zig/lib/compiler_rt/log.zig
Andrew Kelley cd019ee502 compiler_rt: avoid weak aliases on Windows
When exporting math functions for Windows, we provide weak exports of
'l' variants rather than weak aliases. We still use aliases on other
operating systems so that the 'l' variants have one less jump
instruction in this case.
2022-05-08 13:06:21 -07:00

179 lines
5.4 KiB
Zig

// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/lnf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/ln.c
const std = @import("std");
const math = std.math;
const testing = std.testing;
pub fn __logh(a: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, logf(a));
}
pub fn logf(x_: f32) callconv(.C) f32 {
const ln2_hi: f32 = 6.9313812256e-01;
const ln2_lo: f32 = 9.0580006145e-06;
const Lg1: f32 = 0xaaaaaa.0p-24;
const Lg2: f32 = 0xccce13.0p-25;
const Lg3: f32 = 0x91e9ee.0p-25;
const Lg4: f32 = 0xf89e26.0p-26;
var x = x_;
var ix = @bitCast(u32, x);
var k: i32 = 0;
// x < 2^(-126)
if (ix < 0x00800000 or ix >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f32);
}
// log(-#) = nan
if (ix >> 31 != 0) {
return math.nan(f32);
}
// subnormal, scale x
k -= 25;
x *= 0x1.0p25;
ix = @bitCast(u32, x);
} else if (ix >= 0x7F800000) {
return x;
} else if (ix == 0x3F800000) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
ix += 0x3F800000 - 0x3F3504F3;
k += @intCast(i32, ix >> 23) - 0x7F;
ix = (ix & 0x007FFFFF) + 0x3F3504F3;
x = @bitCast(f32, ix);
const f = x - 1.0;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * Lg4);
const t2 = z * (Lg1 + w * Lg3);
const R = t2 + t1;
const hfsq = 0.5 * f * f;
const dk = @intToFloat(f32, k);
return s * (hfsq + R) + dk * ln2_lo - hfsq + f + dk * ln2_hi;
}
pub fn log(x_: f64) callconv(.C) f64 {
const ln2_hi: f64 = 6.93147180369123816490e-01;
const ln2_lo: f64 = 1.90821492927058770002e-10;
const Lg1: f64 = 6.666666666666735130e-01;
const Lg2: f64 = 3.999999999940941908e-01;
const Lg3: f64 = 2.857142874366239149e-01;
const Lg4: f64 = 2.222219843214978396e-01;
const Lg5: f64 = 1.818357216161805012e-01;
const Lg6: f64 = 1.531383769920937332e-01;
const Lg7: f64 = 1.479819860511658591e-01;
var x = x_;
var ix = @bitCast(u64, x);
var hx = @intCast(u32, ix >> 32);
var k: i32 = 0;
if (hx < 0x00100000 or hx >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f64);
}
// log(-#) = nan
if (hx >> 31 != 0) {
return math.nan(f64);
}
// subnormal, scale x
k -= 54;
x *= 0x1.0p54;
hx = @intCast(u32, @bitCast(u64, ix) >> 32);
} else if (hx >= 0x7FF00000) {
return x;
} else if (hx == 0x3FF00000 and ix << 32 == 0) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
hx += 0x3FF00000 - 0x3FE6A09E;
k += @intCast(i32, hx >> 20) - 0x3FF;
hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
x = @bitCast(f64, ix);
const f = x - 1.0;
const hfsq = 0.5 * f * f;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
const R = t2 + t1;
const dk = @intToFloat(f64, k);
return s * (hfsq + R) + dk * ln2_lo - hfsq + f + dk * ln2_hi;
}
pub fn __logx(a: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, logq(a));
}
pub fn logq(a: f128) callconv(.C) f128 {
// TODO: more correct implementation
return log(@floatCast(f64, a));
}
pub fn logl(x: c_longdouble) callconv(.C) c_longdouble {
switch (@typeInfo(c_longdouble).Float.bits) {
16 => return __logh(x),
32 => return logf(x),
64 => return log(x),
80 => return __logx(x),
128 => return logq(x),
else => @compileError("unreachable"),
}
}
test "ln32" {
const epsilon = 0.000001;
try testing.expect(math.approxEqAbs(f32, logf(0.2), -1.609438, epsilon));
try testing.expect(math.approxEqAbs(f32, logf(0.8923), -0.113953, epsilon));
try testing.expect(math.approxEqAbs(f32, logf(1.5), 0.405465, epsilon));
try testing.expect(math.approxEqAbs(f32, logf(37.45), 3.623007, epsilon));
try testing.expect(math.approxEqAbs(f32, logf(89.123), 4.490017, epsilon));
try testing.expect(math.approxEqAbs(f32, logf(123123.234375), 11.720941, epsilon));
}
test "ln64" {
const epsilon = 0.000001;
try testing.expect(math.approxEqAbs(f64, log(0.2), -1.609438, epsilon));
try testing.expect(math.approxEqAbs(f64, log(0.8923), -0.113953, epsilon));
try testing.expect(math.approxEqAbs(f64, log(1.5), 0.405465, epsilon));
try testing.expect(math.approxEqAbs(f64, log(37.45), 3.623007, epsilon));
try testing.expect(math.approxEqAbs(f64, log(89.123), 4.490017, epsilon));
try testing.expect(math.approxEqAbs(f64, log(123123.234375), 11.720941, epsilon));
}
test "ln32.special" {
try testing.expect(math.isPositiveInf(logf(math.inf(f32))));
try testing.expect(math.isNegativeInf(logf(0.0)));
try testing.expect(math.isNan(logf(-1.0)));
try testing.expect(math.isNan(logf(math.nan(f32))));
}
test "ln64.special" {
try testing.expect(math.isPositiveInf(log(math.inf(f64))));
try testing.expect(math.isNegativeInf(log(0.0)));
try testing.expect(math.isNan(log(-1.0)));
try testing.expect(math.isNan(log(math.nan(f64))));
}