mirror of
https://codeberg.org/ziglang/zig.git
synced 2025-12-06 13:54:21 +00:00
The old isARM() function was a portability trap. With the name it had, it seemed like the obviously correct function to use, but it didn't include Thumb. In the vast majority of cases where someone wants to ask "is the target Arm?", Thumb *should* be included. There are exactly 3 cases in the codebase where we do actually need to exclude Thumb, although one of those is in Aro and mirrors a check in Clang that is itself likely a bug. These rare cases can just add an extra isThumb() check.
258 lines
10 KiB
Zig
258 lines
10 KiB
Zig
//! Implementation of ARM specific builtins for Run-time ABI
|
||
//! This file includes all ARM-only functions.
|
||
const std = @import("std");
|
||
const builtin = @import("builtin");
|
||
const target = builtin.target;
|
||
const arch = builtin.cpu.arch;
|
||
const common = @import("common.zig");
|
||
|
||
pub const panic = common.panic;
|
||
|
||
comptime {
|
||
if (!builtin.is_test) {
|
||
if (arch.isArm()) {
|
||
@export(&__aeabi_unwind_cpp_pr0, .{ .name = "__aeabi_unwind_cpp_pr0", .linkage = common.linkage, .visibility = common.visibility });
|
||
@export(&__aeabi_unwind_cpp_pr1, .{ .name = "__aeabi_unwind_cpp_pr1", .linkage = common.linkage, .visibility = common.visibility });
|
||
@export(&__aeabi_unwind_cpp_pr2, .{ .name = "__aeabi_unwind_cpp_pr2", .linkage = common.linkage, .visibility = common.visibility });
|
||
|
||
@export(&__aeabi_ldivmod, .{ .name = if (target.isMinGW()) "__rt_sdiv64" else "__aeabi_ldivmod", .linkage = common.linkage, .visibility = common.visibility });
|
||
@export(&__aeabi_uldivmod, .{ .name = if (target.isMinGW()) "__rt_udiv64" else "__aeabi_uldivmod", .linkage = common.linkage, .visibility = common.visibility });
|
||
|
||
@export(&__aeabi_idivmod, .{ .name = if (target.isMinGW()) "__rt_sdiv" else "__aeabi_idivmod", .linkage = common.linkage, .visibility = common.visibility });
|
||
@export(&__aeabi_uidivmod, .{ .name = if (target.isMinGW()) "__rt_udiv" else "__aeabi_uidivmod", .linkage = common.linkage, .visibility = common.visibility });
|
||
|
||
@export(&__aeabi_memcpy, .{ .name = "__aeabi_memcpy", .linkage = common.linkage, .visibility = common.visibility });
|
||
@export(&__aeabi_memcpy4, .{ .name = "__aeabi_memcpy4", .linkage = common.linkage, .visibility = common.visibility });
|
||
@export(&__aeabi_memcpy8, .{ .name = "__aeabi_memcpy8", .linkage = common.linkage, .visibility = common.visibility });
|
||
|
||
@export(&__aeabi_memmove, .{ .name = "__aeabi_memmove", .linkage = common.linkage, .visibility = common.visibility });
|
||
@export(&__aeabi_memmove4, .{ .name = "__aeabi_memmove4", .linkage = common.linkage, .visibility = common.visibility });
|
||
@export(&__aeabi_memmove8, .{ .name = "__aeabi_memmove8", .linkage = common.linkage, .visibility = common.visibility });
|
||
|
||
@export(&__aeabi_memset, .{ .name = "__aeabi_memset", .linkage = common.linkage, .visibility = common.visibility });
|
||
@export(&__aeabi_memset4, .{ .name = "__aeabi_memset4", .linkage = common.linkage, .visibility = common.visibility });
|
||
@export(&__aeabi_memset8, .{ .name = "__aeabi_memset8", .linkage = common.linkage, .visibility = common.visibility });
|
||
|
||
@export(&__aeabi_memclr, .{ .name = "__aeabi_memclr", .linkage = common.linkage, .visibility = common.visibility });
|
||
@export(&__aeabi_memclr4, .{ .name = "__aeabi_memclr4", .linkage = common.linkage, .visibility = common.visibility });
|
||
@export(&__aeabi_memclr8, .{ .name = "__aeabi_memclr8", .linkage = common.linkage, .visibility = common.visibility });
|
||
|
||
if (builtin.os.tag == .linux) {
|
||
@export(&__aeabi_read_tp, .{ .name = "__aeabi_read_tp", .linkage = common.linkage, .visibility = common.visibility });
|
||
}
|
||
|
||
// floating-point helper functions (single+double-precision reverse subtraction, y – x), see subdf3.zig
|
||
@export(&__aeabi_frsub, .{ .name = "__aeabi_frsub", .linkage = common.linkage, .visibility = common.visibility });
|
||
@export(&__aeabi_drsub, .{ .name = "__aeabi_drsub", .linkage = common.linkage, .visibility = common.visibility });
|
||
}
|
||
}
|
||
}
|
||
|
||
const __divmodsi4 = @import("int.zig").__divmodsi4;
|
||
const __udivmodsi4 = @import("int.zig").__udivmodsi4;
|
||
const __divmoddi4 = @import("int.zig").__divmoddi4;
|
||
const __udivmoddi4 = @import("int.zig").__udivmoddi4;
|
||
|
||
extern fn memset(dest: ?[*]u8, c: i32, n: usize) ?[*]u8;
|
||
extern fn memcpy(noalias dest: ?[*]u8, noalias src: ?[*]const u8, n: usize) ?[*]u8;
|
||
extern fn memmove(dest: ?[*]u8, src: ?[*]const u8, n: usize) ?[*]u8;
|
||
|
||
pub fn __aeabi_memcpy(dest: [*]u8, src: [*]u8, n: usize) callconv(.AAPCS) void {
|
||
@setRuntimeSafety(false);
|
||
_ = memcpy(dest, src, n);
|
||
}
|
||
pub fn __aeabi_memcpy4(dest: [*]u8, src: [*]u8, n: usize) callconv(.AAPCS) void {
|
||
@setRuntimeSafety(false);
|
||
_ = memcpy(dest, src, n);
|
||
}
|
||
pub fn __aeabi_memcpy8(dest: [*]u8, src: [*]u8, n: usize) callconv(.AAPCS) void {
|
||
@setRuntimeSafety(false);
|
||
_ = memcpy(dest, src, n);
|
||
}
|
||
|
||
pub fn __aeabi_memmove(dest: [*]u8, src: [*]u8, n: usize) callconv(.AAPCS) void {
|
||
@setRuntimeSafety(false);
|
||
_ = memmove(dest, src, n);
|
||
}
|
||
pub fn __aeabi_memmove4(dest: [*]u8, src: [*]u8, n: usize) callconv(.AAPCS) void {
|
||
@setRuntimeSafety(false);
|
||
_ = memmove(dest, src, n);
|
||
}
|
||
pub fn __aeabi_memmove8(dest: [*]u8, src: [*]u8, n: usize) callconv(.AAPCS) void {
|
||
@setRuntimeSafety(false);
|
||
_ = memmove(dest, src, n);
|
||
}
|
||
|
||
pub fn __aeabi_memset(dest: [*]u8, n: usize, c: i32) callconv(.AAPCS) void {
|
||
@setRuntimeSafety(false);
|
||
// This is dentical to the standard `memset` definition but with the last
|
||
// two arguments swapped
|
||
_ = memset(dest, c, n);
|
||
}
|
||
pub fn __aeabi_memset4(dest: [*]u8, n: usize, c: i32) callconv(.AAPCS) void {
|
||
@setRuntimeSafety(false);
|
||
_ = memset(dest, c, n);
|
||
}
|
||
pub fn __aeabi_memset8(dest: [*]u8, n: usize, c: i32) callconv(.AAPCS) void {
|
||
@setRuntimeSafety(false);
|
||
_ = memset(dest, c, n);
|
||
}
|
||
|
||
pub fn __aeabi_memclr(dest: [*]u8, n: usize) callconv(.AAPCS) void {
|
||
@setRuntimeSafety(false);
|
||
_ = memset(dest, 0, n);
|
||
}
|
||
pub fn __aeabi_memclr4(dest: [*]u8, n: usize) callconv(.AAPCS) void {
|
||
@setRuntimeSafety(false);
|
||
_ = memset(dest, 0, n);
|
||
}
|
||
pub fn __aeabi_memclr8(dest: [*]u8, n: usize) callconv(.AAPCS) void {
|
||
@setRuntimeSafety(false);
|
||
_ = memset(dest, 0, n);
|
||
}
|
||
|
||
// Dummy functions to avoid errors during the linking phase
|
||
pub fn __aeabi_unwind_cpp_pr0() callconv(.AAPCS) void {}
|
||
pub fn __aeabi_unwind_cpp_pr1() callconv(.AAPCS) void {}
|
||
pub fn __aeabi_unwind_cpp_pr2() callconv(.AAPCS) void {}
|
||
|
||
// This function can only clobber r0 according to the ABI
|
||
pub fn __aeabi_read_tp() callconv(.Naked) void {
|
||
@setRuntimeSafety(false);
|
||
asm volatile (
|
||
\\ mrc p15, 0, r0, c13, c0, 3
|
||
\\ bx lr
|
||
);
|
||
unreachable;
|
||
}
|
||
|
||
// The following functions are wrapped in an asm block to ensure the required
|
||
// calling convention is always respected
|
||
|
||
pub fn __aeabi_uidivmod() callconv(.Naked) void {
|
||
@setRuntimeSafety(false);
|
||
// Divide r0 by r1; the quotient goes in r0, the remainder in r1
|
||
asm volatile (
|
||
\\ push {lr}
|
||
\\ sub sp, #4
|
||
\\ mov r2, sp
|
||
\\ bl __udivmodsi4
|
||
\\ ldr r1, [sp]
|
||
\\ add sp, #4
|
||
\\ pop {pc}
|
||
::: "memory");
|
||
unreachable;
|
||
}
|
||
|
||
pub fn __aeabi_uldivmod() callconv(.Naked) void {
|
||
@setRuntimeSafety(false);
|
||
// Divide r1:r0 by r3:r2; the quotient goes in r1:r0, the remainder in r3:r2
|
||
asm volatile (
|
||
\\ push {r4, lr}
|
||
\\ sub sp, #16
|
||
\\ add r4, sp, #8
|
||
\\ str r4, [sp]
|
||
\\ bl __udivmoddi4
|
||
\\ ldr r2, [sp, #8]
|
||
\\ ldr r3, [sp, #12]
|
||
\\ add sp, #16
|
||
\\ pop {r4, pc}
|
||
::: "memory");
|
||
unreachable;
|
||
}
|
||
|
||
pub fn __aeabi_idivmod() callconv(.Naked) void {
|
||
@setRuntimeSafety(false);
|
||
// Divide r0 by r1; the quotient goes in r0, the remainder in r1
|
||
asm volatile (
|
||
\\ push {lr}
|
||
\\ sub sp, #4
|
||
\\ mov r2, sp
|
||
\\ bl __divmodsi4
|
||
\\ ldr r1, [sp]
|
||
\\ add sp, #4
|
||
\\ pop {pc}
|
||
::: "memory");
|
||
unreachable;
|
||
}
|
||
|
||
pub fn __aeabi_ldivmod() callconv(.Naked) void {
|
||
@setRuntimeSafety(false);
|
||
// Divide r1:r0 by r3:r2; the quotient goes in r1:r0, the remainder in r3:r2
|
||
asm volatile (
|
||
\\ push {r4, lr}
|
||
\\ sub sp, #16
|
||
\\ add r4, sp, #8
|
||
\\ str r4, [sp]
|
||
\\ bl __divmoddi4
|
||
\\ ldr r2, [sp, #8]
|
||
\\ ldr r3, [sp, #12]
|
||
\\ add sp, #16
|
||
\\ pop {r4, pc}
|
||
::: "memory");
|
||
unreachable;
|
||
}
|
||
|
||
// Float Arithmetic
|
||
|
||
fn __aeabi_frsub(a: f32, b: f32) callconv(.AAPCS) f32 {
|
||
const neg_a: f32 = @bitCast(@as(u32, @bitCast(a)) ^ (@as(u32, 1) << 31));
|
||
return b + neg_a;
|
||
}
|
||
|
||
fn __aeabi_drsub(a: f64, b: f64) callconv(.AAPCS) f64 {
|
||
const neg_a: f64 = @bitCast(@as(u64, @bitCast(a)) ^ (@as(u64, 1) << 63));
|
||
return b + neg_a;
|
||
}
|
||
|
||
test "__aeabi_frsub" {
|
||
if (!builtin.cpu.arch.isArm() or builtin.cpu.arch.isThumb()) return error.SkipZigTest;
|
||
const inf32 = std.math.inf(f32);
|
||
const maxf32 = std.math.floatMax(f32);
|
||
const frsub_data = [_][3]f32{
|
||
[_]f32{ 0.0, 0.0, -0.0 },
|
||
[_]f32{ 0.0, -0.0, -0.0 },
|
||
[_]f32{ -0.0, 0.0, 0.0 },
|
||
[_]f32{ -0.0, -0.0, -0.0 },
|
||
[_]f32{ 0.0, 1.0, 1.0 },
|
||
[_]f32{ 1.0, 0.0, -1.0 },
|
||
[_]f32{ 1.0, 1.0, 0.0 },
|
||
[_]f32{ 1234.56789, 9876.54321, 8641.97532 },
|
||
[_]f32{ 9876.54321, 1234.56789, -8641.97532 },
|
||
[_]f32{ -8641.97532, 1234.56789, 9876.54321 },
|
||
[_]f32{ 8641.97532, 9876.54321, 1234.56789 },
|
||
[_]f32{ -maxf32, -maxf32, 0.0 },
|
||
[_]f32{ maxf32, maxf32, 0.0 },
|
||
[_]f32{ maxf32, -maxf32, -inf32 },
|
||
[_]f32{ -maxf32, maxf32, inf32 },
|
||
};
|
||
for (frsub_data) |data| {
|
||
try std.testing.expectApproxEqAbs(data[2], __aeabi_frsub(data[0], data[1]), 0.001);
|
||
}
|
||
}
|
||
|
||
test "__aeabi_drsub" {
|
||
if (!builtin.cpu.arch.isArm() or builtin.cpu.arch.isThumb()) return error.SkipZigTest;
|
||
const inf64 = std.math.inf(f64);
|
||
const maxf64 = std.math.floatMax(f64);
|
||
const frsub_data = [_][3]f64{
|
||
[_]f64{ 0.0, 0.0, -0.0 },
|
||
[_]f64{ 0.0, -0.0, -0.0 },
|
||
[_]f64{ -0.0, 0.0, 0.0 },
|
||
[_]f64{ -0.0, -0.0, -0.0 },
|
||
[_]f64{ 0.0, 1.0, 1.0 },
|
||
[_]f64{ 1.0, 0.0, -1.0 },
|
||
[_]f64{ 1.0, 1.0, 0.0 },
|
||
[_]f64{ 1234.56789, 9876.54321, 8641.97532 },
|
||
[_]f64{ 9876.54321, 1234.56789, -8641.97532 },
|
||
[_]f64{ -8641.97532, 1234.56789, 9876.54321 },
|
||
[_]f64{ 8641.97532, 9876.54321, 1234.56789 },
|
||
[_]f64{ -maxf64, -maxf64, 0.0 },
|
||
[_]f64{ maxf64, maxf64, 0.0 },
|
||
[_]f64{ maxf64, -maxf64, -inf64 },
|
||
[_]f64{ -maxf64, maxf64, inf64 },
|
||
};
|
||
for (frsub_data) |data| {
|
||
try std.testing.expectApproxEqAbs(data[2], __aeabi_drsub(data[0], data[1]), 0.000001);
|
||
}
|
||
}
|