zig/lib/std/math/log1p.zig
Andrew Kelley d29871977f remove redundant license headers from zig standard library
We already have a LICENSE file that covers the Zig Standard Library. We
no longer need to remind everyone that the license is MIT in every single
file.

Previously this was introduced to clarify the situation for a fork of
Zig that made Zig's LICENSE file harder to find, and replaced it with
their own license that required annual payments to their company.
However that fork now appears to be dead. So there is no need to
reinforce the copyright notice in every single file.
2021-08-24 12:25:09 -07:00

229 lines
6.9 KiB
Zig

// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/log1pf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/log1p.c
const std = @import("../std.zig");
const math = std.math;
const expect = std.testing.expect;
/// Returns the natural logarithm of 1 + x with greater accuracy when x is near zero.
///
/// Special Cases:
/// - log1p(+inf) = +inf
/// - log1p(+-0) = +-0
/// - log1p(-1) = -inf
/// - log1p(x) = nan if x < -1
/// - log1p(nan) = nan
pub fn log1p(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
return switch (T) {
f32 => log1p_32(x),
f64 => log1p_64(x),
else => @compileError("log1p not implemented for " ++ @typeName(T)),
};
}
fn log1p_32(x: f32) f32 {
const ln2_hi = 6.9313812256e-01;
const ln2_lo = 9.0580006145e-06;
const Lg1: f32 = 0xaaaaaa.0p-24;
const Lg2: f32 = 0xccce13.0p-25;
const Lg3: f32 = 0x91e9ee.0p-25;
const Lg4: f32 = 0xf89e26.0p-26;
const u = @bitCast(u32, x);
var ix = u;
var k: i32 = 1;
var f: f32 = undefined;
var c: f32 = undefined;
// 1 + x < sqrt(2)+
if (ix < 0x3ED413D0 or ix >> 31 != 0) {
// x <= -1.0
if (ix >= 0xBF800000) {
// log1p(-1) = -inf
if (x == -1.0) {
return -math.inf(f32);
}
// log1p(x < -1) = nan
else {
return math.nan(f32);
}
}
// |x| < 2^(-24)
if ((ix << 1) < (0x33800000 << 1)) {
// underflow if subnormal
if (ix & 0x7F800000 == 0) {
math.doNotOptimizeAway(x * x);
}
return x;
}
// sqrt(2) / 2- <= 1 + x < sqrt(2)+
if (ix <= 0xBE95F619) {
k = 0;
c = 0;
f = x;
}
} else if (ix >= 0x7F800000) {
return x;
}
if (k != 0) {
const uf = 1 + x;
var iu = @bitCast(u32, uf);
iu += 0x3F800000 - 0x3F3504F3;
k = @intCast(i32, iu >> 23) - 0x7F;
// correction to avoid underflow in c / u
if (k < 25) {
c = if (k >= 2) 1 - (uf - x) else x - (uf - 1);
c /= uf;
} else {
c = 0;
}
// u into [sqrt(2)/2, sqrt(2)]
iu = (iu & 0x007FFFFF) + 0x3F3504F3;
f = @bitCast(f32, iu) - 1;
}
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * Lg4);
const t2 = z * (Lg1 + w * Lg3);
const R = t2 + t1;
const hfsq = 0.5 * f * f;
const dk = @intToFloat(f32, k);
return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi;
}
fn log1p_64(x: f64) f64 {
const ln2_hi: f64 = 6.93147180369123816490e-01;
const ln2_lo: f64 = 1.90821492927058770002e-10;
const Lg1: f64 = 6.666666666666735130e-01;
const Lg2: f64 = 3.999999999940941908e-01;
const Lg3: f64 = 2.857142874366239149e-01;
const Lg4: f64 = 2.222219843214978396e-01;
const Lg5: f64 = 1.818357216161805012e-01;
const Lg6: f64 = 1.531383769920937332e-01;
const Lg7: f64 = 1.479819860511658591e-01;
var ix = @bitCast(u64, x);
var hx = @intCast(u32, ix >> 32);
var k: i32 = 1;
var c: f64 = undefined;
var f: f64 = undefined;
// 1 + x < sqrt(2)
if (hx < 0x3FDA827A or hx >> 31 != 0) {
// x <= -1.0
if (hx >= 0xBFF00000) {
// log1p(-1) = -inf
if (x == -1.0) {
return -math.inf(f64);
}
// log1p(x < -1) = nan
else {
return math.nan(f64);
}
}
// |x| < 2^(-53)
if ((hx << 1) < (0x3CA00000 << 1)) {
if ((hx & 0x7FF00000) == 0) {
math.raiseUnderflow();
}
return x;
}
// sqrt(2) / 2- <= 1 + x < sqrt(2)+
if (hx <= 0xBFD2BEC4) {
k = 0;
c = 0;
f = x;
}
} else if (hx >= 0x7FF00000) {
return x;
}
if (k != 0) {
const uf = 1 + x;
const hu = @bitCast(u64, uf);
var iu = @intCast(u32, hu >> 32);
iu += 0x3FF00000 - 0x3FE6A09E;
k = @intCast(i32, iu >> 20) - 0x3FF;
// correction to avoid underflow in c / u
if (k < 54) {
c = if (k >= 2) 1 - (uf - x) else x - (uf - 1);
c /= uf;
} else {
c = 0;
}
// u into [sqrt(2)/2, sqrt(2)]
iu = (iu & 0x000FFFFF) + 0x3FE6A09E;
const iq = (@as(u64, iu) << 32) | (hu & 0xFFFFFFFF);
f = @bitCast(f64, iq) - 1;
}
const hfsq = 0.5 * f * f;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
const R = t2 + t1;
const dk = @intToFloat(f64, k);
return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi;
}
test "math.log1p" {
try expect(log1p(@as(f32, 0.0)) == log1p_32(0.0));
try expect(log1p(@as(f64, 0.0)) == log1p_64(0.0));
}
test "math.log1p_32" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f32, log1p_32(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f32, log1p_32(0.2), 0.182322, epsilon));
try expect(math.approxEqAbs(f32, log1p_32(0.8923), 0.637793, epsilon));
try expect(math.approxEqAbs(f32, log1p_32(1.5), 0.916291, epsilon));
try expect(math.approxEqAbs(f32, log1p_32(37.45), 3.649359, epsilon));
try expect(math.approxEqAbs(f32, log1p_32(89.123), 4.501175, epsilon));
try expect(math.approxEqAbs(f32, log1p_32(123123.234375), 11.720949, epsilon));
}
test "math.log1p_64" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f64, log1p_64(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f64, log1p_64(0.2), 0.182322, epsilon));
try expect(math.approxEqAbs(f64, log1p_64(0.8923), 0.637793, epsilon));
try expect(math.approxEqAbs(f64, log1p_64(1.5), 0.916291, epsilon));
try expect(math.approxEqAbs(f64, log1p_64(37.45), 3.649359, epsilon));
try expect(math.approxEqAbs(f64, log1p_64(89.123), 4.501175, epsilon));
try expect(math.approxEqAbs(f64, log1p_64(123123.234375), 11.720949, epsilon));
}
test "math.log1p_32.special" {
try expect(math.isPositiveInf(log1p_32(math.inf(f32))));
try expect(log1p_32(0.0) == 0.0);
try expect(log1p_32(-0.0) == -0.0);
try expect(math.isNegativeInf(log1p_32(-1.0)));
try expect(math.isNan(log1p_32(-2.0)));
try expect(math.isNan(log1p_32(math.nan(f32))));
}
test "math.log1p_64.special" {
try expect(math.isPositiveInf(log1p_64(math.inf(f64))));
try expect(log1p_64(0.0) == 0.0);
try expect(log1p_64(-0.0) == -0.0);
try expect(math.isNegativeInf(log1p_64(-1.0)));
try expect(math.isNan(log1p_64(-2.0)));
try expect(math.isNan(log1p_64(math.nan(f64))));
}