zig/test/behavior/pointers.zig
mlugg d0e74ffe52
compiler: rework comptime pointer representation and access
We've got a big one here! This commit reworks how we represent pointers
in the InternPool, and rewrites the logic for loading and storing from
them at comptime.

Firstly, the pointer representation. Previously, pointers were
represented in a highly structured manner: pointers to fields, array
elements, etc, were explicitly represented. This works well for simple
cases, but is quite difficult to handle in the cases of unusual
reinterpretations, pointer casts, offsets, etc. Therefore, pointers are
now represented in a more "flat" manner. For types without well-defined
layouts -- such as comptime-only types, automatic-layout aggregates, and
so on -- we still use this "hierarchical" structure. However, for types
with well-defined layouts, we use a byte offset associated with the
pointer. This allows the comptime pointer access logic to deal with
reinterpreted pointers far more gracefully, because the "base address"
of a pointer -- for instance a `field` -- is a single value which
pointer accesses cannot exceed since the parent has undefined layout.
This strategy is also more useful to most backends -- see the updated
logic in `codegen.zig` and `codegen/llvm.zig`. For backends which do
prefer a chain of field and elements accesses for lowering pointer
values, such as SPIR-V, there is a helpful function in `Value` which
creates a strategy to derive a pointer value using ideally only field
and element accesses. This is actually more correct than the previous
logic, since it correctly handles pointer casts which, after the dust
has settled, end up referring exactly to an aggregate field or array
element.

In terms of the pointer access code, it has been rewritten from the
ground up. The old logic had become rather a mess of special cases being
added whenever bugs were hit, and was still riddled with bugs. The new
logic was written to handle the "difficult" cases correctly, the most
notable of which is restructuring of a comptime-only array (for
instance, converting a `[3][2]comptime_int` to a `[2][3]comptime_int`.
Currently, the logic for loading and storing work somewhat differently,
but a future change will likely improve the loading logic to bring it
more in line with the store strategy. As far as I can tell, the rewrite
has fixed all bugs exposed by #19414.

As a part of this, the comptime bitcast logic has also been rewritten.
Previously, bitcasts simply worked by serializing the entire value into
an in-memory buffer, then deserializing it. This strategy has two key
weaknesses: pointers, and undefined values. Representations of these
values at comptime cannot be easily serialized/deserialized whilst
preserving data, which means many bitcasts would become runtime-known if
pointers were involved, or would turn `undefined` values into `0xAA`.
The new logic works by "flattening" the datastructure to be cast into a
sequence of bit-packed atomic values, and then "unflattening" it; using
serialization when necessary, but with special handling for `undefined`
values and for pointers which align in virtual memory. The resulting
code is definitely slower -- more on this later -- but it is correct.

The pointer access and bitcast logic required some helper functions and
types which are not generally useful elsewhere, so I opted to split them
into separate files `Sema/comptime_ptr_access.zig` and
`Sema/bitcast.zig`, with simple re-exports in `Sema.zig` for their small
public APIs.

Whilst working on this branch, I caught various unrelated bugs with
transitive Sema errors, and with the handling of `undefined` values.
These bugs have been fixed, and corresponding behavior test added.

In terms of performance, I do anticipate that this commit will regress
performance somewhat, because the new pointer access and bitcast logic
is necessarily more complex. I have not yet taken performance
measurements, but will do shortly, and post the results in this PR. If
the performance regression is severe, I will do work to to optimize the
new logic before merge.

Resolves: #19452
Resolves: #19460
2024-04-17 13:41:25 +01:00

659 lines
20 KiB
Zig

const builtin = @import("builtin");
const std = @import("std");
const testing = std.testing;
const assert = std.debug.assert;
const expect = testing.expect;
const expectError = testing.expectError;
test "dereference pointer" {
try comptime testDerefPtr();
try testDerefPtr();
}
fn testDerefPtr() !void {
var x: i32 = 1234;
const y = &x;
y.* += 1;
try expect(x == 1235);
}
test "pointer arithmetic" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
var ptr: [*]const u8 = "abcd";
try expect(ptr[0] == 'a');
ptr += 1;
try expect(ptr[0] == 'b');
ptr += 1;
try expect(ptr[0] == 'c');
ptr += 1;
try expect(ptr[0] == 'd');
ptr += 1;
try expect(ptr[0] == 0);
ptr -= 1;
try expect(ptr[0] == 'd');
ptr -= 1;
try expect(ptr[0] == 'c');
ptr -= 1;
try expect(ptr[0] == 'b');
ptr -= 1;
try expect(ptr[0] == 'a');
}
test "double pointer parsing" {
comptime assert(PtrOf(PtrOf(i32)) == **i32);
}
fn PtrOf(comptime T: type) type {
return *T;
}
test "implicit cast single item pointer to C pointer and back" {
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
var y: u8 = 11;
const x: [*c]u8 = &y;
const z: *u8 = x;
z.* += 1;
try expect(y == 12);
}
test "initialize const optional C pointer to null" {
const a: ?[*c]i32 = null;
try expect(a == null);
comptime assert(a == null);
}
test "assigning integer to C pointer" {
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
var x: i32 = 0;
var y: i32 = 1;
var ptr: [*c]u8 = 0;
var ptr2: [*c]u8 = x;
var ptr3: [*c]u8 = 1;
var ptr4: [*c]u8 = y;
_ = .{ &x, &y, &ptr, &ptr2, &ptr3, &ptr4 };
try expect(ptr == ptr2);
try expect(ptr3 == ptr4);
try expect(ptr3 > ptr and ptr4 > ptr2 and y > x);
try expect(1 > ptr and y > ptr2 and 0 < ptr3 and x < ptr4);
}
test "C pointer comparison and arithmetic" {
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
const S = struct {
fn doTheTest() !void {
var ptr1: [*c]u32 = 0;
var ptr2 = ptr1 + 10;
_ = &ptr1;
try expect(ptr1 == 0);
try expect(ptr1 >= 0);
try expect(ptr1 <= 0);
// expect(ptr1 < 1);
// expect(ptr1 < one);
// expect(1 > ptr1);
// expect(one > ptr1);
try expect(ptr1 < ptr2);
try expect(ptr2 > ptr1);
try expect(ptr2 >= 40);
try expect(ptr2 == 40);
try expect(ptr2 <= 40);
ptr2 -= 10;
try expect(ptr1 == ptr2);
}
};
try S.doTheTest();
try comptime S.doTheTest();
}
test "dereference pointer again" {
try testDerefPtrOneVal();
try comptime testDerefPtrOneVal();
}
const Foo1 = struct {
x: void,
};
fn testDerefPtrOneVal() !void {
// Foo1 satisfies the OnePossibleValueYes criteria
const x = &Foo1{ .x = {} };
const y = x.*;
try expect(@TypeOf(y.x) == void);
}
test "peer type resolution with C pointers" {
const ptr_one: *u8 = undefined;
const ptr_many: [*]u8 = undefined;
const ptr_c: [*c]u8 = undefined;
var t = true;
_ = &t;
const x1 = if (t) ptr_one else ptr_c;
const x2 = if (t) ptr_many else ptr_c;
const x3 = if (t) ptr_c else ptr_one;
const x4 = if (t) ptr_c else ptr_many;
try expect(@TypeOf(x1) == [*c]u8);
try expect(@TypeOf(x2) == [*c]u8);
try expect(@TypeOf(x3) == [*c]u8);
try expect(@TypeOf(x4) == [*c]u8);
}
test "peer type resolution with C pointer and const pointer" {
var ptr_c: [*c]u8 = undefined;
var ptr_const: *const u8 = &undefined;
_ = .{ &ptr_c, &ptr_const };
try expect(@TypeOf(ptr_c, ptr_const) == [*c]const u8);
}
test "implicit casting between C pointer and optional non-C pointer" {
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
var slice: []const u8 = "aoeu";
_ = &slice;
const opt_many_ptr: ?[*]const u8 = slice.ptr;
var ptr_opt_many_ptr = &opt_many_ptr;
const c_ptr: [*c]const [*c]const u8 = ptr_opt_many_ptr;
try expect(c_ptr.*.* == 'a');
ptr_opt_many_ptr = c_ptr;
try expect(ptr_opt_many_ptr.*.?[1] == 'o');
}
test "implicit cast error unions with non-optional to optional pointer" {
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_spirv64) return error.SkipZigTest;
const S = struct {
fn doTheTest() !void {
try expectError(error.Fail, foo());
}
fn foo() anyerror!?*u8 {
return bar() orelse error.Fail;
}
fn bar() ?*u8 {
return null;
}
};
try S.doTheTest();
try comptime S.doTheTest();
}
test "compare equality of optional and non-optional pointer" {
const a = @as(*const usize, @ptrFromInt(0x12345678));
const b = @as(?*usize, @ptrFromInt(0x12345678));
try expect(a == b);
try expect(b == a);
}
test "allowzero pointer and slice" {
if (builtin.zig_backend == .stage2_c) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
var ptr: [*]allowzero i32 = @ptrFromInt(0);
const opt_ptr: ?[*]allowzero i32 = ptr;
try expect(opt_ptr != null);
try expect(@intFromPtr(ptr) == 0);
var runtime_zero: usize = 0;
_ = &runtime_zero;
var slice = ptr[runtime_zero..10];
comptime assert(@TypeOf(slice) == []allowzero i32);
try expect(@intFromPtr(&slice[5]) == 20);
comptime assert(@typeInfo(@TypeOf(ptr)).Pointer.is_allowzero);
comptime assert(@typeInfo(@TypeOf(slice)).Pointer.is_allowzero);
}
test "assign null directly to C pointer and test null equality" {
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
var x: [*c]i32 = null;
_ = &x;
try expect(x == null);
try expect(null == x);
try expect(!(x != null));
try expect(!(null != x));
if (x) |same_x| {
_ = same_x;
@panic("fail");
}
var otherx: i32 = undefined;
try expect((x orelse &otherx) == &otherx);
const y: [*c]i32 = null;
comptime assert(y == null);
comptime assert(null == y);
comptime assert(!(y != null));
comptime assert(!(null != y));
if (y) |same_y| {
_ = same_y;
@panic("fail");
}
const othery: i32 = undefined;
const ptr_othery = &othery;
comptime assert((y orelse ptr_othery) == ptr_othery);
var n: i32 = 1234;
const x1: [*c]i32 = &n;
try expect(!(x1 == null));
try expect(!(null == x1));
try expect(x1 != null);
try expect(null != x1);
try expect(x1.?.* == 1234);
if (x1) |same_x1| {
try expect(same_x1.* == 1234);
} else {
@panic("fail");
}
try expect((x1 orelse &otherx) == x1);
const nc: i32 = 1234;
const y1: [*c]const i32 = &nc;
comptime assert(!(y1 == null));
comptime assert(!(null == y1));
comptime assert(y1 != null);
comptime assert(null != y1);
comptime assert(y1.?.* == 1234);
if (y1) |same_y1| {
try expect(same_y1.* == 1234);
} else {
@compileError("fail");
}
comptime assert((y1 orelse &othery) == y1);
}
test "array initialization types" {
const E = enum { A, B, C };
try expect(@TypeOf([_]u8{}) == [0]u8);
try expect(@TypeOf([_:0]u8{}) == [0:0]u8);
try expect(@TypeOf([_:.A]E{}) == [0:.A]E);
try expect(@TypeOf([_:0]u8{ 1, 2, 3 }) == [3:0]u8);
}
test "null terminated pointer" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
const S = struct {
fn doTheTest() !void {
var array_with_zero = [_:0]u8{ 'h', 'e', 'l', 'l', 'o' };
const zero_ptr: [*:0]const u8 = @ptrCast(&array_with_zero);
const no_zero_ptr: [*]const u8 = zero_ptr;
const zero_ptr_again: [*:0]const u8 = @ptrCast(no_zero_ptr);
try expect(std.mem.eql(u8, std.mem.sliceTo(zero_ptr_again, 0), "hello"));
}
};
try S.doTheTest();
try comptime S.doTheTest();
}
test "allow any sentinel" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
const S = struct {
fn doTheTest() !void {
var array = [_:std.math.minInt(i32)]i32{ 1, 2, 3, 4 };
const ptr: [*:std.math.minInt(i32)]i32 = &array;
try expect(ptr[4] == std.math.minInt(i32));
}
};
try S.doTheTest();
try comptime S.doTheTest();
}
test "pointer sentinel with enums" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
const S = struct {
const Number = enum {
one,
two,
sentinel,
};
fn doTheTest() !void {
var ptr: [*:.sentinel]const Number = &[_:.sentinel]Number{ .one, .two, .two, .one };
_ = &ptr;
try expect(ptr[4] == .sentinel); // TODO this should be comptime assert, see #3731
}
};
try S.doTheTest();
try comptime S.doTheTest();
}
test "pointer sentinel with optional element" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
const S = struct {
fn doTheTest() !void {
var ptr: [*:null]const ?i32 = &[_:null]?i32{ 1, 2, 3, 4 };
_ = &ptr;
try expect(ptr[4] == null); // TODO this should be comptime assert, see #3731
}
};
try S.doTheTest();
try comptime S.doTheTest();
}
test "pointer sentinel with +inf" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
const S = struct {
fn doTheTest() !void {
const inf_f32 = comptime std.math.inf(f32);
var ptr: [*:inf_f32]const f32 = &[_:inf_f32]f32{ 1.1, 2.2, 3.3, 4.4 };
_ = &ptr;
try expect(ptr[4] == inf_f32); // TODO this should be comptime assert, see #3731
}
};
try S.doTheTest();
try comptime S.doTheTest();
}
test "pointer to array at fixed address" {
const array = @as(*volatile [2]u32, @ptrFromInt(0x10));
// Silly check just to reference `array`
try expect(@intFromPtr(&array[0]) == 0x10);
try expect(@intFromPtr(&array[1]) == 0x14);
}
test "pointer arithmetic affects the alignment" {
{
var ptr: [*]align(8) u32 = undefined;
var x: usize = 1;
_ = .{ &ptr, &x };
try expect(@typeInfo(@TypeOf(ptr)).Pointer.alignment == 8);
const ptr1 = ptr + 1; // 1 * 4 = 4 -> lcd(4,8) = 4
try expect(@typeInfo(@TypeOf(ptr1)).Pointer.alignment == 4);
const ptr2 = ptr + 4; // 4 * 4 = 16 -> lcd(16,8) = 8
try expect(@typeInfo(@TypeOf(ptr2)).Pointer.alignment == 8);
const ptr3 = ptr + 0; // no-op
try expect(@typeInfo(@TypeOf(ptr3)).Pointer.alignment == 8);
const ptr4 = ptr + x; // runtime-known addend
try expect(@typeInfo(@TypeOf(ptr4)).Pointer.alignment == 4);
}
{
var ptr: [*]align(8) [3]u8 = undefined;
var x: usize = 1;
_ = .{ &ptr, &x };
const ptr1 = ptr + 17; // 3 * 17 = 51
try expect(@typeInfo(@TypeOf(ptr1)).Pointer.alignment == 1);
const ptr2 = ptr + x; // runtime-known addend
try expect(@typeInfo(@TypeOf(ptr2)).Pointer.alignment == 1);
const ptr3 = ptr + 8; // 3 * 8 = 24 -> lcd(8,24) = 8
try expect(@typeInfo(@TypeOf(ptr3)).Pointer.alignment == 8);
const ptr4 = ptr + 4; // 3 * 4 = 12 -> lcd(8,12) = 4
try expect(@typeInfo(@TypeOf(ptr4)).Pointer.alignment == 4);
}
}
test "@intFromPtr on null optional at comptime" {
{
const pointer = @as(?*u8, @ptrFromInt(0x000));
const x = @intFromPtr(pointer);
_ = x;
comptime assert(0 == @intFromPtr(pointer));
}
{
const pointer = @as(?*u8, @ptrFromInt(0xf00));
comptime assert(0xf00 == @intFromPtr(pointer));
}
}
test "indexing array with sentinel returns correct type" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
var s: [:0]const u8 = "abc";
try testing.expectEqualSlices(u8, "*const u8", @typeName(@TypeOf(&s[0])));
}
test "element pointer to slice" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
const S = struct {
fn doTheTest() !void {
var cases: [2][2]i32 = [_][2]i32{
[_]i32{ 0, 1 },
[_]i32{ 2, 3 },
};
const items: []i32 = &cases[0]; // *[2]i32
try testing.expect(items.len == 2);
try testing.expect(items[1] == 1);
try testing.expect(items[0] == 0);
}
};
try S.doTheTest();
try comptime S.doTheTest();
}
test "element pointer arithmetic to slice" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
const S = struct {
fn doTheTest() !void {
var cases: [2][2]i32 = [_][2]i32{
[_]i32{ 0, 1 },
[_]i32{ 2, 3 },
};
const elem_ptr = &cases[0]; // *[2]i32
const many = @as([*][2]i32, @ptrCast(elem_ptr));
const many_elem = @as(*[2]i32, @ptrCast(&many[1]));
const items: []i32 = many_elem;
try testing.expect(items.len == 2);
try testing.expect(items[1] == 3);
try testing.expect(items[0] == 2);
}
};
try S.doTheTest();
try comptime S.doTheTest();
}
test "array slicing to slice" {
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
const S = struct {
fn doTheTest() !void {
var str: [5]i32 = [_]i32{ 1, 2, 3, 4, 5 };
const sub: *[2]i32 = str[1..3];
const slice: []i32 = sub; // used to cause failures
try testing.expect(slice.len == 2);
try testing.expect(slice[0] == 2);
}
};
try S.doTheTest();
try comptime S.doTheTest();
}
test "pointer to constant decl preserves alignment" {
const S = struct {
a: u8,
b: u8,
const aligned align(8) = @This(){ .a = 3, .b = 4 };
};
const alignment = @typeInfo(@TypeOf(&S.aligned)).Pointer.alignment;
try std.testing.expect(alignment == 8);
}
test "ptrCast comptime known slice to C pointer" {
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
const s: [:0]const u8 = "foo";
var p: [*c]const u8 = @ptrCast(s);
_ = &p;
try std.testing.expectEqualStrings(s, std.mem.sliceTo(p, 0));
}
test "pointer alignment and element type include call expression" {
const S = struct {
fn T() type {
return struct { _: i32 };
}
const P = *align(@alignOf(T())) [@sizeOf(T())]u8;
};
try expect(@alignOf(S.P) > 0);
}
test "pointer to array has explicit alignment" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
const S = struct {
const Base = extern struct { a: u8 };
const Base2 = extern struct { a: u8 };
fn func(ptr: *[4]Base) *align(1) [4]Base2 {
return @alignCast(@as(*[4]Base2, @ptrCast(ptr)));
}
};
var bases = [_]S.Base{.{ .a = 2 }} ** 4;
const casted = S.func(&bases);
try expect(casted[0].a == 2);
}
test "result type preserved through multiple references" {
const S = struct { x: u32 };
var my_u64: u64 = 12345;
_ = &my_u64;
const foo: *const *const *const S = &&&.{
.x = @intCast(my_u64),
};
try expect(foo.*.*.*.x == 12345);
}
test "result type found through optional pointer" {
const ptr1: ?*const u32 = &@intCast(123);
const ptr2: ?[]const u8 = &.{ @intCast(123), @truncate(0xABCD) };
try expect(ptr1.?.* == 123);
try expect(ptr2.?.len == 2);
try expect(ptr2.?[0] == 123);
try expect(ptr2.?[1] == 0xCD);
}
const Box0 = struct {
items: [4]Item,
const Item = struct {
num: u32,
};
};
const Box1 = struct {
items: [4]Item,
const Item = struct {};
};
const Box2 = struct {
items: [4]Item,
const Item = struct {
nothing: void,
};
};
fn mutable() !void {
var box0: Box0 = .{ .items = undefined };
try std.testing.expect(@typeInfo(@TypeOf(box0.items[0..])).Pointer.is_const == false);
var box1: Box1 = .{ .items = undefined };
try std.testing.expect(@typeInfo(@TypeOf(box1.items[0..])).Pointer.is_const == false);
var box2: Box2 = .{ .items = undefined };
try std.testing.expect(@typeInfo(@TypeOf(box2.items[0..])).Pointer.is_const == false);
}
fn constant() !void {
const box0: Box0 = .{ .items = undefined };
try std.testing.expect(@typeInfo(@TypeOf(box0.items[0..])).Pointer.is_const == true);
const box1: Box1 = .{ .items = undefined };
try std.testing.expect(@typeInfo(@TypeOf(box1.items[0..])).Pointer.is_const == true);
const box2: Box2 = .{ .items = undefined };
try std.testing.expect(@typeInfo(@TypeOf(box2.items[0..])).Pointer.is_const == true);
}
test "pointer-to-array constness for zero-size elements, var" {
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
try mutable();
try comptime mutable();
}
test "pointer-to-array constness for zero-size elements, const" {
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
try constant();
try comptime constant();
}
test "cast pointers with zero sized elements" {
const a: *void = undefined;
const b: *[1]void = a;
_ = b;
const c: *[0]u8 = undefined;
const d: []u8 = c;
_ = d;
}
test "comptime pointer equality through distinct fields with well-defined layout" {
const A = extern struct {
x: u32,
z: u16,
};
const B = extern struct {
x: u16,
y: u16,
z: u16,
};
const a: A = .{
.x = undefined,
.z = 123,
};
const ap: *const A = &a;
const bp: *const B = @ptrCast(ap);
comptime assert(&ap.z == &bp.z);
comptime assert(ap.z == 123);
comptime assert(bp.z == 123);
}
test "comptime pointer equality through distinct elements with well-defined layout" {
const buf: [2]u32 = .{ 123, 456 };
const ptr: *const [2]u32 = &buf;
const byte_ptr: *align(4) const [8]u8 = @ptrCast(ptr);
const second_elem: *const u32 = @ptrCast(byte_ptr[4..8]);
comptime assert(&buf[1] == second_elem);
comptime assert(buf[1] == 456);
comptime assert(second_elem.* == 456);
}