zig/lib/std/testing.zig
Ryan Liptak c321b2f2a0 checkAllAllocationFailures: add possibility of SwallowedOutOfMemoryError (split from NondeterministicMemoryUsage)
Inducing failure but not getting OutOfMemory back is not as much of a problem as never inducing failure when it was expected to be induced, so treating them differently and allowing them to be handled differently by the caller is useful.

For example, the current implementation of `std.HashMapUnmanaged.getOrPutContextAdapted` always tries to grow and then recovers from OutOfMemory by attempting a lookup of an existing key. If this function is used (i.e. from `std.BufMap.putMove`) with `checkAllAllocationFailures`, then we'd have previously triggered `error.NondeterministicMemoryUsage`, but the real cause is that `OutOfMemory` is being recovered from and so the error is being swallowed. The new error allows us to both understand what's happening easier and to catch it and ignore it if we're okay with the code we're testing handling `error.OutOfMemory` without always bubbling it up.
2022-06-23 17:20:24 -07:00

691 lines
27 KiB
Zig

const std = @import("std.zig");
const builtin = @import("builtin");
const math = std.math;
const print = std.debug.print;
pub const FailingAllocator = @import("testing/failing_allocator.zig").FailingAllocator;
/// This should only be used in temporary test programs.
pub const allocator = allocator_instance.allocator();
pub var allocator_instance = std.heap.GeneralPurposeAllocator(.{}){};
pub const failing_allocator = failing_allocator_instance.allocator();
pub var failing_allocator_instance = FailingAllocator.init(base_allocator_instance.allocator(), 0);
pub var base_allocator_instance = std.heap.FixedBufferAllocator.init("");
/// TODO https://github.com/ziglang/zig/issues/5738
pub var log_level = std.log.Level.warn;
/// This is available to any test that wants to execute Zig in a child process.
/// It will be the same executable that is running `zig test`.
pub var zig_exe_path: []const u8 = undefined;
/// This function is intended to be used only in tests. It prints diagnostics to stderr
/// and then returns a test failure error when actual_error_union is not expected_error.
pub fn expectError(expected_error: anyerror, actual_error_union: anytype) !void {
if (actual_error_union) |actual_payload| {
std.debug.print("expected error.{s}, found {any}\n", .{ @errorName(expected_error), actual_payload });
return error.TestUnexpectedError;
} else |actual_error| {
if (expected_error != actual_error) {
std.debug.print("expected error.{s}, found error.{s}\n", .{
@errorName(expected_error),
@errorName(actual_error),
});
return error.TestExpectedError;
}
}
}
/// This function is intended to be used only in tests. When the two values are not
/// equal, prints diagnostics to stderr to show exactly how they are not equal,
/// then returns a test failure error.
/// `actual` is casted to the type of `expected`.
pub fn expectEqual(expected: anytype, actual: @TypeOf(expected)) !void {
switch (@typeInfo(@TypeOf(actual))) {
.NoReturn,
.BoundFn,
.Opaque,
.Frame,
.AnyFrame,
=> @compileError("value of type " ++ @typeName(@TypeOf(actual)) ++ " encountered"),
.Undefined,
.Null,
.Void,
=> return,
.Type => {
if (actual != expected) {
std.debug.print("expected type {s}, found type {s}\n", .{ @typeName(expected), @typeName(actual) });
return error.TestExpectedEqual;
}
},
.Bool,
.Int,
.Float,
.ComptimeFloat,
.ComptimeInt,
.EnumLiteral,
.Enum,
.Fn,
.ErrorSet,
=> {
if (actual != expected) {
std.debug.print("expected {}, found {}\n", .{ expected, actual });
return error.TestExpectedEqual;
}
},
.Pointer => |pointer| {
switch (pointer.size) {
.One, .Many, .C => {
if (actual != expected) {
std.debug.print("expected {*}, found {*}\n", .{ expected, actual });
return error.TestExpectedEqual;
}
},
.Slice => {
if (actual.ptr != expected.ptr) {
std.debug.print("expected slice ptr {*}, found {*}\n", .{ expected.ptr, actual.ptr });
return error.TestExpectedEqual;
}
if (actual.len != expected.len) {
std.debug.print("expected slice len {}, found {}\n", .{ expected.len, actual.len });
return error.TestExpectedEqual;
}
},
}
},
.Array => |array| try expectEqualSlices(array.child, &expected, &actual),
.Vector => |info| {
var i: usize = 0;
while (i < info.len) : (i += 1) {
if (!std.meta.eql(expected[i], actual[i])) {
std.debug.print("index {} incorrect. expected {}, found {}\n", .{
i, expected[i], actual[i],
});
return error.TestExpectedEqual;
}
}
},
.Struct => |structType| {
inline for (structType.fields) |field| {
try expectEqual(@field(expected, field.name), @field(actual, field.name));
}
},
.Union => |union_info| {
if (union_info.tag_type == null) {
@compileError("Unable to compare untagged union values");
}
const Tag = std.meta.Tag(@TypeOf(expected));
const expectedTag = @as(Tag, expected);
const actualTag = @as(Tag, actual);
try expectEqual(expectedTag, actualTag);
// we only reach this loop if the tags are equal
inline for (std.meta.fields(@TypeOf(actual))) |fld| {
if (std.mem.eql(u8, fld.name, @tagName(actualTag))) {
try expectEqual(@field(expected, fld.name), @field(actual, fld.name));
return;
}
}
// we iterate over *all* union fields
// => we should never get here as the loop above is
// including all possible values.
unreachable;
},
.Optional => {
if (expected) |expected_payload| {
if (actual) |actual_payload| {
try expectEqual(expected_payload, actual_payload);
} else {
std.debug.print("expected {any}, found null\n", .{expected_payload});
return error.TestExpectedEqual;
}
} else {
if (actual) |actual_payload| {
std.debug.print("expected null, found {any}\n", .{actual_payload});
return error.TestExpectedEqual;
}
}
},
.ErrorUnion => {
if (expected) |expected_payload| {
if (actual) |actual_payload| {
try expectEqual(expected_payload, actual_payload);
} else |actual_err| {
std.debug.print("expected {any}, found {}\n", .{ expected_payload, actual_err });
return error.TestExpectedEqual;
}
} else |expected_err| {
if (actual) |actual_payload| {
std.debug.print("expected {}, found {any}\n", .{ expected_err, actual_payload });
return error.TestExpectedEqual;
} else |actual_err| {
try expectEqual(expected_err, actual_err);
}
}
},
}
}
test "expectEqual.union(enum)" {
const T = union(enum) {
a: i32,
b: f32,
};
const a10 = T{ .a = 10 };
try expectEqual(a10, a10);
}
/// This function is intended to be used only in tests. When the formatted result of the template
/// and its arguments does not equal the expected text, it prints diagnostics to stderr to show how
/// they are not equal, then returns an error.
pub fn expectFmt(expected: []const u8, comptime template: []const u8, args: anytype) !void {
const result = try std.fmt.allocPrint(allocator, template, args);
defer allocator.free(result);
if (std.mem.eql(u8, result, expected)) return;
print("\n====== expected this output: =========\n", .{});
print("{s}", .{expected});
print("\n======== instead found this: =========\n", .{});
print("{s}", .{result});
print("\n======================================\n", .{});
return error.TestExpectedFmt;
}
/// This function is intended to be used only in tests. When the actual value is
/// not approximately equal to the expected value, prints diagnostics to stderr
/// to show exactly how they are not equal, then returns a test failure error.
/// See `math.approxEqAbs` for more informations on the tolerance parameter.
/// The types must be floating point
pub fn expectApproxEqAbs(expected: anytype, actual: @TypeOf(expected), tolerance: @TypeOf(expected)) !void {
const T = @TypeOf(expected);
switch (@typeInfo(T)) {
.Float => if (!math.approxEqAbs(T, expected, actual, tolerance)) {
std.debug.print("actual {}, not within absolute tolerance {} of expected {}\n", .{ actual, tolerance, expected });
return error.TestExpectedApproxEqAbs;
},
.ComptimeFloat => @compileError("Cannot approximately compare two comptime_float values"),
else => @compileError("Unable to compare non floating point values"),
}
}
test "expectApproxEqAbs" {
inline for ([_]type{ f16, f32, f64, f128 }) |T| {
const pos_x: T = 12.0;
const pos_y: T = 12.06;
const neg_x: T = -12.0;
const neg_y: T = -12.06;
try expectApproxEqAbs(pos_x, pos_y, 0.1);
try expectApproxEqAbs(neg_x, neg_y, 0.1);
}
}
/// This function is intended to be used only in tests. When the actual value is
/// not approximately equal to the expected value, prints diagnostics to stderr
/// to show exactly how they are not equal, then returns a test failure error.
/// See `math.approxEqRel` for more informations on the tolerance parameter.
/// The types must be floating point
pub fn expectApproxEqRel(expected: anytype, actual: @TypeOf(expected), tolerance: @TypeOf(expected)) !void {
const T = @TypeOf(expected);
switch (@typeInfo(T)) {
.Float => if (!math.approxEqRel(T, expected, actual, tolerance)) {
std.debug.print("actual {}, not within relative tolerance {} of expected {}\n", .{ actual, tolerance, expected });
return error.TestExpectedApproxEqRel;
},
.ComptimeFloat => @compileError("Cannot approximately compare two comptime_float values"),
else => @compileError("Unable to compare non floating point values"),
}
}
test "expectApproxEqRel" {
inline for ([_]type{ f16, f32, f64, f128 }) |T| {
const eps_value = comptime math.epsilon(T);
const sqrt_eps_value = comptime @sqrt(eps_value);
const pos_x: T = 12.0;
const pos_y: T = pos_x + 2 * eps_value;
const neg_x: T = -12.0;
const neg_y: T = neg_x - 2 * eps_value;
try expectApproxEqRel(pos_x, pos_y, sqrt_eps_value);
try expectApproxEqRel(neg_x, neg_y, sqrt_eps_value);
}
}
/// This function is intended to be used only in tests. When the two slices are not
/// equal, prints diagnostics to stderr to show exactly how they are not equal,
/// then returns a test failure error.
/// If your inputs are UTF-8 encoded strings, consider calling `expectEqualStrings` instead.
pub fn expectEqualSlices(comptime T: type, expected: []const T, actual: []const T) !void {
// TODO better printing of the difference
// If the arrays are small enough we could print the whole thing
// If the child type is u8 and no weird bytes, we could print it as strings
// Even for the length difference, it would be useful to see the values of the slices probably.
if (expected.len != actual.len) {
std.debug.print("slice lengths differ. expected {d}, found {d}\n", .{ expected.len, actual.len });
return error.TestExpectedEqual;
}
var i: usize = 0;
while (i < expected.len) : (i += 1) {
if (!std.meta.eql(expected[i], actual[i])) {
std.debug.print("index {} incorrect. expected {any}, found {any}\n", .{ i, expected[i], actual[i] });
return error.TestExpectedEqual;
}
}
}
/// This function is intended to be used only in tests. Checks that two slices or two arrays are equal,
/// including that their sentinel (if any) are the same. Will error if given another type.
pub fn expectEqualSentinel(comptime T: type, comptime sentinel: T, expected: [:sentinel]const T, actual: [:sentinel]const T) !void {
try expectEqualSlices(T, expected, actual);
const expected_value_sentinel = blk: {
switch (@typeInfo(@TypeOf(expected))) {
.Pointer => {
break :blk expected[expected.len];
},
.Array => |array_info| {
const indexable_outside_of_bounds = @as([]const array_info.child, &expected);
break :blk indexable_outside_of_bounds[indexable_outside_of_bounds.len];
},
else => {},
}
};
const actual_value_sentinel = blk: {
switch (@typeInfo(@TypeOf(actual))) {
.Pointer => {
break :blk actual[actual.len];
},
.Array => |array_info| {
const indexable_outside_of_bounds = @as([]const array_info.child, &actual);
break :blk indexable_outside_of_bounds[indexable_outside_of_bounds.len];
},
else => {},
}
};
if (!std.meta.eql(sentinel, expected_value_sentinel)) {
std.debug.print("expectEqualSentinel: 'expected' sentinel in memory is different from its type sentinel. type sentinel {}, in memory sentinel {}\n", .{ sentinel, expected_value_sentinel });
return error.TestExpectedEqual;
}
if (!std.meta.eql(sentinel, actual_value_sentinel)) {
std.debug.print("expectEqualSentinel: 'actual' sentinel in memory is different from its type sentinel. type sentinel {}, in memory sentinel {}\n", .{ sentinel, actual_value_sentinel });
return error.TestExpectedEqual;
}
}
/// This function is intended to be used only in tests.
/// When `ok` is false, returns a test failure error.
pub fn expect(ok: bool) !void {
if (!ok) return error.TestUnexpectedResult;
}
pub const TmpDir = struct {
dir: std.fs.Dir,
parent_dir: std.fs.Dir,
sub_path: [sub_path_len]u8,
const random_bytes_count = 12;
const sub_path_len = std.fs.base64_encoder.calcSize(random_bytes_count);
pub fn cleanup(self: *TmpDir) void {
self.dir.close();
self.parent_dir.deleteTree(&self.sub_path) catch {};
self.parent_dir.close();
self.* = undefined;
}
};
fn getCwdOrWasiPreopen() std.fs.Dir {
if (builtin.os.tag == .wasi and !builtin.link_libc) {
var preopens = std.fs.wasi.PreopenList.init(allocator);
defer preopens.deinit();
preopens.populate(null) catch
@panic("unable to make tmp dir for testing: unable to populate preopens");
const preopen = preopens.find(std.fs.wasi.PreopenType{ .Dir = "." }) orelse
@panic("unable to make tmp dir for testing: didn't find '.' in the preopens");
return std.fs.Dir{ .fd = preopen.fd };
} else {
return std.fs.cwd();
}
}
pub fn tmpDir(opts: std.fs.Dir.OpenDirOptions) TmpDir {
var random_bytes: [TmpDir.random_bytes_count]u8 = undefined;
std.crypto.random.bytes(&random_bytes);
var sub_path: [TmpDir.sub_path_len]u8 = undefined;
_ = std.fs.base64_encoder.encode(&sub_path, &random_bytes);
var cwd = getCwdOrWasiPreopen();
var cache_dir = cwd.makeOpenPath("zig-cache", .{}) catch
@panic("unable to make tmp dir for testing: unable to make and open zig-cache dir");
defer cache_dir.close();
var parent_dir = cache_dir.makeOpenPath("tmp", .{}) catch
@panic("unable to make tmp dir for testing: unable to make and open zig-cache/tmp dir");
var dir = parent_dir.makeOpenPath(&sub_path, opts) catch
@panic("unable to make tmp dir for testing: unable to make and open the tmp dir");
return .{
.dir = dir,
.parent_dir = parent_dir,
.sub_path = sub_path,
};
}
test "expectEqual nested array" {
const a = [2][2]f32{
[_]f32{ 1.0, 0.0 },
[_]f32{ 0.0, 1.0 },
};
const b = [2][2]f32{
[_]f32{ 1.0, 0.0 },
[_]f32{ 0.0, 1.0 },
};
try expectEqual(a, b);
}
test "expectEqual vector" {
var a = @splat(4, @as(u32, 4));
var b = @splat(4, @as(u32, 4));
try expectEqual(a, b);
}
pub fn expectEqualStrings(expected: []const u8, actual: []const u8) !void {
if (std.mem.indexOfDiff(u8, actual, expected)) |diff_index| {
print("\n====== expected this output: =========\n", .{});
printWithVisibleNewlines(expected);
print("\n======== instead found this: =========\n", .{});
printWithVisibleNewlines(actual);
print("\n======================================\n", .{});
var diff_line_number: usize = 1;
for (expected[0..diff_index]) |value| {
if (value == '\n') diff_line_number += 1;
}
print("First difference occurs on line {d}:\n", .{diff_line_number});
print("expected:\n", .{});
printIndicatorLine(expected, diff_index);
print("found:\n", .{});
printIndicatorLine(actual, diff_index);
return error.TestExpectedEqual;
}
}
pub fn expectStringStartsWith(actual: []const u8, expected_starts_with: []const u8) !void {
if (std.mem.startsWith(u8, actual, expected_starts_with))
return;
const shortened_actual = if (actual.len >= expected_starts_with.len)
actual[0..expected_starts_with.len]
else
actual;
print("\n====== expected to start with: =========\n", .{});
printWithVisibleNewlines(expected_starts_with);
print("\n====== instead ended with: ===========\n", .{});
printWithVisibleNewlines(shortened_actual);
print("\n========= full output: ==============\n", .{});
printWithVisibleNewlines(actual);
print("\n======================================\n", .{});
return error.TestExpectedStartsWith;
}
pub fn expectStringEndsWith(actual: []const u8, expected_ends_with: []const u8) !void {
if (std.mem.endsWith(u8, actual, expected_ends_with))
return;
const shortened_actual = if (actual.len >= expected_ends_with.len)
actual[(actual.len - expected_ends_with.len)..]
else
actual;
print("\n====== expected to end with: =========\n", .{});
printWithVisibleNewlines(expected_ends_with);
print("\n====== instead ended with: ===========\n", .{});
printWithVisibleNewlines(shortened_actual);
print("\n========= full output: ==============\n", .{});
printWithVisibleNewlines(actual);
print("\n======================================\n", .{});
return error.TestExpectedEndsWith;
}
fn printIndicatorLine(source: []const u8, indicator_index: usize) void {
const line_begin_index = if (std.mem.lastIndexOfScalar(u8, source[0..indicator_index], '\n')) |line_begin|
line_begin + 1
else
0;
const line_end_index = if (std.mem.indexOfScalar(u8, source[indicator_index..], '\n')) |line_end|
(indicator_index + line_end)
else
source.len;
printLine(source[line_begin_index..line_end_index]);
{
var i: usize = line_begin_index;
while (i < indicator_index) : (i += 1)
print(" ", .{});
}
print("^\n", .{});
}
fn printWithVisibleNewlines(source: []const u8) void {
var i: usize = 0;
while (std.mem.indexOfScalar(u8, source[i..], '\n')) |nl| : (i += nl + 1) {
printLine(source[i .. i + nl]);
}
print("{s}␃\n", .{source[i..]}); // End of Text symbol (ETX)
}
fn printLine(line: []const u8) void {
if (line.len != 0) switch (line[line.len - 1]) {
' ', '\t' => return print("{s}⏎\n", .{line}), // Carriage return symbol,
else => {},
};
print("{s}\n", .{line});
}
test {
try expectEqualStrings("foo", "foo");
}
/// Exhaustively check that allocation failures within `test_fn` are handled without
/// introducing memory leaks. If used with the `testing.allocator` as the `backing_allocator`,
/// it will also be able to detect double frees, etc (when runtime safety is enabled).
///
/// The provided `test_fn` must have a `std.mem.Allocator` as its first argument,
/// and must have a return type of `!void`. Any extra arguments of `test_fn` can
/// be provided via the `extra_args` tuple.
///
/// Any relevant state shared between runs of `test_fn` *must* be reset within `test_fn`.
///
/// The strategy employed is to:
/// - Run the test function once to get the total number of allocations.
/// - Then, iterate and run the function X more times, incrementing
/// the failing index each iteration (where X is the total number of
/// allocations determined previously)
///
/// Expects that `test_fn` has a deterministic number of memory allocations:
/// - If an allocation was made to fail during a run of `test_fn`, but `test_fn`
/// didn't return `error.OutOfMemory`, then `error.SwallowedOutOfMemoryError`
/// is returned from `checkAllAllocationFailures`. You may want to ignore this
/// depending on whether or not the code you're testing includes some strategies
/// for recovering from `error.OutOfMemory`.
/// - If a run of `test_fn` with an expected allocation failure executes without
/// an allocation failure being induced, then `error.NondeterministicMemoryUsage`
/// is returned. This error means that there are allocation points that won't be
/// tested by the strategy this function employs (that is, there are sometimes more
/// points of allocation than the initial run of `test_fn` detects).
///
/// ---
///
/// Here's an example using a simple test case that will cause a leak when the
/// allocation of `bar` fails (but will pass normally):
///
/// ```zig
/// test {
/// const length: usize = 10;
/// const allocator = std.testing.allocator;
/// var foo = try allocator.alloc(u8, length);
/// var bar = try allocator.alloc(u8, length);
///
/// allocator.free(foo);
/// allocator.free(bar);
/// }
/// ```
///
/// The test case can be converted to something that this function can use by
/// doing:
///
/// ```zig
/// fn testImpl(allocator: std.mem.Allocator, length: usize) !void {
/// var foo = try allocator.alloc(u8, length);
/// var bar = try allocator.alloc(u8, length);
///
/// allocator.free(foo);
/// allocator.free(bar);
/// }
///
/// test {
/// const length: usize = 10;
/// const allocator = std.testing.allocator;
/// try std.testing.checkAllAllocationFailures(allocator, testImpl, .{length});
/// }
/// ```
///
/// Running this test will show that `foo` is leaked when the allocation of
/// `bar` fails. The simplest fix, in this case, would be to use defer like so:
///
/// ```zig
/// fn testImpl(allocator: std.mem.Allocator, length: usize) !void {
/// var foo = try allocator.alloc(u8, length);
/// defer allocator.free(foo);
/// var bar = try allocator.alloc(u8, length);
/// defer allocator.free(bar);
/// }
/// ```
pub fn checkAllAllocationFailures(backing_allocator: std.mem.Allocator, comptime test_fn: anytype, extra_args: anytype) !void {
switch (@typeInfo(@typeInfo(@TypeOf(test_fn)).Fn.return_type.?)) {
.ErrorUnion => |info| {
if (info.payload != void) {
@compileError("Return type must be !void");
}
},
else => @compileError("Return type must be !void"),
}
if (@typeInfo(@TypeOf(extra_args)) != .Struct) {
@compileError("Expected tuple or struct argument, found " ++ @typeName(@TypeOf(extra_args)));
}
const ArgsTuple = std.meta.ArgsTuple(@TypeOf(test_fn));
const fn_args_fields = @typeInfo(ArgsTuple).Struct.fields;
if (fn_args_fields.len == 0 or fn_args_fields[0].field_type != std.mem.Allocator) {
@compileError("The provided function must have an " ++ @typeName(std.mem.Allocator) ++ " as its first argument");
}
const expected_args_tuple_len = fn_args_fields.len - 1;
if (extra_args.len != expected_args_tuple_len) {
@compileError("The provided function expects " ++ (comptime std.fmt.comptimePrint("{d}", .{expected_args_tuple_len})) ++ " extra arguments, but the provided tuple contains " ++ (comptime std.fmt.comptimePrint("{d}", .{extra_args.len})));
}
// Setup the tuple that will actually be used with @call (we'll need to insert
// the failing allocator in field @"0" before each @call)
var args: ArgsTuple = undefined;
inline for (@typeInfo(@TypeOf(extra_args)).Struct.fields) |field, i| {
const expected_type = fn_args_fields[i + 1].field_type;
if (expected_type != field.field_type) {
@compileError("Unexpected type for extra argument at index " ++ (comptime std.fmt.comptimePrint("{d}", .{i})) ++ ": expected " ++ @typeName(expected_type) ++ ", found " ++ @typeName(field.field_type));
}
const arg_i_str = comptime str: {
var str_buf: [100]u8 = undefined;
const args_i = i + 1;
const str_len = std.fmt.formatIntBuf(&str_buf, args_i, 10, .lower, .{});
break :str str_buf[0..str_len];
};
@field(args, arg_i_str) = @field(extra_args, field.name);
}
// Try it once with unlimited memory, make sure it works
const needed_alloc_count = x: {
var failing_allocator_inst = std.testing.FailingAllocator.init(backing_allocator, std.math.maxInt(usize));
args.@"0" = failing_allocator_inst.allocator();
try @call(.{}, test_fn, args);
break :x failing_allocator_inst.index;
};
var fail_index: usize = 0;
while (fail_index < needed_alloc_count) : (fail_index += 1) {
var failing_allocator_inst = std.testing.FailingAllocator.init(backing_allocator, fail_index);
args.@"0" = failing_allocator_inst.allocator();
if (@call(.{}, test_fn, args)) |_| {
if (failing_allocator_inst.has_induced_failure) {
return error.SwallowedOutOfMemoryError;
} else {
return error.NondeterministicMemoryUsage;
}
} else |err| switch (err) {
error.OutOfMemory => {
if (failing_allocator_inst.allocated_bytes != failing_allocator_inst.freed_bytes) {
print(
"\nfail_index: {d}/{d}\nallocated bytes: {d}\nfreed bytes: {d}\nallocations: {d}\ndeallocations: {d}\nallocation that was made to fail: {s}",
.{
fail_index,
needed_alloc_count,
failing_allocator_inst.allocated_bytes,
failing_allocator_inst.freed_bytes,
failing_allocator_inst.allocations,
failing_allocator_inst.deallocations,
failing_allocator_inst.getStackTrace(),
},
);
return error.MemoryLeakDetected;
}
},
else => return err,
}
}
}
/// Given a type, reference all the declarations inside, so that the semantic analyzer sees them.
pub fn refAllDecls(comptime T: type) void {
if (!builtin.is_test) return;
inline for (comptime std.meta.declarations(T)) |decl| {
if (decl.is_pub) _ = @field(T, decl.name);
}
}