zig/lib/std/crypto/25519/ed25519.zig
2020-08-16 22:35:27 -07:00

134 lines
5.5 KiB
Zig

const std = @import("std");
const fmt = std.fmt;
const mem = std.mem;
const Sha512 = std.crypto.Sha512;
/// Ed25519 (EdDSA) signatures.
pub const Ed25519 = struct {
/// The underlying elliptic curve.
pub const Curve = @import("edwards25519.zig").Edwards25519;
/// Length (in bytes) of a seed required to create a key pair.
pub const seed_length = 32;
/// Length (in bytes) of a compressed key pair.
pub const keypair_length = 64;
/// Length (in bytes) of a compressed public key.
pub const public_length = 32;
/// Length (in bytes) of a signature.
pub const signature_length = 64;
/// Length (in bytes) of optional random bytes, for non-deterministic signatures.
pub const noise_length = 32;
/// Derive a key pair from a secret seed.
///
/// As in RFC 8032, an Ed25519 public key is generated by hashing
/// the secret key using the SHA-512 function, and interpreting the
/// bit-swapped, clamped lower-half of the output as the secret scalar.
///
/// For this reason, an EdDSA secret key is commonly called a seed,
/// from which the actual secret is derived.
pub fn createKeyPair(seed: [seed_length]u8) ![keypair_length]u8 {
var az: [Sha512.digest_length]u8 = undefined;
var h = Sha512.init();
h.update(&seed);
h.final(&az);
const p = try Curve.basePoint.clampedMul(az[0..32].*);
var keypair: [keypair_length]u8 = undefined;
mem.copy(u8, &keypair, &seed);
mem.copy(u8, keypair[seed_length..], &p.toBytes());
return keypair;
}
/// Return the public key for a given key pair.
pub fn publicKey(key_pair: [keypair_length]u8) [public_length]u8 {
var public_key: [public_length]u8 = undefined;
mem.copy(u8, public_key[0..], key_pair[seed_length..]);
return public_key;
}
/// Sign a message using a key pair, and optional random noise.
/// Having noise creates non-standard, non-deterministic signatures,
/// but has been proven to increase resilience against fault attacks.
pub fn sign(msg: []const u8, key_pair: [keypair_length]u8, noise: ?[noise_length]u8) ![signature_length]u8 {
const public_key = key_pair[32..];
var az: [Sha512.digest_length]u8 = undefined;
var h = Sha512.init();
h.update(key_pair[0..seed_length]);
h.final(&az);
h = Sha512.init();
if (noise) |*z| {
h.update(z);
}
h.update(az[32..]);
h.update(msg);
var nonce64: [64]u8 = undefined;
h.final(&nonce64);
const nonce = Curve.scalar.reduce64(nonce64);
const r = try Curve.basePoint.mul(nonce);
var sig: [signature_length]u8 = undefined;
mem.copy(u8, sig[0..32], &r.toBytes());
mem.copy(u8, sig[32..], public_key);
h = Sha512.init();
h.update(&sig);
h.update(msg);
var hram64: [Sha512.digest_length]u8 = undefined;
h.final(&hram64);
const hram = Curve.scalar.reduce64(hram64);
var x = az[0..32];
Curve.scalar.clamp(x);
const s = Curve.scalar.mulAdd(hram, x.*, nonce);
mem.copy(u8, sig[32..], s[0..]);
return sig;
}
/// Verify an Ed25519 signature given a message and a public key.
/// Returns error.InvalidSignature is the signature verification failed.
pub fn verify(sig: [signature_length]u8, msg: []const u8, public_key: [public_length]u8) !void {
const r = sig[0..32];
const s = sig[32..64];
try Curve.scalar.rejectNonCanonical(s.*);
try Curve.rejectNonCanonical(public_key);
const a = try Curve.fromBytes(public_key);
try a.rejectIdentity();
var h = Sha512.init();
h.update(r);
h.update(&public_key);
h.update(msg);
var hram64: [Sha512.digest_length]u8 = undefined;
h.final(&hram64);
const hram = Curve.scalar.reduce64(hram64);
const p = try a.neg().mul(hram);
const check = (try Curve.basePoint.mul(s.*)).add(p).toBytes();
if (mem.eql(u8, &check, r) == false) {
return error.InvalidSignature;
}
}
};
test "ed25519 key pair creation" {
var seed: [32]u8 = undefined;
try fmt.hexToBytes(seed[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
const key_pair = try Ed25519.createKeyPair(seed);
var buf: [256]u8 = undefined;
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{X}", .{key_pair}), "8052030376D47112BE7F73ED7A019293DD12AD910B654455798B4667D73DE1662D6F7455D97B4A3A10D7293909D1A4F2058CB9A370E43FA8154BB280DB839083");
const public_key = Ed25519.publicKey(key_pair);
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{X}", .{public_key}), "2D6F7455D97B4A3A10D7293909D1A4F2058CB9A370E43FA8154BB280DB839083");
}
test "ed25519 signature" {
var seed: [32]u8 = undefined;
try fmt.hexToBytes(seed[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
const key_pair = try Ed25519.createKeyPair(seed);
const sig = try Ed25519.sign("test", key_pair, null);
var buf: [128]u8 = undefined;
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{X}", .{sig}), "10A442B4A80CC4225B154F43BEF28D2472CA80221951262EB8E0DF9091575E2687CC486E77263C3418C757522D54F84B0359236ABBBD4ACD20DC297FDCA66808");
const public_key = Ed25519.publicKey(key_pair);
try Ed25519.verify(sig, "test", public_key);
std.testing.expectError(error.InvalidSignature, Ed25519.verify(sig, "TEST", public_key));
}