mirror of
https://codeberg.org/ziglang/zig.git
synced 2025-12-06 13:54:21 +00:00
We already have a LICENSE file that covers the Zig Standard Library. We no longer need to remind everyone that the license is MIT in every single file. Previously this was introduced to clarify the situation for a fork of Zig that made Zig's LICENSE file harder to find, and replaced it with their own license that required annual payments to their company. However that fork now appears to be dead. So there is no need to reinforce the copyright notice in every single file.
217 lines
6.9 KiB
Zig
217 lines
6.9 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/log10f.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/log10.c
|
|
|
|
const std = @import("../std.zig");
|
|
const math = std.math;
|
|
const testing = std.testing;
|
|
const maxInt = std.math.maxInt;
|
|
|
|
/// Returns the base-10 logarithm of x.
|
|
///
|
|
/// Special Cases:
|
|
/// - log10(+inf) = +inf
|
|
/// - log10(0) = -inf
|
|
/// - log10(x) = nan if x < 0
|
|
/// - log10(nan) = nan
|
|
pub fn log10(x: anytype) @TypeOf(x) {
|
|
const T = @TypeOf(x);
|
|
switch (@typeInfo(T)) {
|
|
.ComptimeFloat => {
|
|
return @as(comptime_float, log10_64(x));
|
|
},
|
|
.Float => {
|
|
return switch (T) {
|
|
f32 => log10_32(x),
|
|
f64 => log10_64(x),
|
|
else => @compileError("log10 not implemented for " ++ @typeName(T)),
|
|
};
|
|
},
|
|
.ComptimeInt => {
|
|
return @as(comptime_int, math.floor(log10_64(@as(f64, x))));
|
|
},
|
|
.Int => |IntType| switch (IntType.signedness) {
|
|
.signed => return @compileError("log10 not implemented for signed integers"),
|
|
.unsigned => return @floatToInt(T, math.floor(log10_64(@intToFloat(f64, x)))),
|
|
},
|
|
else => @compileError("log10 not implemented for " ++ @typeName(T)),
|
|
}
|
|
}
|
|
|
|
pub fn log10_32(x_: f32) f32 {
|
|
const ivln10hi: f32 = 4.3432617188e-01;
|
|
const ivln10lo: f32 = -3.1689971365e-05;
|
|
const log10_2hi: f32 = 3.0102920532e-01;
|
|
const log10_2lo: f32 = 7.9034151668e-07;
|
|
const Lg1: f32 = 0xaaaaaa.0p-24;
|
|
const Lg2: f32 = 0xccce13.0p-25;
|
|
const Lg3: f32 = 0x91e9ee.0p-25;
|
|
const Lg4: f32 = 0xf89e26.0p-26;
|
|
|
|
var x = x_;
|
|
var u = @bitCast(u32, x);
|
|
var ix = u;
|
|
var k: i32 = 0;
|
|
|
|
// x < 2^(-126)
|
|
if (ix < 0x00800000 or ix >> 31 != 0) {
|
|
// log(+-0) = -inf
|
|
if (ix << 1 == 0) {
|
|
return -math.inf(f32);
|
|
}
|
|
// log(-#) = nan
|
|
if (ix >> 31 != 0) {
|
|
return math.nan(f32);
|
|
}
|
|
|
|
k -= 25;
|
|
x *= 0x1.0p25;
|
|
ix = @bitCast(u32, x);
|
|
} else if (ix >= 0x7F800000) {
|
|
return x;
|
|
} else if (ix == 0x3F800000) {
|
|
return 0;
|
|
}
|
|
|
|
// x into [sqrt(2) / 2, sqrt(2)]
|
|
ix += 0x3F800000 - 0x3F3504F3;
|
|
k += @intCast(i32, ix >> 23) - 0x7F;
|
|
ix = (ix & 0x007FFFFF) + 0x3F3504F3;
|
|
x = @bitCast(f32, ix);
|
|
|
|
const f = x - 1.0;
|
|
const s = f / (2.0 + f);
|
|
const z = s * s;
|
|
const w = z * z;
|
|
const t1 = w * (Lg2 + w * Lg4);
|
|
const t2 = z * (Lg1 + w * Lg3);
|
|
const R = t2 + t1;
|
|
const hfsq = 0.5 * f * f;
|
|
|
|
var hi = f - hfsq;
|
|
u = @bitCast(u32, hi);
|
|
u &= 0xFFFFF000;
|
|
hi = @bitCast(f32, u);
|
|
const lo = f - hi - hfsq + s * (hfsq + R);
|
|
const dk = @intToFloat(f32, k);
|
|
|
|
return dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi + hi * ivln10hi + dk * log10_2hi;
|
|
}
|
|
|
|
pub fn log10_64(x_: f64) f64 {
|
|
const ivln10hi: f64 = 4.34294481878168880939e-01;
|
|
const ivln10lo: f64 = 2.50829467116452752298e-11;
|
|
const log10_2hi: f64 = 3.01029995663611771306e-01;
|
|
const log10_2lo: f64 = 3.69423907715893078616e-13;
|
|
const Lg1: f64 = 6.666666666666735130e-01;
|
|
const Lg2: f64 = 3.999999999940941908e-01;
|
|
const Lg3: f64 = 2.857142874366239149e-01;
|
|
const Lg4: f64 = 2.222219843214978396e-01;
|
|
const Lg5: f64 = 1.818357216161805012e-01;
|
|
const Lg6: f64 = 1.531383769920937332e-01;
|
|
const Lg7: f64 = 1.479819860511658591e-01;
|
|
|
|
var x = x_;
|
|
var ix = @bitCast(u64, x);
|
|
var hx = @intCast(u32, ix >> 32);
|
|
var k: i32 = 0;
|
|
|
|
if (hx < 0x00100000 or hx >> 31 != 0) {
|
|
// log(+-0) = -inf
|
|
if (ix << 1 == 0) {
|
|
return -math.inf(f32);
|
|
}
|
|
// log(-#) = nan
|
|
if (hx >> 31 != 0) {
|
|
return math.nan(f32);
|
|
}
|
|
|
|
// subnormal, scale x
|
|
k -= 54;
|
|
x *= 0x1.0p54;
|
|
hx = @intCast(u32, @bitCast(u64, x) >> 32);
|
|
} else if (hx >= 0x7FF00000) {
|
|
return x;
|
|
} else if (hx == 0x3FF00000 and ix << 32 == 0) {
|
|
return 0;
|
|
}
|
|
|
|
// x into [sqrt(2) / 2, sqrt(2)]
|
|
hx += 0x3FF00000 - 0x3FE6A09E;
|
|
k += @intCast(i32, hx >> 20) - 0x3FF;
|
|
hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
|
|
ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
|
|
x = @bitCast(f64, ix);
|
|
|
|
const f = x - 1.0;
|
|
const hfsq = 0.5 * f * f;
|
|
const s = f / (2.0 + f);
|
|
const z = s * s;
|
|
const w = z * z;
|
|
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
|
|
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
|
|
const R = t2 + t1;
|
|
|
|
// hi + lo = f - hfsq + s * (hfsq + R) ~ log(1 + f)
|
|
var hi = f - hfsq;
|
|
var hii = @bitCast(u64, hi);
|
|
hii &= @as(u64, maxInt(u64)) << 32;
|
|
hi = @bitCast(f64, hii);
|
|
const lo = f - hi - hfsq + s * (hfsq + R);
|
|
|
|
// val_hi + val_lo ~ log10(1 + f) + k * log10(2)
|
|
var val_hi = hi * ivln10hi;
|
|
const dk = @intToFloat(f64, k);
|
|
const y = dk * log10_2hi;
|
|
var val_lo = dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi;
|
|
|
|
// Extra precision multiplication
|
|
const ww = y + val_hi;
|
|
val_lo += (y - ww) + val_hi;
|
|
val_hi = ww;
|
|
|
|
return val_lo + val_hi;
|
|
}
|
|
|
|
test "math.log10" {
|
|
try testing.expect(log10(@as(f32, 0.2)) == log10_32(0.2));
|
|
try testing.expect(log10(@as(f64, 0.2)) == log10_64(0.2));
|
|
}
|
|
|
|
test "math.log10_32" {
|
|
const epsilon = 0.000001;
|
|
|
|
try testing.expect(math.approxEqAbs(f32, log10_32(0.2), -0.698970, epsilon));
|
|
try testing.expect(math.approxEqAbs(f32, log10_32(0.8923), -0.049489, epsilon));
|
|
try testing.expect(math.approxEqAbs(f32, log10_32(1.5), 0.176091, epsilon));
|
|
try testing.expect(math.approxEqAbs(f32, log10_32(37.45), 1.573452, epsilon));
|
|
try testing.expect(math.approxEqAbs(f32, log10_32(89.123), 1.94999, epsilon));
|
|
try testing.expect(math.approxEqAbs(f32, log10_32(123123.234375), 5.09034, epsilon));
|
|
}
|
|
|
|
test "math.log10_64" {
|
|
const epsilon = 0.000001;
|
|
|
|
try testing.expect(math.approxEqAbs(f64, log10_64(0.2), -0.698970, epsilon));
|
|
try testing.expect(math.approxEqAbs(f64, log10_64(0.8923), -0.049489, epsilon));
|
|
try testing.expect(math.approxEqAbs(f64, log10_64(1.5), 0.176091, epsilon));
|
|
try testing.expect(math.approxEqAbs(f64, log10_64(37.45), 1.573452, epsilon));
|
|
try testing.expect(math.approxEqAbs(f64, log10_64(89.123), 1.94999, epsilon));
|
|
try testing.expect(math.approxEqAbs(f64, log10_64(123123.234375), 5.09034, epsilon));
|
|
}
|
|
|
|
test "math.log10_32.special" {
|
|
try testing.expect(math.isPositiveInf(log10_32(math.inf(f32))));
|
|
try testing.expect(math.isNegativeInf(log10_32(0.0)));
|
|
try testing.expect(math.isNan(log10_32(-1.0)));
|
|
try testing.expect(math.isNan(log10_32(math.nan(f32))));
|
|
}
|
|
|
|
test "math.log10_64.special" {
|
|
try testing.expect(math.isPositiveInf(log10_64(math.inf(f64))));
|
|
try testing.expect(math.isNegativeInf(log10_64(0.0)));
|
|
try testing.expect(math.isNan(log10_64(-1.0)));
|
|
try testing.expect(math.isNan(log10_64(math.nan(f64))));
|
|
}
|