zig/lib/std/math/complex/sqrt.zig
Andrew Kelley d29871977f remove redundant license headers from zig standard library
We already have a LICENSE file that covers the Zig Standard Library. We
no longer need to remind everyone that the license is MIT in every single
file.

Previously this was introduced to clarify the situation for a fork of
Zig that made Zig's LICENSE file harder to find, and replaced it with
their own license that required annual payments to their company.
However that fork now appears to be dead. So there is no need to
reinforce the copyright notice in every single file.
2021-08-24 12:25:09 -07:00

146 lines
4.2 KiB
Zig

// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/complex/csqrtf.c
// https://git.musl-libc.org/cgit/musl/tree/src/complex/csqrt.c
const std = @import("../../std.zig");
const testing = std.testing;
const math = std.math;
const cmath = math.complex;
const Complex = cmath.Complex;
/// Returns the square root of z. The real and imaginary parts of the result have the same sign
/// as the imaginary part of z.
pub fn sqrt(z: anytype) @TypeOf(z) {
const T = @TypeOf(z.re);
return switch (T) {
f32 => sqrt32(z),
f64 => sqrt64(z),
else => @compileError("sqrt not implemented for " ++ @typeName(T)),
};
}
fn sqrt32(z: Complex(f32)) Complex(f32) {
const x = z.re;
const y = z.im;
if (x == 0 and y == 0) {
return Complex(f32).init(0, y);
}
if (math.isInf(y)) {
return Complex(f32).init(math.inf(f32), y);
}
if (math.isNan(x)) {
// raise invalid if y is not nan
const t = (y - y) / (y - y);
return Complex(f32).init(x, t);
}
if (math.isInf(x)) {
// sqrt(inf + i nan) = inf + nan i
// sqrt(inf + iy) = inf + i0
// sqrt(-inf + i nan) = nan +- inf i
// sqrt(-inf + iy) = 0 + inf i
if (math.signbit(x)) {
return Complex(f32).init(math.fabs(x - y), math.copysign(f32, x, y));
} else {
return Complex(f32).init(x, math.copysign(f32, y - y, y));
}
}
// y = nan special case is handled fine below
// double-precision avoids overflow with correct rounding.
const dx = @as(f64, x);
const dy = @as(f64, y);
if (dx >= 0) {
const t = math.sqrt((dx + math.hypot(f64, dx, dy)) * 0.5);
return Complex(f32).init(
@floatCast(f32, t),
@floatCast(f32, dy / (2.0 * t)),
);
} else {
const t = math.sqrt((-dx + math.hypot(f64, dx, dy)) * 0.5);
return Complex(f32).init(
@floatCast(f32, math.fabs(y) / (2.0 * t)),
@floatCast(f32, math.copysign(f64, t, y)),
);
}
}
fn sqrt64(z: Complex(f64)) Complex(f64) {
// may encounter overflow for im,re >= DBL_MAX / (1 + sqrt(2))
const threshold = 0x1.a827999fcef32p+1022;
var x = z.re;
var y = z.im;
if (x == 0 and y == 0) {
return Complex(f64).init(0, y);
}
if (math.isInf(y)) {
return Complex(f64).init(math.inf(f64), y);
}
if (math.isNan(x)) {
// raise invalid if y is not nan
const t = (y - y) / (y - y);
return Complex(f64).init(x, t);
}
if (math.isInf(x)) {
// sqrt(inf + i nan) = inf + nan i
// sqrt(inf + iy) = inf + i0
// sqrt(-inf + i nan) = nan +- inf i
// sqrt(-inf + iy) = 0 + inf i
if (math.signbit(x)) {
return Complex(f64).init(math.fabs(x - y), math.copysign(f64, x, y));
} else {
return Complex(f64).init(x, math.copysign(f64, y - y, y));
}
}
// y = nan special case is handled fine below
// scale to avoid overflow
var scale = false;
if (math.fabs(x) >= threshold or math.fabs(y) >= threshold) {
x *= 0.25;
y *= 0.25;
scale = true;
}
var result: Complex(f64) = undefined;
if (x >= 0) {
const t = math.sqrt((x + math.hypot(f64, x, y)) * 0.5);
result = Complex(f64).init(t, y / (2.0 * t));
} else {
const t = math.sqrt((-x + math.hypot(f64, x, y)) * 0.5);
result = Complex(f64).init(math.fabs(y) / (2.0 * t), math.copysign(f64, t, y));
}
if (scale) {
result.re *= 2;
result.im *= 2;
}
return result;
}
const epsilon = 0.0001;
test "complex.csqrt32" {
const a = Complex(f32).init(5, 3);
const c = sqrt(a);
try testing.expect(math.approxEqAbs(f32, c.re, 2.327117, epsilon));
try testing.expect(math.approxEqAbs(f32, c.im, 0.644574, epsilon));
}
test "complex.csqrt64" {
const a = Complex(f64).init(5, 3);
const c = sqrt(a);
try testing.expect(math.approxEqAbs(f64, c.re, 2.3271175190399496, epsilon));
try testing.expect(math.approxEqAbs(f64, c.im, 0.6445742373246469, epsilon));
}