zig/lib/compiler_rt/fma.zig
Andrew Kelley ec95e00e28 flatten lib/std/special and improve "pkg inside another" logic
stage2: change logic for detecting whether the main package is inside
the std package. Previously it relied on realpath() which is not portable.
This uses resolve() which is how imports already work.

 * stage2: fix cleanup bug when creating Module
 * flatten lib/std/special/* to lib/*
   - this was motivated by making main_pkg_is_inside_std false for
     compiler_rt & friends.
 * rename "mini libc" to "universal libc"
2022-05-06 22:41:00 -07:00

327 lines
10 KiB
Zig

// Ported from musl, which is MIT licensed:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/fmal.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/fmaf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/fma.c
const std = @import("std");
const math = std.math;
const expect = std.testing.expect;
pub fn __fmah(x: f16, y: f16, z: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, fmaf(x, y, z));
}
pub fn fmaf(x: f32, y: f32, z: f32) callconv(.C) f32 {
const xy = @as(f64, x) * y;
const xy_z = xy + z;
const u = @bitCast(u64, xy_z);
const e = (u >> 52) & 0x7FF;
if ((u & 0x1FFFFFFF) != 0x10000000 or e == 0x7FF or (xy_z - xy == z and xy_z - z == xy)) {
return @floatCast(f32, xy_z);
} else {
// TODO: Handle inexact case with double-rounding
return @floatCast(f32, xy_z);
}
}
/// NOTE: Upstream fma.c has been rewritten completely to raise fp exceptions more accurately.
pub fn fma(x: f64, y: f64, z: f64) callconv(.C) f64 {
if (!math.isFinite(x) or !math.isFinite(y)) {
return x * y + z;
}
if (!math.isFinite(z)) {
return z;
}
if (x == 0.0 or y == 0.0) {
return x * y + z;
}
if (z == 0.0) {
return x * y;
}
const x1 = math.frexp(x);
var ex = x1.exponent;
var xs = x1.significand;
const x2 = math.frexp(y);
var ey = x2.exponent;
var ys = x2.significand;
const x3 = math.frexp(z);
var ez = x3.exponent;
var zs = x3.significand;
var spread = ex + ey - ez;
if (spread <= 53 * 2) {
zs = math.scalbn(zs, -spread);
} else {
zs = math.copysign(f64, math.floatMin(f64), zs);
}
const xy = dd_mul(xs, ys);
const r = dd_add(xy.hi, zs);
spread = ex + ey;
if (r.hi == 0.0) {
return xy.hi + zs + math.scalbn(xy.lo, spread);
}
const adj = add_adjusted(r.lo, xy.lo);
if (spread + math.ilogb(r.hi) > -1023) {
return math.scalbn(r.hi + adj, spread);
} else {
return add_and_denorm(r.hi, adj, spread);
}
}
pub fn __fmax(a: f80, b: f80, c: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, fmaq(a, b, c));
}
/// Fused multiply-add: Compute x * y + z with a single rounding error.
///
/// We use scaling to avoid overflow/underflow, along with the
/// canonical precision-doubling technique adapted from:
///
/// Dekker, T. A Floating-Point Technique for Extending the
/// Available Precision. Numer. Math. 18, 224-242 (1971).
pub fn fmaq(x: f128, y: f128, z: f128) callconv(.C) f128 {
if (!math.isFinite(x) or !math.isFinite(y)) {
return x * y + z;
}
if (!math.isFinite(z)) {
return z;
}
if (x == 0.0 or y == 0.0) {
return x * y + z;
}
if (z == 0.0) {
return x * y;
}
const x1 = math.frexp(x);
var ex = x1.exponent;
var xs = x1.significand;
const x2 = math.frexp(y);
var ey = x2.exponent;
var ys = x2.significand;
const x3 = math.frexp(z);
var ez = x3.exponent;
var zs = x3.significand;
var spread = ex + ey - ez;
if (spread <= 113 * 2) {
zs = math.scalbn(zs, -spread);
} else {
zs = math.copysign(f128, math.floatMin(f128), zs);
}
const xy = dd_mul128(xs, ys);
const r = dd_add128(xy.hi, zs);
spread = ex + ey;
if (r.hi == 0.0) {
return xy.hi + zs + math.scalbn(xy.lo, spread);
}
const adj = add_adjusted128(r.lo, xy.lo);
if (spread + math.ilogb(r.hi) > -16383) {
return math.scalbn(r.hi + adj, spread);
} else {
return add_and_denorm128(r.hi, adj, spread);
}
}
const dd = struct {
hi: f64,
lo: f64,
};
fn dd_add(a: f64, b: f64) dd {
var ret: dd = undefined;
ret.hi = a + b;
const s = ret.hi - a;
ret.lo = (a - (ret.hi - s)) + (b - s);
return ret;
}
fn dd_mul(a: f64, b: f64) dd {
var ret: dd = undefined;
const split: f64 = 0x1.0p27 + 1.0;
var p = a * split;
var ha = a - p;
ha += p;
var la = a - ha;
p = b * split;
var hb = b - p;
hb += p;
var lb = b - hb;
p = ha * hb;
var q = ha * lb + la * hb;
ret.hi = p + q;
ret.lo = p - ret.hi + q + la * lb;
return ret;
}
fn add_adjusted(a: f64, b: f64) f64 {
var sum = dd_add(a, b);
if (sum.lo != 0) {
var uhii = @bitCast(u64, sum.hi);
if (uhii & 1 == 0) {
// hibits += copysign(1.0, sum.hi, sum.lo)
const uloi = @bitCast(u64, sum.lo);
uhii += 1 - ((uhii ^ uloi) >> 62);
sum.hi = @bitCast(f64, uhii);
}
}
return sum.hi;
}
fn add_and_denorm(a: f64, b: f64, scale: i32) f64 {
var sum = dd_add(a, b);
if (sum.lo != 0) {
var uhii = @bitCast(u64, sum.hi);
const bits_lost = -@intCast(i32, (uhii >> 52) & 0x7FF) - scale + 1;
if ((bits_lost != 1) == (uhii & 1 != 0)) {
const uloi = @bitCast(u64, sum.lo);
uhii += 1 - (((uhii ^ uloi) >> 62) & 2);
sum.hi = @bitCast(f64, uhii);
}
}
return math.scalbn(sum.hi, scale);
}
/// A struct that represents a floating-point number with twice the precision
/// of f128. We maintain the invariant that "hi" stores the high-order
/// bits of the result.
const dd128 = struct {
hi: f128,
lo: f128,
};
/// Compute a+b exactly, returning the exact result in a struct dd. We assume
/// that both a and b are finite, but make no assumptions about their relative
/// magnitudes.
fn dd_add128(a: f128, b: f128) dd128 {
var ret: dd128 = undefined;
ret.hi = a + b;
const s = ret.hi - a;
ret.lo = (a - (ret.hi - s)) + (b - s);
return ret;
}
/// Compute a+b, with a small tweak: The least significant bit of the
/// result is adjusted into a sticky bit summarizing all the bits that
/// were lost to rounding. This adjustment negates the effects of double
/// rounding when the result is added to another number with a higher
/// exponent. For an explanation of round and sticky bits, see any reference
/// on FPU design, e.g.,
///
/// J. Coonen. An Implementation Guide to a Proposed Standard for
/// Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980.
fn add_adjusted128(a: f128, b: f128) f128 {
var sum = dd_add128(a, b);
if (sum.lo != 0) {
var uhii = @bitCast(u128, sum.hi);
if (uhii & 1 == 0) {
// hibits += copysign(1.0, sum.hi, sum.lo)
const uloi = @bitCast(u128, sum.lo);
uhii += 1 - ((uhii ^ uloi) >> 126);
sum.hi = @bitCast(f128, uhii);
}
}
return sum.hi;
}
/// Compute ldexp(a+b, scale) with a single rounding error. It is assumed
/// that the result will be subnormal, and care is taken to ensure that
/// double rounding does not occur.
fn add_and_denorm128(a: f128, b: f128, scale: i32) f128 {
var sum = dd_add128(a, b);
// If we are losing at least two bits of accuracy to denormalization,
// then the first lost bit becomes a round bit, and we adjust the
// lowest bit of sum.hi to make it a sticky bit summarizing all the
// bits in sum.lo. With the sticky bit adjusted, the hardware will
// break any ties in the correct direction.
//
// If we are losing only one bit to denormalization, however, we must
// break the ties manually.
if (sum.lo != 0) {
var uhii = @bitCast(u128, sum.hi);
const bits_lost = -@intCast(i32, (uhii >> 112) & 0x7FFF) - scale + 1;
if ((bits_lost != 1) == (uhii & 1 != 0)) {
const uloi = @bitCast(u128, sum.lo);
uhii += 1 - (((uhii ^ uloi) >> 126) & 2);
sum.hi = @bitCast(f128, uhii);
}
}
return math.scalbn(sum.hi, scale);
}
/// Compute a*b exactly, returning the exact result in a struct dd. We assume
/// that both a and b are normalized, so no underflow or overflow will occur.
/// The current rounding mode must be round-to-nearest.
fn dd_mul128(a: f128, b: f128) dd128 {
var ret: dd128 = undefined;
const split: f128 = 0x1.0p57 + 1.0;
var p = a * split;
var ha = a - p;
ha += p;
var la = a - ha;
p = b * split;
var hb = b - p;
hb += p;
var lb = b - hb;
p = ha * hb;
var q = ha * lb + la * hb;
ret.hi = p + q;
ret.lo = p - ret.hi + q + la * lb;
return ret;
}
test "32" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f32, fmaf(0.0, 5.0, 9.124), 9.124, epsilon));
try expect(math.approxEqAbs(f32, fmaf(0.2, 5.0, 9.124), 10.124, epsilon));
try expect(math.approxEqAbs(f32, fmaf(0.8923, 5.0, 9.124), 13.5855, epsilon));
try expect(math.approxEqAbs(f32, fmaf(1.5, 5.0, 9.124), 16.624, epsilon));
try expect(math.approxEqAbs(f32, fmaf(37.45, 5.0, 9.124), 196.374004, epsilon));
try expect(math.approxEqAbs(f32, fmaf(89.123, 5.0, 9.124), 454.739005, epsilon));
try expect(math.approxEqAbs(f32, fmaf(123123.234375, 5.0, 9.124), 615625.295875, epsilon));
}
test "64" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f64, fma(0.0, 5.0, 9.124), 9.124, epsilon));
try expect(math.approxEqAbs(f64, fma(0.2, 5.0, 9.124), 10.124, epsilon));
try expect(math.approxEqAbs(f64, fma(0.8923, 5.0, 9.124), 13.5855, epsilon));
try expect(math.approxEqAbs(f64, fma(1.5, 5.0, 9.124), 16.624, epsilon));
try expect(math.approxEqAbs(f64, fma(37.45, 5.0, 9.124), 196.374, epsilon));
try expect(math.approxEqAbs(f64, fma(89.123, 5.0, 9.124), 454.739, epsilon));
try expect(math.approxEqAbs(f64, fma(123123.234375, 5.0, 9.124), 615625.295875, epsilon));
}
test "128" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f128, fmaq(0.0, 5.0, 9.124), 9.124, epsilon));
try expect(math.approxEqAbs(f128, fmaq(0.2, 5.0, 9.124), 10.124, epsilon));
try expect(math.approxEqAbs(f128, fmaq(0.8923, 5.0, 9.124), 13.5855, epsilon));
try expect(math.approxEqAbs(f128, fmaq(1.5, 5.0, 9.124), 16.624, epsilon));
try expect(math.approxEqAbs(f128, fmaq(37.45, 5.0, 9.124), 196.374, epsilon));
try expect(math.approxEqAbs(f128, fmaq(89.123, 5.0, 9.124), 454.739, epsilon));
try expect(math.approxEqAbs(f128, fmaq(123123.234375, 5.0, 9.124), 615625.295875, epsilon));
}