mirror of
https://codeberg.org/ziglang/zig.git
synced 2025-12-07 14:24:43 +00:00
use peer type resolution Update complex.zig Revert "use peer type resolution" This reverts commit1bc681ca5b. Revert "Update pow.zig" This reverts commit 5487e8d3159f832b5a0bf29a06bd12575182464f. Update pow.zig Revert "Update pow.zig" This reverts commit521153d1ef. Update pow.zig
171 lines
5.2 KiB
Zig
171 lines
5.2 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/complex/csinhf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/complex/csinh.c
|
|
|
|
const std = @import("../../std.zig");
|
|
const testing = std.testing;
|
|
const math = std.math;
|
|
const cmath = math.complex;
|
|
const Complex = cmath.Complex;
|
|
|
|
const ldexp_cexp = @import("ldexp.zig").ldexp_cexp;
|
|
|
|
/// Returns the hyperbolic sine of z.
|
|
pub fn sinh(z: anytype) Complex(@TypeOf(z.re, z.im)) {
|
|
const T = @TypeOf(z.re, z.im);
|
|
return switch (T) {
|
|
f32 => sinh32(z),
|
|
f64 => sinh64(z),
|
|
else => @compileError("tan not implemented for " ++ @typeName(z)),
|
|
};
|
|
}
|
|
|
|
fn sinh32(z: Complex(f32)) Complex(f32) {
|
|
const x = z.re;
|
|
const y = z.im;
|
|
|
|
const hx = @as(u32, @bitCast(x));
|
|
const ix = hx & 0x7fffffff;
|
|
|
|
const hy = @as(u32, @bitCast(y));
|
|
const iy = hy & 0x7fffffff;
|
|
|
|
if (ix < 0x7f800000 and iy < 0x7f800000) {
|
|
if (iy == 0) {
|
|
return Complex(f32).init(math.sinh(x), y);
|
|
}
|
|
// small x: normal case
|
|
if (ix < 0x41100000) {
|
|
return Complex(f32).init(math.sinh(x) * @cos(y), math.cosh(x) * @sin(y));
|
|
}
|
|
|
|
// |x|>= 9, so cosh(x) ~= exp(|x|)
|
|
if (ix < 0x42b17218) {
|
|
// x < 88.7: exp(|x|) won't overflow
|
|
const h = @exp(@abs(x)) * 0.5;
|
|
return Complex(f32).init(math.copysign(h, x) * @cos(y), h * @sin(y));
|
|
}
|
|
// x < 192.7: scale to avoid overflow
|
|
else if (ix < 0x4340b1e7) {
|
|
const v = Complex(f32).init(@abs(x), y);
|
|
const r = ldexp_cexp(v, -1);
|
|
return Complex(f32).init(r.re * math.copysign(@as(f32, 1.0), x), r.im);
|
|
}
|
|
// x >= 192.7: result always overflows
|
|
else {
|
|
const h = 0x1p127 * x;
|
|
return Complex(f32).init(h * @cos(y), h * h * @sin(y));
|
|
}
|
|
}
|
|
|
|
if (ix == 0 and iy >= 0x7f800000) {
|
|
return Complex(f32).init(math.copysign(@as(f32, 0.0), x * (y - y)), y - y);
|
|
}
|
|
|
|
if (iy == 0 and ix >= 0x7f800000) {
|
|
if (hx & 0x7fffff == 0) {
|
|
return Complex(f32).init(x, y);
|
|
}
|
|
return Complex(f32).init(x, math.copysign(@as(f32, 0.0), y));
|
|
}
|
|
|
|
if (ix < 0x7f800000 and iy >= 0x7f800000) {
|
|
return Complex(f32).init(y - y, x * (y - y));
|
|
}
|
|
|
|
if (ix >= 0x7f800000 and (hx & 0x7fffff) == 0) {
|
|
if (iy >= 0x7f800000) {
|
|
return Complex(f32).init(x * x, x * (y - y));
|
|
}
|
|
return Complex(f32).init(x * @cos(y), math.inf(f32) * @sin(y));
|
|
}
|
|
|
|
return Complex(f32).init((x * x) * (y - y), (x + x) * (y - y));
|
|
}
|
|
|
|
fn sinh64(z: Complex(f64)) Complex(f64) {
|
|
const x = z.re;
|
|
const y = z.im;
|
|
|
|
const fx: u64 = @bitCast(x);
|
|
const hx: u32 = @intCast(fx >> 32);
|
|
const lx: u32 = @truncate(fx);
|
|
const ix = hx & 0x7fffffff;
|
|
|
|
const fy: u64 = @bitCast(y);
|
|
const hy: u32 = @intCast(fy >> 32);
|
|
const ly: u32 = @truncate(fy);
|
|
const iy = hy & 0x7fffffff;
|
|
|
|
if (ix < 0x7ff00000 and iy < 0x7ff00000) {
|
|
if (iy | ly == 0) {
|
|
return Complex(f64).init(math.sinh(x), y);
|
|
}
|
|
// small x: normal case
|
|
if (ix < 0x40360000) {
|
|
return Complex(f64).init(math.sinh(x) * @cos(y), math.cosh(x) * @sin(y));
|
|
}
|
|
|
|
// |x|>= 22, so cosh(x) ~= exp(|x|)
|
|
if (ix < 0x40862e42) {
|
|
// x < 710: exp(|x|) won't overflow
|
|
const h = @exp(@abs(x)) * 0.5;
|
|
return Complex(f64).init(math.copysign(h, x) * @cos(y), h * @sin(y));
|
|
}
|
|
// x < 1455: scale to avoid overflow
|
|
else if (ix < 0x4096bbaa) {
|
|
const v = Complex(f64).init(@abs(x), y);
|
|
const r = ldexp_cexp(v, -1);
|
|
return Complex(f64).init(r.re * math.copysign(@as(f64, 1.0), x), r.im);
|
|
}
|
|
// x >= 1455: result always overflows
|
|
else {
|
|
const h = 0x1p1023 * x;
|
|
return Complex(f64).init(h * @cos(y), h * h * @sin(y));
|
|
}
|
|
}
|
|
|
|
if (ix | lx == 0 and iy >= 0x7ff00000) {
|
|
return Complex(f64).init(math.copysign(@as(f64, 0.0), x * (y - y)), y - y);
|
|
}
|
|
|
|
if (iy | ly == 0 and ix >= 0x7ff00000) {
|
|
if ((hx & 0xfffff) | lx == 0) {
|
|
return Complex(f64).init(x, y);
|
|
}
|
|
return Complex(f64).init(x, math.copysign(@as(f64, 0.0), y));
|
|
}
|
|
|
|
if (ix < 0x7ff00000 and iy >= 0x7ff00000) {
|
|
return Complex(f64).init(y - y, x * (y - y));
|
|
}
|
|
|
|
if (ix >= 0x7ff00000 and (hx & 0xfffff) | lx == 0) {
|
|
if (iy >= 0x7ff00000) {
|
|
return Complex(f64).init(x * x, x * (y - y));
|
|
}
|
|
return Complex(f64).init(x * @cos(y), math.inf(f64) * @sin(y));
|
|
}
|
|
|
|
return Complex(f64).init((x * x) * (y - y), (x + x) * (y - y));
|
|
}
|
|
|
|
const epsilon = 0.0001;
|
|
|
|
test "complex.csinh32" {
|
|
const a = Complex(f32).init(5, 3);
|
|
const c = sinh(a);
|
|
|
|
try testing.expect(math.approxEqAbs(f32, c.re, -73.460617, epsilon));
|
|
try testing.expect(math.approxEqAbs(f32, c.im, 10.472508, epsilon));
|
|
}
|
|
|
|
test "complex.csinh64" {
|
|
const a = Complex(f64).init(5, 3);
|
|
const c = sinh(a);
|
|
|
|
try testing.expect(math.approxEqAbs(f64, c.re, -73.460617, epsilon));
|
|
try testing.expect(math.approxEqAbs(f64, c.im, 10.472508, epsilon));
|
|
}
|