mirror of
https://codeberg.org/ziglang/zig.git
synced 2025-12-06 13:54:21 +00:00
When exporting math functions for Windows, we provide weak exports of 'l' variants rather than weak aliases. We still use aliases on other operating systems so that the 'l' variants have one less jump instruction in this case.
173 lines
5.4 KiB
Zig
173 lines
5.4 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/sinf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/sin.c
|
|
|
|
const std = @import("std");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
|
|
const trig = @import("trig.zig");
|
|
const rem_pio2 = @import("rem_pio2.zig").rem_pio2;
|
|
const rem_pio2f = @import("rem_pio2f.zig").rem_pio2f;
|
|
|
|
pub fn __sinh(x: f16) callconv(.C) f16 {
|
|
// TODO: more efficient implementation
|
|
return @floatCast(f16, sinf(x));
|
|
}
|
|
|
|
pub fn sinf(x: f32) callconv(.C) f32 {
|
|
// Small multiples of pi/2 rounded to double precision.
|
|
const s1pio2: f64 = 1.0 * math.pi / 2.0; // 0x3FF921FB, 0x54442D18
|
|
const s2pio2: f64 = 2.0 * math.pi / 2.0; // 0x400921FB, 0x54442D18
|
|
const s3pio2: f64 = 3.0 * math.pi / 2.0; // 0x4012D97C, 0x7F3321D2
|
|
const s4pio2: f64 = 4.0 * math.pi / 2.0; // 0x401921FB, 0x54442D18
|
|
|
|
var ix = @bitCast(u32, x);
|
|
const sign = ix >> 31 != 0;
|
|
ix &= 0x7fffffff;
|
|
|
|
if (ix <= 0x3f490fda) { // |x| ~<= pi/4
|
|
if (ix < 0x39800000) { // |x| < 2**-12
|
|
// raise inexact if x!=0 and underflow if subnormal
|
|
math.doNotOptimizeAway(if (ix < 0x00800000) x / 0x1p120 else x + 0x1p120);
|
|
return x;
|
|
}
|
|
return trig.__sindf(x);
|
|
}
|
|
if (ix <= 0x407b53d1) { // |x| ~<= 5*pi/4
|
|
if (ix <= 0x4016cbe3) { // |x| ~<= 3pi/4
|
|
if (sign) {
|
|
return -trig.__cosdf(x + s1pio2);
|
|
} else {
|
|
return trig.__cosdf(x - s1pio2);
|
|
}
|
|
}
|
|
return trig.__sindf(if (sign) -(x + s2pio2) else -(x - s2pio2));
|
|
}
|
|
if (ix <= 0x40e231d5) { // |x| ~<= 9*pi/4
|
|
if (ix <= 0x40afeddf) { // |x| ~<= 7*pi/4
|
|
if (sign) {
|
|
return trig.__cosdf(x + s3pio2);
|
|
} else {
|
|
return -trig.__cosdf(x - s3pio2);
|
|
}
|
|
}
|
|
return trig.__sindf(if (sign) x + s4pio2 else x - s4pio2);
|
|
}
|
|
|
|
// sin(Inf or NaN) is NaN
|
|
if (ix >= 0x7f800000) {
|
|
return x - x;
|
|
}
|
|
|
|
var y: f64 = undefined;
|
|
const n = rem_pio2f(x, &y);
|
|
return switch (n & 3) {
|
|
0 => trig.__sindf(y),
|
|
1 => trig.__cosdf(y),
|
|
2 => trig.__sindf(-y),
|
|
else => -trig.__cosdf(y),
|
|
};
|
|
}
|
|
|
|
pub fn sin(x: f64) callconv(.C) f64 {
|
|
var ix = @bitCast(u64, x) >> 32;
|
|
ix &= 0x7fffffff;
|
|
|
|
// |x| ~< pi/4
|
|
if (ix <= 0x3fe921fb) {
|
|
if (ix < 0x3e500000) { // |x| < 2**-26
|
|
// raise inexact if x != 0 and underflow if subnormal
|
|
math.doNotOptimizeAway(if (ix < 0x00100000) x / 0x1p120 else x + 0x1p120);
|
|
return x;
|
|
}
|
|
return trig.__sin(x, 0.0, 0);
|
|
}
|
|
|
|
// sin(Inf or NaN) is NaN
|
|
if (ix >= 0x7ff00000) {
|
|
return x - x;
|
|
}
|
|
|
|
var y: [2]f64 = undefined;
|
|
const n = rem_pio2(x, &y);
|
|
return switch (n & 3) {
|
|
0 => trig.__sin(y[0], y[1], 1),
|
|
1 => trig.__cos(y[0], y[1]),
|
|
2 => -trig.__sin(y[0], y[1], 1),
|
|
else => -trig.__cos(y[0], y[1]),
|
|
};
|
|
}
|
|
|
|
pub fn __sinx(x: f80) callconv(.C) f80 {
|
|
// TODO: more efficient implementation
|
|
return @floatCast(f80, sinq(x));
|
|
}
|
|
|
|
pub fn sinq(x: f128) callconv(.C) f128 {
|
|
// TODO: more correct implementation
|
|
return sin(@floatCast(f64, x));
|
|
}
|
|
|
|
pub fn sinl(x: c_longdouble) callconv(.C) c_longdouble {
|
|
switch (@typeInfo(c_longdouble).Float.bits) {
|
|
16 => return __sinh(x),
|
|
32 => return sinf(x),
|
|
64 => return sin(x),
|
|
80 => return __sinx(x),
|
|
128 => return sinq(x),
|
|
else => @compileError("unreachable"),
|
|
}
|
|
}
|
|
|
|
test "sin32" {
|
|
const epsilon = 0.00001;
|
|
|
|
try expect(math.approxEqAbs(f32, sinf(0.0), 0.0, epsilon));
|
|
try expect(math.approxEqAbs(f32, sinf(0.2), 0.198669, epsilon));
|
|
try expect(math.approxEqAbs(f32, sinf(0.8923), 0.778517, epsilon));
|
|
try expect(math.approxEqAbs(f32, sinf(1.5), 0.997495, epsilon));
|
|
try expect(math.approxEqAbs(f32, sinf(-1.5), -0.997495, epsilon));
|
|
try expect(math.approxEqAbs(f32, sinf(37.45), -0.246544, epsilon));
|
|
try expect(math.approxEqAbs(f32, sinf(89.123), 0.916166, epsilon));
|
|
}
|
|
|
|
test "sin64" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f64, sin(0.0), 0.0, epsilon));
|
|
try expect(math.approxEqAbs(f64, sin(0.2), 0.198669, epsilon));
|
|
try expect(math.approxEqAbs(f64, sin(0.8923), 0.778517, epsilon));
|
|
try expect(math.approxEqAbs(f64, sin(1.5), 0.997495, epsilon));
|
|
try expect(math.approxEqAbs(f64, sin(-1.5), -0.997495, epsilon));
|
|
try expect(math.approxEqAbs(f64, sin(37.45), -0.246543, epsilon));
|
|
try expect(math.approxEqAbs(f64, sin(89.123), 0.916166, epsilon));
|
|
}
|
|
|
|
test "sin32.special" {
|
|
try expect(sinf(0.0) == 0.0);
|
|
try expect(sinf(-0.0) == -0.0);
|
|
try expect(math.isNan(sinf(math.inf(f32))));
|
|
try expect(math.isNan(sinf(-math.inf(f32))));
|
|
try expect(math.isNan(sinf(math.nan(f32))));
|
|
}
|
|
|
|
test "sin64.special" {
|
|
try expect(sin(0.0) == 0.0);
|
|
try expect(sin(-0.0) == -0.0);
|
|
try expect(math.isNan(sin(math.inf(f64))));
|
|
try expect(math.isNan(sin(-math.inf(f64))));
|
|
try expect(math.isNan(sin(math.nan(f64))));
|
|
}
|
|
|
|
test "sin32 #9901" {
|
|
const float = @bitCast(f32, @as(u32, 0b11100011111111110000000000000000));
|
|
_ = sinf(float);
|
|
}
|
|
|
|
test "sin64 #9901" {
|
|
const float = @bitCast(f64, @as(u64, 0b1111111101000001000000001111110111111111100000000000000000000001));
|
|
_ = sin(float);
|
|
}
|