mirror of
https://codeberg.org/ziglang/zig.git
synced 2025-12-06 13:54:21 +00:00
129 lines
4.3 KiB
Zig
129 lines
4.3 KiB
Zig
const std = @import("../std.zig");
|
|
const mem = std.mem;
|
|
|
|
/// Allocator that fails after N allocations, useful for making sure out of
|
|
/// memory conditions are handled correctly.
|
|
///
|
|
/// To use this, first initialize it and get an allocator with
|
|
///
|
|
/// `const failing_allocator = &FailingAllocator.init(<allocator>,
|
|
/// <fail_index>).allocator;`
|
|
///
|
|
/// Then use `failing_allocator` anywhere you would have used a
|
|
/// different allocator.
|
|
pub const FailingAllocator = struct {
|
|
index: usize,
|
|
fail_index: usize,
|
|
internal_allocator: mem.Allocator,
|
|
allocated_bytes: usize,
|
|
freed_bytes: usize,
|
|
allocations: usize,
|
|
deallocations: usize,
|
|
stack_addresses: [num_stack_frames]usize,
|
|
has_induced_failure: bool,
|
|
|
|
const num_stack_frames = if (std.debug.sys_can_stack_trace) 16 else 0;
|
|
|
|
/// `fail_index` is the number of successful allocations you can
|
|
/// expect from this allocator. The next allocation will fail.
|
|
/// For example, if this is called with `fail_index` equal to 2,
|
|
/// the following test will pass:
|
|
///
|
|
/// var a = try failing_alloc.create(i32);
|
|
/// var b = try failing_alloc.create(i32);
|
|
/// testing.expectError(error.OutOfMemory, failing_alloc.create(i32));
|
|
pub fn init(internal_allocator: mem.Allocator, fail_index: usize) FailingAllocator {
|
|
return FailingAllocator{
|
|
.internal_allocator = internal_allocator,
|
|
.fail_index = fail_index,
|
|
.index = 0,
|
|
.allocated_bytes = 0,
|
|
.freed_bytes = 0,
|
|
.allocations = 0,
|
|
.deallocations = 0,
|
|
.stack_addresses = undefined,
|
|
.has_induced_failure = false,
|
|
};
|
|
}
|
|
|
|
pub fn allocator(self: *FailingAllocator) mem.Allocator {
|
|
return .{
|
|
.ptr = self,
|
|
.vtable = &.{
|
|
.alloc = alloc,
|
|
.resize = resize,
|
|
.free = free,
|
|
},
|
|
};
|
|
}
|
|
|
|
fn alloc(
|
|
ctx: *anyopaque,
|
|
len: usize,
|
|
log2_ptr_align: u8,
|
|
return_address: usize,
|
|
) ?[*]u8 {
|
|
const self = @ptrCast(*FailingAllocator, @alignCast(@alignOf(FailingAllocator), ctx));
|
|
if (self.index == self.fail_index) {
|
|
if (!self.has_induced_failure) {
|
|
mem.set(usize, &self.stack_addresses, 0);
|
|
var stack_trace = std.builtin.StackTrace{
|
|
.instruction_addresses = &self.stack_addresses,
|
|
.index = 0,
|
|
};
|
|
std.debug.captureStackTrace(return_address, &stack_trace);
|
|
self.has_induced_failure = true;
|
|
}
|
|
return null;
|
|
}
|
|
const result = self.internal_allocator.rawAlloc(len, log2_ptr_align, return_address) orelse
|
|
return null;
|
|
self.allocated_bytes += len;
|
|
self.allocations += 1;
|
|
self.index += 1;
|
|
return result;
|
|
}
|
|
|
|
fn resize(
|
|
ctx: *anyopaque,
|
|
old_mem: []u8,
|
|
log2_old_align: u8,
|
|
new_len: usize,
|
|
ra: usize,
|
|
) bool {
|
|
const self = @ptrCast(*FailingAllocator, @alignCast(@alignOf(FailingAllocator), ctx));
|
|
if (!self.internal_allocator.rawResize(old_mem, log2_old_align, new_len, ra))
|
|
return false;
|
|
if (new_len < old_mem.len) {
|
|
self.freed_bytes += old_mem.len - new_len;
|
|
} else {
|
|
self.allocated_bytes += new_len - old_mem.len;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
fn free(
|
|
ctx: *anyopaque,
|
|
old_mem: []u8,
|
|
log2_old_align: u8,
|
|
ra: usize,
|
|
) void {
|
|
const self = @ptrCast(*FailingAllocator, @alignCast(@alignOf(FailingAllocator), ctx));
|
|
self.internal_allocator.rawFree(old_mem, log2_old_align, ra);
|
|
self.deallocations += 1;
|
|
self.freed_bytes += old_mem.len;
|
|
}
|
|
|
|
/// Only valid once `has_induced_failure == true`
|
|
pub fn getStackTrace(self: *FailingAllocator) std.builtin.StackTrace {
|
|
std.debug.assert(self.has_induced_failure);
|
|
var len: usize = 0;
|
|
while (len < self.stack_addresses.len and self.stack_addresses[len] != 0) {
|
|
len += 1;
|
|
}
|
|
return .{
|
|
.instruction_addresses = &self.stack_addresses,
|
|
.index = len,
|
|
};
|
|
}
|
|
};
|