zig/lib/std/Random/ziggurat.zig
IOKG04 a186bcf22b replace assertions with comptime assertions
also I'll take this commit message to note that these tests aren't perfect,
some goodness of fit test like for the normal `float` function would be better,
but this should still catch any *big* mistake done in implementation.
2025-09-22 01:35:35 +02:00

241 lines
7.9 KiB
Zig

//! Implements [ZIGNOR][1] (Jurgen A. Doornik, 2005, Nuffield College, Oxford).
//!
//! [1]: https://www.doornik.com/research/ziggurat.pdf
//!
//! rust/rand used as a reference;
//!
//! NOTE: This seems interesting but reference code is a bit hard to grok:
//! https://sbarral.github.io/etf.
const std = @import("../std.zig");
const math = std.math;
const Random = std.Random;
pub fn next(comptime T: type, random: Random, comptime tables: Table(T)) T {
const t_bits = @typeInfo(T).float.bits;
const mantissa_bits = math.floatMantissaBits(T);
const TAsInt = std.meta.Int(.unsigned, t_bits);
while (true) {
// We manually construct a float from parts as we can avoid an extra random lookup here by
// using the unused exponent for the lookup table entry.
const bits = random.int(std.meta.Int(.unsigned, mantissa_bits + 8)); // bits for mantissa and 8 for `i`
const i = @as(usize, @as(u8, @truncate(bits)));
const u = blk: {
// If symmetric, generate value in range [2, 4) and scale into [-1, 1),
// otherwise generate value in range [1, 2] and scale into (0, 1)
const mantissa: TAsInt = @intCast(bits >> 8);
const exponent: TAsInt = (math.floatExponentMax(T) + (if (tables.is_symmetric) 1 else 0)) << mantissa_bits;
const representation: TAsInt = switch (t_bits) {
80 => exponent | mantissa | (1 << (mantissa_bits - 1)),
else => exponent | mantissa,
};
if (tables.is_symmetric) {
break :blk @as(T, @bitCast(representation)) - 3.0;
} else {
break :blk @as(T, @bitCast(representation)) - (1.0 - math.floatEps(T) / 2.0);
}
};
const x = u * tables.x[i];
const test_x = if (tables.is_symmetric) @abs(x) else x;
// equivalent to |u| < tables.x[i+1] / tables.x[i] (or u < tables.x[i+1] / tables.x[i])
if (test_x < tables.x[i + 1]) {
return x;
}
if (i == 0) {
return tables.zeroCase(random, u);
}
// equivalent to f1 + DRanU() * (f0 - f1) < 1
if (tables.f[i + 1] + (tables.f[i] - tables.f[i + 1]) * random.float(T) < tables.pdf(x)) {
return x;
}
}
}
pub fn Table(comptime T: type) type {
comptime std.debug.assert(@typeInfo(T) == .float);
return struct {
x: [257]T,
f: [257]T,
// probability density function used as a fallback
pdf: fn (T) T,
// whether the distribution is symmetric
is_symmetric: bool,
// fallback calculation in the case we are in the 0 block
zeroCase: fn (Random, T) T,
};
}
// zigNorInit
pub fn tableGen(
comptime T: type,
comptime is_symmetric: bool,
comptime r: T,
comptime v: T,
comptime f: fn (T) T,
comptime fInv: fn (T) T,
comptime zeroCase: fn (Random, T) T,
) Table(T) {
var tables: Table(T) = undefined;
tables.is_symmetric = is_symmetric;
tables.pdf = f;
tables.zeroCase = zeroCase;
tables.x[0] = v / f(r);
tables.x[1] = r;
for (tables.x[2..256], 0..) |*entry, i| {
const last = tables.x[2 + i - 1];
entry.* = fInv(v / last + f(last));
}
tables.x[256] = 0;
for (tables.f[0..], 0..) |*entry, i| {
entry.* = f(tables.x[i]);
}
return tables;
}
/// Namespace containing distributions for a specific floating point type.
pub fn distributions(comptime T: type) type {
comptime std.debug.assert(@typeInfo(T) == .float);
return struct {
pub const norm_r = 3.6541528853610088;
pub const norm_v = 0.00492867323399;
pub fn normF(x: T) T {
return @exp(-x * x / 2.0);
}
pub fn normFInv(y: T) T {
return @sqrt(-2.0 * @log(y));
}
pub fn normZeroCase(random: Random, u: T) T {
var x: T = 1.0;
var y: T = 0.0;
while (-2.0 * y < x * x) {
x = @log(random.float(T)) / norm_r;
y = @log(random.float(T));
}
if (u < 0) {
return x - norm_r;
} else {
return norm_r - x;
}
}
/// N(0, 1)
pub const normal = blk: {
@setEvalBranchQuota(30000);
break :blk tableGen(T, true, norm_r, norm_v, normF, normFInv, normZeroCase);
};
pub const exp_r = 7.69711747013104972;
pub const exp_v = 0.0039496598225815571993;
pub fn expF(x: T) T {
return @exp(-x);
}
pub fn expFInv(y: T) T {
return -@log(y);
}
pub fn expZeroCase(random: Random, _: T) T {
return exp_r - @log(random.float(T));
}
/// E(1)
pub const exponential = blk: {
@setEvalBranchQuota(30000);
break :blk tableGen(T, false, exp_r, exp_v, expF, expFInv, expZeroCase);
};
};
}
/// Deprecated. Use `next` instead.
pub fn next_f64(random: Random, comptime tables: Table(f64)) f64 {
return next(f64, random, tables);
}
/// Deprecated. Use `Table` instead.
pub const ZigTable = Table(f64);
/// Deprecated. Use `tableGen` instead.
pub fn ZigTableGen(
comptime is_symmetric: bool,
comptime r: f64,
comptime v: f64,
comptime f: fn (f64) f64,
comptime f_inv: fn (f64) f64,
comptime zero_case: fn (Random, f64) f64,
) Table(f64) {
return tableGen(f64, is_symmetric, r, v, f, f_inv, zero_case);
}
/// Deprecated. Use `distributions.normal` instead.
pub const NormDist = distributions(f64).normal;
/// Deprecated. Use `distributions.exponential` instead.
pub const ExpDist = distributions(f64).exponential;
fn zigguratTests(comptime T: type) type {
return struct {
test "normal dist correctness" {
const n = 10000;
const p = 0.682689492136; // chance of `random.floatNorm` ∈ [-1.0, 1.0]
const mu = n * p;
const sigma = @sqrt(n * p * (1.0 - p));
// interval that `in_range` will land in (inclusive) with 95% confidence
const in_range_min: u32 = @intFromFloat(@ceil(mu - 1.97 * sigma));
const in_range_max: u32 = @intFromFloat(@floor(mu + 1.97 * sigma));
var prng = Random.DefaultPrng.init(switch (@typeInfo(T).float.bits) {
// By random chance, this fails for `f64` on seed `0`
// and for `f32` on seed `1`. Thus this setup.
64 => 1,
else => 0,
});
const random = prng.random();
var in_range: u32 = 0;
for (0..n) |_| {
const value = random.floatNorm(T);
if (value >= -1.0 and value <= 1.0) in_range += 1;
}
try std.testing.expect(in_range >= in_range_min);
try std.testing.expect(in_range <= in_range_max);
}
test "exponential dist correctness" {
const n = 10000;
const p = 0.5; // chance of `random.floatExp` < @log(2.0)
const mu = n * p;
const sigma = @sqrt(n * p * (1.0 - p));
// interval that `in_range` will land in (inclusive) with 95% confidence
const in_range_min: u32 = @intFromFloat(@ceil(mu - 1.97 * sigma));
const in_range_max: u32 = @intFromFloat(@floor(mu + 1.97 * sigma));
var prng = Random.DefaultPrng.init(0);
const random = prng.random();
var in_range: u32 = 0;
for (0..n) |_| {
const value = random.floatExp(T);
if (value < @log(2.0)) in_range += 1;
}
try std.testing.expect(in_range >= in_range_min);
try std.testing.expect(in_range <= in_range_max);
}
test "distributions" {
const dists = distributions(T);
_ = dists.normal;
_ = dists.exponential;
}
};
}
test {
inline for ([_]type{ f16, f32, f64, f80, f128, c_longdouble }) |T| {
_ = zigguratTests(T);
}
}