zig/lib/std/rand.zig
Andrew Kelley d5e21a4f1a std: remove meta.trait
In general, I don't like the idea of std.meta.trait, and so I am
providing some guidance by deleting the entire namespace from the
standard library and compiler codebase.

My main criticism is that it's overcomplicated machinery that bloats
compile times and is ultimately unnecessary given the existence of Zig's
strong type system and reference traces.

Users who want this can create a third party package that provides this
functionality.

closes #18051
2023-11-22 13:24:27 -05:00

460 lines
19 KiB
Zig

//! The engines provided here should be initialized from an external source.
//! For a thread-local cryptographically secure pseudo random number generator,
//! use `std.crypto.random`.
//! Be sure to use a CSPRNG when required, otherwise using a normal PRNG will
//! be faster and use substantially less stack space.
const std = @import("std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const mem = std.mem;
const math = std.math;
const maxInt = std.math.maxInt;
/// Fast unbiased random numbers.
pub const DefaultPrng = Xoshiro256;
/// Cryptographically secure random numbers.
pub const DefaultCsprng = ChaCha;
pub const Ascon = @import("rand/Ascon.zig");
pub const ChaCha = @import("rand/ChaCha.zig");
pub const Isaac64 = @import("rand/Isaac64.zig");
pub const Pcg = @import("rand/Pcg.zig");
pub const Xoroshiro128 = @import("rand/Xoroshiro128.zig");
pub const Xoshiro256 = @import("rand/Xoshiro256.zig");
pub const Sfc64 = @import("rand/Sfc64.zig");
pub const RomuTrio = @import("rand/RomuTrio.zig");
pub const ziggurat = @import("rand/ziggurat.zig");
pub const Random = struct {
ptr: *anyopaque,
fillFn: *const fn (ptr: *anyopaque, buf: []u8) void,
pub fn init(pointer: anytype, comptime fillFn: fn (ptr: @TypeOf(pointer), buf: []u8) void) Random {
const Ptr = @TypeOf(pointer);
assert(@typeInfo(Ptr) == .Pointer); // Must be a pointer
assert(@typeInfo(Ptr).Pointer.size == .One); // Must be a single-item pointer
assert(@typeInfo(@typeInfo(Ptr).Pointer.child) == .Struct); // Must point to a struct
const gen = struct {
fn fill(ptr: *anyopaque, buf: []u8) void {
const self: Ptr = @ptrCast(@alignCast(ptr));
fillFn(self, buf);
}
};
return .{
.ptr = pointer,
.fillFn = gen.fill,
};
}
/// Read random bytes into the specified buffer until full.
pub fn bytes(r: Random, buf: []u8) void {
r.fillFn(r.ptr, buf);
}
pub fn boolean(r: Random) bool {
return r.int(u1) != 0;
}
/// Returns a random value from an enum, evenly distributed.
///
/// Note that this will not yield consistent results across all targets
/// due to dependence on the representation of `usize` as an index.
/// See `enumValueWithIndex` for further commentary.
pub inline fn enumValue(r: Random, comptime EnumType: type) EnumType {
return r.enumValueWithIndex(EnumType, usize);
}
/// Returns a random value from an enum, evenly distributed.
///
/// An index into an array of all named values is generated using the
/// specified `Index` type to determine the return value.
/// This allows for results to be independent of `usize` representation.
///
/// Prefer `enumValue` if this isn't important.
///
/// See `uintLessThan`, which this function uses in most cases,
/// for commentary on the runtime of this function.
pub fn enumValueWithIndex(r: Random, comptime EnumType: type, comptime Index: type) EnumType {
comptime assert(@typeInfo(EnumType) == .Enum);
// We won't use int -> enum casting because enum elements can have
// arbitrary values. Instead we'll randomly pick one of the type's values.
const values = comptime std.enums.values(EnumType);
comptime assert(values.len > 0); // can't return anything
comptime assert(maxInt(Index) >= values.len - 1); // can't access all values
comptime if (values.len == 1) return values[0];
const index = if (comptime values.len - 1 == maxInt(Index))
r.int(Index)
else
r.uintLessThan(Index, values.len);
const MinInt = MinArrayIndex(Index);
return values[@as(MinInt, @intCast(index))];
}
/// Returns a random int `i` such that `minInt(T) <= i <= maxInt(T)`.
/// `i` is evenly distributed.
pub fn int(r: Random, comptime T: type) T {
const bits = @typeInfo(T).Int.bits;
const UnsignedT = std.meta.Int(.unsigned, bits);
const ceil_bytes = comptime std.math.divCeil(u16, bits, 8) catch unreachable;
const ByteAlignedT = std.meta.Int(.unsigned, ceil_bytes * 8);
var rand_bytes: [ceil_bytes]u8 = undefined;
r.bytes(&rand_bytes);
// use LE instead of native endian for better portability maybe?
// TODO: endian portability is pointless if the underlying prng isn't endian portable.
// TODO: document the endian portability of this library.
const byte_aligned_result = mem.readInt(ByteAlignedT, &rand_bytes, .little);
const unsigned_result: UnsignedT = @truncate(byte_aligned_result);
return @bitCast(unsigned_result);
}
/// Constant-time implementation off `uintLessThan`.
/// The results of this function may be biased.
pub fn uintLessThanBiased(r: Random, comptime T: type, less_than: T) T {
comptime assert(@typeInfo(T).Int.signedness == .unsigned);
assert(0 < less_than);
return limitRangeBiased(T, r.int(T), less_than);
}
/// Returns an evenly distributed random unsigned integer `0 <= i < less_than`.
/// This function assumes that the underlying `fillFn` produces evenly distributed values.
/// Within this assumption, the runtime of this function is exponentially distributed.
/// If `fillFn` were backed by a true random generator,
/// the runtime of this function would technically be unbounded.
/// However, if `fillFn` is backed by any evenly distributed pseudo random number generator,
/// this function is guaranteed to return.
/// If you need deterministic runtime bounds, use `uintLessThanBiased`.
pub fn uintLessThan(r: Random, comptime T: type, less_than: T) T {
comptime assert(@typeInfo(T).Int.signedness == .unsigned);
const bits = @typeInfo(T).Int.bits;
assert(0 < less_than);
// adapted from:
// http://www.pcg-random.org/posts/bounded-rands.html
// "Lemire's (with an extra tweak from me)"
var x = r.int(T);
var m = math.mulWide(T, x, less_than);
var l: T = @truncate(m);
if (l < less_than) {
var t = -%less_than;
if (t >= less_than) {
t -= less_than;
if (t >= less_than) {
t %= less_than;
}
}
while (l < t) {
x = r.int(T);
m = math.mulWide(T, x, less_than);
l = @truncate(m);
}
}
return @intCast(m >> bits);
}
/// Constant-time implementation off `uintAtMost`.
/// The results of this function may be biased.
pub fn uintAtMostBiased(r: Random, comptime T: type, at_most: T) T {
assert(@typeInfo(T).Int.signedness == .unsigned);
if (at_most == maxInt(T)) {
// have the full range
return r.int(T);
}
return r.uintLessThanBiased(T, at_most + 1);
}
/// Returns an evenly distributed random unsigned integer `0 <= i <= at_most`.
/// See `uintLessThan`, which this function uses in most cases,
/// for commentary on the runtime of this function.
pub fn uintAtMost(r: Random, comptime T: type, at_most: T) T {
assert(@typeInfo(T).Int.signedness == .unsigned);
if (at_most == maxInt(T)) {
// have the full range
return r.int(T);
}
return r.uintLessThan(T, at_most + 1);
}
/// Constant-time implementation off `intRangeLessThan`.
/// The results of this function may be biased.
pub fn intRangeLessThanBiased(r: Random, comptime T: type, at_least: T, less_than: T) T {
assert(at_least < less_than);
const info = @typeInfo(T).Int;
if (info.signedness == .signed) {
// Two's complement makes this math pretty easy.
const UnsignedT = std.meta.Int(.unsigned, info.bits);
const lo: UnsignedT = @bitCast(at_least);
const hi: UnsignedT = @bitCast(less_than);
const result = lo +% r.uintLessThanBiased(UnsignedT, hi -% lo);
return @bitCast(result);
} else {
// The signed implementation would work fine, but we can use stricter arithmetic operators here.
return at_least + r.uintLessThanBiased(T, less_than - at_least);
}
}
/// Returns an evenly distributed random integer `at_least <= i < less_than`.
/// See `uintLessThan`, which this function uses in most cases,
/// for commentary on the runtime of this function.
pub fn intRangeLessThan(r: Random, comptime T: type, at_least: T, less_than: T) T {
assert(at_least < less_than);
const info = @typeInfo(T).Int;
if (info.signedness == .signed) {
// Two's complement makes this math pretty easy.
const UnsignedT = std.meta.Int(.unsigned, info.bits);
const lo: UnsignedT = @bitCast(at_least);
const hi: UnsignedT = @bitCast(less_than);
const result = lo +% r.uintLessThan(UnsignedT, hi -% lo);
return @bitCast(result);
} else {
// The signed implementation would work fine, but we can use stricter arithmetic operators here.
return at_least + r.uintLessThan(T, less_than - at_least);
}
}
/// Constant-time implementation off `intRangeAtMostBiased`.
/// The results of this function may be biased.
pub fn intRangeAtMostBiased(r: Random, comptime T: type, at_least: T, at_most: T) T {
assert(at_least <= at_most);
const info = @typeInfo(T).Int;
if (info.signedness == .signed) {
// Two's complement makes this math pretty easy.
const UnsignedT = std.meta.Int(.unsigned, info.bits);
const lo: UnsignedT = @bitCast(at_least);
const hi: UnsignedT = @bitCast(at_most);
const result = lo +% r.uintAtMostBiased(UnsignedT, hi -% lo);
return @bitCast(result);
} else {
// The signed implementation would work fine, but we can use stricter arithmetic operators here.
return at_least + r.uintAtMostBiased(T, at_most - at_least);
}
}
/// Returns an evenly distributed random integer `at_least <= i <= at_most`.
/// See `uintLessThan`, which this function uses in most cases,
/// for commentary on the runtime of this function.
pub fn intRangeAtMost(r: Random, comptime T: type, at_least: T, at_most: T) T {
assert(at_least <= at_most);
const info = @typeInfo(T).Int;
if (info.signedness == .signed) {
// Two's complement makes this math pretty easy.
const UnsignedT = std.meta.Int(.unsigned, info.bits);
const lo: UnsignedT = @bitCast(at_least);
const hi: UnsignedT = @bitCast(at_most);
const result = lo +% r.uintAtMost(UnsignedT, hi -% lo);
return @bitCast(result);
} else {
// The signed implementation would work fine, but we can use stricter arithmetic operators here.
return at_least + r.uintAtMost(T, at_most - at_least);
}
}
/// Return a floating point value evenly distributed in the range [0, 1).
pub fn float(r: Random, comptime T: type) T {
// Generate a uniformly random value for the mantissa.
// Then generate an exponentially biased random value for the exponent.
// This covers every possible value in the range.
switch (T) {
f32 => {
// Use 23 random bits for the mantissa, and the rest for the exponent.
// If all 41 bits are zero, generate additional random bits, until a
// set bit is found, or 126 bits have been generated.
const rand = r.int(u64);
var rand_lz = @clz(rand);
if (rand_lz >= 41) {
// TODO: when #5177 or #489 is implemented,
// tell the compiler it is unlikely (1/2^41) to reach this point.
// (Same for the if branch and the f64 calculations below.)
rand_lz = 41 + @clz(r.int(u64));
if (rand_lz == 41 + 64) {
// It is astronomically unlikely to reach this point.
rand_lz += @clz(r.int(u32) | 0x7FF);
}
}
const mantissa: u23 = @truncate(rand);
const exponent = @as(u32, 126 - rand_lz) << 23;
return @bitCast(exponent | mantissa);
},
f64 => {
// Use 52 random bits for the mantissa, and the rest for the exponent.
// If all 12 bits are zero, generate additional random bits, until a
// set bit is found, or 1022 bits have been generated.
const rand = r.int(u64);
var rand_lz: u64 = @clz(rand);
if (rand_lz >= 12) {
rand_lz = 12;
while (true) {
// It is astronomically unlikely for this loop to execute more than once.
const addl_rand_lz = @clz(r.int(u64));
rand_lz += addl_rand_lz;
if (addl_rand_lz != 64) {
break;
}
if (rand_lz >= 1022) {
rand_lz = 1022;
break;
}
}
}
const mantissa = rand & 0xFFFFFFFFFFFFF;
const exponent = (1022 - rand_lz) << 52;
return @bitCast(exponent | mantissa);
},
else => @compileError("unknown floating point type"),
}
}
/// Return a floating point value normally distributed with mean = 0, stddev = 1.
///
/// To use different parameters, use: floatNorm(...) * desiredStddev + desiredMean.
pub fn floatNorm(r: Random, comptime T: type) T {
const value = ziggurat.next_f64(r, ziggurat.NormDist);
switch (T) {
f32 => return @floatCast(value),
f64 => return value,
else => @compileError("unknown floating point type"),
}
}
/// Return an exponentially distributed float with a rate parameter of 1.
///
/// To use a different rate parameter, use: floatExp(...) / desiredRate.
pub fn floatExp(r: Random, comptime T: type) T {
const value = ziggurat.next_f64(r, ziggurat.ExpDist);
switch (T) {
f32 => return @floatCast(value),
f64 => return value,
else => @compileError("unknown floating point type"),
}
}
/// Shuffle a slice into a random order.
///
/// Note that this will not yield consistent results across all targets
/// due to dependence on the representation of `usize` as an index.
/// See `shuffleWithIndex` for further commentary.
pub inline fn shuffle(r: Random, comptime T: type, buf: []T) void {
r.shuffleWithIndex(T, buf, usize);
}
/// Shuffle a slice into a random order, using an index of a
/// specified type to maintain distribution across targets.
/// Asserts the index type can represent `buf.len`.
///
/// Indexes into the slice are generated using the specified `Index`
/// type, which determines distribution properties. This allows for
/// results to be independent of `usize` representation.
///
/// Prefer `shuffle` if this isn't important.
///
/// See `intRangeLessThan`, which this function uses,
/// for commentary on the runtime of this function.
pub fn shuffleWithIndex(r: Random, comptime T: type, buf: []T, comptime Index: type) void {
const MinInt = MinArrayIndex(Index);
if (buf.len < 2) {
return;
}
// `i <= j < max <= maxInt(MinInt)`
const max: MinInt = @intCast(buf.len);
var i: MinInt = 0;
while (i < max - 1) : (i += 1) {
const j: MinInt = @intCast(r.intRangeLessThan(Index, i, max));
mem.swap(T, &buf[i], &buf[j]);
}
}
/// Randomly selects an index into `proportions`, where the likelihood of each
/// index is weighted by that proportion.
/// It is more likely for the index of the last proportion to be returned
/// than the index of the first proportion in the slice, and vice versa.
///
/// This is useful for selecting an item from a slice where weights are not equal.
/// `T` must be a numeric type capable of holding the sum of `proportions`.
pub fn weightedIndex(r: std.rand.Random, comptime T: type, proportions: []const T) usize {
// This implementation works by summing the proportions and picking a
// random point in [0, sum). We then loop over the proportions,
// accumulating until our accumulator is greater than the random point.
const sum = s: {
var sum: T = 0;
for (proportions) |v| sum += v;
break :s sum;
};
const point = switch (@typeInfo(T)) {
.Int => |int_info| switch (int_info.signedness) {
.signed => r.intRangeLessThan(T, 0, sum),
.unsigned => r.uintLessThan(T, sum),
},
// take care that imprecision doesn't lead to a value slightly greater than sum
.Float => @min(r.float(T) * sum, sum - std.math.floatEps(T)),
else => @compileError("weightedIndex does not support proportions of type " ++
@typeName(T)),
};
assert(point < sum);
var accumulator: T = 0;
for (proportions, 0..) |p, index| {
accumulator += p;
if (point < accumulator) return index;
} else unreachable;
}
/// Returns the smallest of `Index` and `usize`.
fn MinArrayIndex(comptime Index: type) type {
const index_info = @typeInfo(Index).Int;
assert(index_info.signedness == .unsigned);
return if (index_info.bits >= @typeInfo(usize).Int.bits) usize else Index;
}
};
/// Convert a random integer 0 <= random_int <= maxValue(T),
/// into an integer 0 <= result < less_than.
/// This function introduces a minor bias.
pub fn limitRangeBiased(comptime T: type, random_int: T, less_than: T) T {
comptime assert(@typeInfo(T).Int.signedness == .unsigned);
const bits = @typeInfo(T).Int.bits;
// adapted from:
// http://www.pcg-random.org/posts/bounded-rands.html
// "Integer Multiplication (Biased)"
const m = math.mulWide(T, random_int, less_than);
return @intCast(m >> bits);
}
// Generator to extend 64-bit seed values into longer sequences.
//
// The number of cycles is thus limited to 64-bits regardless of the engine, but this
// is still plenty for practical purposes.
pub const SplitMix64 = struct {
s: u64,
pub fn init(seed: u64) SplitMix64 {
return SplitMix64{ .s = seed };
}
pub fn next(self: *SplitMix64) u64 {
self.s +%= 0x9e3779b97f4a7c15;
var z = self.s;
z = (z ^ (z >> 30)) *% 0xbf58476d1ce4e5b9;
z = (z ^ (z >> 27)) *% 0x94d049bb133111eb;
return z ^ (z >> 31);
}
};
test {
std.testing.refAllDecls(@This());
_ = @import("rand/test.zig");
}