mirror of
https://codeberg.org/ziglang/zig.git
synced 2025-12-06 05:44:20 +00:00
This commit replaces the "fuzzer" UI, previously accessed with the `--fuzz` and `--port` flags, with a more interesting web UI which allows more interactions with the Zig build system. Most notably, it allows accessing the data emitted by a new "time report" system, which allows users to see which parts of Zig programs take the longest to compile. The option to expose the web UI is `--webui`. By default, it will listen on `[::1]` on a random port, but any IPv6 or IPv4 address can be specified with e.g. `--webui=[::1]:8000` or `--webui=127.0.0.1:8000`. The options `--fuzz` and `--time-report` both imply `--webui` if not given. Currently, `--webui` is incompatible with `--watch`; specifying both will cause `zig build` to exit with a fatal error. When the web UI is enabled, the build runner spawns the web server as soon as the configure phase completes. The frontend code consists of one HTML file, one JavaScript file, two CSS files, and a few Zig source files which are built into a WASM blob on-demand -- this is all very similar to the old fuzzer UI. Also inherited from the fuzzer UI is that the build system communicates with web clients over a WebSocket connection. When the build finishes, if `--webui` was passed (i.e. if the web server is running), the build runner does not terminate; it continues running to serve web requests, allowing interactive control of the build system. In the web interface is an overall "status" indicating whether a build is currently running, and also a list of all steps in this build. There are visual indicators (colors and spinners) for in-progress, succeeded, and failed steps. There is a "Rebuild" button which will cause the build system to reset the state of every step (note that this does not affect caching) and evaluate the step graph again. If `--time-report` is passed to `zig build`, a new section of the interface becomes visible, which associates every build step with a "time report". For most steps, this is just a simple "time taken" value. However, for `Compile` steps, the compiler communicates with the build system to provide it with much more interesting information: time taken for various pipeline phases, with a per-declaration and per-file breakdown, sorted by slowest declarations/files first. This feature is still in its early stages: the data can be a little tricky to understand, and there is no way to, for instance, sort by different properties, or filter to certain files. However, it has already given us some interesting statistics, and can be useful for spotting, for instance, particularly complex and slow compile-time logic. Additionally, if a compilation uses LLVM, its time report includes the "LLVM pass timing" information, which was previously accessible with the (now removed) `-ftime-report` compiler flag. To make time reports more useful, ZIR and compilation caches are ignored by the Zig compiler when they are enabled -- in other words, `Compile` steps *always* run, even if their result should be cached. This means that the flag can be used to analyze a project's compile time without having to repeatedly clear cache directory, for instance. However, when using `-fincremental`, updates other than the first will only show you the statistics for what changed on that particular update. Notably, this gives us a fairly nice way to see exactly which declarations were re-analyzed by an incremental update. If `--fuzz` is passed to `zig build`, another section of the web interface becomes visible, this time exposing the fuzzer. This is quite similar to the fuzzer UI this commit replaces, with only a few cosmetic tweaks. The interface is closer than before to supporting multiple fuzz steps at a time (in line with the overall strategy for this build UI, the goal will be for all of the fuzz steps to be accessible in the same interface), but still doesn't actually support it. The fuzzer UI looks quite different under the hood: as a result, various bugs are fixed, although other bugs remain. For instance, viewing the source code of any file other than the root of the main module is completely broken (as on master) due to some bogus file-to-module assignment logic in the fuzzer UI. Implementation notes: * The `lib/build-web/` directory holds the client side of the web UI. * The general server logic is in `std.Build.WebServer`. * Fuzzing-specific logic is in `std.Build.Fuzz`. * `std.Build.abi` is the new home of `std.Build.Fuzz.abi`, since it now relates to the build system web UI in general. * The build runner now has an **actual** general-purpose allocator, because thanks to `--watch` and `--webui`, the process can be arbitrarily long-lived. The gpa is `std.heap.DebugAllocator`, but the arena remains backed by `std.heap.page_allocator` for efficiency. I fixed several crashes caused by conflation of `gpa` and `arena` in the build runner and `std.Build`, but there may still be some I have missed. * The I/O logic in `std.Build.WebServer` is pretty gnarly; there are a *lot* of threads involved. I anticipate this situation improving significantly once the `std.Io` interface (with concurrency support) is introduced.
661 lines
26 KiB
Zig
661 lines
26 KiB
Zig
const builtin = @import("builtin");
|
|
const std = @import("std");
|
|
const Allocator = std.mem.Allocator;
|
|
const assert = std.debug.assert;
|
|
const fatal = std.process.fatal;
|
|
const SeenPcsHeader = std.Build.abi.fuzz.SeenPcsHeader;
|
|
|
|
pub const std_options = std.Options{
|
|
.logFn = logOverride,
|
|
};
|
|
|
|
var log_file_buffer: [256]u8 = undefined;
|
|
var log_file_writer: ?std.fs.File.Writer = null;
|
|
|
|
fn logOverride(
|
|
comptime level: std.log.Level,
|
|
comptime scope: @Type(.enum_literal),
|
|
comptime format: []const u8,
|
|
args: anytype,
|
|
) void {
|
|
const fw = if (log_file_writer) |*f| f else f: {
|
|
const f = fuzzer.cache_dir.createFile("tmp/libfuzzer.log", .{}) catch
|
|
@panic("failed to open fuzzer log file");
|
|
log_file_writer = f.writer(&log_file_buffer);
|
|
break :f &log_file_writer.?;
|
|
};
|
|
const prefix1 = comptime level.asText();
|
|
const prefix2 = if (scope == .default) ": " else "(" ++ @tagName(scope) ++ "): ";
|
|
fw.interface.print(prefix1 ++ prefix2 ++ format ++ "\n", args) catch
|
|
@panic("failed to write to fuzzer log");
|
|
fw.interface.flush() catch @panic("failed to flush fuzzer log");
|
|
}
|
|
|
|
/// Helps determine run uniqueness in the face of recursion.
|
|
export threadlocal var __sancov_lowest_stack: usize = 0;
|
|
|
|
export fn __sanitizer_cov_trace_const_cmp1(arg1: u8, arg2: u8) void {
|
|
handleCmp(@returnAddress(), arg1, arg2);
|
|
}
|
|
|
|
export fn __sanitizer_cov_trace_cmp1(arg1: u8, arg2: u8) void {
|
|
handleCmp(@returnAddress(), arg1, arg2);
|
|
}
|
|
|
|
export fn __sanitizer_cov_trace_const_cmp2(arg1: u16, arg2: u16) void {
|
|
handleCmp(@returnAddress(), arg1, arg2);
|
|
}
|
|
|
|
export fn __sanitizer_cov_trace_cmp2(arg1: u16, arg2: u16) void {
|
|
handleCmp(@returnAddress(), arg1, arg2);
|
|
}
|
|
|
|
export fn __sanitizer_cov_trace_const_cmp4(arg1: u32, arg2: u32) void {
|
|
handleCmp(@returnAddress(), arg1, arg2);
|
|
}
|
|
|
|
export fn __sanitizer_cov_trace_cmp4(arg1: u32, arg2: u32) void {
|
|
handleCmp(@returnAddress(), arg1, arg2);
|
|
}
|
|
|
|
export fn __sanitizer_cov_trace_const_cmp8(arg1: u64, arg2: u64) void {
|
|
handleCmp(@returnAddress(), arg1, arg2);
|
|
}
|
|
|
|
export fn __sanitizer_cov_trace_cmp8(arg1: u64, arg2: u64) void {
|
|
handleCmp(@returnAddress(), arg1, arg2);
|
|
}
|
|
|
|
export fn __sanitizer_cov_trace_switch(val: u64, cases_ptr: [*]u64) void {
|
|
const pc = @returnAddress();
|
|
const len = cases_ptr[0];
|
|
const val_size_in_bits = cases_ptr[1];
|
|
const cases = cases_ptr[2..][0..len];
|
|
fuzzer.traceValue(pc ^ val);
|
|
_ = val_size_in_bits;
|
|
_ = cases;
|
|
//std.log.debug("0x{x}: switch on value {d} ({d} bits) with {d} cases", .{
|
|
// pc, val, val_size_in_bits, cases.len,
|
|
//});
|
|
}
|
|
|
|
export fn __sanitizer_cov_trace_pc_indir(callee: usize) void {
|
|
// Not valuable because we already have pc tracing via 8bit counters.
|
|
_ = callee;
|
|
//const pc = @returnAddress();
|
|
//fuzzer.traceValue(pc ^ callee);
|
|
//std.log.debug("0x{x}: indirect call to 0x{x}", .{ pc, callee });
|
|
}
|
|
export fn __sanitizer_cov_8bit_counters_init(start: usize, end: usize) void {
|
|
// clang will emit a call to this function when compiling with code coverage instrumentation.
|
|
// however fuzzer_init() does not need this information, since it directly reads from the symbol table.
|
|
_ = start;
|
|
_ = end;
|
|
}
|
|
export fn __sanitizer_cov_pcs_init(start: usize, end: usize) void {
|
|
// clang will emit a call to this function when compiling with code coverage instrumentation.
|
|
// however fuzzer_init() does not need this information, since it directly reads from the symbol table.
|
|
_ = start;
|
|
_ = end;
|
|
}
|
|
|
|
fn handleCmp(pc: usize, arg1: u64, arg2: u64) void {
|
|
fuzzer.traceValue(pc ^ arg1 ^ arg2);
|
|
//std.log.debug("0x{x}: comparison of {d} and {d}", .{ pc, arg1, arg2 });
|
|
}
|
|
|
|
const Fuzzer = struct {
|
|
rng: std.Random.DefaultPrng,
|
|
pcs: []const usize,
|
|
pc_counters: []u8,
|
|
n_runs: usize,
|
|
traced_comparisons: std.AutoArrayHashMapUnmanaged(usize, void),
|
|
/// Tracks which PCs have been seen across all runs that do not crash the fuzzer process.
|
|
/// Stored in a memory-mapped file so that it can be shared with other
|
|
/// processes and viewed while the fuzzer is running.
|
|
seen_pcs: MemoryMappedList,
|
|
cache_dir: std.fs.Dir,
|
|
/// Identifies the file name that will be used to store coverage
|
|
/// information, available to other processes.
|
|
coverage_id: u64,
|
|
unit_test_name: []const u8,
|
|
|
|
/// The index corresponds to the file name within the f/ subdirectory.
|
|
/// The string is the input.
|
|
/// This data is read-only; it caches what is on the filesystem.
|
|
corpus: std.ArrayListUnmanaged(Input),
|
|
corpus_directory: std.Build.Cache.Directory,
|
|
|
|
/// The next input that will be given to the testOne function. When the
|
|
/// current process crashes, this memory-mapped file is used to recover the
|
|
/// input.
|
|
///
|
|
/// The file size corresponds to the capacity. The length is not stored
|
|
/// and that is the next thing to work on!
|
|
input: MemoryMappedList,
|
|
|
|
const Input = struct {
|
|
bytes: []u8,
|
|
last_traced_comparison: usize,
|
|
};
|
|
|
|
const Slice = extern struct {
|
|
ptr: [*]const u8,
|
|
len: usize,
|
|
|
|
fn toZig(s: Slice) []const u8 {
|
|
return s.ptr[0..s.len];
|
|
}
|
|
|
|
fn fromZig(s: []const u8) Slice {
|
|
return .{
|
|
.ptr = s.ptr,
|
|
.len = s.len,
|
|
};
|
|
}
|
|
};
|
|
|
|
fn init(f: *Fuzzer, cache_dir: std.fs.Dir, pc_counters: []u8, pcs: []const usize) !void {
|
|
f.cache_dir = cache_dir;
|
|
f.pc_counters = pc_counters;
|
|
f.pcs = pcs;
|
|
|
|
// Choose a file name for the coverage based on a hash of the PCs that will be stored within.
|
|
const pc_digest = std.hash.Wyhash.hash(0, std.mem.sliceAsBytes(pcs));
|
|
f.coverage_id = pc_digest;
|
|
const hex_digest = std.fmt.hex(pc_digest);
|
|
const coverage_file_path = "v/" ++ hex_digest;
|
|
|
|
// Layout of this file:
|
|
// - Header
|
|
// - list of PC addresses (usize elements)
|
|
// - list of hit flag, 1 bit per address (stored in u8 elements)
|
|
const coverage_file = createFileBail(cache_dir, coverage_file_path, .{
|
|
.read = true,
|
|
.truncate = false,
|
|
});
|
|
const n_bitset_elems = (pcs.len + @bitSizeOf(usize) - 1) / @bitSizeOf(usize);
|
|
comptime assert(SeenPcsHeader.trailing[0] == .pc_bits_usize);
|
|
comptime assert(SeenPcsHeader.trailing[1] == .pc_addr);
|
|
const bytes_len = @sizeOf(SeenPcsHeader) +
|
|
n_bitset_elems * @sizeOf(usize) +
|
|
pcs.len * @sizeOf(usize);
|
|
const existing_len = coverage_file.getEndPos() catch |err| {
|
|
fatal("unable to check len of coverage file: {s}", .{@errorName(err)});
|
|
};
|
|
if (existing_len == 0) {
|
|
coverage_file.setEndPos(bytes_len) catch |err| {
|
|
fatal("unable to set len of coverage file: {s}", .{@errorName(err)});
|
|
};
|
|
} else if (existing_len != bytes_len) {
|
|
fatal("incompatible existing coverage file (differing lengths)", .{});
|
|
}
|
|
f.seen_pcs = MemoryMappedList.init(coverage_file, existing_len, bytes_len) catch |err| {
|
|
fatal("unable to init coverage memory map: {s}", .{@errorName(err)});
|
|
};
|
|
if (existing_len != 0) {
|
|
const existing_pcs_bytes = f.seen_pcs.items[@sizeOf(SeenPcsHeader) + @sizeOf(usize) * n_bitset_elems ..][0 .. pcs.len * @sizeOf(usize)];
|
|
const existing_pcs = std.mem.bytesAsSlice(usize, existing_pcs_bytes);
|
|
for (existing_pcs, pcs, 0..) |old, new, i| {
|
|
if (old != new) {
|
|
fatal("incompatible existing coverage file (differing PC at index {d}: {x} != {x})", .{
|
|
i, old, new,
|
|
});
|
|
}
|
|
}
|
|
} else {
|
|
const header: SeenPcsHeader = .{
|
|
.n_runs = 0,
|
|
.unique_runs = 0,
|
|
.pcs_len = pcs.len,
|
|
};
|
|
f.seen_pcs.appendSliceAssumeCapacity(std.mem.asBytes(&header));
|
|
f.seen_pcs.appendNTimesAssumeCapacity(0, n_bitset_elems * @sizeOf(usize));
|
|
f.seen_pcs.appendSliceAssumeCapacity(std.mem.sliceAsBytes(pcs));
|
|
}
|
|
}
|
|
|
|
fn initNextInput(f: *Fuzzer) void {
|
|
while (true) {
|
|
const i = f.corpus.items.len;
|
|
var buf: [30]u8 = undefined;
|
|
const input_sub_path = std.fmt.bufPrint(&buf, "{d}", .{i}) catch unreachable;
|
|
const input = f.corpus_directory.handle.readFileAlloc(gpa, input_sub_path, 1 << 31) catch |err| switch (err) {
|
|
error.FileNotFound => {
|
|
// Make this one the next input.
|
|
const input_file = f.corpus_directory.handle.createFile(input_sub_path, .{
|
|
.exclusive = true,
|
|
.truncate = false,
|
|
.read = true,
|
|
}) catch |e| switch (e) {
|
|
error.PathAlreadyExists => continue,
|
|
else => fatal("unable to create '{f}{d}: {s}", .{ f.corpus_directory, i, @errorName(err) }),
|
|
};
|
|
errdefer input_file.close();
|
|
// Initialize the mmap for the current input.
|
|
f.input = MemoryMappedList.create(input_file, 0, std.heap.page_size_max) catch |e| {
|
|
fatal("unable to init memory map for input at '{f}{d}': {s}", .{
|
|
f.corpus_directory, i, @errorName(e),
|
|
});
|
|
};
|
|
break;
|
|
},
|
|
else => fatal("unable to read '{f}{d}': {s}", .{ f.corpus_directory, i, @errorName(err) }),
|
|
};
|
|
errdefer gpa.free(input);
|
|
f.corpus.append(gpa, .{
|
|
.bytes = input,
|
|
.last_traced_comparison = 0,
|
|
}) catch |err| oom(err);
|
|
}
|
|
}
|
|
|
|
fn addCorpusElem(f: *Fuzzer, input: []const u8) !void {
|
|
try f.corpus.append(gpa, .{
|
|
.bytes = try gpa.dupe(u8, input),
|
|
.last_traced_comparison = 0,
|
|
});
|
|
}
|
|
|
|
fn start(f: *Fuzzer) !void {
|
|
const rng = fuzzer.rng.random();
|
|
|
|
// Grab the corpus which is namespaced based on `unit_test_name`.
|
|
{
|
|
if (f.unit_test_name.len == 0) fatal("test runner never set unit test name", .{});
|
|
const sub_path = try std.fmt.allocPrint(gpa, "f/{s}", .{f.unit_test_name});
|
|
f.corpus_directory = .{
|
|
.handle = f.cache_dir.makeOpenPath(sub_path, .{}) catch |err|
|
|
fatal("unable to open corpus directory 'f/{s}': {t}", .{ sub_path, err }),
|
|
.path = sub_path,
|
|
};
|
|
initNextInput(f);
|
|
}
|
|
|
|
assert(f.n_runs == 0);
|
|
|
|
// If the corpus is empty, synthesize one input.
|
|
if (f.corpus.items.len == 0) {
|
|
const len = rng.uintLessThanBiased(usize, 200);
|
|
const slice = try gpa.alloc(u8, len);
|
|
rng.bytes(slice);
|
|
f.input.appendSliceAssumeCapacity(slice);
|
|
try f.corpus.append(gpa, .{
|
|
.bytes = slice,
|
|
.last_traced_comparison = 0,
|
|
});
|
|
runOne(f, 0);
|
|
}
|
|
|
|
while (true) {
|
|
const chosen_index = rng.uintLessThanBiased(usize, f.corpus.items.len);
|
|
const modification = rng.enumValue(Mutation);
|
|
f.mutateAndRunOne(chosen_index, modification);
|
|
}
|
|
}
|
|
|
|
/// `x` represents a possible branch. It is the PC address of the possible
|
|
/// branch site, hashed together with the value(s) used that determine to
|
|
/// where it branches.
|
|
fn traceValue(f: *Fuzzer, x: usize) void {
|
|
errdefer |err| oom(err);
|
|
try f.traced_comparisons.put(gpa, x, {});
|
|
}
|
|
|
|
const Mutation = enum {
|
|
remove_byte,
|
|
modify_byte,
|
|
add_byte,
|
|
};
|
|
|
|
fn mutateAndRunOne(f: *Fuzzer, corpus_index: usize, mutation: Mutation) void {
|
|
const rng = fuzzer.rng.random();
|
|
f.input.clearRetainingCapacity();
|
|
const old_input = f.corpus.items[corpus_index].bytes;
|
|
f.input.ensureTotalCapacity(old_input.len + 1) catch @panic("mmap file resize failed");
|
|
switch (mutation) {
|
|
.remove_byte => {
|
|
const omitted_index = rng.uintLessThanBiased(usize, old_input.len);
|
|
f.input.appendSliceAssumeCapacity(old_input[0..omitted_index]);
|
|
f.input.appendSliceAssumeCapacity(old_input[omitted_index + 1 ..]);
|
|
},
|
|
.modify_byte => {
|
|
const modified_index = rng.uintLessThanBiased(usize, old_input.len);
|
|
f.input.appendSliceAssumeCapacity(old_input);
|
|
f.input.items[modified_index] = rng.int(u8);
|
|
},
|
|
.add_byte => {
|
|
const modified_index = rng.uintLessThanBiased(usize, old_input.len);
|
|
f.input.appendSliceAssumeCapacity(old_input[0..modified_index]);
|
|
f.input.appendAssumeCapacity(rng.int(u8));
|
|
f.input.appendSliceAssumeCapacity(old_input[modified_index..]);
|
|
},
|
|
}
|
|
runOne(f, corpus_index);
|
|
}
|
|
|
|
fn runOne(f: *Fuzzer, corpus_index: usize) void {
|
|
const header: *volatile SeenPcsHeader = @ptrCast(f.seen_pcs.items[0..@sizeOf(SeenPcsHeader)]);
|
|
|
|
f.traced_comparisons.clearRetainingCapacity();
|
|
@memset(f.pc_counters, 0);
|
|
__sancov_lowest_stack = std.math.maxInt(usize);
|
|
|
|
fuzzer_one(@volatileCast(f.input.items.ptr), f.input.items.len);
|
|
|
|
f.n_runs += 1;
|
|
_ = @atomicRmw(usize, &header.n_runs, .Add, 1, .monotonic);
|
|
|
|
// Track code coverage from all runs.
|
|
comptime assert(SeenPcsHeader.trailing[0] == .pc_bits_usize);
|
|
const header_end_ptr: [*]volatile usize = @ptrCast(f.seen_pcs.items[@sizeOf(SeenPcsHeader)..]);
|
|
const remainder = f.pcs.len % @bitSizeOf(usize);
|
|
const aligned_len = f.pcs.len - remainder;
|
|
const seen_pcs = header_end_ptr[0..aligned_len];
|
|
const pc_counters = std.mem.bytesAsSlice([@bitSizeOf(usize)]u8, f.pc_counters[0..aligned_len]);
|
|
const V = @Vector(@bitSizeOf(usize), u8);
|
|
const zero_v: V = @splat(0);
|
|
var fresh = false;
|
|
var superset = true;
|
|
|
|
for (header_end_ptr[0..pc_counters.len], pc_counters) |*elem, *array| {
|
|
const v: V = array.*;
|
|
const mask: usize = @bitCast(v != zero_v);
|
|
const prev = @atomicRmw(usize, elem, .Or, mask, .monotonic);
|
|
fresh = fresh or (prev | mask) != prev;
|
|
superset = superset and (prev | mask) != mask;
|
|
}
|
|
if (remainder > 0) {
|
|
const i = pc_counters.len;
|
|
const elem = &seen_pcs[i];
|
|
var mask: usize = 0;
|
|
for (f.pc_counters[i * @bitSizeOf(usize) ..][0..remainder], 0..) |byte, bit_index| {
|
|
mask |= @as(usize, @intFromBool(byte != 0)) << @intCast(bit_index);
|
|
}
|
|
const prev = @atomicRmw(usize, elem, .Or, mask, .monotonic);
|
|
fresh = fresh or (prev | mask) != prev;
|
|
superset = superset and (prev | mask) != mask;
|
|
}
|
|
|
|
// First check if this is a better version of an already existing
|
|
// input, replacing that input.
|
|
if (superset or f.traced_comparisons.entries.len >= f.corpus.items[corpus_index].last_traced_comparison) {
|
|
const new_input = gpa.realloc(f.corpus.items[corpus_index].bytes, f.input.items.len) catch |err| oom(err);
|
|
f.corpus.items[corpus_index] = .{
|
|
.bytes = new_input,
|
|
.last_traced_comparison = f.traced_comparisons.count(),
|
|
};
|
|
@memcpy(new_input, @volatileCast(f.input.items));
|
|
_ = @atomicRmw(usize, &header.unique_runs, .Add, 1, .monotonic);
|
|
return;
|
|
}
|
|
|
|
if (!fresh) return;
|
|
|
|
// Input is already committed to the file system, we just need to open a new file
|
|
// for the next input.
|
|
// Pre-add it to the corpus list so that it does not get redundantly picked up.
|
|
f.corpus.append(gpa, .{
|
|
.bytes = gpa.dupe(u8, @volatileCast(f.input.items)) catch |err| oom(err),
|
|
.last_traced_comparison = f.traced_comparisons.entries.len,
|
|
}) catch |err| oom(err);
|
|
f.input.deinit();
|
|
initNextInput(f);
|
|
|
|
// TODO: also mark input as "hot" so it gets prioritized for checking mutations above others.
|
|
|
|
_ = @atomicRmw(usize, &header.unique_runs, .Add, 1, .monotonic);
|
|
}
|
|
};
|
|
|
|
fn createFileBail(dir: std.fs.Dir, sub_path: []const u8, flags: std.fs.File.CreateFlags) std.fs.File {
|
|
return dir.createFile(sub_path, flags) catch |err| switch (err) {
|
|
error.FileNotFound => {
|
|
const dir_name = std.fs.path.dirname(sub_path).?;
|
|
dir.makePath(dir_name) catch |e| {
|
|
fatal("unable to make path '{s}': {s}", .{ dir_name, @errorName(e) });
|
|
};
|
|
return dir.createFile(sub_path, flags) catch |e| {
|
|
fatal("unable to create file '{s}': {s}", .{ sub_path, @errorName(e) });
|
|
};
|
|
},
|
|
else => fatal("unable to create file '{s}': {s}", .{ sub_path, @errorName(err) }),
|
|
};
|
|
}
|
|
|
|
fn oom(err: anytype) noreturn {
|
|
switch (err) {
|
|
error.OutOfMemory => @panic("out of memory"),
|
|
}
|
|
}
|
|
|
|
var debug_allocator: std.heap.GeneralPurposeAllocator(.{}) = .init;
|
|
|
|
const gpa = switch (builtin.mode) {
|
|
.Debug => debug_allocator.allocator(),
|
|
.ReleaseFast, .ReleaseSmall, .ReleaseSafe => std.heap.smp_allocator,
|
|
};
|
|
|
|
var fuzzer: Fuzzer = .{
|
|
.rng = std.Random.DefaultPrng.init(0),
|
|
.input = undefined,
|
|
.pcs = undefined,
|
|
.pc_counters = undefined,
|
|
.n_runs = 0,
|
|
.cache_dir = undefined,
|
|
.seen_pcs = undefined,
|
|
.coverage_id = undefined,
|
|
.unit_test_name = &.{},
|
|
.corpus = .empty,
|
|
.corpus_directory = undefined,
|
|
.traced_comparisons = .empty,
|
|
};
|
|
|
|
/// Invalid until `fuzzer_init` is called.
|
|
export fn fuzzer_coverage_id() u64 {
|
|
return fuzzer.coverage_id;
|
|
}
|
|
|
|
var fuzzer_one: *const fn (input_ptr: [*]const u8, input_len: usize) callconv(.c) void = undefined;
|
|
|
|
export fn fuzzer_start(testOne: @TypeOf(fuzzer_one)) void {
|
|
fuzzer_one = testOne;
|
|
fuzzer.start() catch |err| oom(err);
|
|
}
|
|
|
|
export fn fuzzer_set_name(name_ptr: [*]const u8, name_len: usize) void {
|
|
fuzzer.unit_test_name = name_ptr[0..name_len];
|
|
}
|
|
|
|
export fn fuzzer_init(cache_dir_struct: Fuzzer.Slice) void {
|
|
// Linkers are expected to automatically add `__start_<section>` and
|
|
// `__stop_<section>` symbols when section names are valid C identifiers.
|
|
|
|
const ofmt = builtin.object_format;
|
|
|
|
const start_symbol_prefix: []const u8 = if (ofmt == .macho)
|
|
"\x01section$start$__DATA$__"
|
|
else
|
|
"__start___";
|
|
const end_symbol_prefix: []const u8 = if (ofmt == .macho)
|
|
"\x01section$end$__DATA$__"
|
|
else
|
|
"__stop___";
|
|
|
|
const pc_counters_start_name = start_symbol_prefix ++ "sancov_cntrs";
|
|
const pc_counters_start = @extern([*]u8, .{
|
|
.name = pc_counters_start_name,
|
|
.linkage = .weak,
|
|
}) orelse fatal("missing {s} symbol", .{pc_counters_start_name});
|
|
|
|
const pc_counters_end_name = end_symbol_prefix ++ "sancov_cntrs";
|
|
const pc_counters_end = @extern([*]u8, .{
|
|
.name = pc_counters_end_name,
|
|
.linkage = .weak,
|
|
}) orelse fatal("missing {s} symbol", .{pc_counters_end_name});
|
|
|
|
const pc_counters = pc_counters_start[0 .. pc_counters_end - pc_counters_start];
|
|
|
|
const pcs_start_name = start_symbol_prefix ++ "sancov_pcs1";
|
|
const pcs_start = @extern([*]usize, .{
|
|
.name = pcs_start_name,
|
|
.linkage = .weak,
|
|
}) orelse fatal("missing {s} symbol", .{pcs_start_name});
|
|
|
|
const pcs_end_name = end_symbol_prefix ++ "sancov_pcs1";
|
|
const pcs_end = @extern([*]usize, .{
|
|
.name = pcs_end_name,
|
|
.linkage = .weak,
|
|
}) orelse fatal("missing {s} symbol", .{pcs_end_name});
|
|
|
|
const pcs = pcs_start[0 .. pcs_end - pcs_start];
|
|
|
|
const cache_dir_path = cache_dir_struct.toZig();
|
|
const cache_dir = if (cache_dir_path.len == 0)
|
|
std.fs.cwd()
|
|
else
|
|
std.fs.cwd().makeOpenPath(cache_dir_path, .{ .iterate = true }) catch |err| {
|
|
fatal("unable to open fuzz directory '{s}': {s}", .{ cache_dir_path, @errorName(err) });
|
|
};
|
|
|
|
fuzzer.init(cache_dir, pc_counters, pcs) catch |err|
|
|
fatal("unable to init fuzzer: {s}", .{@errorName(err)});
|
|
}
|
|
|
|
export fn fuzzer_init_corpus_elem(input_ptr: [*]const u8, input_len: usize) void {
|
|
fuzzer.addCorpusElem(input_ptr[0..input_len]) catch |err|
|
|
fatal("failed to add corpus element: {s}", .{@errorName(err)});
|
|
}
|
|
|
|
/// Like `std.ArrayListUnmanaged(u8)` but backed by memory mapping.
|
|
pub const MemoryMappedList = struct {
|
|
/// Contents of the list.
|
|
///
|
|
/// Pointers to elements in this slice are invalidated by various functions
|
|
/// of this ArrayList in accordance with the respective documentation. In
|
|
/// all cases, "invalidated" means that the memory has been passed to this
|
|
/// allocator's resize or free function.
|
|
items: []align(std.heap.page_size_min) volatile u8,
|
|
/// How many bytes this list can hold without allocating additional memory.
|
|
capacity: usize,
|
|
/// The file is kept open so that it can be resized.
|
|
file: std.fs.File,
|
|
|
|
pub fn init(file: std.fs.File, length: usize, capacity: usize) !MemoryMappedList {
|
|
const ptr = try std.posix.mmap(
|
|
null,
|
|
capacity,
|
|
std.posix.PROT.READ | std.posix.PROT.WRITE,
|
|
.{ .TYPE = .SHARED },
|
|
file.handle,
|
|
0,
|
|
);
|
|
return .{
|
|
.file = file,
|
|
.items = ptr[0..length],
|
|
.capacity = capacity,
|
|
};
|
|
}
|
|
|
|
pub fn create(file: std.fs.File, length: usize, capacity: usize) !MemoryMappedList {
|
|
try file.setEndPos(capacity);
|
|
return init(file, length, capacity);
|
|
}
|
|
|
|
pub fn deinit(l: *MemoryMappedList) void {
|
|
l.file.close();
|
|
std.posix.munmap(@volatileCast(l.items.ptr[0..l.capacity]));
|
|
l.* = undefined;
|
|
}
|
|
|
|
/// Modify the array so that it can hold at least `additional_count` **more** items.
|
|
/// Invalidates element pointers if additional memory is needed.
|
|
pub fn ensureUnusedCapacity(l: *MemoryMappedList, additional_count: usize) !void {
|
|
return l.ensureTotalCapacity(l.items.len + additional_count);
|
|
}
|
|
|
|
/// If the current capacity is less than `new_capacity`, this function will
|
|
/// modify the array so that it can hold at least `new_capacity` items.
|
|
/// Invalidates element pointers if additional memory is needed.
|
|
pub fn ensureTotalCapacity(l: *MemoryMappedList, new_capacity: usize) !void {
|
|
if (l.capacity >= new_capacity) return;
|
|
|
|
const better_capacity = growCapacity(l.capacity, new_capacity);
|
|
return l.ensureTotalCapacityPrecise(better_capacity);
|
|
}
|
|
|
|
pub fn ensureTotalCapacityPrecise(l: *MemoryMappedList, new_capacity: usize) !void {
|
|
if (l.capacity >= new_capacity) return;
|
|
|
|
std.posix.munmap(@volatileCast(l.items.ptr[0..l.capacity]));
|
|
try l.file.setEndPos(new_capacity);
|
|
l.* = try init(l.file, l.items.len, new_capacity);
|
|
}
|
|
|
|
/// Invalidates all element pointers.
|
|
pub fn clearRetainingCapacity(l: *MemoryMappedList) void {
|
|
l.items.len = 0;
|
|
}
|
|
|
|
/// Append the slice of items to the list.
|
|
/// Asserts that the list can hold the additional items.
|
|
pub fn appendSliceAssumeCapacity(l: *MemoryMappedList, items: []const u8) void {
|
|
const old_len = l.items.len;
|
|
const new_len = old_len + items.len;
|
|
assert(new_len <= l.capacity);
|
|
l.items.len = new_len;
|
|
@memcpy(l.items[old_len..][0..items.len], items);
|
|
}
|
|
|
|
/// Extends the list by 1 element.
|
|
/// Never invalidates element pointers.
|
|
/// Asserts that the list can hold one additional item.
|
|
pub fn appendAssumeCapacity(l: *MemoryMappedList, item: u8) void {
|
|
const new_item_ptr = l.addOneAssumeCapacity();
|
|
new_item_ptr.* = item;
|
|
}
|
|
|
|
/// Increase length by 1, returning pointer to the new item.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
/// Never invalidates element pointers.
|
|
/// Asserts that the list can hold one additional item.
|
|
pub fn addOneAssumeCapacity(l: *MemoryMappedList) *volatile u8 {
|
|
assert(l.items.len < l.capacity);
|
|
l.items.len += 1;
|
|
return &l.items[l.items.len - 1];
|
|
}
|
|
|
|
/// Append a value to the list `n` times.
|
|
/// Never invalidates element pointers.
|
|
/// The function is inline so that a comptime-known `value` parameter will
|
|
/// have better memset codegen in case it has a repeated byte pattern.
|
|
/// Asserts that the list can hold the additional items.
|
|
pub inline fn appendNTimesAssumeCapacity(l: *MemoryMappedList, value: u8, n: usize) void {
|
|
const new_len = l.items.len + n;
|
|
assert(new_len <= l.capacity);
|
|
@memset(l.items.ptr[l.items.len..new_len], value);
|
|
l.items.len = new_len;
|
|
}
|
|
|
|
/// Resize the array, adding `n` new elements, which have `undefined` values.
|
|
/// The return value is a slice pointing to the newly allocated elements.
|
|
/// Never invalidates element pointers.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
/// Asserts that the list can hold the additional items.
|
|
pub fn addManyAsSliceAssumeCapacity(l: *MemoryMappedList, n: usize) []volatile u8 {
|
|
assert(l.items.len + n <= l.capacity);
|
|
const prev_len = l.items.len;
|
|
l.items.len += n;
|
|
return l.items[prev_len..][0..n];
|
|
}
|
|
|
|
/// Called when memory growth is necessary. Returns a capacity larger than
|
|
/// minimum that grows super-linearly.
|
|
fn growCapacity(current: usize, minimum: usize) usize {
|
|
var new = current;
|
|
while (true) {
|
|
new = std.mem.alignForward(usize, new + new / 2, std.heap.page_size_max);
|
|
if (new >= minimum) return new;
|
|
}
|
|
}
|
|
};
|