Find a file
mlugg 9c3670fc93
compiler: implement analysis-local comptime-mutable memory
This commit changes how we represent comptime-mutable memory
(`comptime var`) in the compiler in order to implement the intended
behavior that references to such memory can only exist at comptime.

It does *not* clean up the representation of mutable values, improve the
representation of comptime-known pointers, or fix the many bugs in the
comptime pointer access code. These will be future enhancements.

Comptime memory lives for the duration of a single Sema, and is not
permitted to escape that one analysis, either by becoming runtime-known
or by becoming comptime-known to other analyses. These restrictions mean
that we can represent comptime allocations not via Decl, but with state
local to Sema - specifically, the new `Sema.comptime_allocs` field. All
comptime-mutable allocations, as well as any comptime-known const allocs
containing references to such memory, live in here. This allows for
relatively fast checking of whether a value references any
comptime-mtuable memory, since we need only traverse values up to
pointers: pointers to Decls can never reference comptime-mutable memory,
and pointers into `Sema.comptime_allocs` always do.

This change exposed some faulty pointer access logic in `Value.zig`.
I've fixed the important cases, but there are some TODOs I've put in
which are definitely possible to hit with sufficiently esoteric code. I
plan to resolve these by auditing all direct accesses to pointers (most
of them ought to use Sema to perform the pointer access!), but for now
this is sufficient for all realistic code and to get tests passing.

This change eliminates `Zcu.tmp_hack_arena`, instead using the Sema
arena for comptime memory mutations, which is possible since comptime
memory is now local to the current Sema.

This change should allow `Decl` to store only an `InternPool.Index`
rather than a full-blown `ty: Type, val: Value`. This commit does not
perform this refactor.
2024-03-25 14:49:41 +00:00
.github Fix CODEOWNERS path to resinator source files 2024-03-20 15:35:15 +02:00
ci ci: bump QEMU to 8.2.1 on x86_64-linux machines 2024-02-23 10:30:34 +01:00
cmake update LLVM static library list to 17 2023-09-19 09:37:32 -07:00
doc langref: add naming guide 2024-03-18 23:52:52 -07:00
lib compiler: implement analysis-local comptime-mutable memory 2024-03-25 14:49:41 +00:00
src compiler: implement analysis-local comptime-mutable memory 2024-03-25 14:49:41 +00:00
stage1 update zig1.wasm 2024-03-17 03:25:56 +01:00
test compiler: implement analysis-local comptime-mutable memory 2024-03-25 14:49:41 +00:00
tools mingw-w64 updater: don't include windowsapp or onecore APIs 2024-03-20 11:25:54 -07:00
.gitattributes Sync Aro sources (#19199) 2024-03-06 14:17:41 -05:00
.gitignore
.mailmap update .mailmap 2023-08-04 11:01:18 -07:00
bootstrap.c compiler: audit debug mode checks 2024-03-01 17:42:54 -08:00
build.zig extract std.posix from std.os 2024-03-19 11:45:09 -07:00
CMakeLists.txt rename ryu128 -> format_float 2024-03-21 17:10:41 +02:00
LICENSE LICENSE: copyright notices do not need years 2023-07-23 15:46:06 -07:00
README.md adjust building from source without LLVM process 2023-11-14 02:17:51 -05:00

ZIG

A general-purpose programming language and toolchain for maintaining robust, optimal, and reusable software.

https://ziglang.org/

Documentation

If you are looking at this README file in a source tree, please refer to the Release Notes, Language Reference, or Standard Library Documentation corresponding to the version of Zig that you are using by following the appropriate link on the download page.

Otherwise, you're looking at a release of Zig, and you can find documentation here:

  • doc/langref.html
  • doc/std/index.html

Installation

A Zig installation is composed of two things:

  1. The Zig executable
  2. The lib/ directory

At runtime, the executable searches up the file system for the lib/ directory, relative to itself:

  • lib/
  • lib/zig/
  • ../lib/
  • ../lib/zig/
  • (and so on)

In other words, you can unpack a release of Zig anywhere, and then begin using it immediately. There is no need to install it globally, although this mechanism supports that use case too (i.e. /usr/bin/zig and /usr/lib/zig/).

Building from Source

Ensure you have the required dependencies:

  • CMake >= 3.5
  • System C/C++ Toolchain
  • LLVM, Clang, LLD development libraries == 17.x

Then it is the standard CMake build process:

mkdir build
cd build
cmake ..
make install

For more options, tips, and troubleshooting, please see the Building Zig From Source page on the wiki.

Building from Source without LLVM

In this case, the only system dependency is a C compiler.

cc -o bootstrap bootstrap.c
./bootstrap

This produces a zig2 executable in the current working directory. This is a "stage2" build of the compiler, without LLVM extensions, and is therefore lacking these features:

However, a compiler built this way does provide a C backend, which may be useful for creating system packages of Zig projects using the system C toolchain. In such case, LLVM is not needed!

Contributing

Donate monthly.

Zig is Free and Open Source Software. We welcome bug reports and patches from everyone. However, keep in mind that Zig governance is BDFN (Benevolent Dictator For Now) which means that Andrew Kelley has final say on the design and implementation of everything.

One of the best ways you can contribute to Zig is to start using it for an open-source personal project.

This leads to discovering bugs and helps flesh out use cases, which lead to further design iterations of Zig. Importantly, each issue found this way comes with real world motivations, making it straightforward to explain the reasoning behind proposals and feature requests.

You will be taken much more seriously on the issue tracker if you have a personal project that uses Zig.

The issue label Contributor Friendly exists to help you find issues that are limited in scope and/or knowledge of Zig internals.

Please note that issues labeled Proposal but do not also have the Accepted label are still under consideration, and efforts to implement such a proposal have a high risk of being wasted. If you are interested in a proposal which is still under consideration, please express your interest in the issue tracker, providing extra insights and considerations that others have not yet expressed. The most highly regarded argument in such a discussion is a real world use case.

For more tips, please see the Contributing page on the wiki.

Community

The Zig community is decentralized. Anyone is free to start and maintain their own space for Zig users to gather. There is no concept of "official" or "unofficial". Each gathering place has its own moderators and rules. Users are encouraged to be aware of the social structures of the spaces they inhabit, and work purposefully to facilitate spaces that align with their values.

Please see the Community wiki page for a public listing of social spaces.