mirror of
https://codeberg.org/ziglang/zig.git
synced 2025-12-06 05:44:20 +00:00
591 lines
20 KiB
Zig
591 lines
20 KiB
Zig
//! Accepts list of tokens, decides what is best block type to write. What block
|
|
//! type will provide best compression. Writes header and body of the block.
|
|
const std = @import("std");
|
|
const assert = std.debug.assert;
|
|
const Writer = std.Io.Writer;
|
|
|
|
const BlockWriter = @This();
|
|
const flate = @import("../flate.zig");
|
|
const Compress = flate.Compress;
|
|
const HuffmanEncoder = flate.HuffmanEncoder;
|
|
const Token = @import("Token.zig");
|
|
|
|
const codegen_order = HuffmanEncoder.codegen_order;
|
|
const end_code_mark = 255;
|
|
|
|
output: *Writer,
|
|
|
|
codegen_freq: [HuffmanEncoder.codegen_code_count]u16,
|
|
literal_freq: [HuffmanEncoder.max_num_lit]u16,
|
|
distance_freq: [HuffmanEncoder.distance_code_count]u16,
|
|
codegen: [HuffmanEncoder.max_num_lit + HuffmanEncoder.distance_code_count + 1]u8,
|
|
literal_encoding: HuffmanEncoder,
|
|
distance_encoding: HuffmanEncoder,
|
|
codegen_encoding: HuffmanEncoder,
|
|
fixed_literal_encoding: HuffmanEncoder,
|
|
fixed_distance_encoding: HuffmanEncoder,
|
|
huff_distance: HuffmanEncoder,
|
|
|
|
fixed_literal_codes: [HuffmanEncoder.max_num_frequencies]HuffmanEncoder.Code,
|
|
fixed_distance_codes: [HuffmanEncoder.distance_code_count]HuffmanEncoder.Code,
|
|
distance_codes: [HuffmanEncoder.distance_code_count]HuffmanEncoder.Code,
|
|
|
|
pub fn init(output: *Writer) BlockWriter {
|
|
return .{
|
|
.output = output,
|
|
.codegen_freq = undefined,
|
|
.literal_freq = undefined,
|
|
.distance_freq = undefined,
|
|
.codegen = undefined,
|
|
.literal_encoding = undefined,
|
|
.distance_encoding = undefined,
|
|
.codegen_encoding = undefined,
|
|
.fixed_literal_encoding = undefined,
|
|
.fixed_distance_encoding = undefined,
|
|
.huff_distance = undefined,
|
|
.fixed_literal_codes = undefined,
|
|
.fixed_distance_codes = undefined,
|
|
.distance_codes = undefined,
|
|
};
|
|
}
|
|
|
|
pub fn initBuffers(bw: *BlockWriter) void {
|
|
bw.fixed_literal_encoding = .fixedLiteralEncoder(&bw.fixed_literal_codes);
|
|
bw.fixed_distance_encoding = .fixedDistanceEncoder(&bw.fixed_distance_codes);
|
|
bw.huff_distance = .huffmanDistanceEncoder(&bw.distance_codes);
|
|
}
|
|
|
|
/// Flush intrenal bit buffer to the writer.
|
|
/// Should be called only when bit stream is at byte boundary.
|
|
///
|
|
/// That is after final block; when last byte could be incomplete or
|
|
/// after stored block; which is aligned to the byte boundary (it has x
|
|
/// padding bits after first 3 bits).
|
|
pub fn flush(self: *BlockWriter) Writer.Error!void {
|
|
try self.bit_writer.flush();
|
|
}
|
|
|
|
fn writeCode(self: *BlockWriter, c: Compress.HuffCode) Writer.Error!void {
|
|
try self.bit_writer.writeBits(c.code, c.len);
|
|
}
|
|
|
|
/// RFC 1951 3.2.7 specifies a special run-length encoding for specifying
|
|
/// the literal and distance lengths arrays (which are concatenated into a single
|
|
/// array). This method generates that run-length encoding.
|
|
///
|
|
/// The result is written into the codegen array, and the frequencies
|
|
/// of each code is written into the codegen_freq array.
|
|
/// Codes 0-15 are single byte codes. Codes 16-18 are followed by additional
|
|
/// information. Code bad_code is an end marker
|
|
///
|
|
/// num_literals: The number of literals in literal_encoding
|
|
/// num_distances: The number of distances in distance_encoding
|
|
/// lit_enc: The literal encoder to use
|
|
/// dist_enc: The distance encoder to use
|
|
fn generateCodegen(
|
|
self: *BlockWriter,
|
|
num_literals: u32,
|
|
num_distances: u32,
|
|
lit_enc: *Compress.LiteralEncoder,
|
|
dist_enc: *Compress.DistanceEncoder,
|
|
) void {
|
|
for (self.codegen_freq, 0..) |_, i| {
|
|
self.codegen_freq[i] = 0;
|
|
}
|
|
|
|
// Note that we are using codegen both as a temporary variable for holding
|
|
// a copy of the frequencies, and as the place where we put the result.
|
|
// This is fine because the output is always shorter than the input used
|
|
// so far.
|
|
var codegen = &self.codegen; // cache
|
|
// Copy the concatenated code sizes to codegen. Put a marker at the end.
|
|
var cgnl = codegen[0..num_literals];
|
|
for (cgnl, 0..) |_, i| {
|
|
cgnl[i] = @as(u8, @intCast(lit_enc.codes[i].len));
|
|
}
|
|
|
|
cgnl = codegen[num_literals .. num_literals + num_distances];
|
|
for (cgnl, 0..) |_, i| {
|
|
cgnl[i] = @as(u8, @intCast(dist_enc.codes[i].len));
|
|
}
|
|
codegen[num_literals + num_distances] = end_code_mark;
|
|
|
|
var size = codegen[0];
|
|
var count: i32 = 1;
|
|
var out_index: u32 = 0;
|
|
var in_index: u32 = 1;
|
|
while (size != end_code_mark) : (in_index += 1) {
|
|
// INVARIANT: We have seen "count" copies of size that have not yet
|
|
// had output generated for them.
|
|
const next_size = codegen[in_index];
|
|
if (next_size == size) {
|
|
count += 1;
|
|
continue;
|
|
}
|
|
// We need to generate codegen indicating "count" of size.
|
|
if (size != 0) {
|
|
codegen[out_index] = size;
|
|
out_index += 1;
|
|
self.codegen_freq[size] += 1;
|
|
count -= 1;
|
|
while (count >= 3) {
|
|
var n: i32 = 6;
|
|
if (n > count) {
|
|
n = count;
|
|
}
|
|
codegen[out_index] = 16;
|
|
out_index += 1;
|
|
codegen[out_index] = @as(u8, @intCast(n - 3));
|
|
out_index += 1;
|
|
self.codegen_freq[16] += 1;
|
|
count -= n;
|
|
}
|
|
} else {
|
|
while (count >= 11) {
|
|
var n: i32 = 138;
|
|
if (n > count) {
|
|
n = count;
|
|
}
|
|
codegen[out_index] = 18;
|
|
out_index += 1;
|
|
codegen[out_index] = @as(u8, @intCast(n - 11));
|
|
out_index += 1;
|
|
self.codegen_freq[18] += 1;
|
|
count -= n;
|
|
}
|
|
if (count >= 3) {
|
|
// 3 <= count <= 10
|
|
codegen[out_index] = 17;
|
|
out_index += 1;
|
|
codegen[out_index] = @as(u8, @intCast(count - 3));
|
|
out_index += 1;
|
|
self.codegen_freq[17] += 1;
|
|
count = 0;
|
|
}
|
|
}
|
|
count -= 1;
|
|
while (count >= 0) : (count -= 1) {
|
|
codegen[out_index] = size;
|
|
out_index += 1;
|
|
self.codegen_freq[size] += 1;
|
|
}
|
|
// Set up invariant for next time through the loop.
|
|
size = next_size;
|
|
count = 1;
|
|
}
|
|
// Marker indicating the end of the codegen.
|
|
codegen[out_index] = end_code_mark;
|
|
}
|
|
|
|
const DynamicSize = struct {
|
|
size: u32,
|
|
num_codegens: u32,
|
|
};
|
|
|
|
/// dynamicSize returns the size of dynamically encoded data in bits.
|
|
fn dynamicSize(
|
|
self: *BlockWriter,
|
|
lit_enc: *Compress.LiteralEncoder, // literal encoder
|
|
dist_enc: *Compress.DistanceEncoder, // distance encoder
|
|
extra_bits: u32,
|
|
) DynamicSize {
|
|
var num_codegens = self.codegen_freq.len;
|
|
while (num_codegens > 4 and self.codegen_freq[codegen_order[num_codegens - 1]] == 0) {
|
|
num_codegens -= 1;
|
|
}
|
|
const header = 3 + 5 + 5 + 4 + (3 * num_codegens) +
|
|
self.codegen_encoding.bitLength(self.codegen_freq[0..]) +
|
|
self.codegen_freq[16] * 2 +
|
|
self.codegen_freq[17] * 3 +
|
|
self.codegen_freq[18] * 7;
|
|
const size = header +
|
|
lit_enc.bitLength(&self.literal_freq) +
|
|
dist_enc.bitLength(&self.distance_freq) +
|
|
extra_bits;
|
|
|
|
return DynamicSize{
|
|
.size = @as(u32, @intCast(size)),
|
|
.num_codegens = @as(u32, @intCast(num_codegens)),
|
|
};
|
|
}
|
|
|
|
/// fixedSize returns the size of dynamically encoded data in bits.
|
|
fn fixedSize(self: *BlockWriter, extra_bits: u32) u32 {
|
|
return 3 +
|
|
self.fixed_literal_encoding.bitLength(&self.literal_freq) +
|
|
self.fixed_distance_encoding.bitLength(&self.distance_freq) +
|
|
extra_bits;
|
|
}
|
|
|
|
const StoredSize = struct {
|
|
size: u32,
|
|
storable: bool,
|
|
};
|
|
|
|
/// storedSizeFits calculates the stored size, including header.
|
|
/// The function returns the size in bits and whether the block
|
|
/// fits inside a single block.
|
|
fn storedSizeFits(in: ?[]const u8) StoredSize {
|
|
if (in == null) {
|
|
return .{ .size = 0, .storable = false };
|
|
}
|
|
if (in.?.len <= HuffmanEncoder.max_store_block_size) {
|
|
return .{ .size = @as(u32, @intCast((in.?.len + 5) * 8)), .storable = true };
|
|
}
|
|
return .{ .size = 0, .storable = false };
|
|
}
|
|
|
|
/// Write the header of a dynamic Huffman block to the output stream.
|
|
///
|
|
/// num_literals: The number of literals specified in codegen
|
|
/// num_distances: The number of distances specified in codegen
|
|
/// num_codegens: The number of codegens used in codegen
|
|
/// eof: Is it the end-of-file? (end of stream)
|
|
fn dynamicHeader(
|
|
self: *BlockWriter,
|
|
num_literals: u32,
|
|
num_distances: u32,
|
|
num_codegens: u32,
|
|
eof: bool,
|
|
) Writer.Error!void {
|
|
const first_bits: u32 = if (eof) 5 else 4;
|
|
try self.bit_writer.writeBits(first_bits, 3);
|
|
try self.bit_writer.writeBits(num_literals - 257, 5);
|
|
try self.bit_writer.writeBits(num_distances - 1, 5);
|
|
try self.bit_writer.writeBits(num_codegens - 4, 4);
|
|
|
|
var i: u32 = 0;
|
|
while (i < num_codegens) : (i += 1) {
|
|
const value = self.codegen_encoding.codes[codegen_order[i]].len;
|
|
try self.bit_writer.writeBits(value, 3);
|
|
}
|
|
|
|
i = 0;
|
|
while (true) {
|
|
const code_word: u32 = @as(u32, @intCast(self.codegen[i]));
|
|
i += 1;
|
|
if (code_word == end_code_mark) {
|
|
break;
|
|
}
|
|
try self.writeCode(self.codegen_encoding.codes[@as(u32, @intCast(code_word))]);
|
|
|
|
switch (code_word) {
|
|
16 => {
|
|
try self.bit_writer.writeBits(self.codegen[i], 2);
|
|
i += 1;
|
|
},
|
|
17 => {
|
|
try self.bit_writer.writeBits(self.codegen[i], 3);
|
|
i += 1;
|
|
},
|
|
18 => {
|
|
try self.bit_writer.writeBits(self.codegen[i], 7);
|
|
i += 1;
|
|
},
|
|
else => {},
|
|
}
|
|
}
|
|
}
|
|
|
|
fn storedHeader(self: *BlockWriter, length: usize, eof: bool) Writer.Error!void {
|
|
assert(length <= 65535);
|
|
const flag: u32 = if (eof) 1 else 0;
|
|
try self.bit_writer.writeBits(flag, 3);
|
|
try self.flush();
|
|
const l: u16 = @intCast(length);
|
|
try self.bit_writer.writeBits(l, 16);
|
|
try self.bit_writer.writeBits(~l, 16);
|
|
}
|
|
|
|
fn fixedHeader(self: *BlockWriter, eof: bool) Writer.Error!void {
|
|
// Indicate that we are a fixed Huffman block
|
|
var value: u32 = 2;
|
|
if (eof) {
|
|
value = 3;
|
|
}
|
|
try self.bit_writer.writeBits(value, 3);
|
|
}
|
|
|
|
/// Write a block of tokens with the smallest encoding. Will choose block type.
|
|
/// The original input can be supplied, and if the huffman encoded data
|
|
/// is larger than the original bytes, the data will be written as a
|
|
/// stored block.
|
|
/// If the input is null, the tokens will always be Huffman encoded.
|
|
pub fn write(self: *BlockWriter, tokens: []const Token, eof: bool, input: ?[]const u8) Writer.Error!void {
|
|
const lit_and_dist = self.indexTokens(tokens);
|
|
const num_literals = lit_and_dist.num_literals;
|
|
const num_distances = lit_and_dist.num_distances;
|
|
|
|
var extra_bits: u32 = 0;
|
|
const ret = storedSizeFits(input);
|
|
const stored_size = ret.size;
|
|
const storable = ret.storable;
|
|
|
|
if (storable) {
|
|
// We only bother calculating the costs of the extra bits required by
|
|
// the length of distance fields (which will be the same for both fixed
|
|
// and dynamic encoding), if we need to compare those two encodings
|
|
// against stored encoding.
|
|
var length_code: u16 = Token.length_codes_start + 8;
|
|
while (length_code < num_literals) : (length_code += 1) {
|
|
// First eight length codes have extra size = 0.
|
|
extra_bits += @as(u32, @intCast(self.literal_freq[length_code])) *
|
|
@as(u32, @intCast(Token.lengthExtraBits(length_code)));
|
|
}
|
|
var distance_code: u16 = 4;
|
|
while (distance_code < num_distances) : (distance_code += 1) {
|
|
// First four distance codes have extra size = 0.
|
|
extra_bits += @as(u32, @intCast(self.distance_freq[distance_code])) *
|
|
@as(u32, @intCast(Token.distanceExtraBits(distance_code)));
|
|
}
|
|
}
|
|
|
|
// Figure out smallest code.
|
|
// Fixed Huffman baseline.
|
|
var literal_encoding = &self.fixed_literal_encoding;
|
|
var distance_encoding = &self.fixed_distance_encoding;
|
|
var size = self.fixedSize(extra_bits);
|
|
|
|
// Dynamic Huffman?
|
|
var num_codegens: u32 = 0;
|
|
|
|
// Generate codegen and codegenFrequencies, which indicates how to encode
|
|
// the literal_encoding and the distance_encoding.
|
|
self.generateCodegen(
|
|
num_literals,
|
|
num_distances,
|
|
&self.literal_encoding,
|
|
&self.distance_encoding,
|
|
);
|
|
self.codegen_encoding.generate(self.codegen_freq[0..], 7);
|
|
const dynamic_size = self.dynamicSize(
|
|
&self.literal_encoding,
|
|
&self.distance_encoding,
|
|
extra_bits,
|
|
);
|
|
const dyn_size = dynamic_size.size;
|
|
num_codegens = dynamic_size.num_codegens;
|
|
|
|
if (dyn_size < size) {
|
|
size = dyn_size;
|
|
literal_encoding = &self.literal_encoding;
|
|
distance_encoding = &self.distance_encoding;
|
|
}
|
|
|
|
// Stored bytes?
|
|
if (storable and stored_size < size) {
|
|
try self.storedBlock(input.?, eof);
|
|
return;
|
|
}
|
|
|
|
// Huffman.
|
|
if (@intFromPtr(literal_encoding) == @intFromPtr(&self.fixed_literal_encoding)) {
|
|
try self.fixedHeader(eof);
|
|
} else {
|
|
try self.dynamicHeader(num_literals, num_distances, num_codegens, eof);
|
|
}
|
|
|
|
// Write the tokens.
|
|
try self.writeTokens(tokens, &literal_encoding.codes, &distance_encoding.codes);
|
|
}
|
|
|
|
pub fn storedBlock(self: *BlockWriter, input: []const u8, eof: bool) Writer.Error!void {
|
|
try self.storedHeader(input.len, eof);
|
|
try self.bit_writer.writeBytes(input);
|
|
}
|
|
|
|
/// writeBlockDynamic encodes a block using a dynamic Huffman table.
|
|
/// This should be used if the symbols used have a disproportionate
|
|
/// histogram distribution.
|
|
/// If input is supplied and the compression savings are below 1/16th of the
|
|
/// input size the block is stored.
|
|
fn dynamicBlock(
|
|
self: *BlockWriter,
|
|
tokens: []const Token,
|
|
eof: bool,
|
|
input: ?[]const u8,
|
|
) Writer.Error!void {
|
|
const total_tokens = self.indexTokens(tokens);
|
|
const num_literals = total_tokens.num_literals;
|
|
const num_distances = total_tokens.num_distances;
|
|
|
|
// Generate codegen and codegenFrequencies, which indicates how to encode
|
|
// the literal_encoding and the distance_encoding.
|
|
self.generateCodegen(
|
|
num_literals,
|
|
num_distances,
|
|
&self.literal_encoding,
|
|
&self.distance_encoding,
|
|
);
|
|
self.codegen_encoding.generate(self.codegen_freq[0..], 7);
|
|
const dynamic_size = self.dynamicSize(&self.literal_encoding, &self.distance_encoding, 0);
|
|
const size = dynamic_size.size;
|
|
const num_codegens = dynamic_size.num_codegens;
|
|
|
|
// Store bytes, if we don't get a reasonable improvement.
|
|
|
|
const stored_size = storedSizeFits(input);
|
|
const ssize = stored_size.size;
|
|
const storable = stored_size.storable;
|
|
if (storable and ssize < (size + (size >> 4))) {
|
|
try self.storedBlock(input.?, eof);
|
|
return;
|
|
}
|
|
|
|
// Write Huffman table.
|
|
try self.dynamicHeader(num_literals, num_distances, num_codegens, eof);
|
|
|
|
// Write the tokens.
|
|
try self.writeTokens(tokens, &self.literal_encoding.codes, &self.distance_encoding.codes);
|
|
}
|
|
|
|
const TotalIndexedTokens = struct {
|
|
num_literals: u32,
|
|
num_distances: u32,
|
|
};
|
|
|
|
/// Indexes a slice of tokens followed by an end_block_marker, and updates
|
|
/// literal_freq and distance_freq, and generates literal_encoding
|
|
/// and distance_encoding.
|
|
/// The number of literal and distance tokens is returned.
|
|
fn indexTokens(self: *BlockWriter, tokens: []const Token) TotalIndexedTokens {
|
|
var num_literals: u32 = 0;
|
|
var num_distances: u32 = 0;
|
|
|
|
for (self.literal_freq, 0..) |_, i| {
|
|
self.literal_freq[i] = 0;
|
|
}
|
|
for (self.distance_freq, 0..) |_, i| {
|
|
self.distance_freq[i] = 0;
|
|
}
|
|
|
|
for (tokens) |t| {
|
|
if (t.kind == Token.Kind.literal) {
|
|
self.literal_freq[t.literal()] += 1;
|
|
continue;
|
|
}
|
|
self.literal_freq[t.lengthCode()] += 1;
|
|
self.distance_freq[t.distanceCode()] += 1;
|
|
}
|
|
// add end_block_marker token at the end
|
|
self.literal_freq[HuffmanEncoder.end_block_marker] += 1;
|
|
|
|
// get the number of literals
|
|
num_literals = @as(u32, @intCast(self.literal_freq.len));
|
|
while (self.literal_freq[num_literals - 1] == 0) {
|
|
num_literals -= 1;
|
|
}
|
|
// get the number of distances
|
|
num_distances = @as(u32, @intCast(self.distance_freq.len));
|
|
while (num_distances > 0 and self.distance_freq[num_distances - 1] == 0) {
|
|
num_distances -= 1;
|
|
}
|
|
if (num_distances == 0) {
|
|
// We haven't found a single match. If we want to go with the dynamic encoding,
|
|
// we should count at least one distance to be sure that the distance huffman tree could be encoded.
|
|
self.distance_freq[0] = 1;
|
|
num_distances = 1;
|
|
}
|
|
self.literal_encoding.generate(&self.literal_freq, 15);
|
|
self.distance_encoding.generate(&self.distance_freq, 15);
|
|
return TotalIndexedTokens{
|
|
.num_literals = num_literals,
|
|
.num_distances = num_distances,
|
|
};
|
|
}
|
|
|
|
/// Writes a slice of tokens to the output followed by and end_block_marker.
|
|
/// codes for literal and distance encoding must be supplied.
|
|
fn writeTokens(
|
|
self: *BlockWriter,
|
|
tokens: []const Token,
|
|
le_codes: []Compress.HuffCode,
|
|
oe_codes: []Compress.HuffCode,
|
|
) Writer.Error!void {
|
|
for (tokens) |t| {
|
|
if (t.kind == Token.Kind.literal) {
|
|
try self.writeCode(le_codes[t.literal()]);
|
|
continue;
|
|
}
|
|
|
|
// Write the length
|
|
const le = t.lengthEncoding();
|
|
try self.writeCode(le_codes[le.code]);
|
|
if (le.extra_bits > 0) {
|
|
try self.bit_writer.writeBits(le.extra_length, le.extra_bits);
|
|
}
|
|
|
|
// Write the distance
|
|
const oe = t.distanceEncoding();
|
|
try self.writeCode(oe_codes[oe.code]);
|
|
if (oe.extra_bits > 0) {
|
|
try self.bit_writer.writeBits(oe.extra_distance, oe.extra_bits);
|
|
}
|
|
}
|
|
// add end_block_marker at the end
|
|
try self.writeCode(le_codes[HuffmanEncoder.end_block_marker]);
|
|
}
|
|
|
|
/// Encodes a block of bytes as either Huffman encoded literals or uncompressed bytes
|
|
/// if the results only gains very little from compression.
|
|
pub fn huffmanBlock(self: *BlockWriter, input: []const u8, eof: bool) Writer.Error!void {
|
|
// Add everything as literals
|
|
histogram(input, &self.literal_freq);
|
|
|
|
self.literal_freq[HuffmanEncoder.end_block_marker] = 1;
|
|
|
|
const num_literals = HuffmanEncoder.end_block_marker + 1;
|
|
self.distance_freq[0] = 1;
|
|
const num_distances = 1;
|
|
|
|
self.literal_encoding.generate(&self.literal_freq, 15);
|
|
|
|
// Figure out smallest code.
|
|
// Always use dynamic Huffman or Store
|
|
var num_codegens: u32 = 0;
|
|
|
|
// Generate codegen and codegenFrequencies, which indicates how to encode
|
|
// the literal_encoding and the distance_encoding.
|
|
self.generateCodegen(
|
|
num_literals,
|
|
num_distances,
|
|
&self.literal_encoding,
|
|
&self.huff_distance,
|
|
);
|
|
self.codegen_encoding.generate(self.codegen_freq[0..], 7);
|
|
const dynamic_size = self.dynamicSize(&self.literal_encoding, &self.huff_distance, 0);
|
|
const size = dynamic_size.size;
|
|
num_codegens = dynamic_size.num_codegens;
|
|
|
|
// Store bytes, if we don't get a reasonable improvement.
|
|
const stored_size_ret = storedSizeFits(input);
|
|
const ssize = stored_size_ret.size;
|
|
const storable = stored_size_ret.storable;
|
|
|
|
if (storable and ssize < (size + (size >> 4))) {
|
|
try self.storedBlock(input, eof);
|
|
return;
|
|
}
|
|
|
|
// Huffman.
|
|
try self.dynamicHeader(num_literals, num_distances, num_codegens, eof);
|
|
const encoding = self.literal_encoding.codes[0..257];
|
|
|
|
for (input) |t| {
|
|
const c = encoding[t];
|
|
try self.bit_writer.writeBits(c.code, c.len);
|
|
}
|
|
try self.writeCode(encoding[HuffmanEncoder.end_block_marker]);
|
|
}
|
|
|
|
fn histogram(b: []const u8, h: *[286]u16) void {
|
|
// Clear histogram
|
|
for (h, 0..) |_, i| {
|
|
h[i] = 0;
|
|
}
|
|
|
|
var lh = h.*[0..256];
|
|
for (b) |t| {
|
|
lh[t] += 1;
|
|
}
|
|
}
|