zig/lib/std/math/complex/cosh.zig
Andrew Kelley d29871977f remove redundant license headers from zig standard library
We already have a LICENSE file that covers the Zig Standard Library. We
no longer need to remind everyone that the license is MIT in every single
file.

Previously this was introduced to clarify the situation for a fork of
Zig that made Zig's LICENSE file harder to find, and replaced it with
their own license that required annual payments to their company.
However that fork now appears to be dead. So there is no need to
reinforce the copyright notice in every single file.
2021-08-24 12:25:09 -07:00

172 lines
5.4 KiB
Zig

// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/complex/ccoshf.c
// https://git.musl-libc.org/cgit/musl/tree/src/complex/ccosh.c
const std = @import("../../std.zig");
const testing = std.testing;
const math = std.math;
const cmath = math.complex;
const Complex = cmath.Complex;
const ldexp_cexp = @import("ldexp.zig").ldexp_cexp;
/// Returns the hyperbolic arc-cosine of z.
pub fn cosh(z: anytype) Complex(@TypeOf(z.re)) {
const T = @TypeOf(z.re);
return switch (T) {
f32 => cosh32(z),
f64 => cosh64(z),
else => @compileError("cosh not implemented for " ++ @typeName(z)),
};
}
fn cosh32(z: Complex(f32)) Complex(f32) {
const x = z.re;
const y = z.im;
const hx = @bitCast(u32, x);
const ix = hx & 0x7fffffff;
const hy = @bitCast(u32, y);
const iy = hy & 0x7fffffff;
if (ix < 0x7f800000 and iy < 0x7f800000) {
if (iy == 0) {
return Complex(f32).init(math.cosh(x), y);
}
// small x: normal case
if (ix < 0x41100000) {
return Complex(f32).init(math.cosh(x) * math.cos(y), math.sinh(x) * math.sin(y));
}
// |x|>= 9, so cosh(x) ~= exp(|x|)
if (ix < 0x42b17218) {
// x < 88.7: exp(|x|) won't overflow
const h = math.exp(math.fabs(x)) * 0.5;
return Complex(f32).init(math.copysign(f32, h, x) * math.cos(y), h * math.sin(y));
}
// x < 192.7: scale to avoid overflow
else if (ix < 0x4340b1e7) {
const v = Complex(f32).init(math.fabs(x), y);
const r = ldexp_cexp(v, -1);
return Complex(f32).init(r.re, r.im * math.copysign(f32, 1, x));
}
// x >= 192.7: result always overflows
else {
const h = 0x1p127 * x;
return Complex(f32).init(h * h * math.cos(y), h * math.sin(y));
}
}
if (ix == 0 and iy >= 0x7f800000) {
return Complex(f32).init(y - y, math.copysign(f32, 0, x * (y - y)));
}
if (iy == 0 and ix >= 0x7f800000) {
if (hx & 0x7fffff == 0) {
return Complex(f32).init(x * x, math.copysign(f32, 0, x) * y);
}
return Complex(f32).init(x, math.copysign(f32, 0, (x + x) * y));
}
if (ix < 0x7f800000 and iy >= 0x7f800000) {
return Complex(f32).init(y - y, x * (y - y));
}
if (ix >= 0x7f800000 and (hx & 0x7fffff) == 0) {
if (iy >= 0x7f800000) {
return Complex(f32).init(x * x, x * (y - y));
}
return Complex(f32).init((x * x) * math.cos(y), x * math.sin(y));
}
return Complex(f32).init((x * x) * (y - y), (x + x) * (y - y));
}
fn cosh64(z: Complex(f64)) Complex(f64) {
const x = z.re;
const y = z.im;
const fx = @bitCast(u64, x);
const hx = @intCast(u32, fx >> 32);
const lx = @truncate(u32, fx);
const ix = hx & 0x7fffffff;
const fy = @bitCast(u64, y);
const hy = @intCast(u32, fy >> 32);
const ly = @truncate(u32, fy);
const iy = hy & 0x7fffffff;
// nearly non-exceptional case where x, y are finite
if (ix < 0x7ff00000 and iy < 0x7ff00000) {
if (iy | ly == 0) {
return Complex(f64).init(math.cosh(x), x * y);
}
// small x: normal case
if (ix < 0x40360000) {
return Complex(f64).init(math.cosh(x) * math.cos(y), math.sinh(x) * math.sin(y));
}
// |x|>= 22, so cosh(x) ~= exp(|x|)
if (ix < 0x40862e42) {
// x < 710: exp(|x|) won't overflow
const h = math.exp(math.fabs(x)) * 0.5;
return Complex(f64).init(h * math.cos(y), math.copysign(f64, h, x) * math.sin(y));
}
// x < 1455: scale to avoid overflow
else if (ix < 0x4096bbaa) {
const v = Complex(f64).init(math.fabs(x), y);
const r = ldexp_cexp(v, -1);
return Complex(f64).init(r.re, r.im * math.copysign(f64, 1, x));
}
// x >= 1455: result always overflows
else {
const h = 0x1p1023;
return Complex(f64).init(h * h * math.cos(y), h * math.sin(y));
}
}
if (ix | lx == 0 and iy >= 0x7ff00000) {
return Complex(f64).init(y - y, math.copysign(f64, 0, x * (y - y)));
}
if (iy | ly == 0 and ix >= 0x7ff00000) {
if ((hx & 0xfffff) | lx == 0) {
return Complex(f64).init(x * x, math.copysign(f64, 0, x) * y);
}
return Complex(f64).init(x * x, math.copysign(f64, 0, (x + x) * y));
}
if (ix < 0x7ff00000 and iy >= 0x7ff00000) {
return Complex(f64).init(y - y, x * (y - y));
}
if (ix >= 0x7ff00000 and (hx & 0xfffff) | lx == 0) {
if (iy >= 0x7ff00000) {
return Complex(f64).init(x * x, x * (y - y));
}
return Complex(f64).init(x * x * math.cos(y), x * math.sin(y));
}
return Complex(f64).init((x * x) * (y - y), (x + x) * (y - y));
}
const epsilon = 0.0001;
test "complex.ccosh32" {
const a = Complex(f32).init(5, 3);
const c = cosh(a);
try testing.expect(math.approxEqAbs(f32, c.re, -73.467300, epsilon));
try testing.expect(math.approxEqAbs(f32, c.im, 10.471557, epsilon));
}
test "complex.ccosh64" {
const a = Complex(f64).init(5, 3);
const c = cosh(a);
try testing.expect(math.approxEqAbs(f64, c.re, -73.467300, epsilon));
try testing.expect(math.approxEqAbs(f64, c.im, 10.471557, epsilon));
}