mirror of
https://codeberg.org/ziglang/zig.git
synced 2025-12-06 13:54:21 +00:00
213 lines
5.7 KiB
Zig
213 lines
5.7 KiB
Zig
//! Ported from musl, which is licensed under the MIT license:
|
|
//! https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//!
|
|
//! https://git.musl-libc.org/cgit/musl/tree/src/complex/ccoshf.c
|
|
//! https://git.musl-libc.org/cgit/musl/tree/src/complex/ccosh.c
|
|
|
|
const std = @import("../../std.zig");
|
|
const testing = std.testing;
|
|
const math = std.math;
|
|
const Complex = math.Complex;
|
|
|
|
const ldexp = @import("ldexp.zig").ldexp;
|
|
|
|
/// Calculates the hyperbolic arc-cosine of a complex number.
|
|
pub fn cosh(z: anytype) Complex(@TypeOf(z.re, z.im)) {
|
|
const T = @TypeOf(z.re, z.im);
|
|
|
|
return switch (T) {
|
|
f32 => cosh32(z),
|
|
f64 => cosh64(z),
|
|
else => @compileError("cosh not implemented for " ++ @typeName(T)),
|
|
};
|
|
}
|
|
|
|
fn cosh32(z: Complex(f32)) Complex(f32) {
|
|
const x = z.re;
|
|
const y = z.im;
|
|
|
|
const hx: u32 = @bitCast(x);
|
|
const ix = hx & 0x7fffffff;
|
|
|
|
const hy: u32 = @bitCast(y);
|
|
const iy = hy & 0x7fffffff;
|
|
|
|
if (ix < 0x7f800000 and iy < 0x7f800000) {
|
|
if (iy == 0)
|
|
return .init(math.cosh(x), x * y);
|
|
|
|
if (ix < 0x41100000) // Small x: normal case
|
|
return .init(
|
|
math.cosh(x) * @cos(y),
|
|
math.sinh(x) * @sin(y),
|
|
);
|
|
|
|
// |x|>= 9, so cosh(x) ~= exp(|x|)
|
|
if (ix < 0x42b17218) {
|
|
// x < 88.7: exp(|x|) won't overflow
|
|
const h = @exp(@abs(x)) * 0.5;
|
|
|
|
return .init(
|
|
h * @cos(y),
|
|
math.copysign(h, x) * @sin(y),
|
|
);
|
|
}
|
|
// x < 192.7: scale to avoid overflow
|
|
else if (ix < 0x4340b1e7) {
|
|
const v: Complex(f32) = .init(@abs(x), y);
|
|
const r = ldexp(v, -1);
|
|
|
|
return .init(r.re, r.im * math.copysign(@as(f32, 1), x));
|
|
}
|
|
// x >= 192.7: result always overflows
|
|
else {
|
|
const h = 0x1p127 * x;
|
|
|
|
return .init(
|
|
h * h * @cos(y),
|
|
h * @sin(y),
|
|
);
|
|
}
|
|
}
|
|
|
|
if (ix == 0 and iy >= 0x7f800000)
|
|
return .init(y - y, math.copysign(@as(f32, 0), x * (y - y)));
|
|
|
|
if (iy == 0 and ix >= 0x7f800000) {
|
|
if (hx & 0x7fffff == 0)
|
|
return .init(x * x, math.copysign(@as(f32, 0), x) * y);
|
|
|
|
return .init(x * x, math.copysign(@as(f32, 0), (x + x) * y));
|
|
}
|
|
|
|
if (ix < 0x7f800000 and iy >= 0x7f800000)
|
|
return .init(y - y, x * (y - y));
|
|
|
|
if (ix >= 0x7f800000 and (hx & 0x7fffff) == 0) {
|
|
if (iy >= 0x7f800000)
|
|
return .init(x * x, x * (y - y));
|
|
|
|
return .init(
|
|
(x * x) * @cos(y),
|
|
x * @sin(y),
|
|
);
|
|
}
|
|
|
|
return .init(
|
|
(x * x) * (y - y),
|
|
(x + x) * (y - y),
|
|
);
|
|
}
|
|
|
|
fn cosh64(z: Complex(f64)) Complex(f64) {
|
|
const x = z.re;
|
|
const y = z.im;
|
|
|
|
const fx: u64 = @bitCast(x);
|
|
const hx: u32 = @intCast(fx >> 32);
|
|
const lx: u32 = @truncate(fx);
|
|
|
|
const fy: u64 = @bitCast(y);
|
|
const hy: u32 = @intCast(fy >> 32);
|
|
const ly: u32 = @truncate(fy);
|
|
|
|
const ix = hx & 0x7fffffff;
|
|
const iy = hy & 0x7fffffff;
|
|
|
|
// Handle the nearly non-exceptional case where x, y are finite
|
|
if (ix < 0x7ff00000 and iy < 0x7ff00000) {
|
|
if (iy | ly == 0)
|
|
return .init(math.cosh(x), x * y);
|
|
|
|
if (ix < 0x40360000) // Small x: normal case
|
|
return .init(
|
|
math.cosh(x) * @cos(y),
|
|
math.sinh(x) * @sin(y),
|
|
);
|
|
|
|
// |x|>= 22, so cosh(x) ~= exp(|x|)
|
|
if (ix < 0x40862e42) {
|
|
// x < 710: exp(|x|) won't overflow
|
|
const h = @exp(@abs(x)) * 0.5;
|
|
|
|
return .init(
|
|
h * @cos(y),
|
|
math.copysign(h, x) * @sin(y),
|
|
);
|
|
}
|
|
// x < 1455: scale to avoid overflow
|
|
else if (ix < 0x4096bbaa) {
|
|
const v: Complex(f64) = .init(@abs(x), y);
|
|
const r = ldexp(v, -1);
|
|
|
|
return .init(r.re, r.im * math.copysign(@as(f64, 1), x));
|
|
}
|
|
// x >= 1455: result always overflows
|
|
else {
|
|
const h = 0x1p1023 * x;
|
|
|
|
return .init(
|
|
h * h * @cos(y),
|
|
h * @sin(y),
|
|
);
|
|
}
|
|
}
|
|
|
|
if (ix | lx == 0 and iy >= 0x7ff00000)
|
|
return .init(y - y, math.copysign(@as(f64, 0), x * (y - y)));
|
|
|
|
if (iy | ly == 0 and ix >= 0x7ff00000) {
|
|
if ((hx & 0xfffff) | lx == 0)
|
|
return .init(x * x, math.copysign(@as(f64, 0), x) * y);
|
|
|
|
return .init(x * x, math.copysign(@as(f64, 0), (x + x) * y));
|
|
}
|
|
|
|
if (ix < 0x7ff00000 and iy >= 0x7ff00000)
|
|
return .init(y - y, x * (y - y));
|
|
|
|
if (ix >= 0x7ff00000 and (hx & 0xfffff) | lx == 0) {
|
|
if (iy >= 0x7ff00000)
|
|
return .init(x * x, x * (y - y));
|
|
|
|
return .init(
|
|
x * x * @cos(y),
|
|
x * @sin(y),
|
|
);
|
|
}
|
|
|
|
return .init(
|
|
(x * x) * (y - y),
|
|
(x + x) * (y - y),
|
|
);
|
|
}
|
|
|
|
test cosh32 {
|
|
const epsilon = math.floatEps(f32);
|
|
|
|
const a: Complex(f32) = .init(5, 3);
|
|
const cosh_a = cosh(a);
|
|
|
|
try testing.expectApproxEqAbs(-73.467300, cosh_a.re, epsilon);
|
|
try testing.expectApproxEqAbs(10.471557, cosh_a.im, epsilon);
|
|
}
|
|
|
|
test cosh64 {
|
|
const epsilon = math.floatEps(f64);
|
|
|
|
const a: Complex(f64) = .init(5, 3);
|
|
const cosh_a = cosh(a);
|
|
|
|
try testing.expectApproxEqAbs(-73.46729221264526, cosh_a.re, epsilon);
|
|
try testing.expectApproxEqAbs(10.471557674805572, cosh_a.im, epsilon);
|
|
}
|
|
|
|
test "cosh64 musl" {
|
|
const epsilon = math.floatEps(f64);
|
|
|
|
const a: Complex(f64) = .init(7.44648873421389e17, 1.6008058402057622e19);
|
|
const cosh_a = cosh(a);
|
|
|
|
try testing.expectApproxEqAbs(math.inf(f64), cosh_a.re, epsilon);
|
|
try testing.expectApproxEqAbs(math.inf(f64), cosh_a.im, epsilon);
|
|
}
|