zig/lib/std/special/compiler_rt/trunc_f80.zig
Andrew Kelley a024aff932 make f80 less hacky; lower as u80 on non-x86
Get rid of `std.math.F80Repr`. Instead of trying to match the memory
layout of f80, we treat it as a value, same as the other floating point
types. The functions `make_f80` and `break_f80` are introduced to
compose an f80 value out of its parts, and the inverse operation.

stage2 LLVM backend: fix pointer to zero length array tripping LLVM
assertion. It now checks for when the element type is a zero-bit type
and lowers such thing the same way that pointers to other zero-bit types
are lowered.

Both stage1 and stage2 LLVM backends are adjusted so that f80 is lowered
as x86_fp80 on x86_64 and i386 architectures, and identical to a u80 on
others. LLVM constants are lowered in a less hacky way now that #10860
is fixed, by using the expression `(exp << 64) | fraction` using llvm
constants.

Sema is improved to handle c_longdouble by recursively handling it
correctly for whatever the float bit width is. In both stage1 and
stage2.
2022-02-12 11:18:23 +01:00

159 lines
6.5 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const native_arch = builtin.cpu.arch;
// AArch64 is the only ABI (at the moment) to support f16 arguments without the
// need for extending them to wider fp types.
pub const F16T = if (native_arch.isAARCH64()) f16 else u16;
pub fn __truncxfhf2(a: f80) callconv(.C) F16T {
return @bitCast(F16T, trunc(f16, a));
}
pub fn __truncxfff2(a: f80) callconv(.C) f32 {
return trunc(f32, a);
}
pub fn __truncxfdf2(a: f80) callconv(.C) f64 {
return trunc(f64, a);
}
inline fn trunc(comptime dst_t: type, a: f80) dst_t {
@setRuntimeSafety(builtin.is_test);
const dst_rep_t = std.meta.Int(.unsigned, @typeInfo(dst_t).Float.bits);
const src_sig_bits = std.math.floatMantissaBits(f80) - 1; // -1 for the integer bit
const dst_sig_bits = std.math.floatMantissaBits(dst_t);
const src_exp_bias = 16383;
const round_mask = (1 << (src_sig_bits - dst_sig_bits)) - 1;
const halfway = 1 << (src_sig_bits - dst_sig_bits - 1);
const dst_bits = @typeInfo(dst_t).Float.bits;
const dst_exp_bits = dst_bits - dst_sig_bits - 1;
const dst_inf_exp = (1 << dst_exp_bits) - 1;
const dst_exp_bias = dst_inf_exp >> 1;
const underflow = src_exp_bias + 1 - dst_exp_bias;
const overflow = src_exp_bias + dst_inf_exp - dst_exp_bias;
const dst_qnan = 1 << (dst_sig_bits - 1);
const dst_nan_mask = dst_qnan - 1;
// Break a into a sign and representation of the absolute value
var a_rep = std.math.break_f80(a);
const sign = a_rep.exp & 0x8000;
a_rep.exp &= 0x7FFF;
a_rep.fraction &= 0x7FFFFFFFFFFFFFFF;
var abs_result: dst_rep_t = undefined;
if (a_rep.exp -% underflow < a_rep.exp -% overflow) {
// The exponent of a is within the range of normal numbers in the
// destination format. We can convert by simply right-shifting with
// rounding and adjusting the exponent.
abs_result = @as(dst_rep_t, a_rep.exp) << dst_sig_bits;
abs_result |= @truncate(dst_rep_t, a_rep.fraction >> (src_sig_bits - dst_sig_bits));
abs_result -%= @as(dst_rep_t, src_exp_bias - dst_exp_bias) << dst_sig_bits;
const round_bits = a_rep.fraction & round_mask;
if (round_bits > halfway) {
// Round to nearest
abs_result += 1;
} else if (round_bits == halfway) {
// Ties to even
abs_result += abs_result & 1;
}
} else if (a_rep.exp == 0x7FFF and a_rep.fraction != 0) {
// a is NaN.
// Conjure the result by beginning with infinity, setting the qNaN
// bit and inserting the (truncated) trailing NaN field.
abs_result = @intCast(dst_rep_t, dst_inf_exp) << dst_sig_bits;
abs_result |= dst_qnan;
abs_result |= @intCast(dst_rep_t, (a_rep.fraction >> (src_sig_bits - dst_sig_bits)) & dst_nan_mask);
} else if (a_rep.exp >= overflow) {
// a overflows to infinity.
abs_result = @intCast(dst_rep_t, dst_inf_exp) << dst_sig_bits;
} else {
// a underflows on conversion to the destination type or is an exact
// zero. The result may be a denormal or zero. Extract the exponent
// to get the shift amount for the denormalization.
const shift = src_exp_bias - dst_exp_bias - a_rep.exp;
// Right shift by the denormalization amount with sticky.
if (shift > src_sig_bits) {
abs_result = 0;
} else {
const sticky = @boolToInt(a_rep.fraction << @intCast(u6, shift) != 0);
const denormalized_significand = a_rep.fraction >> @intCast(u6, shift) | sticky;
abs_result = @intCast(dst_rep_t, denormalized_significand >> (src_sig_bits - dst_sig_bits));
const round_bits = denormalized_significand & round_mask;
if (round_bits > halfway) {
// Round to nearest
abs_result += 1;
} else if (round_bits == halfway) {
// Ties to even
abs_result += abs_result & 1;
}
}
}
const result align(@alignOf(dst_t)) = abs_result | @as(dst_rep_t, sign) << dst_bits - 16;
return @bitCast(dst_t, result);
}
pub fn __trunctfxf2(a: f128) callconv(.C) f80 {
const src_sig_bits = std.math.floatMantissaBits(f128);
const dst_sig_bits = std.math.floatMantissaBits(f80) - 1; // -1 for the integer bit
// Various constants whose values follow from the type parameters.
// Any reasonable optimizer will fold and propagate all of these.
const src_bits = @typeInfo(f128).Float.bits;
const src_exp_bits = src_bits - src_sig_bits - 1;
const src_inf_exp = 0x7FFF;
const src_inf = src_inf_exp << src_sig_bits;
const src_sign_mask = 1 << (src_sig_bits + src_exp_bits);
const src_abs_mask = src_sign_mask - 1;
const round_mask = (1 << (src_sig_bits - dst_sig_bits)) - 1;
const halfway = 1 << (src_sig_bits - dst_sig_bits - 1);
const src_qnan = 1 << (src_sig_bits - 1);
const src_nan_mask = src_qnan - 1;
// Break a into a sign and representation of the absolute value
const a_rep = @bitCast(u128, a);
const a_abs = a_rep & src_abs_mask;
const sign: u16 = if (a_rep & src_sign_mask != 0) 0x8000 else 0;
var res: std.math.F80 = undefined;
if (a_abs > src_inf) {
// a is NaN.
// Conjure the result by beginning with infinity, setting the qNaN
// bit and inserting the (truncated) trailing NaN field.
res.exp = 0x7fff;
res.fraction = 0x8000000000000000;
res.fraction |= @truncate(u64, (a_abs & src_qnan) << (src_sig_bits - dst_sig_bits));
res.fraction |= @truncate(u64, (a_abs & src_nan_mask) << (src_sig_bits - dst_sig_bits));
} else {
// The exponent of a is within the range of normal numbers in the
// destination format. We can convert by simply right-shifting with
// rounding and adjusting the exponent.
res.fraction = @truncate(u64, a_abs >> (src_sig_bits - dst_sig_bits));
res.exp = @truncate(u16, a_abs >> src_sig_bits);
const round_bits = a_abs & round_mask;
if (round_bits > halfway) {
// Round to nearest
const exp = @addWithOverflow(u64, res.fraction, 1, &res.fraction);
res.exp += @boolToInt(exp);
} else if (round_bits == halfway) {
// Ties to even
const exp = @addWithOverflow(u64, res.fraction, res.fraction & 1, &res.fraction);
res.exp += @boolToInt(exp);
}
}
res.exp |= sign;
return std.math.make_f80(res);
}