mirror of
https://codeberg.org/ziglang/zig.git
synced 2025-12-07 06:14:33 +00:00
use peer type resolution Update complex.zig Revert "use peer type resolution" This reverts commit1bc681ca5b. Revert "Update pow.zig" This reverts commit 5487e8d3159f832b5a0bf29a06bd12575182464f. Update pow.zig Revert "Update pow.zig" This reverts commit521153d1ef. Update pow.zig
120 lines
3.5 KiB
Zig
120 lines
3.5 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/complex/ctanhf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/complex/ctanh.c
|
|
|
|
const std = @import("../../std.zig");
|
|
const testing = std.testing;
|
|
const math = std.math;
|
|
const cmath = math.complex;
|
|
const Complex = cmath.Complex;
|
|
|
|
/// Returns the hyperbolic tangent of z.
|
|
pub fn tanh(z: anytype) Complex(@TypeOf(z.re, z.im)) {
|
|
const T = @TypeOf(z.re, z.im);
|
|
return switch (T) {
|
|
f32 => tanh32(z),
|
|
f64 => tanh64(z),
|
|
else => @compileError("tan not implemented for " ++ @typeName(z)),
|
|
};
|
|
}
|
|
|
|
fn tanh32(z: Complex(f32)) Complex(f32) {
|
|
const x = z.re;
|
|
const y = z.im;
|
|
|
|
const hx = @as(u32, @bitCast(x));
|
|
const ix = hx & 0x7fffffff;
|
|
|
|
if (ix >= 0x7f800000) {
|
|
if (ix & 0x7fffff != 0) {
|
|
const r = if (y == 0) y else x * y;
|
|
return Complex(f32).init(x, r);
|
|
}
|
|
const xx = @as(f32, @bitCast(hx - 0x40000000));
|
|
const r = if (math.isInf(y)) y else @sin(y) * @cos(y);
|
|
return Complex(f32).init(xx, math.copysign(@as(f32, 0.0), r));
|
|
}
|
|
|
|
if (!math.isFinite(y)) {
|
|
const r = if (ix != 0) y - y else x;
|
|
return Complex(f32).init(r, y - y);
|
|
}
|
|
|
|
// x >= 11
|
|
if (ix >= 0x41300000) {
|
|
const exp_mx = @exp(-@abs(x));
|
|
return Complex(f32).init(math.copysign(@as(f32, 1.0), x), 4 * @sin(y) * @cos(y) * exp_mx * exp_mx);
|
|
}
|
|
|
|
// Kahan's algorithm
|
|
const t = @tan(y);
|
|
const beta = 1.0 + t * t;
|
|
const s = math.sinh(x);
|
|
const rho = @sqrt(1 + s * s);
|
|
const den = 1 + beta * s * s;
|
|
|
|
return Complex(f32).init((beta * rho * s) / den, t / den);
|
|
}
|
|
|
|
fn tanh64(z: Complex(f64)) Complex(f64) {
|
|
const x = z.re;
|
|
const y = z.im;
|
|
|
|
const fx: u64 = @bitCast(x);
|
|
// TODO: zig should allow this conversion implicitly because it can notice that the value necessarily
|
|
// fits in range.
|
|
const hx: u32 = @intCast(fx >> 32);
|
|
const lx: u32 = @truncate(fx);
|
|
const ix = hx & 0x7fffffff;
|
|
|
|
if (ix >= 0x7ff00000) {
|
|
if ((ix & 0x7fffff) | lx != 0) {
|
|
const r = if (y == 0) y else x * y;
|
|
return Complex(f64).init(x, r);
|
|
}
|
|
|
|
const xx: f64 = @bitCast((@as(u64, hx - 0x40000000) << 32) | lx);
|
|
const r = if (math.isInf(y)) y else @sin(y) * @cos(y);
|
|
return Complex(f64).init(xx, math.copysign(@as(f64, 0.0), r));
|
|
}
|
|
|
|
if (!math.isFinite(y)) {
|
|
const r = if (ix != 0) y - y else x;
|
|
return Complex(f64).init(r, y - y);
|
|
}
|
|
|
|
// x >= 22
|
|
if (ix >= 0x40360000) {
|
|
const exp_mx = @exp(-@abs(x));
|
|
return Complex(f64).init(math.copysign(@as(f64, 1.0), x), 4 * @sin(y) * @cos(y) * exp_mx * exp_mx);
|
|
}
|
|
|
|
// Kahan's algorithm
|
|
const t = @tan(y);
|
|
const beta = 1.0 + t * t;
|
|
const s = math.sinh(x);
|
|
const rho = @sqrt(1 + s * s);
|
|
const den = 1 + beta * s * s;
|
|
|
|
return Complex(f64).init((beta * rho * s) / den, t / den);
|
|
}
|
|
|
|
const epsilon = 0.0001;
|
|
|
|
test "complex.ctanh32" {
|
|
const a = Complex(f32).init(5, 3);
|
|
const c = tanh(a);
|
|
|
|
try testing.expect(math.approxEqAbs(f32, c.re, 0.999913, epsilon));
|
|
try testing.expect(math.approxEqAbs(f32, c.im, -0.000025, epsilon));
|
|
}
|
|
|
|
test "complex.ctanh64" {
|
|
const a = Complex(f64).init(5, 3);
|
|
const c = tanh(a);
|
|
|
|
try testing.expect(math.approxEqAbs(f64, c.re, 0.999913, epsilon));
|
|
try testing.expect(math.approxEqAbs(f64, c.im, -0.000025, epsilon));
|
|
}
|