zig/lib/std/fs/path.zig

2556 lines
108 KiB
Zig

//! POSIX paths are arbitrary sequences of `u8` with no particular encoding.
//!
//! Windows paths are arbitrary sequences of `u16` (WTF-16).
//! For cross-platform APIs that deal with sequences of `u8`, Windows
//! paths are encoded by Zig as [WTF-8](https://wtf-8.codeberg.page/).
//! WTF-8 is a superset of UTF-8 that allows encoding surrogate codepoints,
//! which enables lossless roundtripping when converting to/from WTF-16
//! (as long as the WTF-8 encoded surrogate codepoints do not form a pair).
//!
//! WASI paths are sequences of valid Unicode scalar values,
//! which means that WASI is unable to handle paths that cannot be
//! encoded as well-formed UTF-8/UTF-16.
//! https://github.com/WebAssembly/wasi-filesystem/issues/17#issuecomment-1430639353
const builtin = @import("builtin");
const std = @import("../std.zig");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const mem = std.mem;
const ascii = std.ascii;
const Allocator = mem.Allocator;
const windows = std.os.windows;
const process = std.process;
const native_os = builtin.target.os.tag;
pub const sep_windows: u8 = '\\';
pub const sep_posix: u8 = '/';
pub const sep = switch (native_os) {
.windows, .uefi => sep_windows,
else => sep_posix,
};
pub const sep_str_windows = "\\";
pub const sep_str_posix = "/";
pub const sep_str = switch (native_os) {
.windows, .uefi => sep_str_windows,
else => sep_str_posix,
};
pub const delimiter_windows: u8 = ';';
pub const delimiter_posix: u8 = ':';
pub const delimiter = if (native_os == .windows) delimiter_windows else delimiter_posix;
/// Returns if the given byte is a valid path separator
pub fn isSep(byte: u8) bool {
return switch (native_os) {
.windows => byte == '/' or byte == '\\',
.uefi => byte == '\\',
else => byte == '/',
};
}
pub const PathType = enum {
windows,
uefi,
posix,
/// Returns true if `c` is a valid path separator for the `path_type`.
/// If `T` is `u16`, `c` is assumed to be little-endian.
pub inline fn isSep(comptime path_type: PathType, comptime T: type, c: T) bool {
return switch (path_type) {
.windows => c == mem.nativeToLittle(T, '/') or c == mem.nativeToLittle(T, '\\'),
.posix => c == mem.nativeToLittle(T, '/'),
.uefi => c == mem.nativeToLittle(T, '\\'),
};
}
};
/// This is different from mem.join in that the separator will not be repeated if
/// it is found at the end or beginning of a pair of consecutive paths.
fn joinSepMaybeZ(allocator: Allocator, separator: u8, comptime sepPredicate: fn (u8) bool, paths: []const []const u8, zero: bool) ![]u8 {
if (paths.len == 0) return if (zero) try allocator.dupe(u8, &[1]u8{0}) else &[0]u8{};
// Find first non-empty path index.
const first_path_index = blk: {
for (paths, 0..) |path, index| {
if (path.len == 0) continue else break :blk index;
}
// All paths provided were empty, so return early.
return if (zero) try allocator.dupe(u8, &[1]u8{0}) else &[0]u8{};
};
// Calculate length needed for resulting joined path buffer.
const total_len = blk: {
var sum: usize = paths[first_path_index].len;
var prev_path = paths[first_path_index];
assert(prev_path.len > 0);
var i: usize = first_path_index + 1;
while (i < paths.len) : (i += 1) {
const this_path = paths[i];
if (this_path.len == 0) continue;
const prev_sep = sepPredicate(prev_path[prev_path.len - 1]);
const this_sep = sepPredicate(this_path[0]);
sum += @intFromBool(!prev_sep and !this_sep);
sum += if (prev_sep and this_sep) this_path.len - 1 else this_path.len;
prev_path = this_path;
}
if (zero) sum += 1;
break :blk sum;
};
const buf = try allocator.alloc(u8, total_len);
errdefer allocator.free(buf);
@memcpy(buf[0..paths[first_path_index].len], paths[first_path_index]);
var buf_index: usize = paths[first_path_index].len;
var prev_path = paths[first_path_index];
assert(prev_path.len > 0);
var i: usize = first_path_index + 1;
while (i < paths.len) : (i += 1) {
const this_path = paths[i];
if (this_path.len == 0) continue;
const prev_sep = sepPredicate(prev_path[prev_path.len - 1]);
const this_sep = sepPredicate(this_path[0]);
if (!prev_sep and !this_sep) {
buf[buf_index] = separator;
buf_index += 1;
}
const adjusted_path = if (prev_sep and this_sep) this_path[1..] else this_path;
@memcpy(buf[buf_index..][0..adjusted_path.len], adjusted_path);
buf_index += adjusted_path.len;
prev_path = this_path;
}
if (zero) buf[buf.len - 1] = 0;
// No need for shrink since buf is exactly the correct size.
return buf;
}
/// Naively combines a series of paths with the native path separator.
/// Allocates memory for the result, which must be freed by the caller.
pub fn join(allocator: Allocator, paths: []const []const u8) ![]u8 {
return joinSepMaybeZ(allocator, sep, isSep, paths, false);
}
/// Naively combines a series of paths with the native path separator and null terminator.
/// Allocates memory for the result, which must be freed by the caller.
pub fn joinZ(allocator: Allocator, paths: []const []const u8) ![:0]u8 {
const out = try joinSepMaybeZ(allocator, sep, isSep, paths, true);
return out[0 .. out.len - 1 :0];
}
pub fn fmtJoin(paths: []const []const u8) std.fmt.Alt([]const []const u8, formatJoin) {
return .{ .data = paths };
}
fn formatJoin(paths: []const []const u8, w: *std.Io.Writer) std.Io.Writer.Error!void {
const first_path_idx = for (paths, 0..) |p, idx| {
if (p.len != 0) break idx;
} else return;
try w.writeAll(paths[first_path_idx]); // first component
var prev_path = paths[first_path_idx];
for (paths[first_path_idx + 1 ..]) |this_path| {
if (this_path.len == 0) continue; // skip empty components
const prev_sep = isSep(prev_path[prev_path.len - 1]);
const this_sep = isSep(this_path[0]);
if (!prev_sep and !this_sep) {
try w.writeByte(sep);
}
if (prev_sep and this_sep) {
try w.writeAll(this_path[1..]); // skip redundant separator
} else {
try w.writeAll(this_path);
}
prev_path = this_path;
}
}
fn testJoinMaybeZUefi(paths: []const []const u8, expected: []const u8, zero: bool) !void {
const uefiIsSep = struct {
fn isSep(byte: u8) bool {
return byte == '\\';
}
}.isSep;
const actual = try joinSepMaybeZ(testing.allocator, sep_windows, uefiIsSep, paths, zero);
defer testing.allocator.free(actual);
try testing.expectEqualSlices(u8, expected, if (zero) actual[0 .. actual.len - 1 :0] else actual);
}
fn testJoinMaybeZWindows(paths: []const []const u8, expected: []const u8, zero: bool) !void {
const windowsIsSep = struct {
fn isSep(byte: u8) bool {
return byte == '/' or byte == '\\';
}
}.isSep;
const actual = try joinSepMaybeZ(testing.allocator, sep_windows, windowsIsSep, paths, zero);
defer testing.allocator.free(actual);
try testing.expectEqualSlices(u8, expected, if (zero) actual[0 .. actual.len - 1 :0] else actual);
}
fn testJoinMaybeZPosix(paths: []const []const u8, expected: []const u8, zero: bool) !void {
const posixIsSep = struct {
fn isSep(byte: u8) bool {
return byte == '/';
}
}.isSep;
const actual = try joinSepMaybeZ(testing.allocator, sep_posix, posixIsSep, paths, zero);
defer testing.allocator.free(actual);
try testing.expectEqualSlices(u8, expected, if (zero) actual[0 .. actual.len - 1 :0] else actual);
}
test join {
{
const actual: []u8 = try join(testing.allocator, &[_][]const u8{});
defer testing.allocator.free(actual);
try testing.expectEqualSlices(u8, "", actual);
}
{
const actual: [:0]u8 = try joinZ(testing.allocator, &[_][]const u8{});
defer testing.allocator.free(actual);
try testing.expectEqualSlices(u8, "", actual);
}
for (&[_]bool{ false, true }) |zero| {
try testJoinMaybeZWindows(&[_][]const u8{}, "", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "c:\\a\\b", "c" }, "c:\\a\\b\\c", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "c:\\a\\b", "c" }, "c:\\a\\b\\c", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "c:\\a\\b\\", "\\c" }, "c:\\a\\b\\c", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "c:\\", "a", "b\\", "c" }, "c:\\a\\b\\c", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "c:\\a\\", "b\\", "c" }, "c:\\a\\b\\c", zero);
try testJoinMaybeZWindows(
&[_][]const u8{ "c:\\home\\andy\\dev\\zig\\build\\lib\\zig\\std", "ab.zig" },
"c:\\home\\andy\\dev\\zig\\build\\lib\\zig\\std\\ab.zig",
zero,
);
try testJoinMaybeZUefi(&[_][]const u8{ "EFI", "Boot", "bootx64.efi" }, "EFI\\Boot\\bootx64.efi", zero);
try testJoinMaybeZUefi(&[_][]const u8{ "EFI\\Boot", "bootx64.efi" }, "EFI\\Boot\\bootx64.efi", zero);
try testJoinMaybeZUefi(&[_][]const u8{ "EFI\\", "\\Boot", "bootx64.efi" }, "EFI\\Boot\\bootx64.efi", zero);
try testJoinMaybeZUefi(&[_][]const u8{ "EFI\\", "\\Boot\\", "\\bootx64.efi" }, "EFI\\Boot\\bootx64.efi", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "c:\\", "a", "b/", "c" }, "c:\\a\\b/c", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "c:\\a/", "b\\", "/c" }, "c:\\a/b\\c", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "", "c:\\", "", "", "a", "b\\", "c", "" }, "c:\\a\\b\\c", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "c:\\a/", "", "b\\", "", "/c" }, "c:\\a/b\\c", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "", "" }, "", zero);
try testJoinMaybeZPosix(&[_][]const u8{}, "", zero);
try testJoinMaybeZPosix(&[_][]const u8{ "/a/b", "c" }, "/a/b/c", zero);
try testJoinMaybeZPosix(&[_][]const u8{ "/a/b/", "c" }, "/a/b/c", zero);
try testJoinMaybeZPosix(&[_][]const u8{ "/", "a", "b/", "c" }, "/a/b/c", zero);
try testJoinMaybeZPosix(&[_][]const u8{ "/a/", "b/", "c" }, "/a/b/c", zero);
try testJoinMaybeZPosix(
&[_][]const u8{ "/home/andy/dev/zig/build/lib/zig/std", "ab.zig" },
"/home/andy/dev/zig/build/lib/zig/std/ab.zig",
zero,
);
try testJoinMaybeZPosix(&[_][]const u8{ "a", "/c" }, "a/c", zero);
try testJoinMaybeZPosix(&[_][]const u8{ "a/", "/c" }, "a/c", zero);
try testJoinMaybeZPosix(&[_][]const u8{ "", "/", "a", "", "b/", "c", "" }, "/a/b/c", zero);
try testJoinMaybeZPosix(&[_][]const u8{ "/a/", "", "", "b/", "c" }, "/a/b/c", zero);
try testJoinMaybeZPosix(&[_][]const u8{ "", "" }, "", zero);
}
}
pub fn isAbsoluteZ(path_c: [*:0]const u8) bool {
if (native_os == .windows) {
return isAbsoluteWindowsZ(path_c);
} else {
return isAbsolutePosixZ(path_c);
}
}
pub fn isAbsolute(path: []const u8) bool {
if (native_os == .windows) {
return isAbsoluteWindows(path);
} else {
return isAbsolutePosix(path);
}
}
fn isAbsoluteWindowsImpl(comptime T: type, path: []const T) bool {
return switch (windows.getWin32PathType(T, path)) {
// Unambiguously absolute
.drive_absolute, .unc_absolute, .local_device, .root_local_device => true,
// Unambiguously relative
.relative => false,
// Ambiguous, more absolute than relative
.rooted => true,
// Ambiguous, more relative than absolute
.drive_relative => false,
};
}
pub fn isAbsoluteWindows(path: []const u8) bool {
return isAbsoluteWindowsImpl(u8, path);
}
pub fn isAbsoluteWindowsW(path_w: [*:0]const u16) bool {
return isAbsoluteWindowsImpl(u16, mem.sliceTo(path_w, 0));
}
pub fn isAbsoluteWindowsWtf16(path: []const u16) bool {
return isAbsoluteWindowsImpl(u16, path);
}
pub fn isAbsoluteWindowsZ(path_c: [*:0]const u8) bool {
return isAbsoluteWindowsImpl(u8, mem.sliceTo(path_c, 0));
}
pub fn isAbsolutePosix(path: []const u8) bool {
return path.len > 0 and path[0] == sep_posix;
}
pub fn isAbsolutePosixZ(path_c: [*:0]const u8) bool {
return isAbsolutePosix(mem.sliceTo(path_c, 0));
}
test isAbsoluteWindows {
try testIsAbsoluteWindows("", false);
try testIsAbsoluteWindows("/", true);
try testIsAbsoluteWindows("//", true);
try testIsAbsoluteWindows("//server", true);
try testIsAbsoluteWindows("//server/file", true);
try testIsAbsoluteWindows("\\\\server\\file", true);
try testIsAbsoluteWindows("\\\\server", true);
try testIsAbsoluteWindows("\\\\", true);
try testIsAbsoluteWindows("c", false);
try testIsAbsoluteWindows("c:", false);
try testIsAbsoluteWindows("c:\\", true);
try testIsAbsoluteWindows("c:/", true);
try testIsAbsoluteWindows("c://", true);
try testIsAbsoluteWindows("C:/Users/", true);
try testIsAbsoluteWindows("C:\\Users\\", true);
try testIsAbsoluteWindows("C:cwd/another", false);
try testIsAbsoluteWindows("C:cwd\\another", false);
try testIsAbsoluteWindows("λ:\\", true);
try testIsAbsoluteWindows("λ:", false);
try testIsAbsoluteWindows("\u{10000}:\\", false);
try testIsAbsoluteWindows("directory/directory", false);
try testIsAbsoluteWindows("directory\\directory", false);
try testIsAbsoluteWindows("/usr/local", true);
}
test isAbsolutePosix {
try testIsAbsolutePosix("", false);
try testIsAbsolutePosix("/home/foo", true);
try testIsAbsolutePosix("/home/foo/..", true);
try testIsAbsolutePosix("bar/", false);
try testIsAbsolutePosix("./baz", false);
}
fn testIsAbsoluteWindows(path: []const u8, expected_result: bool) !void {
try testing.expectEqual(expected_result, isAbsoluteWindows(path));
const path_w = try std.unicode.wtf8ToWtf16LeAllocZ(std.testing.allocator, path);
defer std.testing.allocator.free(path_w);
try testing.expectEqual(expected_result, isAbsoluteWindowsW(path_w));
try testing.expectEqual(expected_result, isAbsoluteWindowsWtf16(path_w));
}
fn testIsAbsolutePosix(path: []const u8, expected_result: bool) !void {
try testing.expectEqual(expected_result, isAbsolutePosix(path));
}
/// Deprecated; see `WindowsPath2`
pub const WindowsPath = struct {
is_abs: bool,
kind: Kind,
disk_designator: []const u8,
pub const Kind = enum {
None,
Drive,
NetworkShare,
};
};
/// Deprecated; see `parsePathWindows`
pub fn windowsParsePath(path: []const u8) WindowsPath {
if (path.len >= 2 and path[1] == ':') {
return WindowsPath{
.is_abs = isAbsoluteWindows(path),
.kind = WindowsPath.Kind.Drive,
.disk_designator = path[0..2],
};
}
if (path.len >= 1 and (path[0] == '/' or path[0] == '\\') and
(path.len == 1 or (path[1] != '/' and path[1] != '\\')))
{
return WindowsPath{
.is_abs = true,
.kind = WindowsPath.Kind.None,
.disk_designator = path[0..0],
};
}
const relative_path = WindowsPath{
.kind = WindowsPath.Kind.None,
.disk_designator = &[_]u8{},
.is_abs = false,
};
if (path.len >= 2 and PathType.windows.isSep(u8, path[0]) and PathType.windows.isSep(u8, path[1])) {
const root_end = root_end: {
var server_end = mem.findAnyPos(u8, path, 2, "/\\") orelse break :root_end path.len;
while (server_end < path.len and PathType.windows.isSep(u8, path[server_end])) server_end += 1;
break :root_end mem.findAnyPos(u8, path, server_end, "/\\") orelse path.len;
};
return WindowsPath{
.is_abs = true,
.kind = WindowsPath.Kind.NetworkShare,
.disk_designator = path[0..root_end],
};
}
return relative_path;
}
test windowsParsePath {
{
const parsed = windowsParsePath("//a/b");
try testing.expect(parsed.is_abs);
try testing.expect(parsed.kind == WindowsPath.Kind.NetworkShare);
try testing.expect(mem.eql(u8, parsed.disk_designator, "//a/b"));
}
{
const parsed = windowsParsePath("\\\\a\\b");
try testing.expect(parsed.is_abs);
try testing.expect(parsed.kind == WindowsPath.Kind.NetworkShare);
try testing.expect(mem.eql(u8, parsed.disk_designator, "\\\\a\\b"));
}
{
const parsed = windowsParsePath("\\\\a/b");
try testing.expect(parsed.is_abs);
try testing.expect(parsed.kind == WindowsPath.Kind.NetworkShare);
try testing.expect(mem.eql(u8, parsed.disk_designator, "\\\\a/b"));
}
{
const parsed = windowsParsePath("\\/a\\");
try testing.expect(parsed.is_abs);
try testing.expect(parsed.kind == WindowsPath.Kind.NetworkShare);
try testing.expect(mem.eql(u8, parsed.disk_designator, "\\/a\\"));
}
{
const parsed = windowsParsePath("\\\\a\\\\b");
try testing.expect(parsed.is_abs);
try testing.expect(parsed.kind == WindowsPath.Kind.NetworkShare);
try testing.expect(mem.eql(u8, parsed.disk_designator, "\\\\a\\\\b"));
}
{
const parsed = windowsParsePath("\\\\a\\\\b\\c");
try testing.expect(parsed.is_abs);
try testing.expect(parsed.kind == WindowsPath.Kind.NetworkShare);
try testing.expect(mem.eql(u8, parsed.disk_designator, "\\\\a\\\\b"));
}
{
const parsed = windowsParsePath("/usr/local");
try testing.expect(parsed.is_abs);
try testing.expect(parsed.kind == WindowsPath.Kind.None);
try testing.expect(mem.eql(u8, parsed.disk_designator, ""));
}
{
const parsed = windowsParsePath("c:../");
try testing.expect(!parsed.is_abs);
try testing.expect(parsed.kind == WindowsPath.Kind.Drive);
try testing.expect(mem.eql(u8, parsed.disk_designator, "c:"));
}
}
/// On Windows, this calls `parsePathWindows` and on POSIX it calls `parsePathPosix`.
///
/// Returns a platform-specific struct with two fields: `root` and `kind`.
/// The `root` will be a slice of `path` (`/` for POSIX absolute paths, and things
/// like `C:\`, `\\server\share\`, etc for Windows paths).
/// If the path is of kind `.relative`, then `root` will be zero-length.
pub fn parsePath(path: []const u8) switch (native_os) {
.windows => WindowsPath2(u8),
else => PosixPath,
} {
switch (native_os) {
.windows => return parsePathWindows(u8, path),
else => return parsePathPosix(path),
}
}
const PosixPath = struct {
kind: enum { relative, absolute },
root: []const u8,
};
pub fn parsePathPosix(path: []const u8) PosixPath {
const abs = isAbsolutePosix(path);
return .{
.kind = if (abs) .absolute else .relative,
.root = if (abs) path[0..1] else path[0..0],
};
}
test parsePathPosix {
{
const parsed = parsePathPosix("a/b");
try testing.expectEqual(.relative, parsed.kind);
try testing.expectEqualStrings("", parsed.root);
}
{
const parsed = parsePathPosix("/a/b");
try testing.expectEqual(.absolute, parsed.kind);
try testing.expectEqualStrings("/", parsed.root);
}
{
const parsed = parsePathPosix("///a/b");
try testing.expectEqual(.absolute, parsed.kind);
try testing.expectEqualStrings("/", parsed.root);
}
}
pub fn WindowsPath2(comptime T: type) type {
return struct {
kind: windows.Win32PathType,
root: []const T,
};
}
pub fn parsePathWindows(comptime T: type, path: []const T) WindowsPath2(T) {
const kind = windows.getWin32PathType(T, path);
const root = root: switch (kind) {
.drive_absolute, .drive_relative => {
const drive_letter_len = getDriveLetter(T, path).len;
break :root path[0 .. drive_letter_len + @as(usize, if (kind == .drive_absolute) 2 else 1)];
},
.relative => path[0..0],
.local_device => path[0..4],
.root_local_device => path,
.rooted => path[0..1],
.unc_absolute => {
const unc = parseUNC(T, path);
// There may be any number of path separators between the server and the share,
// so take that into account by using pointer math to get the difference.
var root_len = 2 + (unc.share.ptr - unc.server.ptr) + unc.share.len;
if (unc.sep_after_share) root_len += 1;
break :root path[0..root_len];
},
};
return .{
.kind = kind,
.root = root,
};
}
test parsePathWindows {
{
const path = "//a/b";
const parsed = parsePathWindows(u8, path);
try testing.expectEqual(.unc_absolute, parsed.kind);
try testing.expectEqualStrings("//a/b", parsed.root);
try testWindowsParsePathHarmony(path);
}
{
const path = "\\\\a\\b";
const parsed = parsePathWindows(u8, path);
try testing.expectEqual(.unc_absolute, parsed.kind);
try testing.expectEqualStrings("\\\\a\\b", parsed.root);
try testWindowsParsePathHarmony(path);
}
{
const path = "\\/a/b/c";
const parsed = parsePathWindows(u8, path);
try testing.expectEqual(.unc_absolute, parsed.kind);
try testing.expectEqualStrings("\\/a/b/", parsed.root);
try testWindowsParsePathHarmony(path);
}
{
const path = "\\\\a\\";
const parsed = parsePathWindows(u8, path);
try testing.expectEqual(.unc_absolute, parsed.kind);
try testing.expectEqualStrings("\\\\a\\", parsed.root);
try testWindowsParsePathHarmony(path);
}
{
const path = "\\\\a\\b\\";
const parsed = parsePathWindows(u8, path);
try testing.expectEqual(.unc_absolute, parsed.kind);
try testing.expectEqualStrings("\\\\a\\b\\", parsed.root);
try testWindowsParsePathHarmony(path);
}
{
const path = "\\\\a\\/b\\/";
const parsed = parsePathWindows(u8, path);
try testing.expectEqual(.unc_absolute, parsed.kind);
try testing.expectEqualStrings("\\\\a\\/b\\", parsed.root);
try testWindowsParsePathHarmony(path);
}
{
const path = "\\\\кириллица\\ελληνικά\\português";
const parsed = parsePathWindows(u8, path);
try testing.expectEqual(.unc_absolute, parsed.kind);
try testing.expectEqualStrings("\\\\кириллица\\ελληνικά\\", parsed.root);
try testWindowsParsePathHarmony(path);
}
{
const path = "/usr/local";
const parsed = parsePathWindows(u8, path);
try testing.expectEqual(.rooted, parsed.kind);
try testing.expectEqualStrings("/", parsed.root);
try testWindowsParsePathHarmony(path);
}
{
const path = "\\\\.";
const parsed = parsePathWindows(u8, path);
try testing.expectEqual(.root_local_device, parsed.kind);
try testing.expectEqualStrings("\\\\.", parsed.root);
try testWindowsParsePathHarmony(path);
}
{
const path = "\\\\.\\a";
const parsed = parsePathWindows(u8, path);
try testing.expectEqual(.local_device, parsed.kind);
try testing.expectEqualStrings("\\\\.\\", parsed.root);
try testWindowsParsePathHarmony(path);
}
{
const path = "c:../";
const parsed = parsePathWindows(u8, path);
try testing.expectEqual(.drive_relative, parsed.kind);
try testing.expectEqualStrings("c:", parsed.root);
try testWindowsParsePathHarmony(path);
}
{
const path = "C:\\../";
const parsed = parsePathWindows(u8, path);
try testing.expectEqual(.drive_absolute, parsed.kind);
try testing.expectEqualStrings("C:\\", parsed.root);
try testWindowsParsePathHarmony(path);
}
{
// Non-ASCII code point that is encoded as one WTF-16 code unit is considered a valid drive letter
const path = "€:\\";
const parsed = parsePathWindows(u8, path);
try testing.expectEqual(.drive_absolute, parsed.kind);
try testing.expectEqualStrings("€:\\", parsed.root);
try testWindowsParsePathHarmony(path);
}
{
const path = "€:";
const parsed = parsePathWindows(u8, path);
try testing.expectEqual(.drive_relative, parsed.kind);
try testing.expectEqualStrings("€:", parsed.root);
try testWindowsParsePathHarmony(path);
}
{
// But code points that are encoded as two WTF-16 code units are not
const path = "\u{10000}:\\";
const parsed = parsePathWindows(u8, path);
try testing.expectEqual(.relative, parsed.kind);
try testing.expectEqualStrings("", parsed.root);
try testWindowsParsePathHarmony(path);
}
{
const path = "\u{10000}:";
const parsed = parsePathWindows(u8, path);
try testing.expectEqual(.relative, parsed.kind);
try testing.expectEqualStrings("", parsed.root);
try testWindowsParsePathHarmony(path);
}
{
// Paths are assumed to be in the Win32 namespace, so while this is
// likely a NT namespace path, it's treated as a rooted path.
const path = "\\??\\foo";
const parsed = parsePathWindows(u8, path);
try testing.expectEqual(.rooted, parsed.kind);
try testing.expectEqualStrings("\\", parsed.root);
try testWindowsParsePathHarmony(path);
}
}
fn testWindowsParsePathHarmony(wtf8: []const u8) !void {
var wtf16_buf: [256]u16 = undefined;
const wtf16_len = try std.unicode.wtf8ToWtf16Le(&wtf16_buf, wtf8);
const wtf16 = wtf16_buf[0..wtf16_len];
const wtf8_parsed = parsePathWindows(u8, wtf8);
const wtf16_parsed = parsePathWindows(u16, wtf16);
var wtf8_buf: [256]u8 = undefined;
const wtf16_root_as_wtf8_len = std.unicode.wtf16LeToWtf8(&wtf8_buf, wtf16_parsed.root);
const wtf16_root_as_wtf8 = wtf8_buf[0..wtf16_root_as_wtf8_len];
try std.testing.expectEqual(wtf8_parsed.kind, wtf16_parsed.kind);
try std.testing.expectEqualStrings(wtf8_parsed.root, wtf16_root_as_wtf8);
}
/// Deprecated; use `parsePath`
pub fn diskDesignator(path: []const u8) []const u8 {
if (native_os == .windows) {
return diskDesignatorWindows(path);
} else {
return "";
}
}
/// Deprecated; use `parsePathWindows`
pub fn diskDesignatorWindows(path: []const u8) []const u8 {
return windowsParsePath(path).disk_designator;
}
fn WindowsUNC(comptime T: type) type {
return struct {
server: []const T,
sep_after_server: bool,
share: []const T,
sep_after_share: bool,
};
}
/// Asserts that `path` starts with two path separators
fn parseUNC(comptime T: type, path: []const T) WindowsUNC(T) {
assert(path.len >= 2 and PathType.windows.isSep(T, path[0]) and PathType.windows.isSep(T, path[1]));
const any_sep = switch (T) {
u8 => "/\\",
u16 => std.unicode.wtf8ToWtf16LeStringLiteral("/\\"),
else => @compileError("only u8 (WTF-8) and u16 (WTF-16LE) are supported"),
};
// For the server, the first path separator after the initial two is always
// the terminator of the server name, even if that means the server name is
// zero-length.
const server_end = mem.findAnyPos(T, path, 2, any_sep) orelse return .{
.server = path[2..path.len],
.sep_after_server = false,
.share = path[path.len..path.len],
.sep_after_share = false,
};
// For the share, there can be any number of path separators between the server
// and the share, so we want to skip over all of them instead of just looking for
// the first one.
var it = std.mem.tokenizeAny(T, path[server_end + 1 ..], any_sep);
const share = it.next() orelse return .{
.server = path[2..server_end],
.sep_after_server = true,
.share = path[server_end + 1 .. server_end + 1],
.sep_after_share = false,
};
return .{
.server = path[2..server_end],
.sep_after_server = true,
.share = share,
.sep_after_share = it.index != it.buffer.len,
};
}
test parseUNC {
{
const unc = parseUNC(u8, "//");
try std.testing.expectEqualStrings("", unc.server);
try std.testing.expect(!unc.sep_after_server);
try std.testing.expectEqualStrings("", unc.share);
try std.testing.expect(!unc.sep_after_share);
}
{
const unc = parseUNC(u8, "\\\\s");
try std.testing.expectEqualStrings("s", unc.server);
try std.testing.expect(!unc.sep_after_server);
try std.testing.expectEqualStrings("", unc.share);
try std.testing.expect(!unc.sep_after_share);
}
{
const unc = parseUNC(u8, "\\\\s/");
try std.testing.expectEqualStrings("s", unc.server);
try std.testing.expect(unc.sep_after_server);
try std.testing.expectEqualStrings("", unc.share);
try std.testing.expect(!unc.sep_after_share);
}
{
const unc = parseUNC(u8, "\\/server\\share");
try std.testing.expectEqualStrings("server", unc.server);
try std.testing.expect(unc.sep_after_server);
try std.testing.expectEqualStrings("share", unc.share);
try std.testing.expect(!unc.sep_after_share);
}
{
const unc = parseUNC(u8, "/\\server\\share/");
try std.testing.expectEqualStrings("server", unc.server);
try std.testing.expect(unc.sep_after_server);
try std.testing.expectEqualStrings("share", unc.share);
try std.testing.expect(unc.sep_after_share);
}
{
const unc = parseUNC(u8, "\\\\server/\\share\\/");
try std.testing.expectEqualStrings("server", unc.server);
try std.testing.expect(unc.sep_after_server);
try std.testing.expectEqualStrings("share", unc.share);
try std.testing.expect(unc.sep_after_share);
}
{
const unc = parseUNC(u8, "\\\\server\\/\\\\");
try std.testing.expectEqualStrings("server", unc.server);
try std.testing.expect(unc.sep_after_server);
try std.testing.expectEqualStrings("", unc.share);
try std.testing.expect(!unc.sep_after_share);
}
}
const DiskDesignatorKind = enum { drive, unc };
/// `p1` and `p2` are both assumed to be the `kind` provided.
fn compareDiskDesignators(comptime T: type, kind: DiskDesignatorKind, p1: []const T, p2: []const T) bool {
const eql = switch (T) {
u8 => windows.eqlIgnoreCaseWtf8,
u16 => windows.eqlIgnoreCaseWtf16,
else => @compileError("only u8 (WTF-8) and u16 (WTF-16LE) is supported"),
};
switch (kind) {
.drive => {
const drive_letter1 = getDriveLetter(T, p1);
const drive_letter2 = getDriveLetter(T, p2);
return eql(drive_letter1, drive_letter2);
},
.unc => {
var unc1 = parseUNC(T, p1);
var unc2 = parseUNC(T, p2);
return eql(unc1.server, unc2.server) and
eql(unc1.share, unc2.share);
},
}
}
/// `path` is assumed to be drive-relative or drive-absolute.
fn getDriveLetter(comptime T: type, path: []const T) []const T {
const len: usize = switch (T) {
// getWin32PathType will only return .drive_absolute/.drive_relative when there is
// (1) a valid code point, and (2) a code point < U+10000, so we only need to
// get the length determined by the first byte.
u8 => std.unicode.utf8ByteSequenceLength(path[0]) catch unreachable,
u16 => 1,
else => @compileError("unsupported type: " ++ @typeName(T)),
};
return path[0..len];
}
test compareDiskDesignators {
try testCompareDiskDesignators(true, .drive, "c:", "C:\\");
try testCompareDiskDesignators(true, .drive, "C:\\", "C:");
try testCompareDiskDesignators(false, .drive, "C:\\", "D:\\");
// Case-insensitivity technically applies to non-ASCII drive letters
try testCompareDiskDesignators(true, .drive, "λ:\\", "Λ:");
try testCompareDiskDesignators(true, .unc, "\\\\server", "//server//");
try testCompareDiskDesignators(true, .unc, "\\\\server\\\\share", "/\\server/share");
try testCompareDiskDesignators(true, .unc, "\\\\server\\\\share", "/\\server/share\\\\foo");
try testCompareDiskDesignators(false, .unc, "\\\\server\\sharefoo", "/\\server/share\\foo");
try testCompareDiskDesignators(false, .unc, "\\\\serverfoo\\\\share", "//server/share");
try testCompareDiskDesignators(false, .unc, "\\\\server\\", "//server/share");
}
fn testCompareDiskDesignators(expected_result: bool, kind: DiskDesignatorKind, p1: []const u8, p2: []const u8) !void {
var wtf16_buf1: [256]u16 = undefined;
const w1_len = try std.unicode.wtf8ToWtf16Le(&wtf16_buf1, p1);
var wtf16_buf2: [256]u16 = undefined;
const w2_len = try std.unicode.wtf8ToWtf16Le(&wtf16_buf2, p2);
try std.testing.expectEqual(expected_result, compareDiskDesignators(u8, kind, p1, p2));
try std.testing.expectEqual(expected_result, compareDiskDesignators(u16, kind, wtf16_buf1[0..w1_len], wtf16_buf2[0..w2_len]));
}
/// On Windows, this calls `resolveWindows` and on POSIX it calls `resolvePosix`.
pub fn resolve(allocator: Allocator, paths: []const []const u8) Allocator.Error![]u8 {
if (native_os == .windows) {
return resolveWindows(allocator, paths);
} else {
return resolvePosix(allocator, paths);
}
}
/// This function is like a series of `cd` statements executed one after another.
/// It resolves "." and ".." to the best of its ability, but will not convert relative paths to
/// an absolute path, use std.fs.Dir.realpath instead.
/// ".." components may persist in the resolved path if the resolved path is relative or drive-relative.
/// Path separators are canonicalized to '\\' and drives are canonicalized to capital letters.
///
/// The result will not have a trailing path separator, except for the following scenarios:
/// - The resolved path is drive-absolute with no components (e.g. `C:\`).
/// - The resolved path is a UNC path with only a server name, and the input path contained a trailing separator
/// (e.g. `\\server\`).
/// - The resolved path is a UNC path with no components after the share name, and the input path contained a
/// trailing separator (e.g. `\\server\share\`).
///
/// Each drive has its own current working directory, which is only resolved via the paths provided.
/// In the scenario that the resolved path contains a drive-relative path that can't be resolved using the paths alone,
/// the result will be a drive-relative path.
/// Similarly, in the scenario that the resolved path contains a rooted path that can't be resolved using the paths alone,
/// the result will be a rooted path.
///
/// Note: all usage of this function should be audited due to the existence of symlinks.
/// Without performing actual syscalls, resolving `..` could be incorrect.
/// This API may break in the future: https://github.com/ziglang/zig/issues/13613
pub fn resolveWindows(allocator: Allocator, paths: []const []const u8) Allocator.Error![]u8 {
// Avoid heap allocation when paths.len is <= @bitSizeOf(usize) * 2
// (we use `* 3` because stackFallback uses 1 usize as a length)
var bit_set_allocator_state = std.heap.stackFallback(@sizeOf(usize) * 3, allocator);
const bit_set_allocator = bit_set_allocator_state.get();
var relevant_paths = try std.bit_set.DynamicBitSetUnmanaged.initEmpty(bit_set_allocator, paths.len);
defer relevant_paths.deinit(bit_set_allocator);
// Iterate the paths backwards, marking the relevant paths along the way.
// This also allows us to break from the loop whenever any earlier paths are known to be irrelevant.
var first_path_i: usize = paths.len;
const effective_root_path: WindowsPath2(u8) = root: {
var last_effective_root_path: WindowsPath2(u8) = .{ .kind = .relative, .root = "" };
var last_rooted_path_i: ?usize = null;
var last_drive_relative_path_i: usize = undefined;
while (first_path_i > 0) {
first_path_i -= 1;
const parsed = parsePathWindows(u8, paths[first_path_i]);
switch (parsed.kind) {
.unc_absolute, .root_local_device, .local_device => {
switch (last_effective_root_path.kind) {
.rooted => {},
.drive_relative => continue,
else => {
relevant_paths.set(first_path_i);
},
}
break :root parsed;
},
.drive_relative, .drive_absolute => {
switch (last_effective_root_path.kind) {
.drive_relative => if (!compareDiskDesignators(u8, .drive, parsed.root, last_effective_root_path.root)) {
continue;
} else if (last_rooted_path_i != null) {
break :root .{ .kind = .drive_absolute, .root = parsed.root };
},
.relative => last_effective_root_path = parsed,
.rooted => {
// This is the end of the line, since the rooted path will always be relative
// to this drive letter, and even if the current path is drive-relative, the
// rooted-ness makes that irrelevant.
//
// Therefore, force the kind of the effective root to be drive-absolute in order to
// properly resolve a rooted path against a drive-relative one, as the result should
// always be drive-absolute.
break :root .{ .kind = .drive_absolute, .root = parsed.root };
},
.drive_absolute, .unc_absolute, .root_local_device, .local_device => unreachable,
}
relevant_paths.set(first_path_i);
last_drive_relative_path_i = first_path_i;
if (parsed.kind == .drive_absolute) {
break :root parsed;
}
},
.relative => {
switch (last_effective_root_path.kind) {
.rooted => continue,
.relative => last_effective_root_path = parsed,
else => {},
}
relevant_paths.set(first_path_i);
},
.rooted => {
switch (last_effective_root_path.kind) {
.drive_relative => {},
.relative => last_effective_root_path = parsed,
.rooted => continue,
.drive_absolute, .unc_absolute, .root_local_device, .local_device => unreachable,
}
if (last_rooted_path_i == null) {
last_rooted_path_i = first_path_i;
relevant_paths.set(first_path_i);
}
},
}
}
// After iterating, if the pending effective root is drive-relative then that means
// nothing has led to forcing a drive-absolute root (a path that allows resolving the
// drive-specific CWD would cause an early break), so we now need to ignore all paths
// before the most recent drive-relative one. For example, if we're resolving
// { "\\rooted", "relative", "C:drive-relative" }
// then the `\rooted` and `relative` needs to be ignored since we can't
// know what the rooted path is rooted against as that'd require knowing the CWD.
if (last_effective_root_path.kind == .drive_relative) {
for (0..last_drive_relative_path_i) |i| {
relevant_paths.unset(i);
}
}
break :root last_effective_root_path;
};
var result: std.ArrayList(u8) = .empty;
defer result.deinit(allocator);
var want_path_sep_between_root_and_component = false;
switch (effective_root_path.kind) {
.root_local_device, .local_device => {
try result.ensureUnusedCapacity(allocator, 3);
result.appendSliceAssumeCapacity("\\\\");
result.appendAssumeCapacity(effective_root_path.root[2]); // . or ?
want_path_sep_between_root_and_component = true;
},
.drive_absolute, .drive_relative => {
try result.ensureUnusedCapacity(allocator, effective_root_path.root.len);
result.appendAssumeCapacity(std.ascii.toUpper(effective_root_path.root[0]));
result.appendAssumeCapacity(':');
if (effective_root_path.kind == .drive_absolute) {
result.appendAssumeCapacity('\\');
}
},
.unc_absolute => {
const unc = parseUNC(u8, effective_root_path.root);
const root_len = len: {
var len: usize = 2 + unc.server.len + unc.share.len;
if (unc.sep_after_server) len += 1;
if (unc.sep_after_share) len += 1;
break :len len;
};
try result.ensureUnusedCapacity(allocator, root_len);
result.appendSliceAssumeCapacity("\\\\");
if (unc.server.len > 0 or unc.sep_after_server) {
result.appendSliceAssumeCapacity(unc.server);
if (unc.sep_after_server)
result.appendAssumeCapacity('\\')
else
want_path_sep_between_root_and_component = true;
}
if (unc.share.len > 0) {
result.appendSliceAssumeCapacity(unc.share);
if (unc.sep_after_share)
result.appendAssumeCapacity('\\')
else
want_path_sep_between_root_and_component = true;
}
},
.rooted => {
try result.append(allocator, '\\');
},
.relative => {},
}
const root_len = result.items.len;
var negative_count: usize = 0;
for (paths[first_path_i..], first_path_i..) |path, i| {
if (!relevant_paths.isSet(i)) continue;
const parsed = parsePathWindows(u8, path);
const skip_len = parsed.root.len;
var it = mem.tokenizeAny(u8, path[skip_len..], "/\\");
while (it.next()) |component| {
if (mem.eql(u8, component, ".")) {
continue;
} else if (mem.eql(u8, component, "..")) {
if (result.items.len == 0 or (result.items.len == root_len and effective_root_path.kind == .drive_relative)) {
negative_count += 1;
continue;
}
while (true) {
if (result.items.len == root_len) {
break;
}
const end_with_sep = PathType.windows.isSep(u8, result.items[result.items.len - 1]);
result.items.len -= 1;
if (end_with_sep) break;
}
} else if (result.items.len == root_len and !want_path_sep_between_root_and_component) {
try result.appendSlice(allocator, component);
} else {
try result.ensureUnusedCapacity(allocator, 1 + component.len);
result.appendAssumeCapacity('\\');
result.appendSliceAssumeCapacity(component);
}
}
}
if (root_len != 0 and result.items.len == root_len and negative_count == 0) {
return result.toOwnedSlice(allocator);
}
if (result.items.len == root_len) {
if (negative_count == 0) {
return allocator.dupe(u8, ".");
}
try result.ensureTotalCapacityPrecise(allocator, 3 * negative_count - 1);
for (0..negative_count - 1) |_| {
result.appendSliceAssumeCapacity("..\\");
}
result.appendSliceAssumeCapacity("..");
} else {
const dest = try result.addManyAt(allocator, root_len, 3 * negative_count);
for (0..negative_count) |i| {
dest[i * 3 ..][0..3].* = "..\\".*;
}
}
return result.toOwnedSlice(allocator);
}
/// This function is like a series of `cd` statements executed one after another.
/// It resolves "." and ".." to the best of its ability, but will not convert relative paths to
/// an absolute path, use std.fs.Dir.realpath instead.
/// ".." components may persist in the resolved path if the resolved path is relative.
/// The result does not have a trailing path separator.
/// This function does not perform any syscalls. Executing this series of path
/// lookups on the actual filesystem may produce different results due to
/// symlinks.
pub fn resolvePosix(allocator: Allocator, paths: []const []const u8) Allocator.Error![]u8 {
assert(paths.len > 0);
var result = std.array_list.Managed(u8).init(allocator);
defer result.deinit();
var negative_count: usize = 0;
var is_abs = false;
for (paths) |p| {
if (isAbsolutePosix(p)) {
is_abs = true;
negative_count = 0;
result.clearRetainingCapacity();
}
var it = mem.tokenizeScalar(u8, p, '/');
while (it.next()) |component| {
if (mem.eql(u8, component, ".")) {
continue;
} else if (mem.eql(u8, component, "..")) {
if (result.items.len == 0) {
negative_count += @intFromBool(!is_abs);
continue;
}
while (true) {
const ends_with_slash = result.items[result.items.len - 1] == '/';
result.items.len -= 1;
if (ends_with_slash or result.items.len == 0) break;
}
} else if (result.items.len > 0 or is_abs) {
try result.ensureUnusedCapacity(1 + component.len);
result.appendAssumeCapacity('/');
result.appendSliceAssumeCapacity(component);
} else {
try result.appendSlice(component);
}
}
}
if (result.items.len == 0) {
if (is_abs) {
return allocator.dupe(u8, "/");
}
if (negative_count == 0) {
return allocator.dupe(u8, ".");
} else {
const real_result = try allocator.alloc(u8, 3 * negative_count - 1);
var count = negative_count - 1;
var i: usize = 0;
while (count > 0) : (count -= 1) {
real_result[i..][0..3].* = "../".*;
i += 3;
}
real_result[i..][0..2].* = "..".*;
return real_result;
}
}
if (negative_count == 0) {
return result.toOwnedSlice();
} else {
const real_result = try allocator.alloc(u8, 3 * negative_count + result.items.len);
var count = negative_count;
var i: usize = 0;
while (count > 0) : (count -= 1) {
real_result[i..][0..3].* = "../".*;
i += 3;
}
@memcpy(real_result[i..][0..result.items.len], result.items);
return real_result;
}
}
test resolve {
try testResolveWindows(&[_][]const u8{ "a", "..\\..\\.." }, "..\\..");
try testResolveWindows(&[_][]const u8{ "..", "", "..\\..\\foo" }, "..\\..\\..\\foo");
try testResolveWindows(&[_][]const u8{ "a\\b\\c\\", "..\\..\\.." }, ".");
try testResolveWindows(&[_][]const u8{"."}, ".");
try testResolveWindows(&[_][]const u8{""}, ".");
try testResolvePosix(&[_][]const u8{ "a", "../../.." }, "../..");
try testResolvePosix(&[_][]const u8{ "..", "", "../../foo" }, "../../../foo");
try testResolvePosix(&[_][]const u8{ "a/b/c/", "../../.." }, ".");
try testResolvePosix(&[_][]const u8{"."}, ".");
try testResolvePosix(&[_][]const u8{""}, ".");
}
test resolveWindows {
try testResolveWindows(
&[_][]const u8{ "Z:\\", "/usr/local", "lib\\zig\\std\\array_list.zig" },
"Z:\\usr\\local\\lib\\zig\\std\\array_list.zig",
);
try testResolveWindows(
&[_][]const u8{ "z:\\", "usr/local", "lib\\zig" },
"Z:\\usr\\local\\lib\\zig",
);
try testResolveWindows(&[_][]const u8{ "c:\\a\\b\\c", "/hi", "ok" }, "C:\\hi\\ok");
try testResolveWindows(&[_][]const u8{ "c:\\a\\b\\c\\", ".\\..\\foo" }, "C:\\a\\b\\foo");
try testResolveWindows(&[_][]const u8{ "c:/blah\\blah", "d:/games", "c:../a" }, "C:\\blah\\a");
try testResolveWindows(&[_][]const u8{ "c:/blah\\blah", "d:/games", "C:../a" }, "C:\\blah\\a");
try testResolveWindows(&[_][]const u8{ "c:/ignore", "d:\\a/b\\c/d", "\\e.exe" }, "D:\\e.exe");
try testResolveWindows(&[_][]const u8{ "c:/ignore", "c:/some/file" }, "C:\\some\\file");
// The first path "sets" the CWD, so the drive-relative path is then relative to that.
try testResolveWindows(&[_][]const u8{ "d:/foo", "d:some/dir//", "D:another" }, "D:\\foo\\some\\dir\\another");
try testResolveWindows(&[_][]const u8{ "//server/share", "..", "relative\\" }, "\\\\server\\share\\relative");
try testResolveWindows(&[_][]const u8{ "\\\\server/share", "..", "relative\\" }, "\\\\server\\share\\relative");
try testResolveWindows(&[_][]const u8{ "\\\\server/share/ignore", "//server/share/bar" }, "\\\\server\\share\\bar");
try testResolveWindows(&[_][]const u8{ "\\/server\\share/", "..", "relative" }, "\\\\server\\share\\relative");
try testResolveWindows(&[_][]const u8{ "\\\\server\\share", "C:drive-relative" }, "C:drive-relative");
try testResolveWindows(&[_][]const u8{ "c:/", "//" }, "\\\\");
try testResolveWindows(&[_][]const u8{ "c:/", "//server" }, "\\\\server");
try testResolveWindows(&[_][]const u8{ "c:/", "//server/share" }, "\\\\server\\share");
try testResolveWindows(&[_][]const u8{ "c:/", "//server//share////" }, "\\\\server\\share\\");
try testResolveWindows(&[_][]const u8{ "c:/", "///some//dir" }, "\\\\\\some\\dir");
try testResolveWindows(&[_][]const u8{ "c:foo", "bar" }, "C:foo\\bar");
try testResolveWindows(&[_][]const u8{ "C:\\foo\\tmp.3\\", "..\\tmp.3\\cycles\\root.js" }, "C:\\foo\\tmp.3\\cycles\\root.js");
// Drive-relative stays drive-relative if there's nothing to provide the drive-specific CWD
try testResolveWindows(&[_][]const u8{ "relative", "d:foo" }, "D:foo");
try testResolveWindows(&[_][]const u8{ "../..\\..", "d:foo" }, "D:foo");
try testResolveWindows(&[_][]const u8{ "../..\\..", "\\rooted", "d:foo" }, "D:foo");
try testResolveWindows(&[_][]const u8{ "C:\\foo", "../..\\..", "\\rooted", "d:foo" }, "D:foo");
try testResolveWindows(&[_][]const u8{ "D:relevant", "../..\\..", "d:foo" }, "D:..\\..\\foo");
try testResolveWindows(&[_][]const u8{ "D:relevant", "../..\\..", "\\\\.\\ignored", "C:\\ignored", "C:ignored", "\\\\ignored", "d:foo" }, "D:..\\..\\foo");
try testResolveWindows(&[_][]const u8{ "ignored", "\\\\.\\ignored", "C:\\ignored", "C:ignored", "\\\\ignored", "d:foo" }, "D:foo");
// Rooted paths remain rooted if there's no absolute path available to resolve the "root"
try testResolveWindows(&[_][]const u8{ "/foo", "bar" }, "\\foo\\bar");
// Rooted against a UNC path
try testResolveWindows(&[_][]const u8{ "//server/share/ignore", "/foo", "bar" }, "\\\\server\\share\\foo\\bar");
try testResolveWindows(&[_][]const u8{ "//server/share/", "/foo" }, "\\\\server\\share\\foo");
try testResolveWindows(&[_][]const u8{ "//server/share", "/foo" }, "\\\\server\\share\\foo");
try testResolveWindows(&[_][]const u8{ "//server/", "/foo" }, "\\\\server\\foo");
try testResolveWindows(&[_][]const u8{ "//server", "/foo" }, "\\\\server\\foo");
try testResolveWindows(&[_][]const u8{ "//", "/foo" }, "\\\\foo");
// Rooted against a drive-relative path
try testResolveWindows(&[_][]const u8{ "C:", "/foo", "bar" }, "C:\\foo\\bar");
try testResolveWindows(&[_][]const u8{ "C:\\ignore", "C:", "/foo", "bar" }, "C:\\foo\\bar");
try testResolveWindows(&[_][]const u8{ "C:\\ignore", "\\foo", "C:bar" }, "C:\\foo\\bar");
// Only the last rooted path is relevant
try testResolveWindows(&[_][]const u8{ "\\ignore", "\\foo" }, "\\foo");
try testResolveWindows(&[_][]const u8{ "c:ignore", "ignore", "\\ignore", "\\foo" }, "C:\\foo");
// Rooted is only relevant to a drive-relative if there's a previous drive-* path
try testResolveWindows(&[_][]const u8{ "\\ignore", "C:foo" }, "C:foo");
try testResolveWindows(&[_][]const u8{ "\\ignore", "\\ignore2", "C:foo" }, "C:foo");
try testResolveWindows(&[_][]const u8{ "c:ignore", "\\ignore", "\\rooted", "C:foo" }, "C:\\rooted\\foo");
try testResolveWindows(&[_][]const u8{ "c:\\ignore", "\\ignore", "\\rooted", "C:foo" }, "C:\\rooted\\foo");
try testResolveWindows(&[_][]const u8{ "d:\\ignore", "\\ignore", "\\ignore2", "C:foo" }, "C:foo");
// Root local device paths
try testResolveWindows(&[_][]const u8{"\\/."}, "\\\\.");
try testResolveWindows(&[_][]const u8{ "\\/.", "C:drive-relative" }, "C:drive-relative");
try testResolveWindows(&[_][]const u8{"/\\?"}, "\\\\?");
try testResolveWindows(&[_][]const u8{ "ignore", "c:\\ignore", "\\\\.", "foo" }, "\\\\.\\foo");
try testResolveWindows(&[_][]const u8{ "ignore", "c:\\ignore", "\\\\?", "foo" }, "\\\\?\\foo");
try testResolveWindows(&[_][]const u8{ "ignore", "c:\\ignore", "//.", "ignore", "\\foo" }, "\\\\.\\foo");
try testResolveWindows(&[_][]const u8{ "ignore", "c:\\ignore", "\\\\?", "ignore", "\\foo" }, "\\\\?\\foo");
// Keep relative paths relative.
try testResolveWindows(&[_][]const u8{"a/b"}, "a\\b");
try testResolveWindows(&[_][]const u8{".."}, "..");
try testResolveWindows(&[_][]const u8{"../.."}, "..\\..");
try testResolveWindows(&[_][]const u8{ "C:foo", "../.." }, "C:..");
try testResolveWindows(&[_][]const u8{ "d:foo", "../..\\.." }, "D:..\\..");
// Local device paths treat the \\.\ or \\?\ as the "root", everything afterwards is treated as a regular component.
try testResolveWindows(&[_][]const u8{ "\\\\?\\C:\\foo", "../bar", "baz" }, "\\\\?\\C:\\bar\\baz");
try testResolveWindows(&[_][]const u8{ "\\\\.\\C:/foo", "../../../../bar", "baz" }, "\\\\.\\bar\\baz");
try testResolveWindows(&[_][]const u8{ "//./C:/foo", "../../../../bar", "baz" }, "\\\\.\\bar\\baz");
try testResolveWindows(&[_][]const u8{ "\\\\.\\foo", ".." }, "\\\\.");
try testResolveWindows(&[_][]const u8{ "\\\\.\\foo", "..\\.." }, "\\\\.");
// Paths are assumed to be Win32, so paths that are likely NT paths are treated as a rooted path.
try testResolveWindows(&[_][]const u8{ "\\??\\C:\\foo", "/bar", "baz" }, "\\bar\\baz");
try testResolveWindows(&[_][]const u8{ "C:\\", "\\??\\C:\\foo", "bar" }, "C:\\??\\C:\\foo\\bar");
}
test resolvePosix {
try testResolvePosix(&.{ "/a/b", "c" }, "/a/b/c");
try testResolvePosix(&.{ "/a/b", "c", "//d", "e///" }, "/d/e");
try testResolvePosix(&.{ "/a/b/c", "..", "../" }, "/a");
try testResolvePosix(&.{ "/", "..", ".." }, "/");
try testResolvePosix(&.{"/a/b/c/"}, "/a/b/c");
try testResolvePosix(&.{ "/var/lib", "../", "file/" }, "/var/file");
try testResolvePosix(&.{ "/var/lib", "/../", "file/" }, "/file");
try testResolvePosix(&.{ "/some/dir", ".", "/absolute/" }, "/absolute");
try testResolvePosix(&.{ "/foo/tmp.3/", "../tmp.3/cycles/root.js" }, "/foo/tmp.3/cycles/root.js");
// Keep relative paths relative.
try testResolvePosix(&.{"a/b"}, "a/b");
try testResolvePosix(&.{"."}, ".");
try testResolvePosix(&.{ ".", "src/test.zig", "..", "../test/cases.zig" }, "test/cases.zig");
}
fn testResolveWindows(paths: []const []const u8, expected: []const u8) !void {
const actual = try resolveWindows(testing.allocator, paths);
defer testing.allocator.free(actual);
try testing.expectEqualStrings(expected, actual);
}
fn testResolvePosix(paths: []const []const u8, expected: []const u8) !void {
const actual = try resolvePosix(testing.allocator, paths);
defer testing.allocator.free(actual);
try testing.expectEqualStrings(expected, actual);
}
/// Strip the last component from a file path.
///
/// If the path is a file in the current directory (no directory component)
/// then returns null.
///
/// If the path is the root directory, returns null.
pub fn dirname(path: []const u8) ?[]const u8 {
if (native_os == .windows) {
return dirnameWindows(path);
} else {
return dirnamePosix(path);
}
}
pub fn dirnameWindows(path: []const u8) ?[]const u8 {
return dirnameInner(.windows, path);
}
pub fn dirnamePosix(path: []const u8) ?[]const u8 {
return dirnameInner(.posix, path);
}
fn dirnameInner(comptime path_type: PathType, path: []const u8) ?[]const u8 {
var it = ComponentIterator(path_type, u8).init(path);
_ = it.last() orelse return null;
const up = it.previous() orelse return it.root();
return up.path;
}
test dirnamePosix {
try testDirnamePosix("/a/b/c", "/a/b");
try testDirnamePosix("/a/b/c///", "/a/b");
try testDirnamePosix("/a", "/");
try testDirnamePosix("/", null);
try testDirnamePosix("//", null);
try testDirnamePosix("///", null);
try testDirnamePosix("////", null);
try testDirnamePosix("", null);
try testDirnamePosix("a", null);
try testDirnamePosix("a/", null);
try testDirnamePosix("a//", null);
}
test dirnameWindows {
try testDirnameWindows("c:\\", null);
try testDirnameWindows("c:\\\\", null);
try testDirnameWindows("c:\\foo", "c:\\");
try testDirnameWindows("c:\\\\foo\\", "c:\\");
try testDirnameWindows("c:\\foo\\bar", "c:\\foo");
try testDirnameWindows("c:\\foo\\bar\\", "c:\\foo");
try testDirnameWindows("c:\\\\foo\\bar\\baz", "c:\\\\foo\\bar");
try testDirnameWindows("\\", null);
try testDirnameWindows("\\foo", "\\");
try testDirnameWindows("\\foo\\", "\\");
try testDirnameWindows("\\foo\\bar", "\\foo");
try testDirnameWindows("\\foo\\bar\\", "\\foo");
try testDirnameWindows("\\foo\\bar\\baz", "\\foo\\bar");
try testDirnameWindows("c:", null);
try testDirnameWindows("c:foo", "c:");
try testDirnameWindows("c:foo\\", "c:");
try testDirnameWindows("c:foo\\bar", "c:foo");
try testDirnameWindows("c:foo\\bar\\", "c:foo");
try testDirnameWindows("c:foo\\bar\\baz", "c:foo\\bar");
try testDirnameWindows("file:stream", null);
try testDirnameWindows("dir\\file:stream", "dir");
try testDirnameWindows("\\\\unc\\share", null);
try testDirnameWindows("\\\\unc\\share\\\\", null);
try testDirnameWindows("\\\\unc\\share\\foo", "\\\\unc\\share\\");
try testDirnameWindows("\\\\unc\\share\\foo\\", "\\\\unc\\share\\");
try testDirnameWindows("\\\\unc\\share\\foo\\bar", "\\\\unc\\share\\foo");
try testDirnameWindows("\\\\unc\\share\\foo\\bar\\", "\\\\unc\\share\\foo");
try testDirnameWindows("\\\\unc\\share\\foo\\bar\\baz", "\\\\unc\\share\\foo\\bar");
try testDirnameWindows("\\\\.", null);
try testDirnameWindows("\\\\.\\", null);
try testDirnameWindows("\\\\.\\device", "\\\\.\\");
try testDirnameWindows("\\\\.\\device\\", "\\\\.\\");
try testDirnameWindows("\\\\.\\device\\foo", "\\\\.\\device");
try testDirnameWindows("\\\\?", null);
try testDirnameWindows("\\\\?\\", null);
try testDirnameWindows("\\\\?\\device", "\\\\?\\");
try testDirnameWindows("\\\\?\\device\\", "\\\\?\\");
try testDirnameWindows("\\\\?\\device\\foo", "\\\\?\\device");
try testDirnameWindows("/a/b/", "/a");
try testDirnameWindows("/a/b", "/a");
try testDirnameWindows("/a", "/");
try testDirnameWindows("", null);
try testDirnameWindows("/", null);
try testDirnameWindows("////", null);
try testDirnameWindows("foo", null);
}
fn testDirnamePosix(input: []const u8, expected_output: ?[]const u8) !void {
if (dirnamePosix(input)) |output| {
try testing.expect(mem.eql(u8, output, expected_output.?));
} else {
try testing.expect(expected_output == null);
}
}
fn testDirnameWindows(input: []const u8, expected_output: ?[]const u8) !void {
if (dirnameWindows(input)) |output| {
try testing.expectEqualStrings(expected_output.?, output);
} else {
try testing.expect(expected_output == null);
}
}
pub fn basename(path: []const u8) []const u8 {
if (native_os == .windows) {
return basenameWindows(path);
} else {
return basenamePosix(path);
}
}
pub fn basenamePosix(path: []const u8) []const u8 {
return basenameInner(.posix, path);
}
pub fn basenameWindows(path: []const u8) []const u8 {
return basenameInner(.windows, path);
}
fn basenameInner(comptime path_type: PathType, path: []const u8) []const u8 {
var it = ComponentIterator(path_type, u8).init(path);
const last = it.last() orelse return &[_]u8{};
return last.name;
}
test basename {
try testBasename("", "");
try testBasename("/", "");
try testBasename("/dir/basename.ext", "basename.ext");
try testBasename("/basename.ext", "basename.ext");
try testBasename("basename.ext", "basename.ext");
try testBasename("basename.ext/", "basename.ext");
try testBasename("basename.ext//", "basename.ext");
try testBasename("/aaa/bbb", "bbb");
try testBasename("/aaa/", "aaa");
try testBasename("/aaa/b", "b");
try testBasename("/a/b", "b");
// For Windows, this is a UNC path that only has a server name component.
try testBasename("//a", if (native_os == .windows) "" else "a");
try testBasenamePosix("\\dir\\basename.ext", "\\dir\\basename.ext");
try testBasenamePosix("\\basename.ext", "\\basename.ext");
try testBasenamePosix("basename.ext", "basename.ext");
try testBasenamePosix("basename.ext\\", "basename.ext\\");
try testBasenamePosix("basename.ext\\\\", "basename.ext\\\\");
try testBasenamePosix("foo", "foo");
try testBasenameWindows("\\dir\\basename.ext", "basename.ext");
try testBasenameWindows("\\basename.ext", "basename.ext");
try testBasenameWindows("basename.ext", "basename.ext");
try testBasenameWindows("basename.ext\\", "basename.ext");
try testBasenameWindows("basename.ext\\\\", "basename.ext");
try testBasenameWindows("foo", "foo");
try testBasenameWindows("C:", "");
try testBasenameWindows("C:.", ".");
try testBasenameWindows("C:\\", "");
try testBasenameWindows("C:\\dir\\base.ext", "base.ext");
try testBasenameWindows("C:\\basename.ext", "basename.ext");
try testBasenameWindows("C:basename.ext", "basename.ext");
try testBasenameWindows("C:basename.ext\\", "basename.ext");
try testBasenameWindows("C:basename.ext\\\\", "basename.ext");
try testBasenameWindows("\\\\.", "");
try testBasenameWindows("\\\\.\\", "");
try testBasenameWindows("\\\\.\\basename.ext", "basename.ext");
try testBasenameWindows("\\\\?", "");
try testBasenameWindows("\\\\?\\", "");
try testBasenameWindows("\\\\?\\basename.ext", "basename.ext");
try testBasenameWindows("C:foo", "foo");
try testBasenameWindows("file:stream", "file:stream");
}
fn testBasename(input: []const u8, expected_output: []const u8) !void {
try testing.expectEqualSlices(u8, expected_output, basename(input));
}
fn testBasenamePosix(input: []const u8, expected_output: []const u8) !void {
try testing.expectEqualSlices(u8, expected_output, basenamePosix(input));
}
fn testBasenameWindows(input: []const u8, expected_output: []const u8) !void {
try testing.expectEqualSlices(u8, expected_output, basenameWindows(input));
}
pub const RelativeError = std.process.GetCwdAllocError;
/// Returns the relative path from `from` to `to`. If `from` and `to` each
/// resolve to the same path (after calling `resolve` on each), a zero-length
/// string is returned.
/// On Windows, the result is not guaranteed to be relative, as the paths may be
/// on different volumes. In that case, the result will be the canonicalized absolute
/// path of `to`.
pub fn relative(allocator: Allocator, from: []const u8, to: []const u8) RelativeError![]u8 {
if (native_os == .windows) {
return relativeWindows(allocator, from, to);
} else {
return relativePosix(allocator, from, to);
}
}
pub fn relativeWindows(allocator: Allocator, from: []const u8, to: []const u8) ![]u8 {
if (native_os != .windows) @compileError("this function relies on Windows-specific semantics");
const parsed_from = parsePathWindows(u8, from);
const parsed_to = parsePathWindows(u8, to);
const result_is_always_to = x: {
if (parsed_from.kind != parsed_to.kind) {
break :x false;
}
switch (parsed_from.kind) {
.drive_relative, .drive_absolute => {
break :x !compareDiskDesignators(u8, .drive, parsed_from.root, parsed_to.root);
},
.unc_absolute => {
break :x !compareDiskDesignators(u8, .unc, parsed_from.root, parsed_to.root);
},
.relative, .rooted, .local_device => break :x false,
.root_local_device => break :x true,
}
};
if (result_is_always_to) {
return windowsResolveAgainstCwd(allocator, to, parsed_to);
}
const resolved_from = try windowsResolveAgainstCwd(allocator, from, parsed_from);
defer allocator.free(resolved_from);
var clean_up_resolved_to = true;
const resolved_to = try windowsResolveAgainstCwd(allocator, to, parsed_to);
defer if (clean_up_resolved_to) allocator.free(resolved_to);
const parsed_resolved_from = parsePathWindows(u8, resolved_from);
const parsed_resolved_to = parsePathWindows(u8, resolved_to);
const result_is_to = x: {
if (parsed_resolved_from.kind != parsed_resolved_to.kind) {
break :x true;
}
switch (parsed_resolved_from.kind) {
.drive_absolute, .drive_relative => {
break :x !compareDiskDesignators(u8, .drive, parsed_resolved_from.root, parsed_resolved_to.root);
},
.unc_absolute => {
break :x !compareDiskDesignators(u8, .unc, parsed_resolved_from.root, parsed_resolved_to.root);
},
.relative, .rooted, .local_device => break :x false,
.root_local_device => break :x true,
}
};
if (result_is_to) {
clean_up_resolved_to = false;
return resolved_to;
}
var from_it = mem.tokenizeAny(u8, resolved_from[parsed_resolved_from.root.len..], "/\\");
var to_it = mem.tokenizeAny(u8, resolved_to[parsed_resolved_to.root.len..], "/\\");
while (true) {
const from_component = from_it.next() orelse return allocator.dupe(u8, to_it.rest());
const to_rest = to_it.rest();
if (to_it.next()) |to_component| {
if (windows.eqlIgnoreCaseWtf8(from_component, to_component))
continue;
}
var up_index_end = "..".len;
while (from_it.next()) |_| {
up_index_end += "\\..".len;
}
const result = try allocator.alloc(u8, up_index_end + @intFromBool(to_rest.len > 0) + to_rest.len);
errdefer allocator.free(result);
result[0..2].* = "..".*;
var result_index: usize = 2;
while (result_index < up_index_end) {
result[result_index..][0..3].* = "\\..".*;
result_index += 3;
}
var rest_it = mem.tokenizeAny(u8, to_rest, "/\\");
while (rest_it.next()) |to_component| {
result[result_index] = '\\';
result_index += 1;
@memcpy(result[result_index..][0..to_component.len], to_component);
result_index += to_component.len;
}
return allocator.realloc(result, result_index);
}
return [_]u8{};
}
fn windowsResolveAgainstCwd(allocator: Allocator, path: []const u8, parsed: WindowsPath2(u8)) ![]u8 {
// Space for 256 WTF-16 code units; potentially 3 WTF-8 bytes per WTF-16 code unit
var temp_allocator_state = std.heap.stackFallback(256 * 3, allocator);
return switch (parsed.kind) {
.drive_absolute,
.unc_absolute,
.root_local_device,
.local_device,
=> try resolveWindows(allocator, &.{path}),
.relative => blk: {
const temp_allocator = temp_allocator_state.get();
const peb_cwd = windows.peb().ProcessParameters.CurrentDirectory.DosPath;
const cwd_w = (peb_cwd.Buffer.?)[0 .. peb_cwd.Length / 2];
const wtf8_len = std.unicode.calcWtf8Len(cwd_w);
const wtf8_buf = try temp_allocator.alloc(u8, wtf8_len);
defer temp_allocator.free(wtf8_buf);
assert(std.unicode.wtf16LeToWtf8(wtf8_buf, cwd_w) == wtf8_len);
break :blk try resolveWindows(allocator, &.{ wtf8_buf, path });
},
.rooted => blk: {
const peb_cwd = windows.peb().ProcessParameters.CurrentDirectory.DosPath;
const cwd_w = (peb_cwd.Buffer.?)[0 .. peb_cwd.Length / 2];
const parsed_cwd = parsePathWindows(u16, cwd_w);
switch (parsed_cwd.kind) {
.drive_absolute => {
var drive_buf = "_:\\".*;
drive_buf[0] = @truncate(cwd_w[0]);
break :blk try resolveWindows(allocator, &.{ &drive_buf, path });
},
.unc_absolute => {
const temp_allocator = temp_allocator_state.get();
var root_buf = try temp_allocator.alloc(u8, parsed_cwd.root.len * 3);
defer temp_allocator.free(root_buf);
const wtf8_len = std.unicode.wtf16LeToWtf8(root_buf, parsed_cwd.root);
const root = root_buf[0..wtf8_len];
break :blk try resolveWindows(allocator, &.{ root, path });
},
// Effectively a malformed CWD, give up and just return a normalized path
else => break :blk try resolveWindows(allocator, &.{path}),
}
},
.drive_relative => blk: {
const temp_allocator = temp_allocator_state.get();
const drive_cwd = drive_cwd: {
const peb_cwd = windows.peb().ProcessParameters.CurrentDirectory.DosPath;
const cwd_w = (peb_cwd.Buffer.?)[0 .. peb_cwd.Length / 2];
const parsed_cwd = parsePathWindows(u16, cwd_w);
if (parsed_cwd.kind == .drive_absolute) {
const drive_letter_w = parsed_cwd.root[0];
const drive_letters_match = drive_letter_w <= 0x7F and
ascii.toUpper(@intCast(drive_letter_w)) == ascii.toUpper(parsed.root[0]);
if (drive_letters_match) {
const wtf8_len = std.unicode.calcWtf8Len(cwd_w);
const wtf8_buf = try temp_allocator.alloc(u8, wtf8_len);
assert(std.unicode.wtf16LeToWtf8(wtf8_buf, cwd_w) == wtf8_len);
break :drive_cwd wtf8_buf[0..];
}
// Per-drive CWD's are stored in special semi-hidden environment variables
// of the format `=<drive-letter>:`, e.g. `=C:`. This type of CWD is
// purely a shell concept, so there's no guarantee that it'll be set
// or that it'll even be accurate.
var key_buf = std.unicode.wtf8ToWtf16LeStringLiteral("=_:").*;
key_buf[1] = parsed.root[0];
if (std.process.getenvW(&key_buf)) |drive_cwd_w| {
const wtf8_len = std.unicode.calcWtf8Len(drive_cwd_w);
const wtf8_buf = try temp_allocator.alloc(u8, wtf8_len);
assert(std.unicode.wtf16LeToWtf8(wtf8_buf, drive_cwd_w) == wtf8_len);
break :drive_cwd wtf8_buf[0..];
}
}
const drive_buf = try temp_allocator.alloc(u8, 3);
drive_buf[0] = parsed.root[0];
drive_buf[1] = ':';
drive_buf[2] = '\\';
break :drive_cwd drive_buf;
};
defer temp_allocator.free(drive_cwd);
break :blk try resolveWindows(allocator, &.{ drive_cwd, path });
},
};
}
pub fn relativePosix(allocator: Allocator, from: []const u8, to: []const u8) ![]u8 {
if (native_os == .windows) @compileError("this function relies on semantics that do not apply to Windows");
const cwd = try process.getCwdAlloc(allocator);
defer allocator.free(cwd);
const resolved_from = try resolvePosix(allocator, &[_][]const u8{ cwd, from });
defer allocator.free(resolved_from);
const resolved_to = try resolvePosix(allocator, &[_][]const u8{ cwd, to });
defer allocator.free(resolved_to);
var from_it = mem.tokenizeScalar(u8, resolved_from, '/');
var to_it = mem.tokenizeScalar(u8, resolved_to, '/');
while (true) {
const from_component = from_it.next() orelse return allocator.dupe(u8, to_it.rest());
const to_rest = to_it.rest();
if (to_it.next()) |to_component| {
if (mem.eql(u8, from_component, to_component))
continue;
}
var up_count: usize = 1;
while (from_it.next()) |_| {
up_count += 1;
}
const up_index_end = up_count * "../".len;
const result = try allocator.alloc(u8, up_index_end + to_rest.len);
errdefer allocator.free(result);
var result_index: usize = 0;
while (result_index < up_index_end) {
result[result_index..][0..3].* = "../".*;
result_index += 3;
}
if (to_rest.len == 0) {
// shave off the trailing slash
return allocator.realloc(result, result_index - 1);
}
@memcpy(result[result_index..][0..to_rest.len], to_rest);
return result;
}
return [_]u8{};
}
test relative {
if (native_os == .windows) {
try testRelativeWindows("c:/blah\\blah", "d:/games", "D:\\games");
try testRelativeWindows("c:/aaaa/bbbb", "c:/aaaa", "..");
try testRelativeWindows("c:/aaaa/bbbb", "c:/cccc", "..\\..\\cccc");
try testRelativeWindows("c:/aaaa/bbbb", "C:/aaaa/bbbb", "");
try testRelativeWindows("c:/aaaa/bbbb", "c:/aaaa/cccc", "..\\cccc");
try testRelativeWindows("c:/aaaa/", "c:/aaaa/cccc", "cccc");
try testRelativeWindows("c:/", "c:\\aaaa\\bbbb", "aaaa\\bbbb");
try testRelativeWindows("c:/aaaa/bbbb", "d:\\", "D:\\");
try testRelativeWindows("c:/AaAa/bbbb", "c:/aaaa/bbbb", "");
try testRelativeWindows("c:/aaaaa/", "c:/aaaa/cccc", "..\\aaaa\\cccc");
try testRelativeWindows("C:\\foo\\bar\\baz\\quux", "C:\\", "..\\..\\..\\..");
try testRelativeWindows("C:\\foo\\test", "C:\\foo\\test\\bar\\package.json", "bar\\package.json");
try testRelativeWindows("C:\\foo\\bar\\baz-quux", "C:\\foo\\bar\\baz", "..\\baz");
try testRelativeWindows("C:\\foo\\bar\\baz", "C:\\foo\\bar\\baz-quux", "..\\baz-quux");
try testRelativeWindows("\\\\foo\\bar", "\\\\foo\\bar\\baz", "baz");
try testRelativeWindows("\\\\foo\\bar\\baz", "\\\\foo\\bar", "..");
try testRelativeWindows("\\\\foo\\bar\\baz-quux", "\\\\foo\\bar\\baz", "..\\baz");
try testRelativeWindows("\\\\foo/bar\\baz-quux", "//foo\\bar/baz", "..\\baz");
try testRelativeWindows("\\\\foo\\bar\\baz", "\\\\foo\\bar\\baz-quux", "..\\baz-quux");
try testRelativeWindows("C:\\baz-quux", "C:\\baz", "..\\baz");
try testRelativeWindows("C:\\baz", "C:\\baz-quux", "..\\baz-quux");
try testRelativeWindows("\\\\foo\\baz-quux", "\\\\foo\\baz", "\\\\foo\\baz");
try testRelativeWindows("\\\\foo\\baz", "\\\\foo\\baz-quux", "\\\\foo\\baz-quux");
try testRelativeWindows("C:\\baz", "\\\\foo\\bar\\baz", "\\\\foo\\bar\\baz");
try testRelativeWindows("\\\\foo\\bar\\baz", "C:\\baz", "C:\\baz");
try testRelativeWindows("c:blah\\blah", "c:foo", "..\\..\\foo");
try testRelativeWindows("c:foo", "c:foo\\bar", "bar");
try testRelativeWindows("\\blah\\blah", "\\foo", "..\\..\\foo");
try testRelativeWindows("\\foo", "\\foo\\bar", "bar");
try testRelativeWindows("a/b/c", "a\\b", "..");
try testRelativeWindows("a/b/c", "a", "..\\..");
try testRelativeWindows("a/b/c", "a\\b\\c\\d", "d");
try testRelativeWindows("\\\\FOO\\bar\\baz", "\\\\foo\\BAR\\BAZ", "");
// Unicode-aware case-insensitive path comparison
try testRelativeWindows("\\\\кириллица\\ελληνικά\\português", "\\\\КИРИЛЛИЦА\\ΕΛΛΗΝΙΚΆ\\PORTUGUÊS", "");
} else {
try testRelativePosix("/var/lib", "/var", "..");
try testRelativePosix("/var/lib", "/bin", "../../bin");
try testRelativePosix("/var/lib", "/var/lib", "");
try testRelativePosix("/var/lib", "/var/apache", "../apache");
try testRelativePosix("/var/", "/var/lib", "lib");
try testRelativePosix("/", "/var/lib", "var/lib");
try testRelativePosix("/foo/test", "/foo/test/bar/package.json", "bar/package.json");
try testRelativePosix("/Users/a/web/b/test/mails", "/Users/a/web/b", "../..");
try testRelativePosix("/foo/bar/baz-quux", "/foo/bar/baz", "../baz");
try testRelativePosix("/foo/bar/baz", "/foo/bar/baz-quux", "../baz-quux");
try testRelativePosix("/baz-quux", "/baz", "../baz");
try testRelativePosix("/baz", "/baz-quux", "../baz-quux");
}
}
fn testRelativePosix(from: []const u8, to: []const u8, expected_output: []const u8) !void {
const result = try relativePosix(testing.allocator, from, to);
defer testing.allocator.free(result);
try testing.expectEqualStrings(expected_output, result);
}
fn testRelativeWindows(from: []const u8, to: []const u8, expected_output: []const u8) !void {
const result = try relativeWindows(testing.allocator, from, to);
defer testing.allocator.free(result);
try testing.expectEqualStrings(expected_output, result);
}
/// Searches for a file extension separated by a `.` and returns the string after that `.`.
/// Files that end or start with `.` and have no other `.` in their name
/// are considered to have no extension, in which case this returns "".
/// Examples:
/// - `"main.zig"` ⇒ `".zig"`
/// - `"src/main.zig"` ⇒ `".zig"`
/// - `".gitignore"` ⇒ `""`
/// - `".image.png"` ⇒ `".png"`
/// - `"keep."` ⇒ `"."`
/// - `"src.keep.me"` ⇒ `".me"`
/// - `"/src/keep.me"` ⇒ `".me"`
/// - `"/src/keep.me/"` ⇒ `".me"`
/// The returned slice is guaranteed to have its pointer within the start and end
/// pointer address range of `path`, even if it is length zero.
pub fn extension(path: []const u8) []const u8 {
const filename = basename(path);
const index = mem.lastIndexOfScalar(u8, filename, '.') orelse return path[path.len..];
if (index == 0) return path[path.len..];
return filename[index..];
}
fn testExtension(path: []const u8, expected: []const u8) !void {
try testing.expectEqualStrings(expected, extension(path));
}
test extension {
try testExtension("", "");
try testExtension(".", "");
try testExtension("a.", ".");
try testExtension("abc.", ".");
try testExtension(".a", "");
try testExtension(".file", "");
try testExtension(".gitignore", "");
try testExtension(".image.png", ".png");
try testExtension("file.ext", ".ext");
try testExtension("file.ext.", ".");
try testExtension("very-long-file.bruh", ".bruh");
try testExtension("a.b.c", ".c");
try testExtension("a.b.c/", ".c");
try testExtension("/", "");
try testExtension("/.", "");
try testExtension("/a.", ".");
try testExtension("/abc.", ".");
try testExtension("/.a", "");
try testExtension("/.file", "");
try testExtension("/.gitignore", "");
try testExtension("/file.ext", ".ext");
try testExtension("/file.ext.", ".");
try testExtension("/very-long-file.bruh", ".bruh");
try testExtension("/a.b.c", ".c");
try testExtension("/a.b.c/", ".c");
try testExtension("/foo/bar/bam/", "");
try testExtension("/foo/bar/bam/.", "");
try testExtension("/foo/bar/bam/a.", ".");
try testExtension("/foo/bar/bam/abc.", ".");
try testExtension("/foo/bar/bam/.a", "");
try testExtension("/foo/bar/bam/.file", "");
try testExtension("/foo/bar/bam/.gitignore", "");
try testExtension("/foo/bar/bam/file.ext", ".ext");
try testExtension("/foo/bar/bam/file.ext.", ".");
try testExtension("/foo/bar/bam/very-long-file.bruh", ".bruh");
try testExtension("/foo/bar/bam/a.b.c", ".c");
try testExtension("/foo/bar/bam/a.b.c/", ".c");
}
/// Returns the last component of this path without its extension (if any):
/// - "hello/world/lib.tar.gz" ⇒ "lib.tar"
/// - "hello/world/lib.tar" ⇒ "lib"
/// - "hello/world/lib" ⇒ "lib"
pub fn stem(path: []const u8) []const u8 {
const filename = basename(path);
const index = mem.lastIndexOfScalar(u8, filename, '.') orelse return filename[0..];
if (index == 0) return path;
return filename[0..index];
}
fn testStem(path: []const u8, expected: []const u8) !void {
try testing.expectEqualStrings(expected, stem(path));
}
test stem {
try testStem("hello/world/lib.tar.gz", "lib.tar");
try testStem("hello/world/lib.tar", "lib");
try testStem("hello/world/lib", "lib");
try testStem("hello/lib/", "lib");
try testStem("hello...", "hello..");
try testStem("hello.", "hello");
try testStem("/hello.", "hello");
try testStem(".gitignore", ".gitignore");
try testStem(".image.png", ".image");
try testStem("file.ext", "file");
try testStem("file.ext.", "file.ext");
try testStem("a.b.c", "a.b");
try testStem("a.b.c/", "a.b");
try testStem(".a", ".a");
try testStem("///", "");
try testStem("..", ".");
try testStem(".", ".");
try testStem(" ", " ");
try testStem("", "");
}
/// A path component iterator that can move forwards and backwards.
/// The 'root' of the path (`/` for POSIX, things like `C:\`, `\\server\share\`, etc
/// for Windows) is treated specially and will never be returned by any of the
/// `first`, `last`, `next`, or `previous` functions.
/// Multiple consecutive path separators are skipped (treated as a single separator)
/// when iterating.
/// All returned component names/paths are slices of the original path.
/// There is no normalization of paths performed while iterating.
pub fn ComponentIterator(comptime path_type: PathType, comptime T: type) type {
return struct {
path: []const T,
/// Length of the root with at most one trailing path separator included (e.g. `C:/`).
root_len: usize,
/// Length of the root with all trailing path separators included (e.g. `C://///`).
root_end_index: usize,
start_index: usize = 0,
end_index: usize = 0,
const Self = @This();
pub const Component = struct {
/// The current component's path name, e.g. 'b'.
/// This will never contain path separators.
name: []const T,
/// The full path up to and including the current component, e.g. '/a/b'
/// This will never contain trailing path separators.
path: []const T,
};
/// After `init`, `next` will return the first component after the root
/// (there is no need to call `first` after `init`).
/// To iterate backwards (from the end of the path to the beginning), call `last`
/// after `init` and then iterate via `previous` calls.
/// For Windows paths, paths are assumed to be in the Win32 namespace.
pub fn init(path: []const T) Self {
const root_len: usize = switch (path_type) {
.posix, .uefi => posix: {
// Root on UEFI and POSIX only differs by the path separator
break :posix if (path.len > 0 and path_type.isSep(T, path[0])) 1 else 0;
},
.windows => windows: {
break :windows parsePathWindows(T, path).root.len;
},
};
// If there are repeated path separators directly after the root,
// keep track of that info so that they don't have to be dealt with when
// iterating components.
var root_end_index = root_len;
for (path[root_len..]) |c| {
if (!path_type.isSep(T, c)) break;
root_end_index += 1;
}
return .{
.path = path,
.root_len = root_len,
.root_end_index = root_end_index,
.start_index = root_end_index,
.end_index = root_end_index,
};
}
/// Returns the root of the path if it is not a relative path, or null otherwise.
/// For POSIX paths, this will be `/`.
/// For Windows paths, this will be something like `C:\`, `\\server\share\`, etc.
/// For UEFI paths, this will be `\`.
pub fn root(self: Self) ?[]const T {
if (self.root_end_index == 0) return null;
return self.path[0..self.root_len];
}
/// Returns the first component (from the beginning of the path).
/// For example, if the path is `/a/b/c` then this will return the `a` component.
/// After calling `first`, `previous` will always return `null`, and `next` will return
/// the component to the right of the one returned by `first`, if any exist.
pub fn first(self: *Self) ?Component {
self.start_index = self.root_end_index;
self.end_index = self.start_index;
while (self.end_index < self.path.len and !path_type.isSep(T, self.path[self.end_index])) {
self.end_index += 1;
}
if (self.end_index == self.start_index) return null;
return .{
.name = self.path[self.start_index..self.end_index],
.path = self.path[0..self.end_index],
};
}
/// Returns the last component (from the end of the path).
/// For example, if the path is `/a/b/c` then this will return the `c` component.
/// After calling `last`, `next` will always return `null`, and `previous` will return
/// the component to the left of the one returned by `last`, if any exist.
pub fn last(self: *Self) ?Component {
self.end_index = self.path.len;
while (true) {
if (self.end_index == self.root_end_index) {
self.start_index = self.end_index;
return null;
}
if (!path_type.isSep(T, self.path[self.end_index - 1])) break;
self.end_index -= 1;
}
self.start_index = self.end_index;
while (true) {
if (self.start_index == self.root_end_index) break;
if (path_type.isSep(T, self.path[self.start_index - 1])) break;
self.start_index -= 1;
}
if (self.start_index == self.end_index) return null;
return .{
.name = self.path[self.start_index..self.end_index],
.path = self.path[0..self.end_index],
};
}
/// Returns the next component (the component to the right of the most recently
/// returned component), or null if no such component exists.
/// For example, if the path is `/a/b/c` and the most recently returned component
/// is `b`, then this will return the `c` component.
pub fn next(self: *Self) ?Component {
const peek_result = self.peekNext() orelse return null;
self.start_index = peek_result.path.len - peek_result.name.len;
self.end_index = peek_result.path.len;
return peek_result;
}
/// Like `next`, but does not modify the iterator state.
pub fn peekNext(self: Self) ?Component {
var start_index = self.end_index;
while (start_index < self.path.len and path_type.isSep(T, self.path[start_index])) {
start_index += 1;
}
var end_index = start_index;
while (end_index < self.path.len and !path_type.isSep(T, self.path[end_index])) {
end_index += 1;
}
if (start_index == end_index) return null;
return .{
.name = self.path[start_index..end_index],
.path = self.path[0..end_index],
};
}
/// Returns the previous component (the component to the left of the most recently
/// returned component), or null if no such component exists.
/// For example, if the path is `/a/b/c` and the most recently returned component
/// is `b`, then this will return the `a` component.
pub fn previous(self: *Self) ?Component {
const peek_result = self.peekPrevious() orelse return null;
self.start_index = peek_result.path.len - peek_result.name.len;
self.end_index = peek_result.path.len;
return peek_result;
}
/// Like `previous`, but does not modify the iterator state.
pub fn peekPrevious(self: Self) ?Component {
var end_index = self.start_index;
while (true) {
if (end_index == self.root_end_index) return null;
if (!path_type.isSep(T, self.path[end_index - 1])) break;
end_index -= 1;
}
var start_index = end_index;
while (true) {
if (start_index == self.root_end_index) break;
if (path_type.isSep(T, self.path[start_index - 1])) break;
start_index -= 1;
}
if (start_index == end_index) return null;
return .{
.name = self.path[start_index..end_index],
.path = self.path[0..end_index],
};
}
};
}
pub const NativeComponentIterator = ComponentIterator(switch (native_os) {
.windows => .windows,
.uefi => .uefi,
else => .posix,
}, u8);
pub fn componentIterator(path: []const u8) NativeComponentIterator {
return NativeComponentIterator.init(path);
}
test "ComponentIterator posix" {
const PosixComponentIterator = ComponentIterator(.posix, u8);
{
const path = "a/b/c/";
var it = PosixComponentIterator.init(path);
try std.testing.expectEqual(0, it.root_len);
try std.testing.expectEqual(0, it.root_end_index);
try std.testing.expect(null == it.root());
{
try std.testing.expect(null == it.previous());
const first_via_next = it.next().?;
try std.testing.expectEqualStrings("a", first_via_next.name);
try std.testing.expectEqualStrings("a", first_via_next.path);
const first = it.first().?;
try std.testing.expectEqualStrings("a", first.name);
try std.testing.expectEqualStrings("a", first.path);
try std.testing.expect(null == it.previous());
const second = it.next().?;
try std.testing.expectEqualStrings("b", second.name);
try std.testing.expectEqualStrings("a/b", second.path);
const third = it.next().?;
try std.testing.expectEqualStrings("c", third.name);
try std.testing.expectEqualStrings("a/b/c", third.path);
try std.testing.expect(null == it.next());
}
{
const last = it.last().?;
try std.testing.expectEqualStrings("c", last.name);
try std.testing.expectEqualStrings("a/b/c", last.path);
try std.testing.expect(null == it.next());
const second_to_last = it.previous().?;
try std.testing.expectEqualStrings("b", second_to_last.name);
try std.testing.expectEqualStrings("a/b", second_to_last.path);
const third_to_last = it.previous().?;
try std.testing.expectEqualStrings("a", third_to_last.name);
try std.testing.expectEqualStrings("a", third_to_last.path);
try std.testing.expect(null == it.previous());
}
}
{
const path = "/a/b/c/";
var it = PosixComponentIterator.init(path);
try std.testing.expectEqual(1, it.root_len);
try std.testing.expectEqual(1, it.root_end_index);
try std.testing.expectEqualStrings("/", it.root().?);
{
try std.testing.expect(null == it.previous());
const first_via_next = it.next().?;
try std.testing.expectEqualStrings("a", first_via_next.name);
try std.testing.expectEqualStrings("/a", first_via_next.path);
const first = it.first().?;
try std.testing.expectEqualStrings("a", first.name);
try std.testing.expectEqualStrings("/a", first.path);
try std.testing.expect(null == it.previous());
const second = it.next().?;
try std.testing.expectEqualStrings("b", second.name);
try std.testing.expectEqualStrings("/a/b", second.path);
const third = it.next().?;
try std.testing.expectEqualStrings("c", third.name);
try std.testing.expectEqualStrings("/a/b/c", third.path);
try std.testing.expect(null == it.next());
}
{
const last = it.last().?;
try std.testing.expectEqualStrings("c", last.name);
try std.testing.expectEqualStrings("/a/b/c", last.path);
try std.testing.expect(null == it.next());
const second_to_last = it.previous().?;
try std.testing.expectEqualStrings("b", second_to_last.name);
try std.testing.expectEqualStrings("/a/b", second_to_last.path);
const third_to_last = it.previous().?;
try std.testing.expectEqualStrings("a", third_to_last.name);
try std.testing.expectEqualStrings("/a", third_to_last.path);
try std.testing.expect(null == it.previous());
}
}
{
const path = "////a///b///c////";
var it = PosixComponentIterator.init(path);
try std.testing.expectEqual(1, it.root_len);
try std.testing.expectEqual(4, it.root_end_index);
try std.testing.expectEqualStrings("/", it.root().?);
{
try std.testing.expect(null == it.previous());
const first_via_next = it.next().?;
try std.testing.expectEqualStrings("a", first_via_next.name);
try std.testing.expectEqualStrings("////a", first_via_next.path);
const first = it.first().?;
try std.testing.expectEqualStrings("a", first.name);
try std.testing.expectEqualStrings("////a", first.path);
try std.testing.expect(null == it.previous());
const second = it.next().?;
try std.testing.expectEqualStrings("b", second.name);
try std.testing.expectEqualStrings("////a///b", second.path);
const third = it.next().?;
try std.testing.expectEqualStrings("c", third.name);
try std.testing.expectEqualStrings("////a///b///c", third.path);
try std.testing.expect(null == it.next());
}
{
const last = it.last().?;
try std.testing.expectEqualStrings("c", last.name);
try std.testing.expectEqualStrings("////a///b///c", last.path);
try std.testing.expect(null == it.next());
const second_to_last = it.previous().?;
try std.testing.expectEqualStrings("b", second_to_last.name);
try std.testing.expectEqualStrings("////a///b", second_to_last.path);
const third_to_last = it.previous().?;
try std.testing.expectEqualStrings("a", third_to_last.name);
try std.testing.expectEqualStrings("////a", third_to_last.path);
try std.testing.expect(null == it.previous());
}
}
{
const path = "/";
var it = PosixComponentIterator.init(path);
try std.testing.expectEqual(1, it.root_len);
try std.testing.expectEqual(1, it.root_end_index);
try std.testing.expectEqualStrings("/", it.root().?);
try std.testing.expect(null == it.first());
try std.testing.expect(null == it.previous());
try std.testing.expect(null == it.first());
try std.testing.expect(null == it.next());
try std.testing.expect(null == it.last());
try std.testing.expect(null == it.previous());
try std.testing.expect(null == it.last());
try std.testing.expect(null == it.next());
}
{
const path = "";
var it = PosixComponentIterator.init(path);
try std.testing.expectEqual(0, it.root_len);
try std.testing.expectEqual(0, it.root_end_index);
try std.testing.expect(null == it.root());
try std.testing.expect(null == it.first());
try std.testing.expect(null == it.previous());
try std.testing.expect(null == it.first());
try std.testing.expect(null == it.next());
try std.testing.expect(null == it.last());
try std.testing.expect(null == it.previous());
try std.testing.expect(null == it.last());
try std.testing.expect(null == it.next());
}
}
test "ComponentIterator windows" {
const WindowsComponentIterator = ComponentIterator(.windows, u8);
{
const path = "a/b\\c//";
var it = WindowsComponentIterator.init(path);
try std.testing.expectEqual(0, it.root_len);
try std.testing.expectEqual(0, it.root_end_index);
try std.testing.expect(null == it.root());
{
try std.testing.expect(null == it.previous());
const first_via_next = it.next().?;
try std.testing.expectEqualStrings("a", first_via_next.name);
try std.testing.expectEqualStrings("a", first_via_next.path);
const first = it.first().?;
try std.testing.expectEqualStrings("a", first.name);
try std.testing.expectEqualStrings("a", first.path);
try std.testing.expect(null == it.previous());
const second = it.next().?;
try std.testing.expectEqualStrings("b", second.name);
try std.testing.expectEqualStrings("a/b", second.path);
const third = it.next().?;
try std.testing.expectEqualStrings("c", third.name);
try std.testing.expectEqualStrings("a/b\\c", third.path);
try std.testing.expect(null == it.next());
}
{
const last = it.last().?;
try std.testing.expectEqualStrings("c", last.name);
try std.testing.expectEqualStrings("a/b\\c", last.path);
try std.testing.expect(null == it.next());
const second_to_last = it.previous().?;
try std.testing.expectEqualStrings("b", second_to_last.name);
try std.testing.expectEqualStrings("a/b", second_to_last.path);
const third_to_last = it.previous().?;
try std.testing.expectEqualStrings("a", third_to_last.name);
try std.testing.expectEqualStrings("a", third_to_last.path);
try std.testing.expect(null == it.previous());
}
}
{
const path = "C:\\a/b/c/";
var it = WindowsComponentIterator.init(path);
try std.testing.expectEqual(3, it.root_len);
try std.testing.expectEqual(3, it.root_end_index);
try std.testing.expectEqualStrings("C:\\", it.root().?);
{
const first = it.first().?;
try std.testing.expectEqualStrings("a", first.name);
try std.testing.expectEqualStrings("C:\\a", first.path);
const second = it.next().?;
try std.testing.expectEqualStrings("b", second.name);
try std.testing.expectEqualStrings("C:\\a/b", second.path);
const third = it.next().?;
try std.testing.expectEqualStrings("c", third.name);
try std.testing.expectEqualStrings("C:\\a/b/c", third.path);
try std.testing.expect(null == it.next());
}
{
const last = it.last().?;
try std.testing.expectEqualStrings("c", last.name);
try std.testing.expectEqualStrings("C:\\a/b/c", last.path);
const second_to_last = it.previous().?;
try std.testing.expectEqualStrings("b", second_to_last.name);
try std.testing.expectEqualStrings("C:\\a/b", second_to_last.path);
const third_to_last = it.previous().?;
try std.testing.expectEqualStrings("a", third_to_last.name);
try std.testing.expectEqualStrings("C:\\a", third_to_last.path);
try std.testing.expect(null == it.previous());
}
}
{
const path = "C:\\\\//a/\\/\\b///c////";
var it = WindowsComponentIterator.init(path);
try std.testing.expectEqual(3, it.root_len);
try std.testing.expectEqual(6, it.root_end_index);
try std.testing.expectEqualStrings("C:\\", it.root().?);
{
const first = it.first().?;
try std.testing.expectEqualStrings("a", first.name);
try std.testing.expectEqualStrings("C:\\\\//a", first.path);
const second = it.next().?;
try std.testing.expectEqualStrings("b", second.name);
try std.testing.expectEqualStrings("C:\\\\//a/\\/\\b", second.path);
const third = it.next().?;
try std.testing.expectEqualStrings("c", third.name);
try std.testing.expectEqualStrings("C:\\\\//a/\\/\\b///c", third.path);
try std.testing.expect(null == it.next());
}
{
const last = it.last().?;
try std.testing.expectEqualStrings("c", last.name);
try std.testing.expectEqualStrings("C:\\\\//a/\\/\\b///c", last.path);
const second_to_last = it.previous().?;
try std.testing.expectEqualStrings("b", second_to_last.name);
try std.testing.expectEqualStrings("C:\\\\//a/\\/\\b", second_to_last.path);
const third_to_last = it.previous().?;
try std.testing.expectEqualStrings("a", third_to_last.name);
try std.testing.expectEqualStrings("C:\\\\//a", third_to_last.path);
try std.testing.expect(null == it.previous());
}
}
{
const path = "/";
var it = WindowsComponentIterator.init(path);
try std.testing.expectEqual(1, it.root_len);
try std.testing.expectEqual(1, it.root_end_index);
try std.testing.expectEqualStrings("/", it.root().?);
try std.testing.expect(null == it.first());
try std.testing.expect(null == it.previous());
try std.testing.expect(null == it.first());
try std.testing.expect(null == it.next());
try std.testing.expect(null == it.last());
try std.testing.expect(null == it.previous());
try std.testing.expect(null == it.last());
try std.testing.expect(null == it.next());
}
{
const path = "";
var it = WindowsComponentIterator.init(path);
try std.testing.expectEqual(0, it.root_len);
try std.testing.expectEqual(0, it.root_end_index);
try std.testing.expect(null == it.root());
try std.testing.expect(null == it.first());
try std.testing.expect(null == it.previous());
try std.testing.expect(null == it.first());
try std.testing.expect(null == it.next());
try std.testing.expect(null == it.last());
try std.testing.expect(null == it.previous());
try std.testing.expect(null == it.last());
try std.testing.expect(null == it.next());
}
}
test "ComponentIterator windows WTF-16" {
const WindowsComponentIterator = ComponentIterator(.windows, u16);
const L = std.unicode.utf8ToUtf16LeStringLiteral;
const path = L("C:\\a/b/c/");
var it = WindowsComponentIterator.init(path);
try std.testing.expectEqual(3, it.root_len);
try std.testing.expectEqual(3, it.root_end_index);
try std.testing.expectEqualSlices(u16, L("C:\\"), it.root().?);
{
const first = it.first().?;
try std.testing.expectEqualSlices(u16, L("a"), first.name);
try std.testing.expectEqualSlices(u16, L("C:\\a"), first.path);
const second = it.next().?;
try std.testing.expectEqualSlices(u16, L("b"), second.name);
try std.testing.expectEqualSlices(u16, L("C:\\a/b"), second.path);
const third = it.next().?;
try std.testing.expectEqualSlices(u16, L("c"), third.name);
try std.testing.expectEqualSlices(u16, L("C:\\a/b/c"), third.path);
try std.testing.expect(null == it.next());
}
{
const last = it.last().?;
try std.testing.expectEqualSlices(u16, L("c"), last.name);
try std.testing.expectEqualSlices(u16, L("C:\\a/b/c"), last.path);
const second_to_last = it.previous().?;
try std.testing.expectEqualSlices(u16, L("b"), second_to_last.name);
try std.testing.expectEqualSlices(u16, L("C:\\a/b"), second_to_last.path);
const third_to_last = it.previous().?;
try std.testing.expectEqualSlices(u16, L("a"), third_to_last.name);
try std.testing.expectEqualSlices(u16, L("C:\\a"), third_to_last.path);
try std.testing.expect(null == it.previous());
}
}
test "ComponentIterator roots" {
// UEFI
{
var it = ComponentIterator(.uefi, u8).init("\\\\a");
try std.testing.expectEqualStrings("\\", it.root().?);
it = ComponentIterator(.uefi, u8).init("//a");
try std.testing.expect(null == it.root());
}
// POSIX
{
var it = ComponentIterator(.posix, u8).init("//a");
try std.testing.expectEqualStrings("/", it.root().?);
it = ComponentIterator(.posix, u8).init("\\\\a");
try std.testing.expect(null == it.root());
}
// Windows
{
// Drive relative
var it = ComponentIterator(.windows, u8).init("C:a");
try std.testing.expectEqualStrings("C:", it.root().?);
// Drive absolute
it = ComponentIterator(.windows, u8).init("C:/a");
try std.testing.expectEqualStrings("C:/", it.root().?);
it = ComponentIterator(.windows, u8).init("C:\\a");
try std.testing.expectEqualStrings("C:\\", it.root().?);
it = ComponentIterator(.windows, u8).init("C:///a");
try std.testing.expectEqualStrings("C:/", it.root().?);
// Rooted
it = ComponentIterator(.windows, u8).init("\\a");
try std.testing.expectEqualStrings("\\", it.root().?);
it = ComponentIterator(.windows, u8).init("/a");
try std.testing.expectEqualStrings("/", it.root().?);
// Root local device
it = ComponentIterator(.windows, u8).init("\\\\.");
try std.testing.expectEqualStrings("\\\\.", it.root().?);
it = ComponentIterator(.windows, u8).init("//?");
try std.testing.expectEqualStrings("//?", it.root().?);
// UNC absolute
it = ComponentIterator(.windows, u8).init("//");
try std.testing.expectEqualStrings("//", it.root().?);
it = ComponentIterator(.windows, u8).init("\\\\a");
try std.testing.expectEqualStrings("\\\\a", it.root().?);
it = ComponentIterator(.windows, u8).init("\\\\a\\b\\\\c");
try std.testing.expectEqualStrings("\\\\a\\b\\", it.root().?);
it = ComponentIterator(.windows, u8).init("//a");
try std.testing.expectEqualStrings("//a", it.root().?);
it = ComponentIterator(.windows, u8).init("//a/b//c");
try std.testing.expectEqualStrings("//a/b/", it.root().?);
// Malformed UNC path with empty server name
it = ComponentIterator(.windows, u8).init("\\\\\\a\\b\\c");
try std.testing.expectEqualStrings("\\\\\\a\\", it.root().?);
}
}
/// Format a path encoded as bytes for display as UTF-8.
/// Returns a Formatter for the given path. The path will be converted to valid UTF-8
/// during formatting. This is a lossy conversion if the path contains any ill-formed UTF-8.
/// Ill-formed UTF-8 byte sequences are replaced by the replacement character (U+FFFD)
/// according to "U+FFFD Substitution of Maximal Subparts" from Chapter 3 of
/// the Unicode standard, and as specified by https://encoding.spec.whatwg.org/#utf-8-decoder
pub const fmtAsUtf8Lossy = std.unicode.fmtUtf8;
/// Format a path encoded as WTF-16 LE for display as UTF-8.
/// Return a Formatter for a (potentially ill-formed) UTF-16 LE path.
/// The path will be converted to valid UTF-8 during formatting. This is
/// a lossy conversion if the path contains any unpaired surrogates.
/// Unpaired surrogates are replaced by the replacement character (U+FFFD).
pub const fmtWtf16LeAsUtf8Lossy = std.unicode.fmtUtf16Le;