zig/lib/std/os/linux/powerpc64.zig
taylor.fish bdca0f93c4 Fix PowerPC syscalls causing invalid code from CBE
Fixes #25209.

On PowerPC, some registers are both inputs to syscalls and clobbered by
them. An example is r0, which initially contains the syscall number, but
may be overwritten during execution of the syscall.

musl and glibc use a `+` (read-write) constraint to indicate this, which
isn't supported in Zig. The current implementation of PowerPC syscalls
in the Zig standard library instead lists these registers as both inputs
and clobbers, but this results in the C backend generating code that is
invalid for at least some C compilers, like GCC, which doesn't support
the specifying the same register as both an input and a clobber.

This PR changes the PowerPC syscall functions to list such registers as
inputs and outputs rather than inputs and clobbers. Thanks to jacobly0
who pointed out that it's possible to have multiple outputs; I had
gotten the wrong idea from the documentation.
2025-09-24 02:54:55 +02:00

373 lines
11 KiB
Zig

const builtin = @import("builtin");
const std = @import("../../std.zig");
const maxInt = std.math.maxInt;
const linux = std.os.linux;
const SYS = linux.SYS;
const socklen_t = linux.socklen_t;
const iovec = std.posix.iovec;
const iovec_const = std.posix.iovec_const;
const uid_t = linux.uid_t;
const gid_t = linux.gid_t;
const pid_t = linux.pid_t;
const stack_t = linux.stack_t;
const sigset_t = linux.sigset_t;
const sockaddr = linux.sockaddr;
const timespec = linux.timespec;
pub fn syscall0(number: SYS) usize {
// r0 is both an input register and a clobber. musl and glibc achieve this with
// a "+" constraint, which isn't supported in Zig, so instead we separately list
// r0 as both an input and an output. (Listing it as an input and a clobber would
// cause the C backend to emit invalid code; see #25209.)
var r0_out: usize = undefined;
return asm volatile (
\\ sc
\\ bns+ 1f
\\ neg 3, 3
\\ 1:
: [ret] "={r3}" (-> usize),
[r0_out] "={r0}" (r0_out),
: [number] "{r0}" (@intFromEnum(number)),
: .{ .memory = true, .cr0 = true, .r4 = true, .r5 = true, .r6 = true, .r7 = true, .r8 = true, .r9 = true, .r10 = true, .r11 = true, .r12 = true, .ctr = true, .xer = true });
}
pub fn syscall1(number: SYS, arg1: usize) usize {
// r0 is both an input and a clobber.
var r0_out: usize = undefined;
return asm volatile (
\\ sc
\\ bns+ 1f
\\ neg 3, 3
\\ 1:
: [ret] "={r3}" (-> usize),
[r0_out] "={r0}" (r0_out),
: [number] "{r0}" (@intFromEnum(number)),
[arg1] "{r3}" (arg1),
: .{ .memory = true, .cr0 = true, .r4 = true, .r5 = true, .r6 = true, .r7 = true, .r8 = true, .r9 = true, .r10 = true, .r11 = true, .r12 = true, .ctr = true, .xer = true });
}
pub fn syscall2(number: SYS, arg1: usize, arg2: usize) usize {
// These registers are both inputs and clobbers.
var r0_out: usize = undefined;
var r4_out: usize = undefined;
return asm volatile (
\\ sc
\\ bns+ 1f
\\ neg 3, 3
\\ 1:
: [ret] "={r3}" (-> usize),
[r0_out] "={r0}" (r0_out),
[r4_out] "={r4}" (r4_out),
: [number] "{r0}" (@intFromEnum(number)),
[arg1] "{r3}" (arg1),
[arg2] "{r4}" (arg2),
: .{ .memory = true, .cr0 = true, .r5 = true, .r6 = true, .r7 = true, .r8 = true, .r9 = true, .r10 = true, .r11 = true, .r12 = true, .ctr = true, .xer = true });
}
pub fn syscall3(number: SYS, arg1: usize, arg2: usize, arg3: usize) usize {
// These registers are both inputs and clobbers.
var r0_out: usize = undefined;
var r4_out: usize = undefined;
var r5_out: usize = undefined;
return asm volatile (
\\ sc
\\ bns+ 1f
\\ neg 3, 3
\\ 1:
: [ret] "={r3}" (-> usize),
[r0_out] "={r0}" (r0_out),
[r4_out] "={r4}" (r4_out),
[r5_out] "={r5}" (r5_out),
: [number] "{r0}" (@intFromEnum(number)),
[arg1] "{r3}" (arg1),
[arg2] "{r4}" (arg2),
[arg3] "{r5}" (arg3),
: .{ .memory = true, .cr0 = true, .r6 = true, .r7 = true, .r8 = true, .r9 = true, .r10 = true, .r11 = true, .r12 = true, .ctr = true, .xer = true });
}
pub fn syscall4(number: SYS, arg1: usize, arg2: usize, arg3: usize, arg4: usize) usize {
// These registers are both inputs and clobbers.
var r0_out: usize = undefined;
var r4_out: usize = undefined;
var r5_out: usize = undefined;
var r6_out: usize = undefined;
return asm volatile (
\\ sc
\\ bns+ 1f
\\ neg 3, 3
\\ 1:
: [ret] "={r3}" (-> usize),
[r0_out] "={r0}" (r0_out),
[r4_out] "={r4}" (r4_out),
[r5_out] "={r5}" (r5_out),
[r6_out] "={r6}" (r6_out),
: [number] "{r0}" (@intFromEnum(number)),
[arg1] "{r3}" (arg1),
[arg2] "{r4}" (arg2),
[arg3] "{r5}" (arg3),
[arg4] "{r6}" (arg4),
: .{ .memory = true, .cr0 = true, .r7 = true, .r8 = true, .r9 = true, .r10 = true, .r11 = true, .r12 = true, .ctr = true, .xer = true });
}
pub fn syscall5(number: SYS, arg1: usize, arg2: usize, arg3: usize, arg4: usize, arg5: usize) usize {
// These registers are both inputs and clobbers.
var r0_out: usize = undefined;
var r4_out: usize = undefined;
var r5_out: usize = undefined;
var r6_out: usize = undefined;
var r7_out: usize = undefined;
return asm volatile (
\\ sc
\\ bns+ 1f
\\ neg 3, 3
\\ 1:
: [ret] "={r3}" (-> usize),
[r0_out] "={r0}" (r0_out),
[r4_out] "={r4}" (r4_out),
[r5_out] "={r5}" (r5_out),
[r6_out] "={r6}" (r6_out),
[r7_out] "={r7}" (r7_out),
: [number] "{r0}" (@intFromEnum(number)),
[arg1] "{r3}" (arg1),
[arg2] "{r4}" (arg2),
[arg3] "{r5}" (arg3),
[arg4] "{r6}" (arg4),
[arg5] "{r7}" (arg5),
: .{ .memory = true, .cr0 = true, .r8 = true, .r9 = true, .r10 = true, .r11 = true, .r12 = true, .ctr = true, .xer = true });
}
pub fn syscall6(
number: SYS,
arg1: usize,
arg2: usize,
arg3: usize,
arg4: usize,
arg5: usize,
arg6: usize,
) usize {
// These registers are both inputs and clobbers.
var r0_out: usize = undefined;
var r4_out: usize = undefined;
var r5_out: usize = undefined;
var r6_out: usize = undefined;
var r7_out: usize = undefined;
var r8_out: usize = undefined;
return asm volatile (
\\ sc
\\ bns+ 1f
\\ neg 3, 3
\\ 1:
: [ret] "={r3}" (-> usize),
[r0_out] "={r0}" (r0_out),
[r4_out] "={r4}" (r4_out),
[r5_out] "={r5}" (r5_out),
[r6_out] "={r6}" (r6_out),
[r7_out] "={r7}" (r7_out),
[r8_out] "={r8}" (r8_out),
: [number] "{r0}" (@intFromEnum(number)),
[arg1] "{r3}" (arg1),
[arg2] "{r4}" (arg2),
[arg3] "{r5}" (arg3),
[arg4] "{r6}" (arg4),
[arg5] "{r7}" (arg5),
[arg6] "{r8}" (arg6),
: .{ .memory = true, .cr0 = true, .r9 = true, .r10 = true, .r11 = true, .r12 = true, .ctr = true, .xer = true });
}
pub fn clone() callconv(.naked) usize {
// __clone(func, stack, flags, arg, ptid, tls, ctid)
// 3, 4, 5, 6, 7, 8, 9
//
// syscall(SYS_clone, flags, stack, ptid, tls, ctid)
// 0 3, 4, 5, 6, 7
asm volatile (
\\ # create initial stack frame for new thread
\\ clrrdi 4, 4, 4
\\ li 0, 0
\\ stdu 0,-32(4)
\\
\\ # save fn and arg to child stack
\\ std 3, 8(4)
\\ std 6, 16(4)
\\
\\ # shuffle args into correct registers and call SYS_clone
\\ mr 3, 5
\\ #mr 4, 4
\\ mr 5, 7
\\ mr 6, 8
\\ mr 7, 9
\\ li 0, 120 # SYS_clone = 120
\\ sc
\\
\\ # if error, negate return (errno)
\\ bns+ 1f
\\ neg 3, 3
\\
\\1:
\\ # if we're the parent, return
\\ cmpwi cr7, 3, 0
\\ bnelr cr7
\\
\\ # we're the child
);
if (builtin.unwind_tables != .none or !builtin.strip_debug_info) asm volatile (
\\ .cfi_undefined lr
);
asm volatile (
\\ li 31, 0
\\ mtlr 0
\\
\\ # call fn(arg)
\\ ld 3, 16(1)
\\ ld 12, 8(1)
\\ mtctr 12
\\ bctrl
\\
\\ # call SYS_exit. exit code is already in r3 from fn return value
\\ li 0, 1 # SYS_exit = 1
\\ sc
);
}
pub const restore = restore_rt;
pub fn restore_rt() callconv(.naked) noreturn {
asm volatile (
\\ sc
:
: [number] "{r0}" (@intFromEnum(SYS.rt_sigreturn)),
: .{ .memory = true, .cr0 = true, .r4 = true, .r5 = true, .r6 = true, .r7 = true, .r8 = true, .r9 = true, .r10 = true, .r11 = true, .r12 = true });
}
pub const F = struct {
pub const DUPFD = 0;
pub const GETFD = 1;
pub const SETFD = 2;
pub const GETFL = 3;
pub const SETFL = 4;
pub const SETOWN = 8;
pub const GETOWN = 9;
pub const SETSIG = 10;
pub const GETSIG = 11;
pub const GETLK = 5;
pub const SETLK = 6;
pub const SETLKW = 7;
pub const RDLCK = 0;
pub const WRLCK = 1;
pub const UNLCK = 2;
pub const SETOWN_EX = 15;
pub const GETOWN_EX = 16;
pub const GETOWNER_UIDS = 17;
};
pub const VDSO = struct {
pub const CGT_SYM = "__kernel_clock_gettime";
pub const CGT_VER = "LINUX_2.6.15";
};
pub const Flock = extern struct {
type: i16,
whence: i16,
start: off_t,
len: off_t,
pid: pid_t,
__unused: [4]u8,
};
pub const blksize_t = i64;
pub const nlink_t = u64;
pub const time_t = i64;
pub const mode_t = u32;
pub const off_t = i64;
pub const ino_t = u64;
pub const dev_t = u64;
pub const blkcnt_t = i64;
// The `stat` definition used by the Linux kernel.
pub const Stat = extern struct {
dev: dev_t,
ino: ino_t,
nlink: nlink_t,
mode: mode_t,
uid: uid_t,
gid: gid_t,
rdev: dev_t,
size: off_t,
blksize: blksize_t,
blocks: blkcnt_t,
atim: timespec,
mtim: timespec,
ctim: timespec,
__unused: [3]u64,
pub fn atime(self: @This()) timespec {
return self.atim;
}
pub fn mtime(self: @This()) timespec {
return self.mtim;
}
pub fn ctime(self: @This()) timespec {
return self.ctim;
}
};
pub const timeval = extern struct {
sec: isize,
usec: isize,
};
pub const timezone = extern struct {
minuteswest: i32,
dsttime: i32,
};
pub const greg_t = u64;
pub const gregset_t = [48]greg_t;
pub const fpregset_t = [33]f64;
/// The position of the vscr register depends on endianness.
/// On C, macros are used to change vscr_word's offset to
/// account for this. Here we'll just define vscr_word_le
/// and vscr_word_be. Code must take care to use the correct one.
pub const vrregset = extern struct {
vrregs: [32][4]u32 align(16),
vscr_word_le: u32,
_pad1: [2]u32,
vscr_word_be: u32,
vrsave: u32,
_pad2: [3]u32,
};
pub const vrregset_t = vrregset;
pub const mcontext_t = extern struct {
__unused: [4]u64,
signal: i32,
_pad0: i32,
handler: u64,
oldmask: u64,
regs: ?*anyopaque,
gp_regs: gregset_t,
fp_regs: fpregset_t,
v_regs: *vrregset_t,
vmx_reserve: [34 + 34 + 32 + 1]i64,
};
pub const ucontext_t = extern struct {
flags: u32,
link: ?*ucontext_t,
stack: stack_t,
sigmask: [1024 / @bitSizeOf(c_ulong)]c_ulong, // Currently a libc-compatible (1024-bit) sigmask
mcontext: mcontext_t,
};
pub const Elf_Symndx = u32;
/// TODO
pub const getcontext = {};