zig/lib/std/debug/MachOFile.zig

548 lines
21 KiB
Zig

mapped_memory: []align(std.heap.page_size_min) const u8,
symbols: []const Symbol,
strings: []const u8,
text_vmaddr: u64,
/// Key is index into `strings` of the file path.
ofiles: std.AutoArrayHashMapUnmanaged(u32, Error!OFile),
pub const Error = error{
InvalidMachO,
InvalidDwarf,
MissingDebugInfo,
UnsupportedDebugInfo,
ReadFailed,
OutOfMemory,
};
pub fn deinit(mf: *MachOFile, gpa: Allocator) void {
for (mf.ofiles.values()) |*maybe_of| {
const of = &(maybe_of.* catch continue);
posix.munmap(of.mapped_memory);
of.dwarf.deinit(gpa);
of.symbols_by_name.deinit(gpa);
}
mf.ofiles.deinit(gpa);
gpa.free(mf.symbols);
posix.munmap(mf.mapped_memory);
}
pub fn load(gpa: Allocator, path: []const u8, arch: std.Target.Cpu.Arch) Error!MachOFile {
switch (arch) {
.x86_64, .aarch64 => {},
else => unreachable,
}
const all_mapped_memory = try mapDebugInfoFile(path);
errdefer posix.munmap(all_mapped_memory);
// In most cases, the file we just mapped is a Mach-O binary. However, it could be a "universal
// binary": a simple file format which contains Mach-O binaries for multiple targets. For
// instance, `/usr/lib/dyld` is currently distributed as a universal binary containing images
// for both ARM64 macOS and x86_64 macOS.
if (all_mapped_memory.len < 4) return error.InvalidMachO;
const magic = std.mem.readInt(u32, all_mapped_memory.ptr[0..4], .little);
// The contents of a Mach-O file, which may or may not be the whole of `all_mapped_memory`.
const mapped_macho = switch (magic) {
macho.MH_MAGIC_64 => all_mapped_memory,
macho.FAT_CIGAM => mapped_macho: {
// This is the universal binary format (aka a "fat binary").
var fat_r: Io.Reader = .fixed(all_mapped_memory);
const hdr = fat_r.takeStruct(macho.fat_header, .big) catch |err| switch (err) {
error.ReadFailed => unreachable,
error.EndOfStream => return error.InvalidMachO,
};
const want_cpu_type = switch (arch) {
.x86_64 => macho.CPU_TYPE_X86_64,
.aarch64 => macho.CPU_TYPE_ARM64,
else => unreachable,
};
for (0..hdr.nfat_arch) |_| {
const fat_arch = fat_r.takeStruct(macho.fat_arch, .big) catch |err| switch (err) {
error.ReadFailed => unreachable,
error.EndOfStream => return error.InvalidMachO,
};
if (fat_arch.cputype != want_cpu_type) continue;
if (fat_arch.offset + fat_arch.size > all_mapped_memory.len) return error.InvalidMachO;
break :mapped_macho all_mapped_memory[fat_arch.offset..][0..fat_arch.size];
}
// `arch` was not present in the fat binary.
return error.MissingDebugInfo;
},
// Even on modern 64-bit targets, this format doesn't seem to be too extensively used. It
// will be fairly easy to add support here if necessary; it's very similar to above.
macho.FAT_CIGAM_64 => return error.UnsupportedDebugInfo,
else => return error.InvalidMachO,
};
var r: Io.Reader = .fixed(mapped_macho);
const hdr = r.takeStruct(macho.mach_header_64, .little) catch |err| switch (err) {
error.ReadFailed => unreachable,
error.EndOfStream => return error.InvalidMachO,
};
if (hdr.magic != macho.MH_MAGIC_64)
return error.InvalidMachO;
const symtab: macho.symtab_command, const text_vmaddr: u64 = lcs: {
var it: macho.LoadCommandIterator = try .init(&hdr, mapped_macho[@sizeOf(macho.mach_header_64)..]);
var symtab: ?macho.symtab_command = null;
var text_vmaddr: ?u64 = null;
while (try it.next()) |cmd| switch (cmd.hdr.cmd) {
.SYMTAB => symtab = cmd.cast(macho.symtab_command) orelse return error.InvalidMachO,
.SEGMENT_64 => if (cmd.cast(macho.segment_command_64)) |seg_cmd| {
if (!mem.eql(u8, seg_cmd.segName(), "__TEXT")) continue;
text_vmaddr = seg_cmd.vmaddr;
},
else => {},
};
break :lcs .{
symtab orelse return error.MissingDebugInfo,
text_vmaddr orelse return error.MissingDebugInfo,
};
};
const strings = mapped_macho[symtab.stroff..][0 .. symtab.strsize - 1];
var symbols: std.ArrayList(Symbol) = try .initCapacity(gpa, symtab.nsyms);
defer symbols.deinit(gpa);
// This map is temporary; it is used only to detect duplicates here. This is
// necessary because we prefer to use STAB ("symbolic debugging table") symbols,
// but they might not be present, so we track normal symbols too.
// Indices match 1-1 with those of `symbols`.
var symbol_names: std.StringArrayHashMapUnmanaged(void) = .empty;
defer symbol_names.deinit(gpa);
try symbol_names.ensureUnusedCapacity(gpa, symtab.nsyms);
var ofile: u32 = undefined;
var last_sym: Symbol = undefined;
var state: enum {
init,
oso_open,
oso_close,
bnsym,
fun_strx,
fun_size,
ensym,
} = .init;
var sym_r: Io.Reader = .fixed(mapped_macho[symtab.symoff..]);
for (0..symtab.nsyms) |_| {
const sym = sym_r.takeStruct(macho.nlist_64, .little) catch |err| switch (err) {
error.ReadFailed => unreachable,
error.EndOfStream => return error.InvalidMachO,
};
if (sym.n_type.bits.is_stab == 0) {
if (sym.n_strx == 0) continue;
switch (sym.n_type.bits.type) {
.undf, .pbud, .indr, .abs, _ => continue,
.sect => {
const name = std.mem.sliceTo(strings[sym.n_strx..], 0);
const gop = symbol_names.getOrPutAssumeCapacity(name);
if (!gop.found_existing) {
assert(gop.index == symbols.items.len);
symbols.appendAssumeCapacity(.{
.strx = sym.n_strx,
.addr = sym.n_value,
.ofile = Symbol.unknown_ofile,
});
}
},
}
continue;
}
// TODO handle globals N_GSYM, and statics N_STSYM
switch (sym.n_type.stab) {
.oso => switch (state) {
.init, .oso_close => {
state = .oso_open;
ofile = sym.n_strx;
},
else => return error.InvalidMachO,
},
.bnsym => switch (state) {
.oso_open, .ensym => {
state = .bnsym;
last_sym = .{
.strx = 0,
.addr = sym.n_value,
.ofile = ofile,
};
},
else => return error.InvalidMachO,
},
.fun => switch (state) {
.bnsym => {
state = .fun_strx;
last_sym.strx = sym.n_strx;
},
.fun_strx => {
state = .fun_size;
},
else => return error.InvalidMachO,
},
.ensym => switch (state) {
.fun_size => {
state = .ensym;
if (last_sym.strx != 0) {
const name = std.mem.sliceTo(strings[last_sym.strx..], 0);
const gop = symbol_names.getOrPutAssumeCapacity(name);
if (!gop.found_existing) {
assert(gop.index == symbols.items.len);
symbols.appendAssumeCapacity(last_sym);
} else {
symbols.items[gop.index] = last_sym;
}
}
},
else => return error.InvalidMachO,
},
.so => switch (state) {
.init, .oso_close => {},
.oso_open, .ensym => {
state = .oso_close;
},
else => return error.InvalidMachO,
},
else => {},
}
}
switch (state) {
.init => {
// Missing STAB symtab entries is still okay, unless there were also no normal symbols.
if (symbols.items.len == 0) return error.MissingDebugInfo;
},
.oso_close => {},
else => return error.InvalidMachO, // corrupted STAB entries in symtab
}
const symbols_slice = try symbols.toOwnedSlice(gpa);
errdefer gpa.free(symbols_slice);
// Even though lld emits symbols in ascending order, this debug code
// should work for programs linked in any valid way.
// This sort is so that we can binary search later.
mem.sort(Symbol, symbols_slice, {}, Symbol.addressLessThan);
return .{
.mapped_memory = all_mapped_memory,
.symbols = symbols_slice,
.strings = strings,
.ofiles = .empty,
.text_vmaddr = text_vmaddr,
};
}
pub fn getDwarfForAddress(mf: *MachOFile, gpa: Allocator, vaddr: u64) !struct { *Dwarf, u64 } {
const symbol = Symbol.find(mf.symbols, vaddr) orelse return error.MissingDebugInfo;
if (symbol.ofile == Symbol.unknown_ofile) return error.MissingDebugInfo;
// offset of `address` from start of `symbol`
const address_symbol_offset = vaddr - symbol.addr;
// Take the symbol name from the N_FUN STAB entry, we're going to
// use it if we fail to find the DWARF infos
const stab_symbol = mem.sliceTo(mf.strings[symbol.strx..], 0);
const gop = try mf.ofiles.getOrPut(gpa, symbol.ofile);
if (!gop.found_existing) {
const name = mem.sliceTo(mf.strings[symbol.ofile..], 0);
gop.value_ptr.* = loadOFile(gpa, name);
}
const of = &(gop.value_ptr.* catch |err| return err);
const symbol_index = of.symbols_by_name.getKeyAdapted(
@as([]const u8, stab_symbol),
@as(OFile.SymbolAdapter, .{ .strtab = of.strtab, .symtab_raw = of.symtab_raw }),
) orelse return error.MissingDebugInfo;
const symbol_ofile_vaddr = vaddr: {
var sym = of.symtab_raw[symbol_index];
if (builtin.cpu.arch.endian() != .little) std.mem.byteSwapAllFields(macho.nlist_64, &sym);
break :vaddr sym.n_value;
};
return .{ &of.dwarf, symbol_ofile_vaddr + address_symbol_offset };
}
pub fn lookupSymbolName(mf: *MachOFile, vaddr: u64) error{MissingDebugInfo}![]const u8 {
const symbol = Symbol.find(mf.symbols, vaddr) orelse return error.MissingDebugInfo;
return mem.sliceTo(mf.strings[symbol.strx..], 0);
}
const OFile = struct {
mapped_memory: []align(std.heap.page_size_min) const u8,
dwarf: Dwarf,
strtab: []const u8,
symtab_raw: []align(1) const macho.nlist_64,
/// All named symbols in `symtab_raw`. Stored `u32` key is the index into `symtab_raw`. Accessed
/// through `SymbolAdapter`, so that the symbol name is used as the logical key.
symbols_by_name: std.ArrayHashMapUnmanaged(u32, void, void, true),
const SymbolAdapter = struct {
strtab: []const u8,
symtab_raw: []align(1) const macho.nlist_64,
pub fn hash(ctx: SymbolAdapter, sym_name: []const u8) u32 {
_ = ctx;
return @truncate(std.hash.Wyhash.hash(0, sym_name));
}
pub fn eql(ctx: SymbolAdapter, a_sym_name: []const u8, b_sym_index: u32, b_index: usize) bool {
_ = b_index;
var b_sym = ctx.symtab_raw[b_sym_index];
if (builtin.cpu.arch.endian() != .little) std.mem.byteSwapAllFields(macho.nlist_64, &b_sym);
const b_sym_name = std.mem.sliceTo(ctx.strtab[b_sym.n_strx..], 0);
return mem.eql(u8, a_sym_name, b_sym_name);
}
};
};
const Symbol = struct {
strx: u32,
addr: u64,
/// Value may be `unknown_ofile`.
ofile: u32,
const unknown_ofile = std.math.maxInt(u32);
fn addressLessThan(context: void, lhs: Symbol, rhs: Symbol) bool {
_ = context;
return lhs.addr < rhs.addr;
}
/// Assumes that `symbols` is sorted in order of ascending `addr`.
fn find(symbols: []const Symbol, address: usize) ?*const Symbol {
if (symbols.len == 0) return null; // no potential match
if (address < symbols[0].addr) return null; // address is before the lowest-address symbol
var left: usize = 0;
var len: usize = symbols.len;
while (len > 1) {
const mid = left + len / 2;
if (address < symbols[mid].addr) {
len /= 2;
} else {
left = mid;
len -= len / 2;
}
}
return &symbols[left];
}
test find {
const symbols: []const Symbol = &.{
.{ .addr = 100, .strx = undefined, .ofile = undefined },
.{ .addr = 200, .strx = undefined, .ofile = undefined },
.{ .addr = 300, .strx = undefined, .ofile = undefined },
};
try testing.expectEqual(null, find(symbols, 0));
try testing.expectEqual(null, find(symbols, 99));
try testing.expectEqual(&symbols[0], find(symbols, 100).?);
try testing.expectEqual(&symbols[0], find(symbols, 150).?);
try testing.expectEqual(&symbols[0], find(symbols, 199).?);
try testing.expectEqual(&symbols[1], find(symbols, 200).?);
try testing.expectEqual(&symbols[1], find(symbols, 250).?);
try testing.expectEqual(&symbols[1], find(symbols, 299).?);
try testing.expectEqual(&symbols[2], find(symbols, 300).?);
try testing.expectEqual(&symbols[2], find(symbols, 301).?);
try testing.expectEqual(&symbols[2], find(symbols, 5000).?);
}
};
test {
_ = Symbol;
}
fn loadOFile(gpa: Allocator, o_file_name: []const u8) !OFile {
const all_mapped_memory, const mapped_ofile = map: {
const open_paren = paren: {
if (std.mem.endsWith(u8, o_file_name, ")")) {
if (std.mem.findScalarLast(u8, o_file_name, '(')) |i| {
break :paren i;
}
}
// Not an archive, just a normal path to a .o file
const m = try mapDebugInfoFile(o_file_name);
break :map .{ m, m };
};
// We have the form 'path/to/archive.a(entry.o)'. Map the archive and find the object file in question.
const archive_path = o_file_name[0..open_paren];
const target_name_in_archive = o_file_name[open_paren + 1 .. o_file_name.len - 1];
const mapped_archive = try mapDebugInfoFile(archive_path);
errdefer posix.munmap(mapped_archive);
var ar_reader: Io.Reader = .fixed(mapped_archive);
const ar_magic = ar_reader.take(8) catch return error.InvalidMachO;
if (!std.mem.eql(u8, ar_magic, "!<arch>\n")) return error.InvalidMachO;
while (true) {
if (ar_reader.seek == ar_reader.buffer.len) return error.MissingDebugInfo;
const raw_name = ar_reader.takeArray(16) catch return error.InvalidMachO;
ar_reader.discardAll(12 + 6 + 6 + 8) catch return error.InvalidMachO;
const raw_size = ar_reader.takeArray(10) catch return error.InvalidMachO;
const file_magic = ar_reader.takeArray(2) catch return error.InvalidMachO;
if (!std.mem.eql(u8, file_magic, "`\n")) return error.InvalidMachO;
const size = std.fmt.parseInt(u32, mem.sliceTo(raw_size, ' '), 10) catch return error.InvalidMachO;
const raw_data = ar_reader.take(size) catch return error.InvalidMachO;
const entry_name: []const u8, const entry_contents: []const u8 = entry: {
if (!std.mem.startsWith(u8, raw_name, "#1/")) {
break :entry .{ mem.sliceTo(raw_name, '/'), raw_data };
}
const len = std.fmt.parseInt(u32, mem.sliceTo(raw_name[3..], ' '), 10) catch return error.InvalidMachO;
if (len > size) return error.InvalidMachO;
break :entry .{ mem.sliceTo(raw_data[0..len], 0), raw_data[len..] };
};
if (std.mem.eql(u8, entry_name, target_name_in_archive)) {
break :map .{ mapped_archive, entry_contents };
}
}
};
errdefer posix.munmap(all_mapped_memory);
var r: Io.Reader = .fixed(mapped_ofile);
const hdr = r.takeStruct(macho.mach_header_64, .little) catch |err| switch (err) {
error.ReadFailed => unreachable,
error.EndOfStream => return error.InvalidMachO,
};
if (hdr.magic != std.macho.MH_MAGIC_64) return error.InvalidMachO;
const seg_cmd: macho.LoadCommandIterator.LoadCommand, const symtab_cmd: macho.symtab_command = cmds: {
var seg_cmd: ?macho.LoadCommandIterator.LoadCommand = null;
var symtab_cmd: ?macho.symtab_command = null;
var it: macho.LoadCommandIterator = try .init(&hdr, mapped_ofile[@sizeOf(macho.mach_header_64)..]);
while (try it.next()) |lc| switch (lc.hdr.cmd) {
.SEGMENT_64 => seg_cmd = lc,
.SYMTAB => symtab_cmd = lc.cast(macho.symtab_command) orelse return error.InvalidMachO,
else => {},
};
break :cmds .{
seg_cmd orelse return error.MissingDebugInfo,
symtab_cmd orelse return error.MissingDebugInfo,
};
};
if (mapped_ofile.len < symtab_cmd.stroff + symtab_cmd.strsize) return error.InvalidMachO;
if (mapped_ofile[symtab_cmd.stroff + symtab_cmd.strsize - 1] != 0) return error.InvalidMachO;
const strtab = mapped_ofile[symtab_cmd.stroff..][0 .. symtab_cmd.strsize - 1];
const n_sym_bytes = symtab_cmd.nsyms * @sizeOf(macho.nlist_64);
if (mapped_ofile.len < symtab_cmd.symoff + n_sym_bytes) return error.InvalidMachO;
const symtab_raw: []align(1) const macho.nlist_64 = @ptrCast(mapped_ofile[symtab_cmd.symoff..][0..n_sym_bytes]);
// TODO handle tentative (common) symbols
var symbols_by_name: std.ArrayHashMapUnmanaged(u32, void, void, true) = .empty;
defer symbols_by_name.deinit(gpa);
try symbols_by_name.ensureUnusedCapacity(gpa, @intCast(symtab_raw.len));
for (symtab_raw, 0..) |sym_raw, sym_index| {
var sym = sym_raw;
if (builtin.cpu.arch.endian() != .little) std.mem.byteSwapAllFields(macho.nlist_64, &sym);
if (sym.n_strx == 0) continue;
switch (sym.n_type.bits.type) {
.undf => continue, // includes tentative symbols
.abs => continue,
else => {},
}
const sym_name = mem.sliceTo(strtab[sym.n_strx..], 0);
const gop = symbols_by_name.getOrPutAssumeCapacityAdapted(
@as([]const u8, sym_name),
@as(OFile.SymbolAdapter, .{ .strtab = strtab, .symtab_raw = symtab_raw }),
);
if (gop.found_existing) return error.InvalidMachO;
gop.key_ptr.* = @intCast(sym_index);
}
var sections: Dwarf.SectionArray = @splat(null);
for (seg_cmd.getSections()) |sect_raw| {
var sect = sect_raw;
if (builtin.cpu.arch.endian() != .little) std.mem.byteSwapAllFields(macho.section_64, &sect);
if (!std.mem.eql(u8, "__DWARF", sect.segName())) continue;
const section_index: usize = inline for (@typeInfo(Dwarf.Section.Id).@"enum".fields, 0..) |section, i| {
if (mem.eql(u8, "__" ++ section.name, sect.sectName())) break i;
} else continue;
if (mapped_ofile.len < sect.offset + sect.size) return error.InvalidMachO;
const section_bytes = mapped_ofile[sect.offset..][0..sect.size];
sections[section_index] = .{
.data = section_bytes,
.owned = false,
};
}
if (sections[@intFromEnum(Dwarf.Section.Id.debug_info)] == null or
sections[@intFromEnum(Dwarf.Section.Id.debug_abbrev)] == null or
sections[@intFromEnum(Dwarf.Section.Id.debug_str)] == null or
sections[@intFromEnum(Dwarf.Section.Id.debug_line)] == null)
{
return error.MissingDebugInfo;
}
var dwarf: Dwarf = .{ .sections = sections };
errdefer dwarf.deinit(gpa);
dwarf.open(gpa, .little) catch |err| switch (err) {
error.InvalidDebugInfo,
error.EndOfStream,
error.Overflow,
error.StreamTooLong,
=> return error.InvalidDwarf,
error.MissingDebugInfo,
error.ReadFailed,
error.OutOfMemory,
=> |e| return e,
};
return .{
.mapped_memory = all_mapped_memory,
.dwarf = dwarf,
.strtab = strtab,
.symtab_raw = symtab_raw,
.symbols_by_name = symbols_by_name.move(),
};
}
/// Uses `mmap` to map the file at `path` into memory.
fn mapDebugInfoFile(path: []const u8) ![]align(std.heap.page_size_min) const u8 {
const file = std.fs.cwd().openFile(path, .{}) catch |err| switch (err) {
error.FileNotFound => return error.MissingDebugInfo,
else => return error.ReadFailed,
};
defer file.close();
const file_len = std.math.cast(
usize,
file.getEndPos() catch return error.ReadFailed,
) orelse return error.ReadFailed;
return posix.mmap(
null,
file_len,
posix.PROT.READ,
.{ .TYPE = .SHARED },
file.handle,
0,
) catch return error.ReadFailed;
}
const std = @import("std");
const Allocator = std.mem.Allocator;
const Dwarf = std.debug.Dwarf;
const Io = std.Io;
const assert = std.debug.assert;
const posix = std.posix;
const macho = std.macho;
const mem = std.mem;
const testing = std.testing;
const builtin = @import("builtin");
const MachOFile = @This();