decl name can be adjusted to avoid conflicts if necessary.
if (iter.pass != .unnamed) return;
const prefix = @tagName(kind);
break :name (try iter.avoidNameConflict("{s}.{s}", .{ prefix, zir.nullTerminatedString(decl.name) })).toOptional();
},
.@"const", .@"var" => name: {
if (iter.pass != .named) return;
const name = try ip.getOrPutString(
gpa,
pt.tid,
zir.nullTerminatedString(decl.name),
.no_embedded_nulls,
);
try iter.seen_decls.putNoClobber(gpa, name, {});
break :name name.toOptional();
},
};
const tracked_inst = try ip.trackZir(gpa, pt.tid, .{
.file = namespace.file_scope,
.inst = decl_inst,
});
const existing_unit = iter.existing_by_inst.get(tracked_inst);
const unit, const want_analysis = switch (decl.kind) {
.@"comptime" => unit: {
const cu = if (existing_unit) |eu|
eu.unwrap().@"comptime"
else
try ip.createComptimeUnit(gpa, pt.tid, tracked_inst, namespace_index);
const unit: AnalUnit = .wrap(.{ .@"comptime" = cu });
try namespace.comptime_decls.append(gpa, cu);
if (existing_unit == null) {
// For a `comptime` declaration, whether to analyze is based solely on whether the unit
// is outdated. So, add this fresh one to `outdated` and `outdated_ready`.
try zcu.outdated.ensureUnusedCapacity(gpa, 1);
try zcu.outdated_ready.ensureUnusedCapacity(gpa, 1);
zcu.outdated.putAssumeCapacityNoClobber(unit, 0);
zcu.outdated_ready.putAssumeCapacityNoClobber(unit, {});
}
break :unit .{ unit, true };
},
else => unit: {
const name = maybe_name.unwrap().?;
const fqn = try namespace.internFullyQualifiedName(ip, gpa, pt.tid, name);
const nav = if (existing_unit) |eu| eu.unwrap().nav_val else nav: {
const nav = try ip.createDeclNav(gpa, pt.tid, name, fqn, tracked_inst, namespace_index);
if (zcu.comp.debugIncremental()) try zcu.incremental_debug_state.newNav(zcu, nav);
break :nav nav;
};
const unit: AnalUnit = .wrap(.{ .nav_val = nav });
assert(ip.getNav(nav).name == name);
assert(ip.getNav(nav).fqn == fqn);
const want_analysis = switch (decl.kind) {
.@"comptime" => unreachable,
.unnamed_test, .@"test", .decltest => a: {
const is_named = decl.kind != .unnamed_test;
try namespace.test_decls.append(gpa, nav);
// TODO: incremental compilation!
// * remove from `test_functions` if no longer matching filter
// * add to `test_functions` if newly passing filter
// This logic is unaware of incremental: we'll end up with duplicates.
// Perhaps we should add all test indiscriminately and filter at the end of the update.
if (!comp.config.is_test) break :a false;
if (file.mod != zcu.main_mod) break :a false;
if (is_named and comp.test_filters.len > 0) {
const fqn_slice = fqn.toSlice(ip);
for (comp.test_filters) |test_filter| {
if (std.mem.indexOf(u8, fqn_slice, test_filter) != null) break;
} else break :a false;
}
try zcu.test_functions.put(gpa, nav, {});
break :a true;
},
.@"const", .@"var" => a: {
if (decl.is_pub) {
try namespace.pub_decls.putContext(gpa, nav, {}, .{ .zcu = zcu });
} else {
try namespace.priv_decls.putContext(gpa, nav, {}, .{ .zcu = zcu });
}
break :a false;
},
};
break :unit .{ unit, want_analysis };
},
};
if (existing_unit == null and (want_analysis or decl.linkage == .@"export")) {
log.debug(
"scanDecl queue analyze_comptime_unit file='{s}' unit={f}",
.{ namespace.fileScope(zcu).sub_file_path, zcu.fmtAnalUnit(unit) },
);
try comp.queueJob(.{ .analyze_comptime_unit = unit });
}
}
};
fn analyzeFnBodyInner(pt: Zcu.PerThread, func_index: InternPool.Index) Zcu.SemaError!Air {
const tracy = trace(@src());
defer tracy.end();
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const anal_unit = AnalUnit.wrap(.{ .func = func_index });
const func = zcu.funcInfo(func_index);
const inst_info = func.zir_body_inst.resolveFull(ip) orelse return error.AnalysisFail;
const file = zcu.fileByIndex(inst_info.file);
const zir = file.zir.?;
try zcu.analysis_in_progress.putNoClobber(gpa, anal_unit, {});
errdefer _ = zcu.analysis_in_progress.swapRemove(anal_unit);
func.setAnalyzed(ip);
if (func.analysisUnordered(ip).inferred_error_set) {
func.setResolvedErrorSet(ip, .none);
}
if (zcu.comp.time_report) |*tr| {
if (func.generic_owner != .none) {
tr.stats.n_generic_instances += 1;
}
}
// This is the `Nau` corresponding to the `declaration` instruction which the function or its generic owner originates from.
const decl_nav = ip.getNav(if (func.generic_owner == .none)
func.owner_nav
else
zcu.funcInfo(func.generic_owner).owner_nav);
const func_nav = ip.getNav(func.owner_nav);
zcu.intern_pool.removeDependenciesForDepender(gpa, anal_unit);
var analysis_arena = std.heap.ArenaAllocator.init(gpa);
defer analysis_arena.deinit();
var comptime_err_ret_trace = std.array_list.Managed(Zcu.LazySrcLoc).init(gpa);
defer comptime_err_ret_trace.deinit();
// In the case of a generic function instance, this is the type of the
// instance, which has comptime parameters elided. In other words, it is
// the runtime-known parameters only, not to be confused with the
// generic_owner function type, which potentially has more parameters,
// including comptime parameters.
const fn_ty = Type.fromInterned(func.ty);
const fn_ty_info = zcu.typeToFunc(fn_ty).?;
var sema: Sema = .{
.pt = pt,
.gpa = gpa,
.arena = analysis_arena.allocator(),
.code = zir,
.owner = anal_unit,
.func_index = func_index,
.func_is_naked = fn_ty_info.cc == .naked,
.fn_ret_ty = Type.fromInterned(fn_ty_info.return_type),
.fn_ret_ty_ies = null,
.branch_quota = @max(func.branchQuotaUnordered(ip), Sema.default_branch_quota),
.comptime_err_ret_trace = &comptime_err_ret_trace,
};
defer sema.deinit();
// Every runtime function has a dependency on the source of the Decl it originates from.
// It also depends on the value of its owner Decl.
try sema.declareDependency(.{ .src_hash = decl_nav.analysis.?.zir_index });
try sema.declareDependency(.{ .nav_val = func.owner_nav });
if (func.analysisUnordered(ip).inferred_error_set) {
const ies = try analysis_arena.allocator().create(Sema.InferredErrorSet);
ies.* = .{ .func = func_index };
sema.fn_ret_ty_ies = ies;
}
// reset in case calls to errorable functions are removed.
ip.funcSetHasErrorTrace(func_index, fn_ty_info.cc == .auto);
// First few indexes of extra are reserved and set at the end.
const reserved_count = @typeInfo(Air.ExtraIndex).@"enum".fields.len;
try sema.air_extra.ensureTotalCapacity(gpa, reserved_count);
sema.air_extra.items.len += reserved_count;
var inner_block: Sema.Block = .{
.parent = null,
.sema = &sema,
.namespace = decl_nav.analysis.?.namespace,
.instructions = .{},
.inlining = null,
.comptime_reason = null,
.src_base_inst = decl_nav.analysis.?.zir_index,
.type_name_ctx = func_nav.fqn,
};
defer inner_block.instructions.deinit(gpa);
const fn_info = sema.code.getFnInfo(func.zirBodyInstUnordered(ip).resolve(ip) orelse return error.AnalysisFail);
// Here we are performing "runtime semantic analysis" for a function body, which means
// we must map the parameter ZIR instructions to `arg` AIR instructions.
// AIR requires the `arg` parameters to be the first N instructions.
// This could be a generic function instantiation, however, in which case we need to
// map the comptime parameters to constant values and only emit arg AIR instructions
// for the runtime ones.
const runtime_params_len = fn_ty_info.param_types.len;
try inner_block.instructions.ensureTotalCapacityPrecise(gpa, runtime_params_len);
try sema.air_instructions.ensureUnusedCapacity(gpa, fn_info.total_params_len);
try sema.inst_map.ensureSpaceForInstructions(gpa, fn_info.param_body);
// In the case of a generic function instance, pre-populate all the comptime args.
if (func.comptime_args.len != 0) {
for (
fn_info.param_body[0..func.comptime_args.len],
func.comptime_args.get(ip),
) |inst, comptime_arg| {
if (comptime_arg == .none) continue;
sema.inst_map.putAssumeCapacityNoClobber(inst, Air.internedToRef(comptime_arg));
}
}
const src_params_len = if (func.comptime_args.len != 0)
func.comptime_args.len
else
runtime_params_len;
var runtime_param_index: usize = 0;
for (fn_info.param_body[0..src_params_len], 0..) |inst, zir_param_index| {
const gop = sema.inst_map.getOrPutAssumeCapacity(inst);
if (gop.found_existing) continue; // provided above by comptime arg
const param_ty = fn_ty_info.param_types.get(ip)[runtime_param_index];
runtime_param_index += 1;
const opt_opv = sema.typeHasOnePossibleValue(Type.fromInterned(param_ty)) catch |err| switch (err) {
error.ComptimeReturn => unreachable,
error.ComptimeBreak => unreachable,
else => |e| return e,
};
if (opt_opv) |opv| {
gop.value_ptr.* = Air.internedToRef(opv.toIntern());
continue;
}
const arg_index: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
gop.value_ptr.* = arg_index.toRef();
inner_block.instructions.appendAssumeCapacity(arg_index);
sema.air_instructions.appendAssumeCapacity(.{
.tag = .arg,
.data = .{ .arg = .{
.ty = Air.internedToRef(param_ty),
.zir_param_index = @intCast(zir_param_index),
} },
});
}
const last_arg_index = inner_block.instructions.items.len;
// Save the error trace as our first action in the function.
// If this is unnecessary after all, Liveness will clean it up for us.
const error_return_trace_index = try sema.analyzeSaveErrRetIndex(&inner_block);
sema.error_return_trace_index_on_fn_entry = error_return_trace_index;
inner_block.error_return_trace_index = error_return_trace_index;
sema.analyzeFnBody(&inner_block, fn_info.body) catch |err| switch (err) {
error.ComptimeReturn => unreachable,
else => |e| return e,
};
for (sema.unresolved_inferred_allocs.keys()) |ptr_inst| {
// The lack of a resolve_inferred_alloc means that this instruction
// is unused so it just has to be a no-op.
sema.air_instructions.set(@intFromEnum(ptr_inst), .{
.tag = .alloc,
.data = .{ .ty = .ptr_const_comptime_int },
});
}
func.setBranchHint(ip, sema.branch_hint orelse .none);
if (zcu.comp.config.any_error_tracing and func.analysisUnordered(ip).has_error_trace and fn_ty_info.cc != .auto) {
// We're using an error trace, but didn't start out with one from the caller.
// We'll have to create it at the start of the function.
sema.setupErrorReturnTrace(&inner_block, last_arg_index) catch |err| switch (err) {
error.ComptimeReturn => unreachable,
error.ComptimeBreak => unreachable,
else => |e| return e,
};
}
// Copy the block into place and mark that as the main block.
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).@"struct".fields.len +
inner_block.instructions.items.len);
const main_block_index = sema.addExtraAssumeCapacity(Air.Block{
.body_len = @intCast(inner_block.instructions.items.len),
});
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(inner_block.instructions.items));
sema.air_extra.items[@intFromEnum(Air.ExtraIndex.main_block)] = main_block_index;
// Resolving inferred error sets is done *before* setting the function
// state to success, so that "unable to resolve inferred error set" errors
// can be emitted here.
if (sema.fn_ret_ty_ies) |ies| {
sema.resolveInferredErrorSetPtr(&inner_block, .{
.base_node_inst = inner_block.src_base_inst,
.offset = Zcu.LazySrcLoc.Offset.nodeOffset(.zero),
}, ies) catch |err| switch (err) {
error.ComptimeReturn => unreachable,
error.ComptimeBreak => unreachable,
else => |e| return e,
};
assert(ies.resolved != .none);
func.setResolvedErrorSet(ip, ies.resolved);
}
assert(zcu.analysis_in_progress.swapRemove(anal_unit));
// Finally we must resolve the return type and parameter types so that backends
// have full access to type information.
// Crucially, this happens *after* we set the function state to success above,
// so that dependencies on the function body will now be satisfied rather than
// result in circular dependency errors.
// TODO: this can go away once we fix backends having to resolve `StackTrace`.
// The codegen timing guarantees that the parameter types will be populated.
sema.resolveFnTypes(fn_ty, inner_block.nodeOffset(.zero)) catch |err| switch (err) {
error.ComptimeReturn => unreachable,
error.ComptimeBreak => unreachable,
else => |e| return e,
};
try sema.flushExports();
defer {
sema.air_instructions = .empty;
sema.air_extra = .empty;
}
return .{
.instructions = sema.air_instructions.slice(),
.extra = sema.air_extra,
};
}
pub fn createNamespace(pt: Zcu.PerThread, initialization: Zcu.Namespace) !Zcu.Namespace.Index {
return pt.zcu.intern_pool.createNamespace(pt.zcu.gpa, pt.tid, initialization);
}
pub fn destroyNamespace(pt: Zcu.PerThread, namespace_index: Zcu.Namespace.Index) void {
return pt.zcu.intern_pool.destroyNamespace(pt.tid, namespace_index);
}
pub fn getErrorValue(
pt: Zcu.PerThread,
name: InternPool.NullTerminatedString,
) Allocator.Error!Zcu.ErrorInt {
return pt.zcu.intern_pool.getErrorValue(pt.zcu.gpa, pt.tid, name);
}
pub fn getErrorValueFromSlice(pt: Zcu.PerThread, name: []const u8) Allocator.Error!Zcu.ErrorInt {
return pt.getErrorValue(try pt.zcu.intern_pool.getOrPutString(pt.zcu.gpa, name));
}
/// Removes any entry from `Zcu.failed_files` associated with `file`. Acquires `Compilation.mutex` as needed.
/// `file.zir` must be unchanged from the last update, as it is used to determine if there is such an entry.
fn lockAndClearFileCompileError(pt: Zcu.PerThread, file_index: Zcu.File.Index, file: *Zcu.File) void {
const maybe_has_error = switch (file.status) {
.never_loaded => false,
.retryable_failure => true,
.astgen_failure => true,
.success => switch (file.getMode()) {
.zig => has_error: {
const zir = file.zir orelse break :has_error false;
break :has_error zir.hasCompileErrors();
},
.zon => has_error: {
const zoir = file.zoir orelse break :has_error false;
break :has_error zoir.hasCompileErrors();
},
},
};
// If runtime safety is on, let's quickly lock the mutex and check anyway.
if (!maybe_has_error and !std.debug.runtime_safety) {
return;
}
pt.zcu.comp.mutex.lock();
defer pt.zcu.comp.mutex.unlock();
if (pt.zcu.failed_files.fetchSwapRemove(file_index)) |kv| {
assert(maybe_has_error); // the runtime safety case above
if (kv.value) |msg| pt.zcu.gpa.free(msg); // delete previous error message
}
}
/// Called from `Compilation.update`, after everything is done, just before
/// reporting compile errors. In this function we emit exported symbol collision
/// errors and communicate exported symbols to the linker backend.
pub fn processExports(pt: Zcu.PerThread) !void {
const zcu = pt.zcu;
const gpa = zcu.gpa;
if (zcu.single_exports.count() == 0 and zcu.multi_exports.count() == 0) {
// We can avoid a call to `resolveReferences` in this case.
return;
}
// First, construct a mapping of every exported value and Nav to the indices of all its different exports.
var nav_exports: std.AutoArrayHashMapUnmanaged(InternPool.Nav.Index, std.ArrayListUnmanaged(Zcu.Export.Index)) = .empty;
var uav_exports: std.AutoArrayHashMapUnmanaged(InternPool.Index, std.ArrayListUnmanaged(Zcu.Export.Index)) = .empty;
defer {
for (nav_exports.values()) |*exports| {
exports.deinit(gpa);
}
nav_exports.deinit(gpa);
for (uav_exports.values()) |*exports| {
exports.deinit(gpa);
}
uav_exports.deinit(gpa);
}
// We note as a heuristic:
// * It is rare to export a value.
// * It is rare for one Nav to be exported multiple times.
// So, this ensureTotalCapacity serves as a reasonable (albeit very approximate) optimization.
try nav_exports.ensureTotalCapacity(gpa, zcu.single_exports.count() + zcu.multi_exports.count());
const unit_references = try zcu.resolveReferences();
for (zcu.single_exports.keys(), zcu.single_exports.values()) |exporter, export_idx| {
const exp = export_idx.ptr(zcu);
if (!unit_references.contains(exporter)) {
// This export might already have been sent to the linker on a previous update, in which case we need to delete it.
// The linker export API should be modified to eliminate this call. #23616
if (zcu.comp.bin_file) |lf| {
if (zcu.llvm_object == null) {
lf.deleteExport(exp.exported, exp.opts.name);
}
}
continue;
}
const value_ptr, const found_existing = switch (exp.exported) {
.nav => |nav| gop: {
const gop = try nav_exports.getOrPut(gpa, nav);
break :gop .{ gop.value_ptr, gop.found_existing };
},
.uav => |uav| gop: {
const gop = try uav_exports.getOrPut(gpa, uav);
break :gop .{ gop.value_ptr, gop.found_existing };
},
};
if (!found_existing) value_ptr.* = .{};
try value_ptr.append(gpa, export_idx);
}
for (zcu.multi_exports.keys(), zcu.multi_exports.values()) |exporter, info| {
const exports = zcu.all_exports.items[info.index..][0..info.len];
if (!unit_references.contains(exporter)) {
// This export might already have been sent to the linker on a previous update, in which case we need to delete it.
// The linker export API should be modified to eliminate this loop. #23616
if (zcu.comp.bin_file) |lf| {
if (zcu.llvm_object == null) {
for (exports) |exp| {
lf.deleteExport(exp.exported, exp.opts.name);
}
}
}
continue;
}
for (exports, info.index..) |exp, export_idx| {
const value_ptr, const found_existing = switch (exp.exported) {
.nav => |nav| gop: {
const gop = try nav_exports.getOrPut(gpa, nav);
break :gop .{ gop.value_ptr, gop.found_existing };
},
.uav => |uav| gop: {
const gop = try uav_exports.getOrPut(gpa, uav);
break :gop .{ gop.value_ptr, gop.found_existing };
},
};
if (!found_existing) value_ptr.* = .{};
try value_ptr.append(gpa, @enumFromInt(export_idx));
}
}
// If there are compile errors, we won't call `updateExports`. Not only would it be redundant
// work, but the linker may not have seen an exported `Nav` due to a compile error, so linker
// implementations would have to handle that case. This early return avoids that.
const skip_linker_work = zcu.comp.anyErrors();
// Map symbol names to `Export` for name collision detection.
var symbol_exports: SymbolExports = .{};
defer symbol_exports.deinit(gpa);
for (nav_exports.keys(), nav_exports.values()) |exported_nav, exports_list| {
const exported: Zcu.Exported = .{ .nav = exported_nav };
try pt.processExportsInner(&symbol_exports, exported, exports_list.items, skip_linker_work);
}
for (uav_exports.keys(), uav_exports.values()) |exported_uav, exports_list| {
const exported: Zcu.Exported = .{ .uav = exported_uav };
try pt.processExportsInner(&symbol_exports, exported, exports_list.items, skip_linker_work);
}
}
const SymbolExports = std.AutoArrayHashMapUnmanaged(InternPool.NullTerminatedString, Zcu.Export.Index);
fn processExportsInner(
pt: Zcu.PerThread,
symbol_exports: *SymbolExports,
exported: Zcu.Exported,
export_indices: []const Zcu.Export.Index,
skip_linker_work: bool,
) error{OutOfMemory}!void {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
for (export_indices) |export_idx| {
const new_export = export_idx.ptr(zcu);
const gop = try symbol_exports.getOrPut(gpa, new_export.opts.name);
if (gop.found_existing) {
new_export.status = .failed_retryable;
try zcu.failed_exports.ensureUnusedCapacity(gpa, 1);
const msg = try Zcu.ErrorMsg.create(gpa, new_export.src, "exported symbol collision: {f}", .{
new_export.opts.name.fmt(ip),
});
errdefer msg.destroy(gpa);
const other_export = gop.value_ptr.ptr(zcu);
try zcu.errNote(other_export.src, msg, "other symbol here", .{});
zcu.failed_exports.putAssumeCapacityNoClobber(export_idx, msg);
new_export.status = .failed;
} else {
gop.value_ptr.* = export_idx;
}
}
switch (exported) {
.nav => |nav_index| if (failed: {
const nav = ip.getNav(nav_index);
if (zcu.failed_codegen.contains(nav_index)) break :failed true;
if (nav.analysis != null) {
const unit: AnalUnit = .wrap(.{ .nav_val = nav_index });
if (zcu.failed_analysis.contains(unit)) break :failed true;
if (zcu.transitive_failed_analysis.contains(unit)) break :failed true;
}
const val = switch (nav.status) {
.unresolved, .type_resolved => break :failed true,
.fully_resolved => |r| Value.fromInterned(r.val),
};
// If the value is a function, we also need to check if that function succeeded analysis.
if (val.typeOf(zcu).zigTypeTag(zcu) == .@"fn") {
const func_unit = AnalUnit.wrap(.{ .func = val.toIntern() });
if (zcu.failed_analysis.contains(func_unit)) break :failed true;
if (zcu.transitive_failed_analysis.contains(func_unit)) break :failed true;
}
break :failed false;
}) {
// This `Nav` is failed, so was never sent to codegen. There should be a compile error.
assert(skip_linker_work);
},
.uav => {},
}
if (skip_linker_work) return;
if (zcu.llvm_object) |llvm_object| {
try zcu.handleUpdateExports(export_indices, llvm_object.updateExports(pt, exported, export_indices));
} else if (zcu.comp.bin_file) |lf| {
try zcu.handleUpdateExports(export_indices, lf.updateExports(pt, exported, export_indices));
}
}
pub fn populateTestFunctions(pt: Zcu.PerThread) Allocator.Error!void {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
// Our job is to correctly set the value of the `test_functions` declaration if it has been
// analyzed and sent to codegen, It usually will have been, because the test runner will
// reference it, and `std.builtin` shouldn't have type errors. However, if it hasn't been
// analyzed, we will just terminate early, since clearly the test runner hasn't referenced
// `test_functions` so there's no point populating it. More to the the point, we potentially
// *can't* populate it without doing some type resolution, and... let's try to leave Sema in
// the past here.
const builtin_mod = zcu.builtin_modules.get(zcu.root_mod.getBuiltinOptions(zcu.comp.config).hash()).?;
const builtin_file_index = zcu.module_roots.get(builtin_mod).?.unwrap().?;
const builtin_root_type = zcu.fileRootType(builtin_file_index);
if (builtin_root_type == .none) return; // `@import("builtin")` never analyzed
const builtin_namespace = Type.fromInterned(builtin_root_type).getNamespace(zcu).unwrap().?;
// We know that the namespace has a `test_functions`...
const nav_index = zcu.namespacePtr(builtin_namespace).pub_decls.getKeyAdapted(
try ip.getOrPutString(gpa, pt.tid, "test_functions", .no_embedded_nulls),
Zcu.Namespace.NameAdapter{ .zcu = zcu },
).?;
// ...but it might not be populated, so let's check that!
if (zcu.failed_analysis.contains(.wrap(.{ .nav_val = nav_index })) or
zcu.transitive_failed_analysis.contains(.wrap(.{ .nav_val = nav_index })) or
ip.getNav(nav_index).status != .fully_resolved)
{
// The value of `builtin.test_functions` was either never referenced, or failed analysis.
// Either way, we don't need to do anything.
return;
}
// Okay, `builtin.test_functions` is (potentially) referenced and valid. Our job now is to swap
// its placeholder `&.{}` value for the actual list of all test functions.
const test_fns_val = zcu.navValue(nav_index);
const test_fn_ty = test_fns_val.typeOf(zcu).slicePtrFieldType(zcu).childType(zcu);
const array_anon_decl: InternPool.Key.Ptr.BaseAddr.Uav = array: {
// Add zcu.test_functions to an array decl then make the test_functions
// decl reference it as a slice.
const test_fn_vals = try gpa.alloc(InternPool.Index, zcu.test_functions.count());
defer gpa.free(test_fn_vals);
for (test_fn_vals, zcu.test_functions.keys()) |*test_fn_val, test_nav_index| {
const test_nav = ip.getNav(test_nav_index);
{
// The test declaration might have failed; if that's the case, just return, as we'll
// be emitting a compile error anyway.
const anal_unit: AnalUnit = .wrap(.{ .nav_val = test_nav_index });
if (zcu.failed_analysis.contains(anal_unit) or
zcu.transitive_failed_analysis.contains(anal_unit))
{
return;
}
}
const test_nav_name = test_nav.fqn;
const test_nav_name_len = test_nav_name.length(ip);
const test_name_anon_decl: InternPool.Key.Ptr.BaseAddr.Uav = n: {
const test_name_ty = try pt.arrayType(.{
.len = test_nav_name_len,
.child = .u8_type,
});
const test_name_val = try pt.intern(.{ .aggregate = .{
.ty = test_name_ty.toIntern(),
.storage = .{ .bytes = test_nav_name.toString() },
} });
break :n .{
.orig_ty = (try pt.singleConstPtrType(test_name_ty)).toIntern(),
.val = test_name_val,
};
};
const test_fn_fields = .{
// name
try pt.intern(.{ .slice = .{
.ty = .slice_const_u8_type,
.ptr = try pt.intern(.{ .ptr = .{
.ty = .manyptr_const_u8_type,
.base_addr = .{ .uav = test_name_anon_decl },
.byte_offset = 0,
} }),
.len = try pt.intern(.{ .int = .{
.ty = .usize_type,
.storage = .{ .u64 = test_nav_name_len },
} }),
} }),
// func
try pt.intern(.{ .ptr = .{
.ty = (try pt.navPtrType(test_nav_index)).toIntern(),
.base_addr = .{ .nav = test_nav_index },
.byte_offset = 0,
} }),
};
test_fn_val.* = (try pt.aggregateValue(test_fn_ty, &test_fn_fields)).toIntern();
}
const array_ty = try pt.arrayType(.{
.len = test_fn_vals.len,
.child = test_fn_ty.toIntern(),
.sentinel = .none,
});
break :array .{
.orig_ty = (try pt.singleConstPtrType(array_ty)).toIntern(),
.val = (try pt.aggregateValue(array_ty, test_fn_vals)).toIntern(),
};
};
{
const new_ty = try pt.ptrType(.{
.child = test_fn_ty.toIntern(),
.flags = .{
.is_const = true,
.size = .slice,
},
});
const new_init = try pt.intern(.{ .slice = .{
.ty = new_ty.toIntern(),
.ptr = try pt.intern(.{ .ptr = .{
.ty = new_ty.slicePtrFieldType(zcu).toIntern(),
.base_addr = .{ .uav = array_anon_decl },
.byte_offset = 0,
} }),
.len = (try pt.intValue(Type.usize, zcu.test_functions.count())).toIntern(),
} });
ip.mutateVarInit(test_fns_val.toIntern(), new_init);
}
// The linker thread is not running, so we actually need to dispatch this task directly.
@import("../link.zig").linkTestFunctionsNav(pt, nav_index);
}
/// Stores an error in `pt.zcu.failed_files` for this file, and sets the file
/// status to `retryable_failure`.
pub fn reportRetryableFileError(
pt: Zcu.PerThread,
file_index: Zcu.File.Index,
comptime format: []const u8,
args: anytype,
) error{OutOfMemory}!void {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const file = zcu.fileByIndex(file_index);
file.status = .retryable_failure;
const msg = try std.fmt.allocPrint(gpa, format, args);
errdefer gpa.free(msg);
const old_msg: ?[]u8 = old_msg: {
zcu.comp.mutex.lock();
defer zcu.comp.mutex.unlock();
const gop = try zcu.failed_files.getOrPut(gpa, file_index);
const old: ?[]u8 = if (gop.found_existing) old: {
break :old gop.value_ptr.*;
} else null;
gop.value_ptr.* = msg;
break :old_msg old;
};
if (old_msg) |m| gpa.free(m);
}
/// Shortcut for calling `intern_pool.get`.
pub fn intern(pt: Zcu.PerThread, key: InternPool.Key) Allocator.Error!InternPool.Index {
return pt.zcu.intern_pool.get(pt.zcu.gpa, pt.tid, key);
}
/// Shortcut for calling `intern_pool.getUnion`.
pub fn internUnion(pt: Zcu.PerThread, un: InternPool.Key.Union) Allocator.Error!InternPool.Index {
return pt.zcu.intern_pool.getUnion(pt.zcu.gpa, pt.tid, un);
}
/// Essentially a shortcut for calling `intern_pool.getCoerced`.
/// However, this function also allows coercing `extern`s. The `InternPool` function can't do
/// this because it requires potentially pushing to the job queue.
pub fn getCoerced(pt: Zcu.PerThread, val: Value, new_ty: Type) Allocator.Error!Value {
const ip = &pt.zcu.intern_pool;
switch (ip.indexToKey(val.toIntern())) {
.@"extern" => |e| {
const coerced = try pt.getExtern(.{
.name = e.name,
.ty = new_ty.toIntern(),
.lib_name = e.lib_name,
.is_const = e.is_const,
.is_threadlocal = e.is_threadlocal,
.linkage = e.linkage,
.visibility = e.visibility,
.is_dll_import = e.is_dll_import,
.relocation = e.relocation,
.alignment = e.alignment,
.@"addrspace" = e.@"addrspace",
.zir_index = e.zir_index,
.owner_nav = undefined, // ignored by `getExtern`.
.source = e.source,
});
return Value.fromInterned(coerced);
},
else => {},
}
return Value.fromInterned(try ip.getCoerced(pt.zcu.gpa, pt.tid, val.toIntern(), new_ty.toIntern()));
}
pub fn intType(pt: Zcu.PerThread, signedness: std.builtin.Signedness, bits: u16) Allocator.Error!Type {
return Type.fromInterned(try pt.intern(.{ .int_type = .{
.signedness = signedness,
.bits = bits,
} }));
}
pub fn errorIntType(pt: Zcu.PerThread) std.mem.Allocator.Error!Type {
return pt.intType(.unsigned, pt.zcu.errorSetBits());
}
pub fn arrayType(pt: Zcu.PerThread, info: InternPool.Key.ArrayType) Allocator.Error!Type {
return Type.fromInterned(try pt.intern(.{ .array_type = info }));
}
pub fn vectorType(pt: Zcu.PerThread, info: InternPool.Key.VectorType) Allocator.Error!Type {
return Type.fromInterned(try pt.intern(.{ .vector_type = info }));
}
pub fn optionalType(pt: Zcu.PerThread, child_type: InternPool.Index) Allocator.Error!Type {
return Type.fromInterned(try pt.intern(.{ .opt_type = child_type }));
}
pub fn ptrType(pt: Zcu.PerThread, info: InternPool.Key.PtrType) Allocator.Error!Type {
var canon_info = info;
if (info.flags.size == .c) canon_info.flags.is_allowzero = true;
// Canonicalize non-zero alignment. If it matches the ABI alignment of the pointee
// type, we change it to 0 here. If this causes an assertion trip because the
// pointee type needs to be resolved more, that needs to be done before calling
// this ptr() function.
if (info.flags.alignment != .none and
info.flags.alignment == Type.fromInterned(info.child).abiAlignment(pt.zcu))
{
canon_info.flags.alignment = .none;
}
switch (info.flags.vector_index) {
// Canonicalize host_size. If it matches the bit size of the pointee type,
// we change it to 0 here. If this causes an assertion trip, the pointee type
// needs to be resolved before calling this ptr() function.
.none => if (info.packed_offset.host_size != 0) {
const elem_bit_size = Type.fromInterned(info.child).bitSize(pt.zcu);
assert(info.packed_offset.bit_offset + elem_bit_size <= info.packed_offset.host_size * 8);
if (info.packed_offset.host_size * 8 == elem_bit_size) {
canon_info.packed_offset.host_size = 0;
}
},
_ => assert(@intFromEnum(info.flags.vector_index) < info.packed_offset.host_size),
}
return Type.fromInterned(try pt.intern(.{ .ptr_type = canon_info }));
}
/// Like `ptrType`, but if `info` specifies an `alignment`, first ensures the pointer
/// child type's alignment is resolved so that an invalid alignment is not used.
/// In general, prefer this function during semantic analysis.
pub fn ptrTypeSema(pt: Zcu.PerThread, info: InternPool.Key.PtrType) Zcu.SemaError!Type {
if (info.flags.alignment != .none) {
_ = try Type.fromInterned(info.child).abiAlignmentSema(pt);
}
return pt.ptrType(info);
}
pub fn singleMutPtrType(pt: Zcu.PerThread, child_type: Type) Allocator.Error!Type {
return pt.ptrType(.{ .child = child_type.toIntern() });
}
pub fn singleConstPtrType(pt: Zcu.PerThread, child_type: Type) Allocator.Error!Type {
return pt.ptrType(.{
.child = child_type.toIntern(),
.flags = .{
.is_const = true,
},
});
}
pub fn manyConstPtrType(pt: Zcu.PerThread, child_type: Type) Allocator.Error!Type {
return pt.ptrType(.{
.child = child_type.toIntern(),
.flags = .{
.size = .many,
.is_const = true,
},
});
}
pub fn adjustPtrTypeChild(pt: Zcu.PerThread, ptr_ty: Type, new_child: Type) Allocator.Error!Type {
var info = ptr_ty.ptrInfo(pt.zcu);
info.child = new_child.toIntern();
return pt.ptrType(info);
}
pub fn funcType(pt: Zcu.PerThread, key: InternPool.GetFuncTypeKey) Allocator.Error!Type {
return Type.fromInterned(try pt.zcu.intern_pool.getFuncType(pt.zcu.gpa, pt.tid, key));
}
/// Use this for `anyframe->T` only.
/// For `anyframe`, use the `InternPool.Index.anyframe` tag directly.
pub fn anyframeType(pt: Zcu.PerThread, payload_ty: Type) Allocator.Error!Type {
return Type.fromInterned(try pt.intern(.{ .anyframe_type = payload_ty.toIntern() }));
}
pub fn errorUnionType(pt: Zcu.PerThread, error_set_ty: Type, payload_ty: Type) Allocator.Error!Type {
return Type.fromInterned(try pt.intern(.{ .error_union_type = .{
.error_set_type = error_set_ty.toIntern(),
.payload_type = payload_ty.toIntern(),
} }));
}
pub fn singleErrorSetType(pt: Zcu.PerThread, name: InternPool.NullTerminatedString) Allocator.Error!Type {
const names: *const [1]InternPool.NullTerminatedString = &name;
return Type.fromInterned(try pt.zcu.intern_pool.getErrorSetType(pt.zcu.gpa, pt.tid, names));
}
/// Sorts `names` in place.
pub fn errorSetFromUnsortedNames(
pt: Zcu.PerThread,
names: []InternPool.NullTerminatedString,
) Allocator.Error!Type {
std.mem.sort(
InternPool.NullTerminatedString,
names,
{},
InternPool.NullTerminatedString.indexLessThan,
);
const new_ty = try pt.zcu.intern_pool.getErrorSetType(pt.zcu.gpa, pt.tid, names);
return Type.fromInterned(new_ty);
}
/// Supports only pointers, not pointer-like optionals.
pub fn ptrIntValue(pt: Zcu.PerThread, ty: Type, x: u64) Allocator.Error!Value {
const zcu = pt.zcu;
assert(ty.zigTypeTag(zcu) == .pointer and !ty.isSlice(zcu));
assert(x != 0 or ty.isAllowzeroPtr(zcu));
return Value.fromInterned(try pt.intern(.{ .ptr = .{
.ty = ty.toIntern(),
.base_addr = .int,
.byte_offset = x,
} }));
}
/// Creates an enum tag value based on the integer tag value.
pub fn enumValue(pt: Zcu.PerThread, ty: Type, tag_int: InternPool.Index) Allocator.Error!Value {
if (std.debug.runtime_safety) {
const tag = ty.zigTypeTag(pt.zcu);
assert(tag == .@"enum");
}
return Value.fromInterned(try pt.intern(.{ .enum_tag = .{
.ty = ty.toIntern(),
.int = tag_int,
} }));
}
/// Creates an enum tag value based on the field index according to source code
/// declaration order.
pub fn enumValueFieldIndex(pt: Zcu.PerThread, ty: Type, field_index: u32) Allocator.Error!Value {
const ip = &pt.zcu.intern_pool;
const enum_type = ip.loadEnumType(ty.toIntern());
if (enum_type.values.len == 0) {
// Auto-numbered fields.
return Value.fromInterned(try pt.intern(.{ .enum_tag = .{
.ty = ty.toIntern(),
.int = try pt.intern(.{ .int = .{
.ty = enum_type.tag_ty,
.storage = .{ .u64 = field_index },
} }),
} }));
}
return Value.fromInterned(try pt.intern(.{ .enum_tag = .{
.ty = ty.toIntern(),
.int = enum_type.values.get(ip)[field_index],
} }));
}
pub fn undefValue(pt: Zcu.PerThread, ty: Type) Allocator.Error!Value {
return Value.fromInterned(try pt.intern(.{ .undef = ty.toIntern() }));
}
pub fn undefRef(pt: Zcu.PerThread, ty: Type) Allocator.Error!Air.Inst.Ref {
return Air.internedToRef((try pt.undefValue(ty)).toIntern());
}
pub fn intValue(pt: Zcu.PerThread, ty: Type, x: anytype) Allocator.Error!Value {
if (std.math.cast(u64, x)) |casted| return pt.intValue_u64(ty, casted);
if (std.math.cast(i64, x)) |casted| return pt.intValue_i64(ty, casted);
var limbs_buffer: [4]usize = undefined;
var big_int = BigIntMutable.init(&limbs_buffer, x);
return pt.intValue_big(ty, big_int.toConst());
}
pub fn intRef(pt: Zcu.PerThread, ty: Type, x: anytype) Allocator.Error!Air.Inst.Ref {
return Air.internedToRef((try pt.intValue(ty, x)).toIntern());
}
pub fn intValue_big(pt: Zcu.PerThread, ty: Type, x: BigIntConst) Allocator.Error!Value {
if (ty.toIntern() != .comptime_int_type) {
const int_info = ty.intInfo(pt.zcu);
assert(x.fitsInTwosComp(int_info.signedness, int_info.bits));
}
return .fromInterned(try pt.intern(.{ .int = .{
.ty = ty.toIntern(),
.storage = .{ .big_int = x },
} }));
}
pub fn intValue_u64(pt: Zcu.PerThread, ty: Type, x: u64) Allocator.Error!Value {
if (ty.toIntern() != .comptime_int_type and x != 0) {
const int_info = ty.intInfo(pt.zcu);
const unsigned_bits = int_info.bits - @intFromBool(int_info.signedness == .signed);
assert(unsigned_bits >= std.math.log2(x) + 1);
}
return .fromInterned(try pt.intern(.{ .int = .{
.ty = ty.toIntern(),
.storage = .{ .u64 = x },
} }));
}
pub fn intValue_i64(pt: Zcu.PerThread, ty: Type, x: i64) Allocator.Error!Value {
if (ty.toIntern() != .comptime_int_type and x != 0) {
const int_info = ty.intInfo(pt.zcu);
const unsigned_bits = int_info.bits - @intFromBool(int_info.signedness == .signed);
if (x > 0) {
assert(unsigned_bits >= std.math.log2(x) + 1);
} else {
assert(int_info.signedness == .signed);
assert(unsigned_bits >= std.math.log2_int_ceil(u64, @abs(x)));
}
}
return .fromInterned(try pt.intern(.{ .int = .{
.ty = ty.toIntern(),
.storage = .{ .i64 = x },
} }));
}
pub fn unionValue(pt: Zcu.PerThread, union_ty: Type, tag: Value, val: Value) Allocator.Error!Value {
const zcu = pt.zcu;
return Value.fromInterned(try zcu.intern_pool.getUnion(zcu.gpa, pt.tid, .{
.ty = union_ty.toIntern(),
.tag = tag.toIntern(),
.val = val.toIntern(),
}));
}
pub fn aggregateValue(pt: Zcu.PerThread, ty: Type, elems: []const InternPool.Index) Allocator.Error!Value {
for (elems) |elem| {
if (!Value.fromInterned(elem).isUndef(pt.zcu)) break;
} else if (elems.len > 0) {
return pt.undefValue(ty); // all-undef
}
return .fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = elems },
} }));
}
/// Asserts that `ty` is either an array or a vector.
pub fn aggregateSplatValue(pt: Zcu.PerThread, ty: Type, repeated_elem: Value) Allocator.Error!Value {
switch (ty.zigTypeTag(pt.zcu)) {
.array, .vector => {},
else => unreachable,
}
if (repeated_elem.isUndef(pt.zcu)) return pt.undefValue(ty);
return .fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .repeated_elem = repeated_elem.toIntern() },
} }));
}
/// This function casts the float representation down to the representation of the type, potentially
/// losing data if the representation wasn't correct.
pub fn floatValue(pt: Zcu.PerThread, ty: Type, x: anytype) Allocator.Error!Value {
const storage: InternPool.Key.Float.Storage = switch (ty.floatBits(pt.zcu.getTarget())) {
16 => .{ .f16 = @as(f16, @floatCast(x)) },
32 => .{ .f32 = @as(f32, @floatCast(x)) },
64 => .{ .f64 = @as(f64, @floatCast(x)) },
80 => .{ .f80 = @as(f80, @floatCast(x)) },
128 => .{ .f128 = @as(f128, @floatCast(x)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = ty.toIntern(),
.storage = storage,
} }));
}
pub fn nullValue(pt: Zcu.PerThread, opt_ty: Type) Allocator.Error!Value {
assert(pt.zcu.intern_pool.isOptionalType(opt_ty.toIntern()));
return Value.fromInterned(try pt.intern(.{ .opt = .{
.ty = opt_ty.toIntern(),
.val = .none,
} }));
}
/// `ty` is an integer or a vector of integers.
pub fn overflowArithmeticTupleType(pt: Zcu.PerThread, ty: Type) !Type {
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const ov_ty: Type = if (ty.zigTypeTag(zcu) == .vector) try pt.vectorType(.{
.len = ty.vectorLen(zcu),
.child = .u1_type,
}) else .u1;
const tuple_ty = try ip.getTupleType(zcu.gpa, pt.tid, .{
.types = &.{ ty.toIntern(), ov_ty.toIntern() },
.values = &.{ .none, .none },
});
return .fromInterned(tuple_ty);
}
pub fn smallestUnsignedInt(pt: Zcu.PerThread, max: u64) Allocator.Error!Type {
return pt.intType(.unsigned, Type.smallestUnsignedBits(max));
}
/// Returns the smallest possible integer type containing both `min` and
/// `max`. Asserts that neither value is undef.
/// TODO: if #3806 is implemented, this becomes trivial
pub fn intFittingRange(pt: Zcu.PerThread, min: Value, max: Value) !Type {
const zcu = pt.zcu;
assert(!min.isUndef(zcu));
assert(!max.isUndef(zcu));
if (std.debug.runtime_safety) {
assert(Value.order(min, max, zcu).compare(.lte));
}
const sign = min.orderAgainstZero(zcu) == .lt;
const min_val_bits = pt.intBitsForValue(min, sign);
const max_val_bits = pt.intBitsForValue(max, sign);
return pt.intType(
if (sign) .signed else .unsigned,
@max(min_val_bits, max_val_bits),
);
}
/// Given a value representing an integer, returns the number of bits necessary to represent
/// this value in an integer. If `sign` is true, returns the number of bits necessary in a
/// twos-complement integer; otherwise in an unsigned integer.
/// Asserts that `val` is not undef. If `val` is negative, asserts that `sign` is true.
pub fn intBitsForValue(pt: Zcu.PerThread, val: Value, sign: bool) u16 {
const zcu = pt.zcu;
assert(!val.isUndef(zcu));
const key = zcu.intern_pool.indexToKey(val.toIntern());
switch (key.int.storage) {
.i64 => |x| {
if (std.math.cast(u64, x)) |casted| return Type.smallestUnsignedBits(casted) + @intFromBool(sign);
assert(sign);
// Protect against overflow in the following negation.
if (x == std.math.minInt(i64)) return 64;
return Type.smallestUnsignedBits(@as(u64, @intCast(-(x + 1)))) + 1;
},
.u64 => |x| {
return Type.smallestUnsignedBits(x) + @intFromBool(sign);
},
.big_int => |big| {
if (big.positive) return @as(u16, @intCast(big.bitCountAbs() + @intFromBool(sign)));
// Zero is still a possibility, in which case unsigned is fine
if (big.eqlZero()) return 0;
return @as(u16, @intCast(big.bitCountTwosComp()));
},
.lazy_align => |lazy_ty| {
return Type.smallestUnsignedBits(Type.fromInterned(lazy_ty).abiAlignment(pt.zcu).toByteUnits() orelse 0) + @intFromBool(sign);
},
.lazy_size => |lazy_ty| {
return Type.smallestUnsignedBits(Type.fromInterned(lazy_ty).abiSize(pt.zcu)) + @intFromBool(sign);
},
}
}
pub fn navPtrType(pt: Zcu.PerThread, nav_id: InternPool.Nav.Index) Allocator.Error!Type {
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const ty, const alignment, const @"addrspace", const is_const = switch (ip.getNav(nav_id).status) {
.unresolved => unreachable,
.type_resolved => |r| .{ r.type, r.alignment, r.@"addrspace", r.is_const },
.fully_resolved => |r| .{ ip.typeOf(r.val), r.alignment, r.@"addrspace", r.is_const },
};
return pt.ptrType(.{
.child = ty,
.flags = .{
.alignment = if (alignment == Type.fromInterned(ty).abiAlignment(zcu))
.none
else
alignment,
.address_space = @"addrspace",
.is_const = is_const,
},
});
}
/// Intern an `.@"extern"`, creating a corresponding owner `Nav` if necessary.
/// If necessary, the new `Nav` is queued for codegen.
/// `key.owner_nav` is ignored and may be `undefined`.
pub fn getExtern(pt: Zcu.PerThread, key: InternPool.Key.Extern) Allocator.Error!InternPool.Index {
const result = try pt.zcu.intern_pool.getExtern(pt.zcu.gpa, pt.tid, key);
if (result.new_nav.unwrap()) |nav| {
// This job depends on any resolve_type_fully jobs queued up before it.
pt.zcu.comp.link_prog_node.increaseEstimatedTotalItems(1);
try pt.zcu.comp.queueJob(.{ .link_nav = nav });
if (pt.zcu.comp.debugIncremental()) try pt.zcu.incremental_debug_state.newNav(pt.zcu, nav);
}
return result.index;
}
// TODO: this shouldn't need a `PerThread`! Fix the signature of `Type.abiAlignment`.
pub fn navAlignment(pt: Zcu.PerThread, nav_index: InternPool.Nav.Index) InternPool.Alignment {
const zcu = pt.zcu;
const ty: Type, const alignment = switch (zcu.intern_pool.getNav(nav_index).status) {
.unresolved => unreachable,
.type_resolved => |r| .{ .fromInterned(r.type), r.alignment },
.fully_resolved => |r| .{ Value.fromInterned(r.val).typeOf(zcu), r.alignment },
};
if (alignment != .none) return alignment;
return ty.abiAlignment(zcu);
}
/// `ty` is a container type requiring resolution (struct, union, or enum).
/// If `ty` is outdated, it is recreated at a new `InternPool.Index`, which is returned.
/// If the type cannot be recreated because it has been lost, `error.AnalysisFail` is returned.
/// If `ty` is not outdated, that same `InternPool.Index` is returned.
/// If `ty` has already been replaced by this function, the new index will not be returned again.
/// Also, if `ty` is an enum, this function will resolve the new type if needed, and the call site
/// is responsible for checking `[transitive_]failed_analysis` to detect resolution failures.
pub fn ensureTypeUpToDate(pt: Zcu.PerThread, ty: InternPool.Index) Zcu.SemaError!InternPool.Index {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const anal_unit: AnalUnit = .wrap(.{ .type = ty });
const outdated = zcu.outdated.swapRemove(anal_unit) or
zcu.potentially_outdated.swapRemove(anal_unit);
if (outdated) {
_ = zcu.outdated_ready.swapRemove(anal_unit);
try zcu.markDependeeOutdated(.marked_po, .{ .interned = ty });
}
const ty_key = switch (ip.indexToKey(ty)) {
.struct_type, .union_type, .enum_type => |key| key,
else => unreachable,
};
const declared_ty_key = switch (ty_key) {
.reified => unreachable, // never outdated
.generated_tag => unreachable, // never outdated
.declared => |d| d,
};
if (declared_ty_key.zir_index.resolve(ip) == null) {
// The instruction has been lost -- this type is dead.
return error.AnalysisFail;
}
if (!outdated) return ty;
// We will recreate the type at a new `InternPool.Index`.
// Delete old state which is no longer in use. Technically, this is not necessary: these exports,
// references, etc, will be ignored because the type itself is unreferenced. However, it allows
// reusing the memory which is currently being used to track this state.
zcu.deleteUnitExports(anal_unit);
zcu.deleteUnitReferences(anal_unit);
zcu.deleteUnitCompileLogs(anal_unit);
if (zcu.failed_analysis.fetchSwapRemove(anal_unit)) |kv| {
kv.value.destroy(gpa);
}
_ = zcu.transitive_failed_analysis.swapRemove(anal_unit);
zcu.intern_pool.removeDependenciesForDepender(gpa, anal_unit);
if (zcu.comp.debugIncremental()) {
const info = try zcu.incremental_debug_state.getUnitInfo(gpa, anal_unit);
info.last_update_gen = zcu.generation;
info.deps.clearRetainingCapacity();
}
switch (ip.indexToKey(ty)) {
.struct_type => return pt.recreateStructType(ty, declared_ty_key),
.union_type => return pt.recreateUnionType(ty, declared_ty_key),
.enum_type => return pt.recreateEnumType(ty, declared_ty_key),
else => unreachable,
}
}
fn recreateStructType(
pt: Zcu.PerThread,
old_ty: InternPool.Index,
key: InternPool.Key.NamespaceType.Declared,
) Allocator.Error!InternPool.Index {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const inst_info = key.zir_index.resolveFull(ip).?;
const file = zcu.fileByIndex(inst_info.file);
const zir = file.zir.?;
assert(zir.instructions.items(.tag)[@intFromEnum(inst_info.inst)] == .extended);
const extended = zir.instructions.items(.data)[@intFromEnum(inst_info.inst)].extended;
assert(extended.opcode == .struct_decl);
const small: Zir.Inst.StructDecl.Small = @bitCast(extended.small);
const extra = zir.extraData(Zir.Inst.StructDecl, extended.operand);
var extra_index = extra.end;
const captures_len = if (small.has_captures_len) blk: {
const captures_len = zir.extra[extra_index];
extra_index += 1;
break :blk captures_len;
} else 0;
const fields_len = if (small.has_fields_len) blk: {
const fields_len = zir.extra[extra_index];
extra_index += 1;
break :blk fields_len;
} else 0;
assert(captures_len == key.captures.owned.len); // synchronises with logic in `Zcu.mapOldZirToNew`
const struct_obj = ip.loadStructType(old_ty);
const wip_ty = switch (try ip.getStructType(gpa, pt.tid, .{
.layout = small.layout,
.fields_len = fields_len,
.known_non_opv = small.known_non_opv,
.requires_comptime = if (small.known_comptime_only) .yes else .unknown,
.any_comptime_fields = small.any_comptime_fields,
.any_default_inits = small.any_default_inits,
.inits_resolved = false,
.any_aligned_fields = small.any_aligned_fields,
.key = .{ .declared_owned_captures = .{
.zir_index = key.zir_index,
.captures = key.captures.owned,
} },
}, true)) {
.wip => |wip| wip,
.existing => unreachable, // we passed `replace_existing`
};
errdefer wip_ty.cancel(ip, pt.tid);
wip_ty.setName(ip, struct_obj.name, struct_obj.name_nav);
try pt.addDependency(.wrap(.{ .type = wip_ty.index }), .{ .src_hash = key.zir_index });
zcu.namespacePtr(struct_obj.namespace).owner_type = wip_ty.index;
// No need to re-scan the namespace -- `zirStructDecl` will ultimately do that if the type is still alive.
try zcu.comp.queueJob(.{ .resolve_type_fully = wip_ty.index });
codegen_type: {
if (file.mod.?.strip) break :codegen_type;
// This job depends on any resolve_type_fully jobs queued up before it.
zcu.comp.link_prog_node.increaseEstimatedTotalItems(1);
try zcu.comp.queueJob(.{ .link_type = wip_ty.index });
}
if (zcu.comp.debugIncremental()) try zcu.incremental_debug_state.newType(zcu, wip_ty.index);
const new_ty = wip_ty.finish(ip, struct_obj.namespace);
if (inst_info.inst == .main_struct_inst) {
// This is the root type of a file! Update the reference.
zcu.setFileRootType(inst_info.file, new_ty);
}
return new_ty;
}
fn recreateUnionType(
pt: Zcu.PerThread,
old_ty: InternPool.Index,
key: InternPool.Key.NamespaceType.Declared,
) Allocator.Error!InternPool.Index {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const inst_info = key.zir_index.resolveFull(ip).?;
const file = zcu.fileByIndex(inst_info.file);
const zir = file.zir.?;
assert(zir.instructions.items(.tag)[@intFromEnum(inst_info.inst)] == .extended);
const extended = zir.instructions.items(.data)[@intFromEnum(inst_info.inst)].extended;
assert(extended.opcode == .union_decl);
const small: Zir.Inst.UnionDecl.Small = @bitCast(extended.small);
const extra = zir.extraData(Zir.Inst.UnionDecl, extended.operand);
var extra_index = extra.end;
extra_index += @intFromBool(small.has_tag_type);
const captures_len = if (small.has_captures_len) blk: {
const captures_len = zir.extra[extra_index];
extra_index += 1;
break :blk captures_len;
} else 0;
extra_index += @intFromBool(small.has_body_len);
const fields_len = if (small.has_fields_len) blk: {
const fields_len = zir.extra[extra_index];
extra_index += 1;
break :blk fields_len;
} else 0;
assert(captures_len == key.captures.owned.len); // synchronises with logic in `Zcu.mapOldZirToNew`
const union_obj = ip.loadUnionType(old_ty);
const namespace_index = union_obj.namespace;
const wip_ty = switch (try ip.getUnionType(gpa, pt.tid, .{
.flags = .{
.layout = small.layout,
.status = .none,
.runtime_tag = if (small.has_tag_type or small.auto_enum_tag)
.tagged
else if (small.layout != .auto)
.none
else switch (true) { // TODO
true => .safety,
false => .none,
},
.any_aligned_fields = small.any_aligned_fields,
.requires_comptime = .unknown,
.assumed_runtime_bits = false,
.assumed_pointer_aligned = false,
.alignment = .none,
},
.fields_len = fields_len,
.enum_tag_ty = .none, // set later
.field_types = &.{}, // set later
.field_aligns = &.{}, // set later
.key = .{ .declared_owned_captures = .{
.zir_index = key.zir_index,
.captures = key.captures.owned,
} },
}, true)) {
.wip => |wip| wip,
.existing => unreachable, // we passed `replace_existing`
};
errdefer wip_ty.cancel(ip, pt.tid);
wip_ty.setName(ip, union_obj.name, union_obj.name_nav);
try pt.addDependency(.wrap(.{ .type = wip_ty.index }), .{ .src_hash = key.zir_index });
zcu.namespacePtr(namespace_index).owner_type = wip_ty.index;
// No need to re-scan the namespace -- `zirUnionDecl` will ultimately do that if the type is still alive.
try zcu.comp.queueJob(.{ .resolve_type_fully = wip_ty.index });
codegen_type: {
if (file.mod.?.strip) break :codegen_type;
// This job depends on any resolve_type_fully jobs queued up before it.
zcu.comp.link_prog_node.increaseEstimatedTotalItems(1);
try zcu.comp.queueJob(.{ .link_type = wip_ty.index });
}
if (zcu.comp.debugIncremental()) try zcu.incremental_debug_state.newType(zcu, wip_ty.index);
return wip_ty.finish(ip, namespace_index);
}
/// This *does* call `Sema.resolveDeclaredEnum`, but errors from it are not propagated.
/// Call sites are resposible for checking `[transitive_]failed_analysis` after `ensureTypeUpToDate`
/// returns in order to detect resolution failures.
fn recreateEnumType(
pt: Zcu.PerThread,
old_ty: InternPool.Index,
key: InternPool.Key.NamespaceType.Declared,
) Allocator.Error!InternPool.Index {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const inst_info = key.zir_index.resolveFull(ip).?;
const file = zcu.fileByIndex(inst_info.file);
const zir = file.zir.?;
assert(zir.instructions.items(.tag)[@intFromEnum(inst_info.inst)] == .extended);
const extended = zir.instructions.items(.data)[@intFromEnum(inst_info.inst)].extended;
assert(extended.opcode == .enum_decl);
const small: Zir.Inst.EnumDecl.Small = @bitCast(extended.small);
const extra = zir.extraData(Zir.Inst.EnumDecl, extended.operand);
var extra_index = extra.end;
const tag_type_ref = if (small.has_tag_type) blk: {
const tag_type_ref: Zir.Inst.Ref = @enumFromInt(zir.extra[extra_index]);
extra_index += 1;
break :blk tag_type_ref;
} else .none;
const captures_len = if (small.has_captures_len) blk: {
const captures_len = zir.extra[extra_index];
extra_index += 1;
break :blk captures_len;
} else 0;
const body_len = if (small.has_body_len) blk: {
const body_len = zir.extra[extra_index];
extra_index += 1;
break :blk body_len;
} else 0;
const fields_len = if (small.has_fields_len) blk: {
const fields_len = zir.extra[extra_index];
extra_index += 1;
break :blk fields_len;
} else 0;
const decls_len = if (small.has_decls_len) blk: {
const decls_len = zir.extra[extra_index];
extra_index += 1;
break :blk decls_len;
} else 0;
assert(captures_len == key.captures.owned.len); // synchronises with logic in `Zcu.mapOldZirToNew`
extra_index += captures_len * 2;
extra_index += decls_len;
const body = zir.bodySlice(extra_index, body_len);
extra_index += body.len;
const bit_bags_count = std.math.divCeil(usize, fields_len, 32) catch unreachable;
const body_end = extra_index;
extra_index += bit_bags_count;
const any_values = for (zir.extra[body_end..][0..bit_bags_count]) |bag| {
if (bag != 0) break true;
} else false;
const enum_obj = ip.loadEnumType(old_ty);
const namespace_index = enum_obj.namespace;
const wip_ty = switch (try ip.getEnumType(gpa, pt.tid, .{
.has_values = any_values,
.tag_mode = if (small.nonexhaustive)
.nonexhaustive
else if (tag_type_ref == .none)
.auto
else
.explicit,
.fields_len = fields_len,
.key = .{ .declared_owned_captures = .{
.zir_index = key.zir_index,
.captures = key.captures.owned,
} },
}, true)) {
.wip => |wip| wip,
.existing => unreachable, // we passed `replace_existing`
};
var done = true;
errdefer if (!done) wip_ty.cancel(ip, pt.tid);
wip_ty.setName(ip, enum_obj.name, enum_obj.name_nav);
zcu.namespacePtr(namespace_index).owner_type = wip_ty.index;
// No need to re-scan the namespace -- `zirEnumDecl` will ultimately do that if the type is still alive.
if (zcu.comp.debugIncremental()) try zcu.incremental_debug_state.newType(zcu, wip_ty.index);
wip_ty.prepare(ip, namespace_index);
done = true;
Sema.resolveDeclaredEnum(
pt,
wip_ty,
inst_info.inst,
key.zir_index,
namespace_index,
enum_obj.name,
small,
body,
tag_type_ref,
any_values,
fields_len,
zir,
body_end,
) catch |err| switch (err) {
error.OutOfMemory => |e| return e,
error.AnalysisFail => {}, // call sites are responsible for checking `[transitive_]failed_analysis` to detect this
};
return wip_ty.index;
}
/// Given a namespace, re-scan its declarations from the type definition if they have not
/// yet been re-scanned on this update.
/// If the type declaration instruction has been lost, returns `error.AnalysisFail`.
/// This will effectively short-circuit the caller, which will be semantic analysis of a
/// guaranteed-unreferenced `AnalUnit`, to trigger a transitive analysis error.
pub fn ensureNamespaceUpToDate(pt: Zcu.PerThread, namespace_index: Zcu.Namespace.Index) Zcu.SemaError!void {
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const namespace = zcu.namespacePtr(namespace_index);
if (namespace.generation == zcu.generation) return;
const Container = enum { @"struct", @"union", @"enum", @"opaque" };
const container: Container, const full_key = switch (ip.indexToKey(namespace.owner_type)) {
.struct_type => |k| .{ .@"struct", k },
.union_type => |k| .{ .@"union", k },
.enum_type => |k| .{ .@"enum", k },
.opaque_type => |k| .{ .@"opaque", k },
else => unreachable, // namespaces are owned by a container type
};
const key = switch (full_key) {
.reified, .generated_tag => {
// Namespace always empty, so up-to-date.
namespace.generation = zcu.generation;
return;
},
.declared => |d| d,
};
// Namespace outdated -- re-scan the type if necessary.
const inst_info = key.zir_index.resolveFull(ip) orelse return error.AnalysisFail;
const file = zcu.fileByIndex(inst_info.file);
const zir = file.zir.?;
assert(zir.instructions.items(.tag)[@intFromEnum(inst_info.inst)] == .extended);
const extended = zir.instructions.items(.data)[@intFromEnum(inst_info.inst)].extended;
const decls = switch (container) {
.@"struct" => decls: {
assert(extended.opcode == .struct_decl);
const small: Zir.Inst.StructDecl.Small = @bitCast(extended.small);
const extra = zir.extraData(Zir.Inst.StructDecl, extended.operand);
var extra_index = extra.end;
const captures_len = if (small.has_captures_len) blk: {
const captures_len = zir.extra[extra_index];
extra_index += 1;
break :blk captures_len;
} else 0;
extra_index += @intFromBool(small.has_fields_len);
const decls_len = if (small.has_decls_len) blk: {
const decls_len = zir.extra[extra_index];
extra_index += 1;
break :blk decls_len;
} else 0;
extra_index += captures_len * 2;
if (small.has_backing_int) {
const backing_int_body_len = zir.extra[extra_index];
extra_index += 1; // backing_int_body_len
if (backing_int_body_len == 0) {
extra_index += 1; // backing_int_ref
} else {
extra_index += backing_int_body_len; // backing_int_body_inst
}
}
break :decls zir.bodySlice(extra_index, decls_len);
},
.@"union" => decls: {
assert(extended.opcode == .union_decl);
const small: Zir.Inst.UnionDecl.Small = @bitCast(extended.small);
const extra = zir.extraData(Zir.Inst.UnionDecl, extended.operand);
var extra_index = extra.end;
extra_index += @intFromBool(small.has_tag_type);
const captures_len = if (small.has_captures_len) blk: {
const captures_len = zir.extra[extra_index];
extra_index += 1;
break :blk captures_len;
} else 0;
extra_index += @intFromBool(small.has_body_len);
extra_index += @intFromBool(small.has_fields_len);
const decls_len = if (small.has_decls_len) blk: {
const decls_len = zir.extra[extra_index];
extra_index += 1;
break :blk decls_len;
} else 0;
extra_index += captures_len * 2;
break :decls zir.bodySlice(extra_index, decls_len);
},
.@"enum" => decls: {
assert(extended.opcode == .enum_decl);
const small: Zir.Inst.EnumDecl.Small = @bitCast(extended.small);
const extra = zir.extraData(Zir.Inst.EnumDecl, extended.operand);
var extra_index = extra.end;
extra_index += @intFromBool(small.has_tag_type);
const captures_len = if (small.has_captures_len) blk: {
const captures_len = zir.extra[extra_index];
extra_index += 1;
break :blk captures_len;
} else 0;
extra_index += @intFromBool(small.has_body_len);
extra_index += @intFromBool(small.has_fields_len);
const decls_len = if (small.has_decls_len) blk: {
const decls_len = zir.extra[extra_index];
extra_index += 1;
break :blk decls_len;
} else 0;
extra_index += captures_len * 2;
break :decls zir.bodySlice(extra_index, decls_len);
},
.@"opaque" => decls: {
assert(extended.opcode == .opaque_decl);
const small: Zir.Inst.OpaqueDecl.Small = @bitCast(extended.small);
const extra = zir.extraData(Zir.Inst.OpaqueDecl, extended.operand);
var extra_index = extra.end;
const captures_len = if (small.has_captures_len) blk: {
const captures_len = zir.extra[extra_index];
extra_index += 1;
break :blk captures_len;
} else 0;
const decls_len = if (small.has_decls_len) blk: {
const decls_len = zir.extra[extra_index];
extra_index += 1;
break :blk decls_len;
} else 0;
extra_index += captures_len * 2;
break :decls zir.bodySlice(extra_index, decls_len);
},
};
try pt.scanNamespace(namespace_index, decls);
namespace.generation = zcu.generation;
}
pub fn refValue(pt: Zcu.PerThread, val: InternPool.Index) Zcu.SemaError!InternPool.Index {
const ptr_ty = (try pt.ptrTypeSema(.{
.child = pt.zcu.intern_pool.typeOf(val),
.flags = .{
.alignment = .none,
.is_const = true,
.address_space = .generic,
},
})).toIntern();
return pt.intern(.{ .ptr = .{
.ty = ptr_ty,
.base_addr = .{ .uav = .{
.val = val,
.orig_ty = ptr_ty,
} },
.byte_offset = 0,
} });
}
pub fn addDependency(pt: Zcu.PerThread, unit: AnalUnit, dependee: InternPool.Dependee) Allocator.Error!void {
const zcu = pt.zcu;
const gpa = zcu.gpa;
try zcu.intern_pool.addDependency(gpa, unit, dependee);
if (zcu.comp.debugIncremental()) {
const info = try zcu.incremental_debug_state.getUnitInfo(gpa, unit);
try info.deps.append(gpa, dependee);
}
}
/// Performs code generation, which comes after `Sema` but before `link` in the pipeline.
/// This part of the pipeline is self-contained/"pure", so can be run in parallel with most
/// other code. This function is currently run either on the main thread, or on a separate
/// codegen thread, depending on whether the backend supports `Zcu.Feature.separate_thread`.
pub fn runCodegen(pt: Zcu.PerThread, func_index: InternPool.Index, air: *Air, out: *@import("../link.zig").ZcuTask.LinkFunc.SharedMir) void {
const zcu = pt.zcu;
crash_report.CodegenFunc.start(zcu, func_index);
defer crash_report.CodegenFunc.stop(func_index);
var timer = zcu.comp.startTimer();
const success: bool = if (runCodegenInner(pt, func_index, air)) |mir| success: {
out.value = mir;
break :success true;
} else |err| success: {
switch (err) {
error.OutOfMemory => zcu.comp.setAllocFailure(),
error.CodegenFail => zcu.assertCodegenFailed(zcu.funcInfo(func_index).owner_nav),
error.NoLinkFile => assert(zcu.comp.bin_file == null),
error.BackendDoesNotProduceMir => switch (target_util.zigBackend(
&zcu.root_mod.resolved_target.result,
zcu.comp.config.use_llvm,
)) {
else => unreachable, // assertion failure
.stage2_spirv,
.stage2_llvm,
=> {},
},
}
break :success false;
};
if (timer.finish()) |ns_codegen| report_time: {
const ip = &zcu.intern_pool;
const nav = ip.indexToKey(func_index).func.owner_nav;
const zir_decl = ip.getNav(nav).srcInst(ip);
zcu.comp.mutex.lock();
defer zcu.comp.mutex.unlock();
const tr = &zcu.comp.time_report.?;
tr.stats.cpu_ns_codegen += ns_codegen;
const gop = tr.decl_codegen_ns.getOrPut(zcu.gpa, zir_decl) catch |err| switch (err) {
error.OutOfMemory => {
zcu.comp.setAllocFailure();
break :report_time;
},
};
if (!gop.found_existing) gop.value_ptr.* = 0;
gop.value_ptr.* += ns_codegen;
}
// release `out.value` with this store; synchronizes with acquire loads in `link`
out.status.store(if (success) .ready else .failed, .release);
zcu.comp.link_task_queue.mirReady(zcu.comp, func_index, out);
if (zcu.pending_codegen_jobs.rmw(.Sub, 1, .monotonic) == 1) {
// Decremented to 0, so all done.
zcu.codegen_prog_node.end();
zcu.codegen_prog_node = .none;
}
}
fn runCodegenInner(pt: Zcu.PerThread, func_index: InternPool.Index, air: *Air) error{
OutOfMemory,
CodegenFail,
NoLinkFile,
BackendDoesNotProduceMir,
}!codegen.AnyMir {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const comp = zcu.comp;
const nav = zcu.funcInfo(func_index).owner_nav;
const fqn = ip.getNav(nav).fqn;
const codegen_prog_node = zcu.codegen_prog_node.start(fqn.toSlice(ip), 0);
defer codegen_prog_node.end();
if (codegen.legalizeFeatures(pt, nav)) |features| {
try air.legalize(pt, features);
}
var liveness: ?Air.Liveness = if (codegen.wantsLiveness(pt, nav))
try .analyze(zcu, air.*, ip)
else
null;
defer if (liveness) |*l| l.deinit(gpa);
if (build_options.enable_debug_extensions and comp.verbose_air) {
const stderr, _ = std.debug.lockStderrWriter(&.{});
defer std.debug.unlockStderrWriter();
stderr.print("# Begin Function AIR: {f}:\n", .{fqn.fmt(ip)}) catch {};
air.write(stderr, pt, liveness);
stderr.print("# End Function AIR: {f}\n\n", .{fqn.fmt(ip)}) catch {};
}
if (std.debug.runtime_safety) verify_liveness: {
var verify: Air.Liveness.Verify = .{
.gpa = gpa,
.zcu = zcu,
.air = air.*,
.liveness = liveness orelse break :verify_liveness,
.intern_pool = ip,
};
defer verify.deinit();
verify.verify() catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
else => return zcu.codegenFail(nav, "invalid liveness: {s}", .{@errorName(err)}),
};
}
// The LLVM backend is special, because we only need to do codegen. There is no equivalent to the
// "emit" step because LLVM does not support incremental linking. Our linker (LLD or self-hosted)
// will just see the ZCU object file which LLVM ultimately emits.
if (zcu.llvm_object) |llvm_object| {
assert(pt.tid == .main); // LLVM has a lot of shared state
try llvm_object.updateFunc(pt, func_index, air, &liveness);
return error.BackendDoesNotProduceMir;
}
const lf = comp.bin_file orelse return error.NoLinkFile;
// Just like LLVM, the SPIR-V backend can't multi-threaded due to SPIR-V design limitations.
if (lf.cast(.spirv)) |spirv_file| {
assert(pt.tid == .main); // SPIR-V has a lot of shared state
spirv_file.updateFunc(pt, func_index, air, &liveness) catch |err| {
switch (err) {
error.OutOfMemory => comp.link_diags.setAllocFailure(),
}
return error.CodegenFail;
};
return error.BackendDoesNotProduceMir;
}
return codegen.generateFunction(lf, pt, zcu.navSrcLoc(nav), func_index, air, &liveness) catch |err| switch (err) {
error.OutOfMemory,
error.CodegenFail,
=> |e| return e,
error.Overflow,
error.RelocationNotByteAligned,
=> return zcu.codegenFail(nav, "unable to codegen: {s}", .{@errorName(err)}),
};
}